
J. Homotopy Relat. Struct. (2016) 11:261–289
DOI 10.1007/s40062-015-0105-z

From (Z, X)-modules to homotopy cosheaves

Filipp Levikov1

Received: 12 April 2013 / Accepted: 23 March 2015 / Published online: 8 April 2015
© Tbilisi Centre for Mathematical Sciences 2015

Abstract We construct a functor from the category of (Z, X)-modules of Ran-
icki (Algebraic L-theory and topological nanifolds. Cambridge University Press,
1992) to the category of homotopy cosheaves of chain complexes of Ranicki and
Weiss (GeomDedic 148, 2010) inducing an equivalence on L-theory. The L-theory of
(Z, X)-modules is central in the algebraic formulation of the surgery exact sequence
and in the construction of the total surgery obstruction by Ranicki, as described in
(Lect Notes Math 763:275–316 1979). The symmetric L-theory of homotopy cosheaf
complexes is used by Ranicki and Weiss (Geom Dedic 148, 2010), to reprove the
topological invariance of rational Pontryagin classes. The work presented here may
be considered as an addendum to the latter article and suggests some translation of
ideas of Ranicki into the language of homotopy cosheaves of chain complexes.
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262 F. Levikov

1 Introduction

Ranicki and Weiss [16] reprove the topological invariance of rational Pontrjagin
classes by constructing for a topological manifold M a symmetric L-theory orien-
tation whose rationalization is identified with the Poincaré dual of the total L-class.
For a locally compact, Hausdorff and separable space X , they introduce the category
DX of “cosheaf”-like complexes of abelian groups and a framework for defining L-
theory in this setting. All this structure is assembled into what in the following is called
the weak algebraic bordism category KX . Associating to X the symmetric L-theory
spectrum of KX gives a functor from spaces to spectra

X �→ L•(KX )

which is homotopy invariant and excisive and thus is equivalent to symmetric L-
homology. Although not dealt with in [16] the corresponding functor to quadratic
L-theory

X �→ L•(KX )

is constructed in an analogous way. On the other hand, for a realisation of a simpli-
cial complex X the framework of [14] leads to the definition of a symmetric (resp.
quadratic) L-theory spectrum of the algebraic bordism categoryK(Z,X)

1 of chain com-
plexes of Z-modules over X . For a simplicial complex there are functors to spectra

X �→ L•(K(Z,X)) and X �→ L•(K(Z,X))

where the quadratic L-homology description is even more important since it is part of
the construction of Ranicki’s total surgery obstruction s(X). Although it is never put
like this in [16] the authors set out to achieve the goal described in [14, p. 19]: “the ulti-
mate version of the algebraic L-theory assemblymap should be topologically invariant,
using the language of sheaf theory […]”. Since the symmetric (resp. quadratic) L-
groups of the above categories (i.e. the homotopy groups of the corresponding L-theory
spectra) are just the L•- (resp. L•-) homology groups, they coincide abstractly. Let
B(Z, X) denote the category of chain complexes underlying K(Z,X). The goal of this
article is to construct an explicit, geometric natural transformation of functors

B(Z,−) → D(−)

inducing an equivalence onL• andL• for every polyhedron X . The objects inB(Z, X)

can be viewed as covariant functors, i.e. cosheaves over open stars of X . The con-
structed equivalence is geometric in the sense that it is given by canonically extending
a (Z, X)-module to a homotopy cosheaf.

In the first four sections we recall all the background definitions. In Sect. 2 we
clarify what our framework for L-theory is going to be. In Sects. 3 and 4 we collect the

1 In the original source [14] the category is denoted by �∗(Z, X) with the category of (Z, X)-modules
(A(Z, X)) being the underlying additive category with chain duality. See section 2.2 for the notation.
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From (Z, X)-modules... 263

definitions of the categories K(Z,X) resp. KX . In the remaining sections, the original
work is presented. For a fixed simplicial complex X we construct a functor from
B(Z, X) to DX giving rise to the functor K(Z,X) → KX in Sect. 5 and prove its
naturality. In Sect. 6 we define a natural transformation between the derived products
of the latter categories and show that it preserves non-degeneracy. The final theorem
is stated in Sect. 7. A few remarks on earlier work on this subject are made in Sect. 8.
The final section is an appendix containing some remarks on homotopy (co)limits in
the category of chain complexes.

2 Remarks on L-theory

2.1 L-theory of additive categories without explicit chain duality

In [14] a very general framework for L-theory is given. An algebraic bordism category
consists of an additive category A with chain duality, a subcategory of the category
of chain complexes in A and a subcategory of “contractible” complexes. Symmetric
and quadratic L-groups as well as the corrensponding spectra are defined for every
such category. The most natural way of comparing the constructions of [14] and [16]
would be to construct a functor of algebraic bordism categories and to show that it
induces an isomorphism on L-groups. However, the structure of an algebraic bordism
category is unsuitable for the homotopy cosheaves of [16]. It turns out to be difficult
to define a chain duality: the duals are only given implicitly since the objects are not
finitely generated in general. Instead, in [16] a slight modified setting is presented. In
the following we will only deal with L-theory in this setting.

A chain duality is needed to pass from chain complexes in A to chain complexes
of abelian groups. When there is a chain complex and an action of Z/2 on it, its
homotopy fixed points (resp. homotopy orbits) can be considered and the rest is as
usual as L-theorists would put it. That is exactly what the formalism of [16] establishes
by defining a “chain product”. The crucial properties of a product suitable for doing
L-theory are extracted in [18,19]. Therefore it is not surprising that the axioms of a
chain product below resemble very much those for an SW -product. In our situation
however the underlying category is still additive, so in fact the main difference to [14]
seems to lie in the lack of an explicit duality. We elaborate on this in the following.

Definition 1 Given an additive categoryA consider the category B(A) of chain com-
plexes in A bounded from below and from above. Let C be a full subcategory closed
undermapping cones and containing all contractible complexes inB(A). A complex in
B(A) will be called C-contractible if and only if it belongs to C. A morphism in B(A)

will be called a C-equivalence or simply homotopy equivalence if and only if its map-
ping cone is C-contractible. Further let D be a full subcategory of B(A) closed under
suspension, desuspension, homotopy equivalence, direct sum and mapping cone. A
chain product2 on D is a functor to chain complexes of abelian groups

2 This should not be confused with the chain product of [17, Def. 5.3]. Our chain product is per definition
a bifunctor on chain complexes in A.
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264 F. Levikov

D × D → Ch(Ab), (C, D) �→ C � D

satisfying

1. for D ∈ D, C �→ C � D takes C-contractible objects to contractible ones and
preserves homotopy pushouts,

2. there is a binatural isomorphism τ : C � D → D � C and τ 2 = id,

The tuple (A,D,�) is called an additive category with chain product.

Remark 1 The categoryB(A) is amodel categorywith cofibrations given byvaluewise
split injections and weak equivalences given by chain homotopy equivalences which
are C-equivalences. We will write HB(A) for the corresponding homotopy category,
i.e. for the localisation of B(A) with respect to C-equivalences. We will writeHD for
the correpsonding homotopy category ofDwhich necessarily becomes a (triangulated)
subcategory of HB(A). Since homology is homotopy invariant there is an induced
bifunctor

HD × HD → Ab, (C, D) �→ H0(C � D).

Definition 2 In the situation of the previous definition we call K = (A,D, C,�) a
weak algebraic bordism category if for each C ∈ D the functor

D �→ H0(C � D)

D �→ Hn(C � D)

become corepresentable in HD for all n with corepresenting objects given by the
complex T C[−n] = �nT C .

Definition 3 An n-cycle φ in C � D is called nondegenerate if and only if its adjoint
�nT C → D is a homotopy equivalence.

There is a Z2-action on C � C via the operator τ . Let W denote the standard free
Z[Z2]-module resolution of the trivial Z[Z2]-module Z. In fact due to well known
homological algebra any resolution of Z by projective Z[Z2]-modules is sufficient in
the following.

