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Abstract We use a differential form cohomology theory on transitive digraphs to give
a new proof of a theorem of Gerstenhaber and Schack about isomorphism between
simplicial cohomology and Hochschild cohomology of a certain algebra associated
with the simplicial complex.
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1 Introduction

At present time there exist different notions of homology (cohomology) of digraphs
and undirected graphs, see [2,5,6,8,10,11]. In this paper we use cohomology theory
of digraphs of [2,6], that is reminiscent of the classical de Rham cohomology theory of
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210 A. Grigor’yan et al.

differential forms, in order to give a newproof of a theoremofGerstenhaber andSchack
[4]. In the course of the proof we obtain close relations between the cohomologies of
digraphs, those of simplicial complexes, and the Hochschild cohomologies of algebras
[9].

Let K be a commutative unital ring and A be an associative unital algebra over a
K. Denote by Cn (A) the set of all K-multilinear functions f : An → A. Hochschild
[9] introduced a differential D : Cn (A) → Cn+1 (A) that satisfies D2 = 0 thus
making {Cn (A)}∞n=0 into a cochain complex. Its cohomologies are called Hochschild
cohomologies of A and are denoted by HHn (A) .

In 1983 Gerstenhaber and Schack [4] established the following beautiful relation
between the Hochschild and simplicial cohomologies. Let S be a (finite) simplicial
complex. Denote by V the set of all barycenters of the simplexes of S, and introduce
on V a structure of a digraph (=directed graph) by defining the edges a → b between
two barycenters a, b ∈ V as follows: if sa is the simplex whose barycenter is a, and
sb the simplex with the barycenter b, then by definition

a → b ⇔ sa ⊃ sb. (1)

In particular, the underlyingundirectedgraphofV with removed loops is the 1-skeleton
of the barycentric subdivision BS of S (see Fig. 1).

Denote by A the left K-module of all formal linear combinations of the edges of V
with coefficients from K. Define the multiplication of the edges by

(a, b)
(
a′, b′) =

{(
a, b′) , if b = a′
0, otherwise,

(2)

(cf. Fig. 2) and then extend it by K-bilinearly to a multiplication in A, thus making
A into an associative algebra over K. The algebra A has a unity that is the sum of all
loops in V .

Gerstenhaber and Schack proved in [4] that

HH∗ (A) ∼= H∗ (S) , (3)

Fig. 1 The barycentric subdivision BS of a 2-simplex (left) and the associated digraph (V, →) (right)
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Fig. 2 Illustration to (2): (a, b)
(
a′, b′) = (

a, b′) (left) and (a, b)
(
a′, b′) = 0 (right)

where H∗ (S) is the simplicial cohomology of S. Although they constructed in [4] an
explicit cochain map τ : C∗ (S) → C∗ (A) , they wrote: “we are unable to show by
direct calculation that H∗ (τ ) is an isomorphism”. To prove the isomorphism (3) in
cohomologies, the Gerstenhaber and Schack [3] used instead the cohomology com-
parison theorem developed in their previous paper.

Another proof of (3) was given by Cibils [1] using a cleverly chosen resolution of
the path algebra of a poset associated with the simplicial complex.

The purpose of this paper is to give a direct proof of (3) by constructing a cochain
map between C∗ (S) and C∗ (A), although in a number of steps, and showing that
the associated cohomology map is an isomorphism, thus completing the program of
Gerstenhaber and Schack.

Let us briefly describe our approach. We make a crucial use of cohomologies of
digraphs that are analogous to the differential forms cohomologies. The elements of
the cochain complex �n , based on the digraph (V,→), are K-valued functions on
n-paths i0 → i1 → · · · → in of the vertices of V , with appropriately defined exterior
differential d : �n → �n+1. We use also a regularized cochain complex �∗

reg where
the functions are defined only on the paths i0 → i1 → · · · → in with distinct vertices.

The notions of exterior differential and exterior forms on general digraphs as well
as the associated cohomology theory were developed in [2,5,6]. In particular, it was
shown in [6] (based on [7]) that the cohomology groups H∗ (

�reg, Z
)
are homotopy

invariant. We refer the reader to [5,6] for general overview of (co)homology theories
on digraphs. In the present paper we need the aforementioned theory only in a special
case of transitive digraphs. In the latter case the definitions of the cochain complex and
the associated cohomologies are significantly simplified and can be easily introduced
from scratch as we do in Sect. 3.

Consider the product Ṽ = V × V that also becomes a digraph with the following
definition of edges:

(i, j) → (
i ′, j ′

)
in Ṽ ⇔ j → i ′ in V

(seeSect. 4). This typeof product of graphs is unusual in graph theory, but is appropriate
for our purpose. On the digraph (Ṽ ,→) we also introduce a cochain complex �̃∗
analogously to the cochain complex �∗ on (V,→), with an additional weight in the
exterior differential, which strengthens the role of the diagonal diagṼ ∼= V .
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Denote by A the algebra spanned by all pairs (a, b)∈V × V (not only edges of V )
with multiplication (2), and consider a Hochschild cohomology HH∗(A, A) that
comes from the cochain complex C∗(A, A) of multilinear functions f : An → A.

We prove (3) by means of the following chain of relations:

HH∗ (A)∼=HH∗(A, A)∼=H∗(�̃)∼=H∗ (�)∼=H∗ (
�reg

)∼=H∗ (BS)∼=H∗ (S) ,

(4)

where BS is the barycentric subdivision of S. The corresponding cochain complexes
are related as follows:

C∗ (A) ⊂ C∗ (
A, A

) ∼= �̃∗ � �∗ � �∗
reg

∼= C∗ (BS) ⊃ C∗ (S) ,

where A∗ � B∗ means that B∗ is a quotient cochain complex of A∗. Hence, in the
first step we enlarge the cochain complex in question, but in each of the following
steps we reduce it while preserving cohomologies, until we arrive at C∗ (S) . Let us
comment on each of the relations in (4).

1. The the isomorphism H∗(�̃) ∼= H∗(�) is key result of this paper and is proved in
Lemma4.2.We establish first amapbetween the corresponding cochain complexes
and then prove that the cohomology of the kernel of this map is trivial. This step
is crucial in the entire proof as it allows to drastically reduce the cochain complex
�̃∗ to �∗.

2. The isomorphism HH∗(A, A) ∼= H∗(�̃) follows from the isomorphism of the
corresponding cochain complexes C∗(A, A) and �̃∗. The proof of the latter con-
tains a trick of changing the tensor notation, which in an instant transforms the
elements of Cn(A, A) into those of �̃n (Lemma 5.1).

3. The isomorphism HH∗(A) ∼= HH∗ (
A, A

)
is proved in Lemma 5.2 using an

argument from the proof of Lemma 4.2.
4. The isomorphism H∗ (�) ∼= H∗ (

�reg
)
is proved in Lemma 6.1, also similarly to

Lemma 4.2.
5. The isomorphism H∗ (

�reg
) ∼= H∗ (BS) is rather straightforward and follows

from the isomorphism of the cochain complexes �∗
reg and C

∗ (BS) (Lemma 7.1).
5. The isomorphism H∗ (BS) ∼= H∗ (S) is classical.

The structure of the paper is determined by the above sequence of lemmas. The
main Theorem 7.2 is stated and proved at the end of the paper.

2 Hochschild cohomology

Let K be a commutative unital ring and A be an associative unital algebra over K. Let
M be a left K-module that has a compatible structure of a A-bimodule (in particular,
M can be an algebra over K containing A as a subalgebra). For any non-negative
integer n, denote by Cn (A, M) the set of all K-multilinear functions f : An → M .
Clearly, Cn (A, M) is a left K-module. By definition, we take C0 (A, M) = M .
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Cohomology of digraphs... 213

Consider the Hochschild differential D : Cn (A, M) → Cn+1 (A, M) defined on
any function f ∈ Cn (A, M) as follows:

Df (a1, a2, . . . , an+1) = a1 f (a2, . . . , an+1)

+
n∑

k=1

(−1)k f (a1, . . . , akak+1, . . . an+1)

+ (−1)n+1 f (a1, . . . , an) an+1,

for all ai ∈ A. In particular, for n = 0, the differential of a constant f = m ∈ M is a
function Df : A → M given by

Df (a) = am − ma.

It is known [9] that D2 = 0 so that we have a cochain complex

0 → C0 (A, M)
D→ · · · D→ Cn (A, M)

D→ Cn+1 (A, M)
D→ · · ·

whose cohomologies are called the Hochschild cohomologies and are denoted by
HH∗ (A, M) .

3 Cohomology of transitive digraphs

In this section we introduce a cohomology theory on transitive digraphs, similarly to
the cohomology theory of digraph of [2,6]. However, unlike the cited works, we allow
the digraphs to have loop edges, which is motivated by application to Hochschild
cohomology.

Let V be a finite set, whose elements will be called vertices. Denote by �n =
�n (V, K) the left K -module of all functions f : V n+1 → K. We use the following
notation

fi0...in := f (i0, . . . , in)

for all ik ∈ V . Any sequence i0 . . . in of n + 1 vertices of V will be called an n-path.
Hence, any f ∈ �n is a K-valued function on n-paths.

Fix a function δ : V → K and define the exterior differential d : �n → �n+1 by

(d f )i0...in+1
=

n+1∑

k=0

(−1)k δik fi0...îk ...in+1
, (5)

where the hat îk means omission of the index ik . Strictly speaking, the operator d
should have been denoted by dδ but we omit the index δ as usually this causes no
confusion.
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214 A. Grigor’yan et al.

Claim d2 = 0.

Proof For any f ∈ �n , we have

(
d2 f

)

i0...in+2
=

n+2∑

k=0

(−1)k δik (d f )i0...îk ...in+2

=
n+2∑

k=0

(−1)k δik

(
k−1∑

l=0

(−1)l δil fi0...̂il ...îk ...in+2

+
n+2∑

l=k+1

(−1)l−1 δil fi0...îk ...̂il ...in+2

)

=
∑

0≤l<k≤n+2

(−1)k+l δik δil fi0...̂il ...îk ...in+2

−
∑

0≤k<l≤n+2

(−1)k+l δik δil fi0...îk ...̂il ...in+2
.