Definition 4 Denote by (C � C)hZ2 the homotopy fixed points of C � C given by

HomZ[Z2](W, C � C).

If f : C → D is a map of chain complexes denote by f hZ2 the corresponding induced
map (C � C)hZ2 → (D � D)hZ2 . For a chain φ ∈ (C � C)hZ2 we will indicate by
φ0 the projection3 to C � C . We call a cycle φ in (C � C)hZ2 nondegenerate if and
only if φ0 is nondegenerate.

3 This is given by the image under φ of the generator 1 in W0.
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From (Z, X)-modules... 265

A symmetric algebraic Poincaré complex (SAPC) of dimension n in D is a pair
(C, φ) with C a chain complex inD and φ a nondegenerate n-cycle in (C � C)hZ2 . A
symmetric algebraic Poincaré pair (SAPP) of dimension n + 1 is a triple

( f : C → D, δφ, φ)

with f a map of chain complexes in D and (δφ, φ) a nondegenerate cycle in
Cone( f hZ2). The last condition means that φ is an n-cycle in (C � C)hZ2 , δφ an
(n + 1)-chain in (D � D)hZ2 satisfying f hZ2(φ) = ∂δφ, φ is nondegenerate in
Hn(C � C) and the image of δφ is nondegenerate in Hn+1(D � Cone( f )).

Two symmetric algebraic Poincaré complexes (C, φ) and (C ′, φ′) are calledbordant
if and only if there exist a SAPP (C, δφ, φ ⊕ −φ′).

Analogously one can make the following

Definition 5 Denote by (C � C)hZ2 the homotopy orbits of C � C given by

W ⊗Z[Z2] C � C.

For a map f : C → D of chain complexes write fhZ2 for the induced map

(C � C)hZ2 → (D � D)hZ2 .

For a chain φ ∈ (C � C)hZ2 let φ0 the projection4 to C � C . A cycle φ in (C � C)hZ2

is called nondegenerate if and only if (1 + τ)φ0 is nondegenerate.
A quadratic algebraic Poincaré complex (QAPC) of dimension n in D is a pair

(C, φ) with C a chain complex inD and φ a nondegenerate n-cycle in (C � C)hZ2 . A
quadratic algebraic Poincaré pair (QAPP) of dimension n + 1 is a triple

( f : C → D, δφ, φ)

with f a map of chain complexes in D and (δφ, φ) a nondegenerate cycle in
Cone( fhZ2), i.e. φ is an n-cycle in (C � C)hZ2 , δφ an (n + 1)-chain in (D � D)hZ2

satisfying f hZ2(φ) = ∂δφ, φ is nondegenerate in Hn(C � C) and the image of δφ is
nondegenerate in Hn+1(D � Cone( f )).

Two quadratic algebraic Poincaré complexes (C, φ) and (C ′, φ′) are called bordant
if and only if there exist a QAPP (C, δφ, φ ⊕ −φ′).

Definition 6 The n-dimensional symmetric L-groups Ln(K) = Ln(D) of a weak
algebraic bordism categoryK = (A,D, C,�) are defined to be the bordism groups of
n-dimensional SAPC’s inD. The n-dimensional quadratic L-groups Ln(K) = Ln(D)

are the bordism groups of n-dimensional QAPC’s in D.

4 This is given by projecting φ to 1 ⊗ φ0 first, where 1 is the generator of W0.
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266 F. Levikov

The following describes a general principle going back to Quinn of interpreting
L-groups as homotopy groups of certain L-spectra. Details can be found in [14, Ch
12, 13] and also in [17]. The framework in [11] is more modern and more general.

Proposition 1 In the above setting one can construct an �-spectrum of Kan-	-sets
L•(K) out of [m]-ads of n-dimensional SAPC’s in D with the property that

πn(L•(K)) = Ln(K).

Similarly there exists an �-spectrum of Kan-	-sets L•(K) with the propery

πn(L•(K)) = Ln(K).

To compare L-groups of different categories we will need the following

Definition 7 Given two weak algebraic bordism categories K = (A,D, C,�) and
K′ = (A′,D′, C′,�′). A functor F : A → A′ is called a functor of weak algebraic
bordism categories if

1. F is exact in the sense that it preserves cofibrations and weak equivalences, takes
C into C′ and D into D′,

2. there exists a natural transformation h = hC,D : C � D → F(C) �′ F(D)

commuting with the symmetry operator and taking nondegenerate cycles to non-
degenerate ones.

Proposition 2 A functor of weak algebraic bordism categories induces maps of spec-
tra

F• : L•(K) → L•(K′) F• : L•(K) → L•(K′)

and hence maps between corresponding L-groups.

Proof Thinking on the level of the L-groups the statement looks obvious, since the
natural transformation h implies that F maps Poincaré objects to Poincaré objects
and bordant objects to bordant ones: A SAPC (C, φ) in D gives rise to a SAPC
(F(C), h(φ)) in D′. If two SAPC’s (C, φ), (C ′, φ′) are bordant via

(
f : C ⊕ C ′, δφ, φ ⊕ −φ′)

then their images (C, φ), (C ′, φ′) are bordant via
(
F( f ) : F(C) ⊕ F(C ′), h(δφ), h(φ ⊕ −φ′)

)
.

Now to lift this to a spectrum map observe that the assignment (C, φ) �→ (F , h(φ))

respects the gluing constructions of [m]-ads and generalises to a map of [m]-ads of
SAPC in D to [m]-ads of SAPC in D′, which is well defined because of the above.
Hence it gives rise to an induced map of Kan 	-sets and corresponding �-spectra.
The quadratic case is analogous. See also [14, §13] for this sort of reasoning. 
�
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From (Z, X)-modules... 267

2.2 Algebraic bordism categories

First an elementary observation. Let A be an additive category and B(A) the category
of (bounded) chain complexes in A. A contravariant additive functor

T : A → B(A)

can be extended to a contravariant additive functor

T : B(A) → B(A)

simply by taking the total complex of the double complex arising by applying T
degreewise. Now the following definition makes sense.

Definition 8 LetA be an additive category andB(A) the category of chain complexes
in A. Given a contravariant additive functor T : A → B(A) and a natural transforma-
tion e : T 2 → idA the triple (A, T, e) is called an additive category with chain duality
if and only if

1. e(T (A)) ◦ T (e(A)) = idT (A),
2. e(A) : T 2(A) → A is a chain equivalence.

Definition 9 Given an additive category with chain duality (A, T, e) one defines a
product of two objects M, N ∈ A by

M ⊗A N = HomA(T M, N )

which can be extended to a product of two chain complexes C, D ∈ B(A)

C ⊗A N = HomA(T C, D).

The duality functor T induces a Z2-action on C ⊗A C . The definitions of symmetric
and quadratic Poincaré complexes and pairs in B(A) carry over verbatim from above.
The symmetric (resp. quadratic) L- groups Ln(A) (resp. Ln(A)) as bordism groups of
SAPC’s (resp. QAPC’s) in B(A).

Now we can slightly generalise this notion by restricting the choice of chain com-
plexes or allowing T 2(A) → A to be a “weaker” equivalence.

Definition 10 Let A be an additive cateogory. Given a full subcategory C of the
category of (bounded) chain complexes B(A) which is closed under mapping cones, a
chain complexC ∈ B(A) is calledC-contractible ifC is inC. A chainmap f : C → D
is called aC-equivalence if the mapping cone Cone( f ) is inC. Assume now (A, T, e)
is an additive category with chain duality and two subcategories B,C of B(A) are
specified which are closed under mapping cones and C is contained in B. A triple
� = (A,B,C) is called an algebraic bordism category if and only if for each C ∈ B

1. the mapping cone Cone(idC ) is in C,
2. the chain equivalence T 2(C) → C is a C-equivalence.
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268 F. Levikov

Definition 11 Given an algebraic bordism category � = (A,B,C) we can follow
the above recipe to define symmetric and quadratic algebraic Poincaré complexes
respectively pairs in B. A cycle φ ∈ C ⊗A C is considered nondegenerate here if
and only if the mapping cone of its adjoint is a C-equivalence. The symmetric (resp.
quadratic) L-groups Ln(�) (resp. Ln(�)) of � = (A,B,C) are then defined as
bordism groups of SAPC’s (resp. QAPC’s) in B.