After switching k and l in the last sum we see that it is equal to the previous one,
whence d2 f = 0 follows. �

Hence, we obtain a cochain complex

0 → �0 d→ · · · d→ �n d→ �n+1 d→ · · ·
So far V was just a finite set. Let us now introduce a digraph structure on V .

Definition 3.1 A couple (V, E) is called a (finite) digraph if V is any finite set and
E ⊂ V × V is a relation on V .

Any couple (i, j) ∈ E is called a directed edge or arrow and will be denoted by
i → j . A digraph (V, E) will also be denoted by (V,→).

Definition 3.2 A n-path i0 . . . in of vertices of a digraph (V,→) is called allowed if

i0 → i1 → · · · → in,

and non-allowed otherwise.

On any digraph (V,→) there is a naturalway of defining a cochain complex�∗ with
the exterior differential d that takes into account allowed paths (see [6,8]). However,
we need this construction only for a specific class of transitive digraphs, that can be
done easily as below.

Definition 3.3 Let (V,→) be a digraph and let δ be a K-valued function on V . We
say that V is a δ-transitive if

i → j and j → k ⇒ i → k, provided δ j �= 0,

for all i, j, k ∈ V .
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Cohomology of digraphs... 215

Let (V,→) be a δ-transitive digraph. Denote by �n = �n ((V,→) , K) the set of
K-valued functions on all allowed n-paths on V . Let us use the same function δ in the
definition (5) of d and show that the operator d = dδ can be considered as an operator
from �n to �n+1. Indeed, given f ∈ �n, let us first extend f arbitrarily to a function
on all n-paths, that is, to an element of �n . Then (5) defines d f as an element of
�n+1, that is, a function on all (n + 1)-paths. Then the restriction of d f to the allowed
(n + 1)-paths yields an element of �n+1, that will also be denoted by d f .

Claim If V is δ-transitive then, for any f ∈ �n , the differential d f is well defined as
an element of �n+1.

Proof We need to show that d f on allowed (n + 1)-paths does not depend on how f
was extended. Indeed, let i0 . . . in+1 be an allowed path. We need to verify that in the
right hand side of (5) the contribution of the terms δik fi0...îk ...in+1

with non-allowed

paths i0 . . . îk . . . in+1 vanishes. Indeed, if δik = 0 then this term does not give any
contribution. If δik �= 0 then ik−1 → ik → ik+1 imply ik−1 → ik+1 so that the n
-path

i0 . . . îk . . . in+1 = i0 . . . ik−1ik+1 . . . in+1

is allowed, which finishes the proof. �
Hence, we obtain a cochain complex

0 → �0 d→ · · · d→ �n d→ �n+1 d→ · · ·

of the δ-transitive digraph (V,→) that will be denoted by �∗ = �∗
δ ((V,→) , K).

The cohomologies of this complex

Hn (�) = Hn
δ (� (V,→) , K) = kerd|�n/Imd|�n−1

(where n ≥ 0) are of primary interest for us.
Note that a digraph can be δ-transitive with many choices of function δ since in

Definition 3.3 only the support of δ matters. However, since we use the same function δ

also in the definition (5) of d, different choices of δ will determine different complexes
�∗. Therefore, in applications one should carefully specify the choice of δ.

A digraph (V,→) is called transitive if

i → j → k ⇒ i → k.

For example, any partially ordered set (shortly, a poset) is a transitive digraph. Of
course, a digraph is transitive if and only if it is δ-transitive with δ ≡ 1. For transitive
digraphs we will always use δ ≡ 1 in the definition (5) of d.

The cochain complex H∗ (�) for transitive graphs is a particular case of the con-
struction of [6,8] of cochain complexes for arbitrary digraphs. Note also that the ring
K in the definition of the cochain complex can be replaced by any abelian additive
group provided the function δ is Z-valued.
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216 A. Grigor’yan et al.

4 Self-product of a transitive digraph

Let (V,→) be a transitive digraph, and �∗ the associated cochain complex (with
δ ≡ 1 as we have agreed above). Set Ṽ = V ×V and define the edges on Ṽ as follows

(i, j) → (
i ′, j ′

) ⇔ j → i ′ (6)

for all i, j, i ′, j ′ ∈ V (cf. Fig. 3).
Define a function δ : Ṽ → K by

δ(i, j) =
{
1, i = j,
0, i �= j.

(7)

Claim If (V,→) is transitive then (Ṽ ,→) is δ-transitive with the function δ defined
by (7).

Proof Indeed, if

(i, j) → (
i ′, j ′

) → (
i ′′, j ′′

)

and δ(i ′, j ′) �= 0 then i ′ = j ′ and

j → i ′ = j ′ → i ′′

whence j → i ′′ and, hence, (i, j) → (
i ′′, j ′′

)
. �

Definition 4.1 The δ-transitive digraph Ṽ is called a self-product of V .