Example 1 Let R be a ringwith involution ι. LetA(R) be the category of f.g. projective
left R-modules. Define T : A(R) → A(R) ⊂ B(A(R)) by mapping a module M to
M∗t = Homt

R(−, R) where the superscript t indicates that the right R-module M∗ is
viewed as a leftmodule via the involution. LetB(R) consist of finite chain complexes of
f.g. projective left R-modules andC(R) of contractible ones. This defines an algebraic
bordism category � = (A(R),B(R),C(R)) and the symmetric (resp. quadratic) L-
groups Ln(�) (resp. Ln(�) are the symmetric (resp. quadratic) L-groups of the ring
with involution R. For the group ring R = Z[π ] and the canonical involution the
quadratic groups Ln(Z[π ]) are the (projective) surgery obstruction groups ofWall. The
symmetric groups are the nonperiodic versions of symmetric L-groups ofMishchenko.

Here is the main example of a weak algebraic bordism category.

Example 2 Given an algebraic bordism category � = (A,B,C) such that C con-
tains chain contractible complexes in B the category K� = (A,B,C,�T ) is a weak
algebraic bordism category where C �T D := C ⊗ D.

Remark 2 There is a notion of a functor of algebraic bordism categories (cf. Def. 3.7,
[17]). Such a functor induces maps of L-spectra and L-groups. We will not make use
of this notion here. It is however important to notice that such a functor gives rise to
a functor of the corresponding weak algebraic bordism categories. This will be used
later.

3 The algebraic bordism category A(Z, X)

Let X be a simplicial complex. In this section we recall the definition of the A(Z, X).
The reference is [14, §4 et seq.].

Definition 12 1. Let A be an additive category. An object M ∈ A is X -based if it is
expressed as a direct sum

M =
∑

σ∈X

M(σ )

of objects M(σ ) ∈ A s.t. {σ ∈ X | M(σ ) �= 0} is finite. A morphism f : M → N
of X -based objects is a collection of morphisms in A

{ f (τ, σ ) : M(σ ) → N (τ ) | σ, τ ∈ X}.
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From (Z, X)-modules... 269

2. Let A∗(X) be the additive category of X -based objects M with morphisms
f : M → N s.t. f (τ, σ ) : M(σ ) → N (τ ) is 0 unless τ ≥ σ so that

f (M(σ )) ⊆
∑

τ≥σ

N (τ ).

3. Forgetting the X -based structure defines the covariant assembly functor

A∗(X) → A, M �→ M∗(X) =
∑

σ∈X

M(σ ).

Definition 13 A (Z, X)-module is an X -based object in A(Z), where A(Z) denotes
the additive category of free abelian groups.

Remark 3 A free (Z, X)-module on one generator Mσ is given by

Mσ (τ ) =
{
Z σ = τ

0 σ �= τ

for some simplex σ ∈ X . Every (Z, X)-module is a direct sum of free (Z, X)-modules
on one generator.

Here and in the following 	∗(X) stands for the simplicial chain complex of a
simplicial complex X .

Example 3 The simplicial cochain complex 	(X)−∗ of X is a finite chain complex
in A(Z)∗(X) with

	(X)−∗(σ ) = S−|σ |
Z.

Definition 14 1. Let A∗[X ] be the category with objects the contravariant additive
functors

M : X → A, σ �→ M[σ ]

s.t. {σ | M[σ ] �= 0} is finite. The morphisms are natural transformations of such
functors. Herewe view X as a category consisting of simplices and face inclusions.

2. We have a covariant functor

A∗(X) → A∗[X ], M �→ [M], [M][σ ] =
∑

τ≥σ

M(τ )

Remark 4 The assembly functor embeds A∗(X) into A∗[X ] as a full subcategory.
Furthermore, every object in A∗[X ] can be obtained by taking (valuewise) direct sum
of functors of the form M[σ ] where the latter is the free abelian group generated by
HomX (−, σ ). We can use Remark 3 to identify M[σ ] = [Mσ ].
Remark 5 To simplify notation we will sometimes write M for [M] in the hope that
no confusion is caused. This is in particular reasonable when the type of brackets
around the argument determines whether M is inA∗(X) orA∗[X ]: M(σ ) and M[σ ] =
[M][σ ] = ∑

τ≥σ M(σ ).
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270 F. Levikov

Example 4 Given a simplicial complex Y denote by D(σ, Y ) the dual cell of σ and by
∂ D(σ, Y ) its boundary i.e. the union of dual cells of simplices having σ as a proper
face. A simplicial map f : Y → X gives rise to a complex of (Z, X)-modules C f

defined as

C f (σ ) = 	∗
(

f −1D(σ, Y ), f −1∂ D(σ )
)

.

We have

[C f ][σ ] =
∑

τ≥σ

C f (τ ) = 	∗
(

f −1D(σ, Y )
)

.

Its assembly equals 	∗(Y ′)—the simplicial chain complex of the barycentric subdi-
vision of Y .

Proposition 3 [14, 5.1] Given an algebraic bordism category � and a locally finite
simplicial complex X. The chain duality functor of � induces a chain duality functor
on A∗(X). Let B∗(X) be the category of chain complexes B in B(A∗(X)) such that
B(σ ) is in B for every σ and similarly for C∗(X). This makes the triple �∗(X) =
(A∗(X),B∗(X),C∗(X)) into an algebraic bordism category,

Proposition 4 [14, 5.6] A simplicial map f : X → Y of finite (ordered) simplicial
complexes induces a functor of algebraic bordism categories

f∗ : �∗(X) → �∗(Y )

determined by the assignment f∗M(σ ) = ∑

τ∈X
f τ=σ

M(τ )

Remark 6 If C∗(X) contains all contractible complexes in B∗(X), the above alge-
braic bordism category gives rise to a weak algebraic bordism category according to
Example 2.

Let R in Example 1 beZwith the trivial involution and consider now the corresponding
algebraic bordism category of free Z-modules �(Z) = (A(Z),B(Z),C(Z)). There is
an algebraic bordism category �(Z, X) = (A(Z, X),B(Z, X),C(Z, X)) defined as
�(Z)∗(X) = (A(Z)∗(X),B(Z)∗(X),C(Z)∗(X)) in Proposition 3 which due to the
last remark defines the weak algebraic bordism category we will be dealing with in
later sections.

Definition 15 For the algebraic bordism category (A(Z, X),B(Z, X),C(Z, X)) of
(Z, X)-modules let

K(Z,X) = (A(Z, X),B(Z, X), C(Z, X),�K(Z,X)
)

denote the corresponding weak algebraic bordism category of (Z, X)-modules. The
chain product is given by

M �K(Z,X)
N = HomA∗(X)(T M, N ) = ([M] ⊗ [N ])∗[K ] = colim

σ∈X
[M][σ ] ⊗ [N ][σ ]
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From (Z, X)-modules... 271

Theorem 1 [14, §13] The symmetric (resp. quadratic) L-groups Ln(K(Z,X)) (resp.
Ln(K(Z,X))) can be identified with the L•-homology groups Hn(X;L•(Z)) (resp. L•-
homology groups Hn(X;L•(Z))).

Definition 16 Let X be a simplicial complex such that its realisation is an n-
dimensional closed manifold. Consider the (Z, X)-module chain complex CidX of
Ex. 4. Over each simplex there is a refinement of the Alexander–Whitney diagonal
approximation (cf. [14, §6])

[CidX ][σ ] → ([CidX ][σ ] ⊗Z [CidX ][σ ])hZ/2

which fit together to give a map

[CidX ][X ] → ([CidX ][X ] ⊗Z [CidX ][X ])hZ/2.