As before, let �∗ be the cochain complex of the transitive digraph V , and denote
by �̃∗ the cochain complex of the δ-transitive digraph Ṽ .

We say that a digraph (V,→) is reflexive if i → i for all i ∈ V . For example,
any poset is transitive and reflexive. Now we can state and prove our main technical
lemma.

0 1

(0,0) (0,1)

(1,0) (1,1)V 

V ~

Fig. 3 An example of digraphs V and Ṽ
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Lemma 4.2 If V is transitive and reflexive, then we have the isomorphism of coho-
mologies:

H∗(�̃) ∼= H∗(�). (8)

Proof Let us identify V with diagṼ . Note that (i, i) → ( j, j) is equivalent to i → j
so that diag Ṽ as a subgraph of Ṽ is isomorphic to a digraph V . For any function f
on the allowed n-paths in Ṽ , let � f be a restriction of f to the allowed n-paths on V .
In tensor notation, any function f ∈ �̃n has the components f(i0, j0)...(in , jn), and then
� f is defined by

(� f )i0...in = f(i0,i0)...(in ,in)

for all allowed n-paths i0 . . . in on V . Hence, we obtain an epimorphism

� : �̃n → �n . (9)

We start with verifying that the following diagram is commutative:

�̃n d→ �̃n+1

↓� ↓�

�n d→ �n+1

(10)

For any f ∈ �̃n and any allowed (n + 1)-path i0 . . . in+1 on V we have

(d (� f ))i0...in+1
=

n+1∑

k=0

(−1)k (� f )i0...îk ...in+1

=
n+1∑

k=0

(−1)k δ(ik ,ik ) f(i0,i0)...̂(ik ,ik )...(in+1,in+1)

= (d f )(i0,i0)...(in+1,in+1)

= (� (d f ))i0...in+1

whence d� = �d follows.
Denote by Kn the kernel of the mapping (9). Since � is a cochain map from �̃∗ to

�∗, we see that K ∗ is a sub cochain complex. The short exact sequence

0 → K ∗ → �̃∗ → �∗ → 0

of cochain complexes yields by zigzag Lemma the long exact sequence in cohomolo-
gies

· · · → Hn (K ) → Hn(�̃) → Hn (�) → Hn+1 (K ) → · · ·
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Hence, in order to prove the isomorphism (8) it suffices to show that, for all non-
negative integers n,

Hn (K ) ∼= {0} ,

that is, if f ∈ Kn and d f = 0 then there is g ∈ Kn−1 such that f = dg.
Let us denote the elements of Ṽ by i1, i2 etc. If i = (i, j) then set

i′ = ( j, j) ∈ diagṼ

so that i′ can be regarded as “projection” of i onto V . Note that always i → i′, which
follows from the reflexivity of V , and

i → j ⇔ i′ → j

for all i, j ∈ Ṽ , since i and i′ have the same second component.
The following claim is a key to the proof.

Claim For any f ∈ �̃n there exists g ∈ �̃n−1 such that the following holds:

(i) for any allowed (n − 1)-path i1 . . . in that lies on diagṼ ,

gi1...in = 0; (11)

(ii) for any allowed n-path i1 . . . in+1 on Ṽ that does not lie entirely on diagṼ ,

(−1)k (d f )i1...ik i′k ...in+1
= fi1...in+1 − (dg)i1...in+1

, (12)

where k is the smallest index such that ik /∈ diagṼ .

Let us define g as follows: for any allowed (n − 1)-paths i1 . . . in on Ṽ , set gi1...in =
0 if all ik ∈ diagṼ , whereas otherwise set

gi1...in = (−1)k fi1...ik−1ik i′k ik+1...in , (13)

where k is the minimal index such that ik /∈ diag Ṽ . Observe that the right hand side
of (13) is well defined, since the n-path i1 . . . ik−1ik i′k ik+1 . . . in is allowed whenever
i1 . . . in is allowed, because ik → i′k → ik+1 (see Fig. 4).

We have by (5)

(dg)i1...in+1
=

n+1∑

l=1

(−1)l−1 δil gi1...̂il ...in+1
. (14)

The term δil gi1...̂il ...in+1
in (14) vanishes whenever δil = 0, which, in particular, is the

case when l = k as ik /∈ diagṼ . Assume that δil �= 0, in particular, l �= k. Then the
(n − 1)-path i1 . . . îl . . . in+1 is allowed. The first term in this path outside diagṼ is
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Fig. 4 The path
i1 . . . ik i′k ik+1 . . . is allowed

diagV

ik+2

ik+1
ik

ik

ik-1

ik-2

i1

i2

'

~

again ik , and it has the ordinal number k − 1 in this path, if l < k, and the ordinal
number k if l > k. Hence, if l < k, then we obtain by (13)

gi1...̂il ...in+1
= (−1)k−1 fi1...̂il ...ik i′k ...in+1

,

and if l > k then

gi1...̂il ...in+1
= (−1)k fi1...ik i′k ...̂il ...in+1

.

Combining all the terms together, we obtain

(dg)i1...in+1
=

k−1∑

l=1

(−1)k+l δil fi1...̂il ...ik i′k ...in+1

+
n+1∑

l=k+1

(−1)k+l−1 δil fi1...ik i′k ...̂il ...in+1
. (15)

By (5) we have also

(d f )i1...ik i′k ...in+1
=

k−1∑

l=1

(−1)l−1 δil fi1...̂il ...ik i′k ...in+1

+ (−1)k−1 δik fi1...îk i′k ...in+1

+ (−1)k δi′k fi1...ik î′k ...in+1

+
n+1∑

l=k+1

(−1)l δil fi1...ik i′k ...̂il ...in+1
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220 A. Grigor’yan et al.

Noticing that δik = 0, δi′k = 1, fi1...ik î′k ...in+1
= fi1...in+1 , substituting here (15) and

multiplying by (−1)k , we obtain (12).
Now assuming that f ∈ Kn and d f = 0, let us show that the function g defined

by (13) belongs to Kn−1 and satisfies dg = f. That g ∈ Kn−1 is true by (11). Let us
show that dg = f , that is, for any allowed n-path i1 . . . in+1,

(dg)i1...in+1
= fi1...in+1 . (16)

If all i1, . . . , in+1 ∈ diagṼ then we have by (11) that (dg)i1...in+1
= 0, which matches

fi1...in+1 = 0 that is true by f ∈ Kn . Otherwise, let k be the minimal value of the index
such that ik /∈ diagṼ . As it was observed above, the (n + 1)-path i1 . . . ik i′k . . . in+1 is
allowed. Since d f = 0, that is, d f vanishes on all allowed (n + 1)-paths, we obtain

(d f )i1...ik i′k ...in+1
= 0.

Substituting this into (12), we obtain (16). �

5 Algebra associated with poset

A digraph (V,→) is called a poset (partially ordered set) if it is reflexive, transitive,
and antisymmetric, that is, i → j → i implies i = j. In this section (V,→) is always
a finite poset.

Denote by A the left K-module of all formal K-linear combinations of pairs (i, j)
of vertices of V . The pair (i, j) as an element of A will be denoted by ei j so that any
element a ∈ A can be uniquely represented in the form

a =
∑

i, j∈V
ai j ei j

where ai j are the coefficients from K. Let A be a submodule of A spanned by all ei j
with i → j ; that is, any a ∈ A has the form

a =
∑

{i, j∈V :i→ j}
ai j ei j .

Define in A multiplication on the basis elements

ei j · ei ′ j ′ = δ j i ′ei j ′ =
{
ei j ′ , if i ′ = j,
0, otherwise,

(17)

where

δi j =
{
1, i = j,
0, i �= j,

(18)
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and then extend the multiplication to all the elements of A by K-bilinearity. It follows
from (17) that, for all a, b ∈ A and i, j ∈ V ,

(ab)i j =
∑

l∈V
ailbl j . (19)

It is easy to see that A is an associative algebra over K with a unity 1A = ∑
i∈V eii .

By a poset property we see that if ei j , ekl ∈ A then ei j ekl ∈ A so that A is a
subalgebra of A (and 1A = 1A). Hence, the Hochschild cochain complex C∗(A, A)

is well defined as in Sect. 2.
On the other hand, we have a cochain complex �∗ of the poset V as defined in

Sect. 3, and a cochain complex �̃∗ of the self-product Ṽ of V as defined in Sect. 4.

Lemma 5.1 The cochain complexes C∗(A, A) and �̃∗ are isomorphic.

Proof For any function f ∈ Cn(A, A) set

fi1 j1i2 j2...in jn = f
(
ei1 j1, . . . , ein jn

)

for all ik, jk ∈ V . Since f takes values in A, fi1 j1i2 j2...in jn is linear combination of the
terms ei j as follows:

fi1 j1i2 j2...in jn =
∑

i, j∈V
f i ji1 j1i2 j2...in jn ei j

with the coefficients f i ji1 j1i2 j2...in jn ∈ K. It follows that, for all a1, . . . , an ∈ A,

f (a1, . . . , an) =
∑

f i ji1 j1...in jn a
i1 j1
1 . . . ain jnn ei j

where the summation is performed over all i, j, ik, jk ∈ V .
By definition of the Hochschild differential D on C∗(A, A) we have

(Df )i1 j1...in+1 jn+1
= (Df )

(
ei1 j1, . . . , ein+1 jn+1

)

= ei1 j1 f
(
ei2 j2 , . . . , ein+1 jn+1

)

+
n∑

k=1

(−1)k f
(
ei1 j1 , . . . , eik jk · eik+1 jk+1, . . . ein+1 jn+1

)

+ (−1)n+1 f
(
ei1 j1, . . . , ein jn

)
ein+1 jn+1 .