The image of the fundamental class of X under this is a nondegenerate cycle φX . The
pair (CidX , φX ) is a SAPC inK(Z,X) and defines a canonical class in Ln(K(Z,X))which
will be denoted by [X ]K(Z,X)

. If the realisation of X is an n-dimensional manifold with
boundary, there is an analogously constructed canonical relative class [X ]K(Z,X),K(Z,∂ X)

in Ln(K(Z,X),K(Z,∂ X)).

4 Ranicki–Weiss cosheaves

The objects of this section are constructed in [16]. While the (Z, X)-module chain
complexes can be viewed as chain complexes of Z-modules labeled by open stars of
a simplicial complex, the cosheaves of Ranicki and Weiss are labeled by open sets of
a given (ENR) topological space. The main guiding example is Example 6. Dual cells
are replaced by open subsets while the simplicial chain complex is replaced by the
singular one. The analogous condition for a Z-module of being X -based is expressed
in the next definition.

Definition 17 Let X be a locally compact, Hausdorff and separable space and write
O(X) for the category of open sets of X . Let F be a free abelian group with a basis B.
We call F O(X)-based if and only if there is a covariant functor F : O(X) → Ab to
abelian groups such that

1. F(∅) = 0, F(X) = F,
2. F(U ) is generated by a subset BU of B,
3. for U, V ∈ O(X), F(U ∩ V ) = F(U ) ∩ F(V ).

A morphism between two O(X)-based abelian groups is a group homomorphism
f : F0 → F1 taking F0(U ) to F1(U ) for every open set U ∈ O(X). Denote by
A = AX the additive category of O(X)-based groups over X .

Example 5 For any i ≥ 0 let S be the i-th singular chain group of X Si (X) with B
consisting of the singular i-simplices in X . Since forU ∈ O(X) the subgroup Si (U ) of
S is generated by i-simplices in X with image inU , it is obvious that S isO(X)-based.

123



272 F. Levikov

Definition 18 Let B(A) denote the category of chain complexes in A which are
bounded from below.

Example 6 Let f : Y → X be a map from a compact ENR Y . Define an object
C( f ) ∈ B(A) by C( f )(X) = S∗( f −1(X)) the singular chain complex of X with the
standard basis and for U ∈ O(X), C( f )(U ) ⊂ C( f )(X) the subcomplex generated
by simplices with image in f −1(U ).

Definition 19 1. An object C ∈ B(A) satisfies the sheaf type condition if for any
W ⊂ O(X) the inclusion

∑

V ∈W
C(V ) → C(

⋃

V ∈W
V )

is a homotopy equivalence, where the sum on the left is taken inside C(X).
2. An objectC ∈ B(A) satisfies finiteness condition (i) if there exists an integer a ≥ 0

such that: for every inclusion of open sets V1 ⊂ V2 with V 1 ⊂ V2, the induced
inclusion C(V1) ⊂ C(V2) factors up to homotopy through a complex D of finitely
generated free abelian groups, bounded by a from above and from below.

3. An object C ∈ B(A) satisfies finiteness condition (ii) if there exists a compact
subset K of X such that C(U ) depends only on C(U ∩ K ). In this case, C is said
to be supported in K .
We write C for the subcategory of B(A) consisting of objects satisfying all the

above conditions. As usual, we write CX , CY etc. to emphasize the dependance on the
space.

Remark 7 The Example 6 satisfies all three conditions of the last definition.

Definition 20 A map f : X → Y induces a (covariant) pushforward functor

f∗ : CX → CY

defined by f∗C(U ) = C( f −1(U )).

Lemma 1 [16, 3.9, 3.10] Let C be in CX and W be a subset of O(X).

(a) If W is finite and closed under unions, inclusions induce a homotopy equivalence

C

(
⋂

V ∈W
V

)
�−→ holim

V ∈W
C(V ).

(b) If W closed under intersections, the inclusions induce a homotopy equivalence

hocolim
V ∈W

C(V )
�−→ C

(
⋃

V ∈W
V

)

.
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Remark 8 Let F be a contravariant functor O(X) → H with a notion of homotopy
in the target category. Following the general principle of taking the homotopy limit
instead of the ordinary one, F is called a homotopy sheaf in the literature if for every
W ∈ O(X)

F(W ) → holim
I

F(VI )

is a homotopy equivalence where I runs through finite intersections of open sets
covering W . Property b) of the preceding lemma is dual to this criterion. Therefore
it seems consistent to call objects satisfying Definition 19 and hence Lemma 1 b)
homotopy cosheaves of chain complexes.

Definition 21 Denote by C′′ the full subcategory of objects for which C(U ) is con-
tractible for all U ∈ O(X). A morphism f : C → D in C is called weak equivalence
if its mapping cone belongs to C′′.

Remark 9 With the chain product defined below the tuple (AX , CX , C′′
X ,�) defines

a weak algebraic bordism category. The corresponding functor from X to L-theory
of this does not satisfy excision though. To resolve this, a full subcategory of C is
introduced in the following.

Definition 22 Let D be the smallest full subcategory of C satisfying the following.

1. All objects of C obtained from f : 	k → X as in Example 6 are in D.
2. If two of three objects in a short exact sequence C → D → E are in D then is

the third.
3. All weakly contractible objects are in D, i.e. C′′ ⊂ D.

Remark 10 For a map f : X → Y and C ∈ DX we have f∗C ∈ DY .

Definition 23 Given two objects C, D ∈ CX . Define their chain product by

C � D = holim
U⊂Xopen,K1,K2⊂Xclosed

K1∩K2⊂U

C (U, U\K1) ⊗Z D (U, U\K2)

where the values of C resp. D on pairs are defined in the usual way as quotients.

Remark 11 A map f : X → Y induces a map of products

C � D
f �

−−→ f∗C � f∗ D

given by projections (i.e. specialisation to open sets in the preimage of f ).

Proposition 5 [16, 7.3] Mapping X to DX is functorial and preserves duality, i.e. if
φ ∈ C � D is nondegenerate its image f �(φ) is also nondegenerate.
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Remark 12 Our exposition here is significantly shorter than in the original source [16].
A large part there is devoted to decomposability ofD, which is crucial for the excision
property of X → L•(KX ). Another issue to mention is that the authors do not work
with the homotopy category HD. Instead, they introduce the subcategory D′ of free
objects, closed under taking duals, and show that every complex inD can be resolved
by one in D′. For the purpose of L-theory, this amounts to the same as working in
D but replacing the homotopy category HD by the localisation with respect to the
bigger class of weak equivalences (C′′-equivalences), i.e. defining corepresentability
and nondegeneracy by means of C′′−1D instead of HD.

Definition 24 WewriteKX for theweakalgebraic bordismcategory (AX ,DX , C′′
X ,�)

and L•(KX ) (resp. L•(KX )) for the corresponding L-theory spectra. Similar for L-
groups.

Theorem 2 [16, section 8] The covariant functor X �→ L•(KX ) satisfies homotopy
invariance and excision.

Definition 25 Let X be a closed n-dimensional manifold. As in Example 6 its singular
chain complex S∗(X) defines the complex C(idX ) inDX . There is a refinement of the
Alexander–Whitney map (cf. [16, Ex. 5.6, 5.9])

S∗(X) → (C(idX ) � C(idX ))hZ/2

such that the fundamental class of X is mapped to a nondegenerate cycle φX . The
pair (C(idX ), φX ) is a SAPC in KX and defines a canonical class in Ln(KX ) denoted
by [X ]KX . Analogously, a n-dimensional compact manifold with boundary (X, ∂ X)

defines aSAPP (C(id∂ X ) ↪→ C(idX ), φX , φX,∂ X ) and thus defines a canonical relative
class [X, ∂ X ]KX in Ln(KX ,K∂ X ).

5 The functor F
caveat 1 To facilitate readability, we will mostly neglect the difference in the notation
between the simplicial complex X and the corresponding polyhedron |X |, between
the simplex σ ∈ X and the corresponding subspace |σ | ⊂ |X | etc. This might appear
sloppy but should not create confusion, since the meaning is always clear from the
context. For example, for a simplicial complex X, the category AX should be read
as A|X |. Also the singular chain complex functor S∗ is only applied to topological
spaces. To avoid confusion entirely, it might be helpful to read simplicial complex as
simplicial space in the sense of Dold (cf. [4, V, 7.3]).