Using (17) and (19) we obtain
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(Df )i ji1 j1...in+1 jn+1
=

∑

l∈V
eili1 j1 f

l j
i2 j2...in+1 jn+1

+
n∑

k=1

(−1)k δ jk ik+1 f
i j
i1 j1...ik−1 jk−1ik jk+1ik+2 jk+2...in+1 jn+1

+ (−1)n+1
∑

l∈V
f ili1 j1...in jn e

l j
in+1 jn+1

whence

(Df )i ji1 j1...in+1 jn+1
= δi i1 f

j1 j
i2 j2...in+1 jn+1

+
n∑

k=1

(−1)k δ jk ik+1 f
i j
i1 j1...ik−1 jk−1ik jk+1ik+2 jk+2...in+1 jn+1

+ (−1)n+1 δ jn+1 j f
i in+1
i1 j1...in jn

.

Nowwe change notation, namely, we rename f i ji1 j1...in jn to fii1 j1...in jn j and then rename
in the latter the indices as follows: fi0 j0i1 j1...in jn . Effectively this means the following
change of notation:

i � i0, ik � jk−1, jk � ik, j � jn .

In the notation for Df we should use j � jn+1 instead of j � jn , so that the above
formula for Df becomes:

(Df )i0 j0...in+1 jn+1
= δi0 j0 fi1 j1...in+1 jn+1

+
n∑

k=1

(−1)k δik jk fi0 j0...ik−1 jk−1ik+1 jk+1...in+1 jn+1

+ (−1)n+1 δin+1 jn+1 fi0 j0...in jn .

All pairs (ik, jk) can be regarded as elements of Ṽ = V × V . Using notation

ik = (ik, jk)

we see that the components of f can be denoted by fi0...in . Hence, the above formula
for Df can be rewritten as follows

(Df )i0...in+1
=

n+1∑

k=0

(−1)k δik fi0...îk ...in+1
(20)

for all ik ∈ Ṽ . Consequently, any function f ∈ Cn(A, A) can be identified with
a function from �n(Ṽ ), this identification is clearly a linear isomorphism, and it
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transforms the operator D to d as one can see from comparison of (20) and (5) [note
that we use the same the function δ in (20) and (5)].

Consider now the set Cn
(
A, A

)
. The functions from Cn

(
A, A

)
can be regarded

as restrictions of the functions from Cn
(
A, A

)
to the domain An . In particular, for

any f ∈ Cn(A, A), the value f
(
ei1 j1 , . . . , ein jn

)
is defined only if ik → jk , for

all k = 1, . . . , n. Hence, the component f i ji1 j1...in jn is defined also under the same
condition, that is, for the sequences of indices such that

i i1 → j1i2 → j2 . . . in → jn j.

In the notation fi0 j0...in jn = fi0...in this condition becomes jk−1 → ik , that is,

i0 j0 → i1 j1 → · · · → in jn,

which is equivalent to

i0 → i1 → · · · → in,

given that the edges in Ṽ are defined by (6). Hence, any function f ∈ Cn(A, A) is
identified with a K-valued function on allowed n-paths on Ṽ , and such functions are
exactly the elements of �̃n , which proves the isomorphism of the cochain complexes
C∗(A, A) and �̃∗. �
Lemma 5.2 We have HH∗(A, A) ∼= HH∗ (

A, A
)
.

Proof In the previous proof we have identified the set Cn
(
A, A

)
with the set �̃n of

functions on allowed n -paths on Ṽ . The set Cn (A, A) is a subset of Cn
(
A, A

)
, and a

function f ∈ Cn
(
A, A

)
belongs toCn (A, A) if and only if, for all i1 → j1, . . . , in →

jn ,

i � j ⇒ f i ji1 j1...in jn = 0 (21)

(in other words, the component f i j vanishes if i j is not an edge). Let �̃n
0 be the image

of Cn (A, A) in �̃n . Then we have the isomorphism of the cochain complexes

C∗ (
A, A

) ∼= �̃∗ and C∗ (A, A) ∼= �̃∗
0.

It suffices to prove that

Hn(�̃) ∼= Hn(�̃0),

which is equivalent to

Hn(�̃/�̃0) = {0} . (22)
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Before we can prove (22), let us reformulate the property (21) in terms of the notation
fi0...in that we use for the elements of �̃n . Let us introduce one more relation� on Ṽ :

(i, j) �
(
i ′, j ′

) ⇔ i → j ′

[observe the difference with the definition (6) of → on Ṽ ]. Then the relation i → j
in the notation f i ji1 j1...in jn is equivalent to i0 � in in the notation fi0...in .

We say that an allowed n-path i0 . . . in on Ṽ is proper if i0 � in , and improper
otherwise. Then it follows from (21) that a function f ∈ �̃n belongs to �̃n

0 if and only
if

fi0...in = 0 for any allowed improper n-path i0 . . . in . (23)

To prove (22) we need to show that if f ∈ �̃n and d f ∈ �̃n+1
0 then there exists

g ∈ �̃n−1such that dg− f ∈ �̃n
0. Define g ∈ �̃n−1 as in Claim in the proof of Lemma

4.2. Then we must show that, for any allowed improper n-path i1 . . . in+1 on Ṽ ,

(dg)i1...in+1
= fi1...in+1 . (24)

An improper path cannot lie entirely on diagṼ as otherwise i1 → · · · → in+1 implies
i1 → in+1 and i1 � in+1. Let k be the smallest index with ik /∈ diagṼ . Then g satisfies
(12), and the identity (24) will follow from (12) if we show that

(d f )i1...ik i′k ...in+1
= 0. (25)

The path i1 . . . ik i′k . . . in+1 is allowed, so that we obtain (25) from d f ∈ �̃n+1
0 if we

show that this path is improper. If k < n+1 then it is improper because its first and last
vertices are the same as those of the improper path i1 . . . in+1. In the case k = n + 1
we need to verify that the path i1 . . . in+1i′n+1 is improper, that is, i1 �� i′n+1. Indeed,
since the last components of in+1 and i′n+1 are the same, the condition i1 �� i′n+1
follows from i1 �� in+1. �

6 Regularized cohomologies of posets

A n-path i0 . . . in of the vertices of a digraph (V,→) is called regular if ik−1 �= ik
for all k = 1, . . . , n, and irregular otherwise. Let from now on (V,→) be a poset.
Any the regular allowed n-path i0 . . . in on a poset has an additional property that all
the vertices ik in this path are distinct. Indeed, if il = ik for some l < k − 1 then
il → il+1 → · · · ik−1 → ik implies by transitivity that il → ik−1 → ik whence by a
poset property ik−1 = ik , which contradicts the regularity.

Alongside the set �n of K-valued functions on all allowed n-paths on V , con-
sider the set �n

reg of K-valued functions on all regular allowed n-paths. Observe that
d�n

reg ⊂ �n+1
reg in the following sense: any function f ∈ �n

reg can be extended to a
function from �n , also denoted by f , then d f on the regular allowed (n + 1)-paths
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does not depend on the choice of extension. Indeed, if i0 . . . in+1 is a regular allowed
(n + 1)-path then

(d f )i0...in+1
=

n+1∑

k=0

(−1)k fi0...îk ...in+1
, (26)

and each path i0 . . . îk . . . in+1 is regular and allowed. Hence, �∗
reg is a cochain com-

plex, that will be referred to as the regularized cochain complex of the poset V .

Lemma 6.1 If V is a poset then

H∗ (�) ∼= H∗ (
�reg

)
. (27)

Proof Consider the mapping �n → �n
reg that is given by restriction of the functions

from �n to regular allowed paths. Let Kn be the kernel of this mapping, so that we
have a short exact sequence

0 → K ∗ → �∗ → �∗
reg → 0.

Hence, the isomorphism (27) will follow if we prove that

Hn (K ) ∼= {0} ,

that is, for any f ∈ Kn with d f = 0 there is g ∈ Kn−1 such that dg = f .
If n = 0 then K 0 = {0} so the claim is trivial. For n = 1, a function f ∈ K 1 may

have non-zero components only of the form fii . Since (d f )i i i = fii , it follows from
d f = 0 that also fii = 0 so that f = 0. Hence, g = 0 is a solution.

Assume n ≥ 2. We will construct explicitly a solution g ∈ Kn−1 of the equation
d f = g. Let us first illustrate this construction in the case n = 2. For any allowed
1-path i → j , set

gi j =
{
0, i �= j
fii i , i = j.

Then g ∈ K 1 and let us show that dg = f, that is,

(dg)i jk = fi jk (28)

for all allowed paths i jk. If the path i jk is regular then all i, j, k are distinct, and

(dg)i jk = g jk − gik + gi j = 0 = fi jk .

If i = j then

(dg)i ik = gii = fii i .
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Fig. 5 Paths i0 . . . j j . . . in−1
and i0 . . . j j j . . . in−1

 j j j

i0
… …

i1 il-1  j j

i0
… …

i1 il-1

il+2

il+2

Since d f = 0, we have

0 = (d f )i i ik = fiik − fii i

whence

(dg)i ik = fiik .

Similarly one treats the case j = k, which settles (28).
Now consider the general case n ≥ 2. If i0 . . . in−1 is a regular allowed path then

set

gi0...in−1 = 0.

If i0 . . . in−1 is an irregular allowed path then let k be the smallest index with the
property that ik = ik+1.Denoting by j the common value of ik and ik+1, we can write

i0 . . . in−1 = i0 . . . ik−1 j j ik+2 . . . in−1.

Then set

gi0...in−1 = (−1)k fi0...ik−1 j j j ik+2...in−1 . (29)

Note that the n-path i0 . . . ik−1 j j j ik+2 . . . in−1 on the right hand side is obtained by
inserting one more vertex j between already existing in i0 . . . in−1 two vertices j at
positions k and k + 1 (see Fig. 5).

By definition, we have g ∈ Kn−1. Let us show that dg = f in �n, that is,

(dg)i0...in = fi0...in (30)

for any allowed path i0 . . . in . If the path i0 . . . in is regular then

(dg)i0...in =
n∑

l=0

(−1)l gi0...̂il ...in = 0,

because all the paths i0 . . . îl . . . in are also regular. Since also fi0...in = 0 by f ∈ Kn ,
we obtain the identity (30) in this case.
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Let now the path i0 . . . in be irregular. Let k be the smallest index with the property
ik = ik+1, and denote by j the common value of ik and ik+1, that is,

i0 . . . in = i0 . . . ik−1 j j ik+2 . . . in .