Let C be in B(Z, X). For the corresponding contravariant functor [C] ∈ B[Z, X ]
it is natural to define a covariant functor C̃ on unions of open stars, which sends
U = ⋃

s̊t(σ ) to

colim
τ,s̊t(τ )⊂U

C[τ ].
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The idea of the following definition is to extend C̃ to a functor in B(AX ). We will
usually write C for [C].
Definition 26 We define a functor from the categoryB(Z, X) of (Z, X)-module chain
complexes to the Ranicki–Weiss category B(AX ) of chain complexes labeled by sets
in O(X) as

F : B(Z, X) → B(AX ), C �→ F(C) : U �→
∫ σ

C[σ ] ⊗ S∗(U ∩ σ)

where
∫ σ C[σ ] ⊗ S∗(U ∩ σ) is the coend of the functor

SC(U ) : Xop × X → Ch(Ab), (σ, τ ) �→ C[σ ] ⊗ S∗(U ∩ τ)

X is identified with its simplex category and the latter is the singular chain complex
of U ∩ τ .

Lemma 2 In the above definition the functor sending (σ, τ ) to C[σ ] ⊗ S∗(U ∩ τ) is
Reedy cofibrant and hence its coend is a model for the homotopy coend, i.e. there is a
natural weak equivalence

∫ σ

C[σ ] ⊗ S∗(U ∩ σ) � ho
∫ σ

C[σ ] ⊗ S∗(U ∩ σ).

Remark 13 The functor F can be expressed as a global coend in the following way.
View a simplex σ ∈ X as a topological space and let K (σ ) ∈ Cσ denote the canonical
complex C(idσ ) as given in Example 6. Denote by ισ the inclusion of the topological
space |σ | into the realisation of X . We have

F(C) =
∫ σ

C[σ ] ⊗ ισ∗K (σ )

Remark 14 Sometimes it is convenient to have the following description of F(C). In
every degree k we have

F(C)(U )k =
⊕

i+ j=k

⊕

σ∈X

C(σ )i ⊗ S j (U ∩ σ).

The decomposition of an X -based chain complex is not respected by its differentials,
however we have

dk :
⊕

i+ j=k

⊕

σ∈X

C(σ )i ⊗ S j (U ∩ σ) →
⊕

ĩ+ j̃=k−1

⊕

σ∈X

C(σ )ĩ ⊗ S j̃ (U ∩ σ),

C(σ )i ⊗ S j (U ∩ σ) →
⊕

τ≥σ

C(τ )i−1 ⊗ S j (U ∩ τ).

The next lemma shows that the functor F(C) is consistent with C and is indeed a
(homotopy) extension of C̃ .
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Lemma 3 If U is a union of open stars s̊t(σ ), then F(C)(U ) is naturally homotopy
equivalent to C̃(U ). If (U, V ) is a pair of unions of open stars then F(C)(U, V ) is
naturally homotopy equivalent to C̃(U, V ).

Proof Let us show the lemma for one open star first, i.e.
∫ σ

C[σ ] ⊗ S∗(σ ∩ s̊t(τ )) ∼= colim
(σ→ρ)∈X �

C[ρ] ⊗ S∗(σ ∩ s̊t(τ )) � C[τ ]X �,

where X � is the twisted arrow category (see last page of Appendix).
Observe that σ ∩ s̊t(τ ) is non-empty if and only if σ ≥ τ and in the latter case we
have

S∗

(

σ ∩
⋃

ρ≥τ

ρ̊

)

= S∗

(
⋃

ρ≥τ

σ ∩ ρ̊

)

�
∑

ρ≥τ

S∗(σ ∩ ρ̊).

The right hand side is naturally chain homotopic to Z because every summand clearly
is and the sum is taken inside the singular chain complex S∗(s̊t(τ )) of a contractible
space s̊t(τ ). The above diagram satisfies the following property. If α ∩ s̊t(τ ) = ∅ the
value C[β] ⊗ S∗(α ∩ s̊t(τ )) at any α → β ∈ X � is zero. Furthermore for all maps
(α̃ → β̃) → (α → β) the value at the source C[β̃] ⊗ S∗(α̃ ∩ s̊t(τ )) is zero as well
since α̃ ∩ s̊t(τ ) = ∅. As a consequence the terms at α → β with α ∩ s̊t(τ ) = ∅ can
be ignored when taking the colimit, i.e. {α → β | α ∩ s̊t(τ ) �= ∅} is cofinal. Thus we
have

∫ σ

C[σ ] ⊗ S∗(σ ∩ s̊t(τ )) ∼= colim
(σ→ρ)∈X �

s.t.τ≤σ

C[ρ] ⊗ S∗
(
σ ∩ s̊t(τ )

)
.

Since the subdiagram is (still) Reedy cofibrant the colimit is actually a homotopy
colimit and we may write

∫ σ

C[σ ] ⊗ S∗(σ ∩ s̊t(τ )) � hocolim
(σ→ρ)∈X �

s.t.τ≤σ

C[ρ] ⊗ Z ∼= hocolim
τ≤σ∈X

C[σ ] � C[τ ]

where the last step is clear by cofinality. Let U be a union of open stars Ui = s̊t(τi ).
Due to the subsequent lemmata F takes values in CX and we may use Lemma 1b) to
conclude

F(C)

(
⋃

i

Ui

)

� hocolim
Ui

F(C)(Ui )

where the collection of the Ui is closed under intersections, since the intersection of
open stars is an open star itself. Now eachF(C)(Ui ) is naturally homotopy equivalent
to C̃(Ui ) and we may write

hocolim
Ui

F(C)(Ui ) � hocolim
Ui ⊂U

C̃(Ui ) � hocolim
τi

s̊t(τi )⊂U

C[τi ] � C̃(U )
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where the last equivalence is due to the fact that colim
τ,s̊t(τ )⊂U

C[τ ] computes the homotopy

colimit.

Lemma 4 Given C ∈ B(Z, X). Its image F(C) under F satisfies the sheaf type
condition.

Proof We have to show that for every subset W of O(X) the inclusion

∑

V ∈W

∫ σ

C[σ ] ⊗ S∗(σ ∩ V ) →
∫ σ

C[σ ] ⊗ S∗

(

σ ∩
⋃

V ∈W

)

is a homotopy equivalence. For every fixed σ the inclusion

∑

V ∈W
C[σ ] ⊗ S∗(σ ∩ V ) →

∫ σ

C[σ ] ⊗ S∗

(

σ ∩
⋃

V ∈W

)

is certainly a natural homotopy equivalence due to excision of the singular chain
complex functor S∗ (c.f eg. [4, III, Prop. 7.3]. Since the coends compute homotopy
coends here, the induced map

∫ σ ∑

V ∈W
C[σ ] ⊗ S∗(σ ∩ V ) →

∫ σ

C[σ ] ⊗ S∗

(

σ ∩
⋃

V ∈W

)

is also a homotopy equivalence. We have to convince ourselves that the (homotopy)
coend and the internal sum of subcomplexes sitting inside

∫ σ C[σ ] ⊗ S∗(σ ∩ X)

commute. An analogue of Lemma 1b) shows that hocolimV ∈W C[σ ] ⊗ S∗(σ ∩ V ) is
naturally homotopy equivalent to C[σ ] ⊗ S∗(σ ∩ ⋃

V ∈W ) and since the (homotopy)
coend is just a (homotopy) colimit, the interchange of sum and coend follows from a
Fubini-like theorem for (homotopy) colimits. 
�
Lemma 5 For C ∈ B(Z, X), F(C) satisfies the finiteness conditions (i) and (ii) of
Definition 19.

Proof (i) Let V1, V2 be open sets in X such that V 1 ⊂ V2. We have to show that

∫ σ

C[σ ] ⊗ S∗(σ ∩ V1) →
∫ σ

C[σ ] ⊗ S∗(σ ∩ V2)

factors up to chain homotopy through a bounded chain complex of f.g. free abelian
groups. Since X is a simplicial complex we can find a simplicial subcomplex Z
such that V1 → V2 factors up to homotopy through Z . Passing to the singular
chain complex we get a factorization up to chain homotopy

S∗(σ ∩ V1) S∗(σ ∩ V2)

S∗(σ ∩ Z)
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where the bottom term is chain homotopy equivalent to the simplicial chain com-
plex 	∗(σ ∩ Z), which is a f.g. complex of free abelian groups. Since C[σ ] is f.g.
and degreewise free we get a factorization up to chain homotopy

C[σ] ⊗ S∗(σ ∩ V1) C[σ] ⊗ S∗(σ ∩ V2)

C[σ] ∗(σ ∩ Z)

and, applying coend, the desired result.
(ii) We have to show that there is a compact subspace K of X such that F(C̃)(U )

is supported in K i.e.
∫ σ C[σ ] ⊗ S∗(σ ∩ U ∩ K ) depends only on K . Since C

is an X -based object there are only finitely many σ such that C(σ ) �= 0. These
simplices span a subcomplex K and

∫ σ C[σ ]⊗ S∗(σ ∩U ∩ K ) is supported in K .

Proposition 6 For C ∈ B(Z, X),F(C) lies in DX .

Proof By the preceding lemmata F(C) lies in CX . It remains to show that it is in
fact contained in the full subcategory of Definition 22. For every σ ∈ X , K (σ ) is
in DX and hence also the pushforward ισ∗K (σ ). We can view C[σ ] as an element
in Dpt . It follows from [16, 6.5] that C[σ ] ⊗ ισ∗K (σ ) is in DX . Since the coend∫ σ C[σ ] ⊗ ισ∗K (σ ) is given by a direct sum modulo the image of a direct sum it is
also in DX .

Lemma 6 For a simplicial map f : X → X ′ and a (Z, X)-module chain complex C
there is a natural transformation of functors η : f∗F(C) → F( f∗C) with ηU being
a homotopy equivalence for every open set U ⊂ X ′. Furthermore for f injective, ηU

is an isomorphism.

Proof Let C be in B(Z, X). We want to show that the obvious natural map

∫ σ∈X

C[σ ] ⊗ ( f ισ )∗K (σ )(U ) →
∫ σ ′∈X ′

f∗C[σ ′] ⊗ ισ ′∗K (σ ′)(U )

is a chain homotopy equivalence for every open U in X ′. It is sufficient to show this
statement for (Z, X)-module chain complexes which are concentrated in one degree
in which they are free on one generator. Let C be one of these, i.e.

Ci =
{

Mσ i = k
0 i �= k

where for a simplex σ in X , Mσ is free on one generator (cf. Remark 3). We use
Remark 14 to rewrite the above in degree n as

Mσ (σ )k ⊗ Sn−k

(
σ ∩ f −1(U )

)
→ Mσ (σ )k ⊗ Sn−k ( f (σ ) ∩ U ) .
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Now σ ∩ f −1(U ) is nonempty if and only if f (σ )∩U is and both terms are naturally
equivalent to Mσ (σ ) = Z. Otherwise both are zero. If f is injective

S j

(
σ ∩ f −1(U )

)
f∗−→ S j ( f (σ ) ∩ U )

is an isomorphism. 
�

6 Map between � products

We will need the following lemma.

Lemma 7 There is homotopy equivalence

M �K(Z,X)
N �

∫ σ

M[σ ] ⊗ N [σ ] ⊗ 	∗(σ )

which is natural in both components.

Proof With the natural homotopy equivalence

M[σ ] ⊗ N [σ ] ⊗ 	∗(σ ) � M[σ ] ⊗ N [σ ]

the homotopy coend becomes a homotopy colimit. Since σ �→ M[σ ] is a Reedy
cofibrant functor to chain complexes, the colimit computes the homotopy colimit:

M �K(Z,X)
N = colim

σ∈X
M[σ ] ⊗ N [σ ] � hocolim

σ∈X
M[σ ] ⊗ N [σ ].


�
This is the model we will be working with. Now we can formulate a local criterion

for nondegeneracy in B(Z, X).

Lemma 8 Given two complexes C, D ∈ B(Z, X). For each σ ∈ X there is a map

L : C �K(Z,X)
D → C(σ ) ⊗ D[σ ] ⊗ 	∗(σ, ∂σ ).

A cycle φ ∈ C � D is nondegenerate if and only if its image in

∏

σ

C(σ ) ⊗ D[σ ] ⊗ 	∗(σ, ∂σ )

is nondegenerate.

Proof To give a map from the homotopy coend it is sufficient to give a map from each
component

fα : C[α] ⊗ D[α] ⊗ 	∗(α) → C(σ ) ⊗ D[σ ] ⊗ 	∗(σ, ∂σ )
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consistent with inclusions

C[α] ⊗ D[α] ⊗ 	∗(β) → C[α] ⊗ D[α] ⊗ 	∗(α)

for β ≤ α and

C[γ ] ⊗ D[γ ] ⊗ 	∗(α) → C[α] ⊗ D[α] ⊗ 	∗(α)

for γ ≥ α. Define fα to be the obvious quotient map if α = σ and 0 otherwise. It is
easy to see that the fα are consistent in the above sense because of the special form of
the domain: everything which comes from a bigger or a smaller simplex is quotiented
out in the domain. The second statement follows from [15, Prop. 2.7] 
�
Proposition 7 (a) For C, D ∈ B(Z, X) there is a map

H = HC,D : C � D → F(C) � F(D)

natural in both arguments.
(b) Let φ be a nondegenerate cycle in C � D. Its image H(φ) is also nondegenerate

in F(C) � F(D).

Proof (a) Given a C ∈ B(Z, X), F(C) can be expressed as a global coend

F(C) =
∫ σ

C[σ ] ⊗ ισ∗K (σ )

as in Remark 13. Since σ is a manifold with boundary, there exists a chain
zσ ∈ 	|σ |(σ ) mapping to a fundamental cycle in 	|σ |(σ, ∂σ ). For two objects
C, D ∈ A(Z, X) let

h1 : C[σ ] ⊗ D[σ ] ⊗ 	∗(σ ) → C[σ ] ⊗ D[σ ] ⊗ ισ∗ K (σ ) � ισ∗ K (σ )

be the composition of id ⊗ ∇ and the pushforward on the boxtimes component,
where ∇ is the refinement of the Alexander–Whitney diagonal approximation

∇ : S∗(σ ) → K (σ ) � K (σ )

mentioned in Definition 25 composed with the map

	∗(σ ) → S∗(σ ).

Let

C[σ ] ⊗ D[σ ] ⊗ ισ∗ K (σ ) � ισ∗ K (σ )
h2(U,K1,K2)−−−−−−−−→

C[σ ] ⊗ S∗((U, U\K1) ∩ σ) ⊗ D[σ ] ⊗ S∗((U, U\K2) ∩ σ)
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be the composition of the corresponding homotopy projection and the transposition
of the inner components. By the universal property we get a map to the homotopy
limit

C[σ ] ⊗ D[σ ] ⊗ ισ∗ K (σ ) � ισ∗ K (σ )
h2−−→

holim
(U,K1,K2)

C[σ ]⊗S∗((U, U\K1)∩σ)⊗D[σ ]⊗S∗((U, U\K2)∩σ)

= C[σ ] ⊗ ισ∗ K (σ ) � D[σ ] ⊗ ισ∗ K (σ )

By taking the homotopy coend of h2 ◦ h1 we get

∫ σ

C[σ ] ⊗ D[σ ] ⊗ 	∗(σ ) →
∫ σ

C[σ ] ⊗ ισ∗ K (σ ) � D[σ ] ⊗ ισ∗ K (σ )

which we compose with the obvious inclusion

∫ σ

C[σ ] ⊗ ισ∗ K (σ ) � D[σ ] ⊗ ισ∗ K (σ )

→
∫ σ

C[σ ] ⊗ ισ∗ K (σ ) �
∫ σ

D[σ ] ⊗ ισ∗ K (σ )

and the latter is F(C) � F(D) per construction. The required map is

H = incl ◦
∫ σ

(h2 ◦ h1).