Observe that the k-path i0 . . . ik is regular and allowed, which implies that all the
vertices in this path are distinct. We have by (26)

(dg)i0...in =
k−1∑

l=0

(−1)l gi0...̂il ... j j ...in (31)

+ (−1)k gi0... ĵ j ...in + (−1)k+1 gi0... j ĵ ...in (32)

+
n∑

l=k+2

(−1)l gi0... j j ...̂il ...in (33)

Clearly, the two terms in (32) cancel out. Observe that in the paths i0 . . . îl . . . j j . . . in
and i0 . . . j j . . . îl . . . in the first couple of equal consecutive vertices is j j , the same
as in the full paths i0 . . . j j . . . in . By (29) we obtain

gi0...̂il ... j j ...in = (−1)k−1 fi0...̂il ... j j j ...in

and

gi0... j j ...̂il ...in = (−1)k fi0... j j j ...̂il ...in

whence

(dg)i0...in =
k−1∑

l=0

(−1)l+k−1 fi0...̂il ... j j j ...in +
n∑

l=k+2

(−1)l+k fi0... j j j ...̂il ...in . (34)

On the other hand, since the (n + 1)-path i0 . . . ik−1 j j j ik+2 . . . in is allowed, we have

(d f )i0...ik−1 j j j ik+2...in = 0. (35)

Computing this component by (26), we obtain

(d f )i0...ik−1 j j j ik+2...in =
k−1∑

l=0

(−1)l fi0...̂il ... j j j ...in (36)

+ (−1)k fi0... ĵ j j ...in + (−1)k+1 fi0... j ĵ j ...in
+ (−1)k+2 fi0... j j ĵ ...in (37)

+
n∑

l=k+2

(−1)l+1 fi0... j j j ...̂il ...in (38)
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The three terms in (37) sum up to (−1)k fi0... j j ...in = (−1)k fi0...in . Combining (36)–
(38) with (34), we obtain

(d f )i0...ik−1 j j j ik+2...in = (−1)k−1 (dg)i0...in + (−1)k fi0...in .

Substituting here (35), we obtain (30). �

7 Poset associated with a simplicial complex

Let S be a finite simplicial complex. By definition, S can be regarded as a family of
subsets of a finite set M such that if s ∈ S then any non-empty subset t of s also
belongs to S (we do not allow the empty set to be in S). Then we obtain immediately
a poset structure on S as follows:

s → t ⇔ s ⊃ t.

Let BS be the barycentric subdivision of S and let V be the set of vertices of BS , that
is, V is the set of the barycenters of all simplexes of S. For any vertex i ∈ V denote
by si the simplex from S whose barycenter is i . Clearly, the set V has the same poset
structure as S: if i and i are two vertices from V then we set

i → j ⇔ si ⊃ s j

(cf. Fig. 1). As in Sect. 6, let �∗
reg be a regularized cochain complex of the poset V .

Lemma 7.1 We have isomorphism

H∗ (
�reg

) ∼= H∗ (S) . (39)

Proof We will show that the chain complexes �
reg∗ and C∗ (BS) are isomorphic. This

will implies the isomorphism of the corresponding cochain complexes and, hence,

H∗ (
�reg

) ∼= H∗ (BS) .

Since H∗ (Bs) ∼= H∗ (S), the isomorphism (39) will follows.
The set �

reg
n consists of all formal K-linear combination of the regular allowed

n-paths i0 . . . in on V . The n -path i0 . . . in as an element of �
reg
n will be denoted by

ei0...in . The boundary operator ∂ : �
reg
n → �

reg
n−1 is defined by

∂ei0...in =
n∑

k=0

(−1)k ei0...îk ...in (40)

(observe that the (n − 1)-path i0 . . . îk . . . in is regular allowed). It is clear that �n
reg

can be regarded as the set of all K-linear functionals on �
reg
n , and it is easy to check

that ∂ is dual to d : �n−1
reg → �n

reg .
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Fig. 6 A regular allowed path
i0i1i2 determines a 2-simplex
[i0, i1, i2] of BS

i0

i1

i2

By construction of the barycentric subdivision BS of S, each regular allowed n-path
i0 . . . in in V gives rise to a n-simplex of BS with the vertices i0 . . . in , and vice versa
(see Fig. 6).

Since the boundary operator on simplexes is defined by

∂ [i0, . . . , in] =
n∑

k=0

(−1)k [i0, . . . , îk , . . . , in]

that matches (40), we see that the chain complexes �
reg∗ and C∗ (BS) are isomorphic,

which was to be proved. �
As in Sect. 2, define the algebras A and A based on a poset V and the associated

Hochschild cohomologies HHn (A, A) . Now we can state and prove the main result.

Theorem 7.2 We have the following isomorphism of cohomologies

HH∗ (A, A) ∼= H∗ (S) ,

where H∗ (S) is the simplicial cohomologies of the simplicial complex S.

Proof This follows from Lemmas 4.2, 5.1, 5.2, 6.1, 7.1 as in (4). �
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