(b) We make use of the local criterion in [16, Prop. 5.8]. For every open set U in X
and every j ≥ 0, we have to show that the slant product with the corresponding
projection of H(φ)

\H(φ)U : colim
K⊂U

F(C)(U, U\K )n− j → F(D)(U ) j

is a chain homotopy equivalence. Assume we have already shown it for open sets
which are unions of open stars in an arbitrary subdivision of X . Then we can use
the same argument as in the standard proof of Poincaré duality. Cover an arbitrary
open set by unions of open stars and use the Mayer–Vietoris sequence and Zorn’s
lemma if needed. Hence the proof of b) reduces to the next lemma. 
�

Lemma 9 If U is a union of open stars in any (barycentric) finite subdivision X (n) of
X then the slant product with the corresponding projection of H(φ)

colim
K⊂U

F(C)(U, U\K )n−∗ → F(D)(U )∗

is a natural chain homotopy equivalence
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Proof We prove the statement for unions of open stars in the original simplicial com-
plex X first. LetU be an open star s̊t(τ ) = ⋃

σ≥τ σ̊ . The system (U\K )K with (U\K )

homotopy equivalent to (U\τ̂ ), where τ̂ is the barycenter of τ , is cofinal in the system
of all (U\K ). Therefore the map in the statement of the lemma can be rephrased

F(C)(s̊t(τ ), s̊t(τ )\τ̂ )n−∗ → F(D)(s̊t(τ ))∗.

This is a homotopy equivalence if and only if the component of H(φ) in

F(C)(s̊t(τ ), s̊t(τ )\τ̂ ) ⊗ F(D)(s̊t(τ ))

is nondegenerate. We have a commutative diagram

C D F(C) F(D)

C(τ) ⊗ D[τ ] ∗(τ, ∂τ ) F(C)(s̊t(τ), s̊t(τ) \ τ̂) ⊗ F(D)(s̊t(τ))

H

L proj

id⊗∇

Let us take a closer look at the first tensor factor in the right bottom corner. The
coend varies over terms of the form

C[ρ] ⊗ S

(

ρ̊ ∪
⋃

ρ>σ≥τ

σ̊ , ρ̊ ∪
⋃

ρ>σ≥τ

σ̊\τ̂
)

.

Using Remark 14 we can view it as a sum

C(τ ) ⊗ S
(
τ̊ , τ̊\τ̂) ⊕

⊕

ρ>τ

C(ρ) ⊗ S

(

ρ̊ ∪
⋃

ρ>σ≥τ

σ̊ , ρ̊ ∪
⋃

ρ>σ≥τ

σ̊\τ̂
)

.

By excision we have

S

(

ρ̊ ∪
⋃

ρ>σ≥τ

σ̊ , ρ̊ ∪
⋃

ρ>σ≥τ

σ̊\τ̂
)

� S(ρ̊, ρ̊) � 0

and deduce that F(C)
(
s̊t(τ ), s̊t(τ )\τ̂) � C(τ ) ⊗ S(τ̊ , τ̊\τ̂ ) � S|τ |C(τ ) with S|τ |

denoting the suspension by the dimension |τ | of τ .
Because of Lemma 3 the second tensor factor F(D)(s̊t(τ )) is naturally equivalent

to D[τ ]. Thus we have shown the natural equivalence

F(C)
(
s̊t(τ ), s̊t(τ )\τ̂) ⊗ F(C)(s̊t(τ )) � S|τ |C(τ ) ⊗ D[τ ]
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and can rewrite the above commutative square as

C D F(C) F(D)

C(τ) ⊗ D[τ ] ∗(τ, ∂τ ) S|τ|C(τ) ⊗ D[τ ]

H

L proj

id⊗∇

The projection of H(φ) is nondegenerate if the anticlockwise composition maps φ

to a nondegenerate cycle. Since the map

C(τ ) ⊗ D[τ ] ⊗ 	∗(τ, ∂τ ) = S|τ |C(τ ) ⊗ D[τ ] id⊗∇−−−→ S|τ |C(τ ) ⊗ D[τ ]

is homotopic to identity this is obvious.
Let U now be a finite union of open stars. Since the intersection of two open stars

is an open star the statement of the lemma for U follows from a Mayer-Viertoris
argument and the corresponding case of a single star. To deal with (unions of) open
stars in a finite subdivision X (n) we proceed entirely analogously to the above by
considering the images C (n), D(n) in the category K(Z, X (n)) of Z-modules over the
n-th barycentric subdivision. That this makes sense and, more importantly, that the
nondegeneracy of a cycle in C � D is preserved after passing to subdivisions (and
looking at duality properties over smaller open stars) is the content of the next lemma.


�
Lemma 10 Let X ′ denote the barycentric subdivision of the simplicial complex X.
There exists a functor of weak algebraic bordism categories fromB(Z, X) toB(Z, X ′).

Proof To some extent this seems to be folklore. Let C be an object in B(Z, X).
Following the same idea as in extending cosheaves over open stars to cosheaves over
arbitrary open sets we can set

C ′ [σ̂i1 · · · σ̂ik

] = C
[
σik

] ⊗ 	∗
(
σ̂i1 · · · σ̂ik

)
.

This value of C ′ over σ̂i1 . . . σ̂ik is now determined by

C ′ (σ̂i1 · · · σ̂ik

) = C ′ [σ̂i1 · · · σ̂ik

]
/ colim

[
σ ′ ≥ σ̂i1 · · · σ̂ik

]
C ′[σ ′].

Working out the effect on the morphisms one can show that C ′ is in B(Z, X ′). This
assignment is also similar in spirit to the algebraic subdivision functor of Adams-
Florou (cf. [1]). Using his explicit description of duals one should be able to show that
subdivision is a functor of algebraic bordism categories. 
�

7 Equivalence of L-spectra

The next theorem presents our main result.
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Theorem 3 The functor F of Definition 26 induces equivalences of spectra

L•(K(Z,X))
�−→ L•(KX ), L•(K(Z,X))

�−→ L•(KX )

and in particular for every n ≥ 0 isomorphisms

Ln(K(Z,X))
∼=−→ Ln(KX ), and Ln(K(Z,X))

∼=−→ Ln(KX ).

Proof Wetreat the symmetric case only, the quadratic onebeing completely analogous.
Observe that F maps C(Z, X)-contractible objects of B(Z, X) to CX -contractible
cosheaves inDX . The natural transformation H of Proposition 7 makes the functor F
into a functor of weak algebraic bordism categories. Thus, by Proposition 2 there is
an induced map of spectra

L•(K(Z,X)) → L•(KX ).

For a map of simplicial complexes f : X → Y we get a square

L•(K( ,X)) L•(KX)

L•(K( ,Y )) L•(KY )

F

f∗ f∗

F

which is commutative becauseofLemma6.ThusF is a natural transformationbetween
functors X �→ L•(K(Z,X) and X �→ L•(KX ) and both are homotopy invariant and
excisive because of Theorems 1 and 2. For a point pt there are isomorphisms

L•(KZ,pt)) = L•(�(Z)) ∼= L•(Z) ∼= L•(Kpt )

which implies that F is an isomorphism of homology theories. 
�

8 Final remarks

With insignificantly more effort all the results above can be proved for the simplicial
complex X being replaced by a	-set: the L-homology description of chain complexes
of Z-modules parametrised by a 	-set X (cf. [17]) can be canonically and naturally
identified with the L-theory of K|X |.

Furthermore one can generalize the main theorem from Z-coefficients to coeffi-
cients in any commutative ring R with the trivial involution. Replacing the category
ofO(X)-based free abelian groupsAX in Definition 17 by the analogous category of
O(X)-based free R−modules AX ⊗Z R one constructs the weak algebraic bordism
category KR

X , such that KZ

X = KX . A generalisation of Theorem 3 provides then a
functor of weak algebraic bordism categories
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K(R,X) → KR
X

inducing an isomorphism on symmetric and quadratic L-groups.
As pointed out in the introduction, a description of L-homology is the first step in

the description of the assembly map and the explicit construction of the total surgery
obstruction. By constructing the functor F and showing the main theorem, this work
merely builds a rope bridge between the combinatorial framework of Ranicki and the
more flexible but less explicit language of Ranicki–Weiss.

We want to end with a very brief reminder of L-theory descriptions which exist in
the literature. An honest sheaftheoretic description of L-homology, assembly map and
total surgery obstruction was undertaken by Hutt [9]. Unfortunately there is a mistake
in this preprint and it was never published. Woolf [20] considers a triangulated version
of Hutt’s framework. Under the assumption that R is a regular Noetherian ring of finite
Krull dimension and 1

2 ∈ R he identifies Ranicki’s construction of (free) symmetric
L-homology L∗(K(R,X)) with the Witt groups (in the sense of Balmer [2]) of the
triangulated category ( with duality ) of constructible (w.r.t. the stratification induced
by the simplicial structure) sheaves of R-module complexes W c∗ (X). Putting these
functors, along with π∗L•(KX ), in one diagram we get

W c
∗ (X) π∗L•(KR

X)

H∗(X;L•(R))

where all three terms are isomorphic via the solid arrows. It seems natural to search
for a construction of a canonical, geometric morphism for the dashed line.

On the other hand in his doctoral thesis [7] Eppelmann gives a geometric description
of a 2-connected cover of symmetric L-homology as a (singular) bordism homology
�I P∗ (X) of spaces satisfying integral Poincaré duality in intersection homology. A
natural question is how this description fits into the above diagram.

In comparing our work to [20], it is important to remark that in the setup of [20]
the condition 1

2 ∈ R cannot be dropped and Woolf’s result cannot be generalised to
integral coefficients. This restriction is specific to Balmer’s theory. The L-theory of
Ranicki–Weiss cosheaf complexes is different in nature since the duality is only given
on the homotopy category. The necessity of inverting 2 however, also finds its way
into [16]. To make their proof of topological invariance of rational Pontryagin classes
independent of difficult arguments of [10], Ranicki andWeiss introduce the idempotent
completion rDX of the category DX (see Definition 22) underlying KX . Excision for
the functor X �→ L•(rDX ) is only proved up to 2-torsion (cf. [16, Thm. 8.3]).

Acknowledgments This article is part of the author’s PhD thesis written at the University of Aberdeen
under the supervision of Michael Weiss. I am indebted to Michael Weiss for sharing his knowledge of
L-theory. I am also grateful to Andrew Ranicki for enlightening conversations. Last but not least I thank
the anonymous referee for pointing out an inconsistency in Sect. 8.
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9 Appendix

It is apparent from Sect. 3 that we are using the notion of homotopy limits (and col-
imits) of chain complexes in this article. The classical source quoted at this point
is [3]. This deals with diagrams of simplicial sets or diagrams of topological spaces,
which amounts to the same. Since the category of positively graded chain complexes of
R-modules is Quillen equivalent to the category of simplicial R-modules, we can basi-
cally use the original constructions for simplicial sets to get the right notions for chain
complexes.A framework for homotopy limits in generalmodel categories can be found
in [8] or [6]. For our purposes only the properties of homotopy (co)limitsmatter. Never-
theless, it might be convenient for the reader to see some explicit models. This section
is highly non-original and the author benefited significantly from the exposition in [5].

Definition 27 Let C be a simplicial chain complex of abelian groups i.e. a functor
from 	op to Ch(Ab). Denote now by D∗ the cosimplicial object in Ch(Ab) given by
taking the simplicial chain complex of the standard simplex 	n viewed as a simplicial
space. Define the realisation of C by the coequaliser

{C} = coeq

[ ⊕

[n]→[k]
Ck ⊗ Dn ⇒

⊕

[n]
Cn ⊗ Dn

]

where the top map is induced by [n] → [k] and the bottom by the standard map
	k → 	n .
Dually, let C be a cosimplicial object in Ch(Ab). Define its totalisation by the
equaliser

Tot (C) = eq

[ ∏

[n]
Hom(Dn, Cn) ⇒

∏

[n]→[k]
Hom(Dn, Ck)

]
.

Definition 28 Let C be a (small) category and F : C → Ch(Ab) a functor to chain
complexes of abelian groups. Define its simplicial replacement Srep(F) by the sim-
plicial object in Ch(Ab) given in degree n by

Srep(F)n =
⊕

in→in−1→···→i0

F(in)

with in → in−1 → · · · → i0 being a chain of composable maps in C. For 0 ≤ j ≤ n,
the degeneracy map s j : Srep(F)n → Srep(F)n+1 sends F(in) in the component
with index

in → in−1 → · · · → i0

to F(in) at

in → in−1 → · · · → i j
id−→ i j → · · · → i0.

123



From (Z, X)-modules... 287

For 0 ≤ j < n the face map d j : Srep(F)n → Srep(F)n−1 sends the copy of F(in)

at

in → in−1 → · · · → i0

to F(in) sitting at

in → in−1 → i j+1 → i j−1 → · · · → i0

with i j+1 → i j−1 being the composition i j+1 → i j → i j−1. For j = n the face map
dn maps F(in) at

in → in−1 → · · · → i0

to F(in−1) at

in − 1 → in−1 → · · · → i0

via F(in → in−1).
Dually, define the cosimplicial replacement cSrep(F) as a cosimplicial object in

the category Ch(Ab) given in degree n by

cSrep(F)n =
∏

i0→···→in

F(in)

with analogous coface and codegeneracy maps.

Definition 29 Let F be a functor from a small category C to chain complexes of
abelian groups Ch(Ab). Define the homotopy limit of F as

holim
C

F = Tot (cSrep(F)).

and dually the homotopy colimit of F as

hocolim
C

F = {Srep(F)}.

For those familiar with homotopy limits and model categories, the next two proposi-
tions are fairly basic. We refer e.g. to [8] for a thorough discussion.

Proposition 8 Let F1, F2 be functors from a small category C to bounded chain
complexes of projective R-modules, for any ring R. Assume there is a natural trans-
formation η : F1 ⇒ F2 such that for every c ∈ C, ηc is a weak equivalence. Then the
induced map

hocolim F1 → hocolim F2

is also a weak equivalence.
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A poset K is a Reedy category. A functor F from K to chain complexes is called
Reedy cofibrant if and only if for every b ∈ K the induced map

colim
a∈K

a �=b,a→b

F(a) → F(b)

is a cofibration i.e. a degreewise split injection. We will make use of the following

Proposition 9 Let X be a simplicial complex viewed as a poset in the obvious way.
If a functor F : X → Ch(Ab) is Reedy cofibrant the colimit computes the homotopy
colimit i.e. the canonical map

hocolim F
�−→ colim F

is a weak equivalence.

The dual statements for homotopy limits are also valid.
What we also made use of in the main body of the article is a homotopy version of

a coend. Following [12, IX, 6] the coend of a given functor

F : Cop × C → D

might be described as a colimit over the twisted arrow category C� in the following
way. Let the objects of C� be morphisms f : a → b of C. The morphisms between f
and g are pairs of morphisms (h, j) in C satisfying jgh = f . There is a target-source
functor ts from C� to Cop × C. The bifunctor F gives rise to a functor F� : C� → D
via

C

Cop × C D
ts F

F

The coend of F can be defined via

∫ a∈C
F(a, a) = colim

(a→b)∈C�
F�(a → b) = colim

(a→b)∈C�
F(b, a).

In the same spirit define the homotopy coend.

Definition 30 Let C be a small category and F a functor from Cop × C to chain
complexes of abelian groups Ch(Ab). Its homotopy coend is defined by

ho
∫ a∈C

F = ho
∫

F = hocolim F� = hocolim
(a→b)∈C�

F(b, a).
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