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Abstract We prove that the rational homotopy type of the complement of the graph of
a continuous map from a simply connected closed manifold to a 2-connected closed
manifold of the same dimension depends only on the rational homotopy class of
the map. We give a commutative differential graded algebra model (in the sense of
Sullivan) of the complement of the graph and study its formality.

Keywords Commutative differential graded algebra · Sullivan model ·
Minimal model · Formal space and map · Leray spectral sequence

Mathematics Subject Classification 55P62 · 55M05 · 55N30 · 55R20 · 55U25

1 Introduction

In this paper we have considered only smooth manifolds. However using the results
of Milnor [14], Kister [8] and Kirby–Siebenmann [7] the arguments given for smooth
manifolds can be carried over to topological manifolds.

Let f : M → N be a continuous map of closed connected oriented manifolds
of dimension n. We aim to study the rational homotopy of M × N\�( f ), where
�( f ) = {(x, f (x))|x ∈ M} is the graph of f .
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We refer the reader to [3] and [5] for standard definitions and terminologies of: Free
commutative differential graded algebra (CDGA), (minimal) Sullivan CDGA, (mini-
mal) Sullivan model for a CDGA and for a space X, homotopy between morphisms
of CDGAs, formality of spaces.

Definition 1.1 ([5], [22], [4], [12], [20]) A model for a continuous map f :
X → Y between connected topological spaces is a morphism of CDGAs, ψ f :
(AY , dAY ) → (AX , dAX ), such that there exists a homotopy commutative diagram,
where (�W, dW ), (�V, dV ) are minimal models of Y and X respectively and the
vertical arrows are quasi-isomorphisms:

(AY , dAY )
ψ f→ (AX , dAX )

∼=q ↑ φW ∼=q ↑ φV

(�W, dW )
ψ� f→ (�V, dV )

∼=q ↓ ρW ∼=q ↓ ρV

(AP L(Y ), dY )
AP L ( f )→ (AP L(X), dX ).

A continuous map f : X → Y between formal spaces is said to be formal (also
referred to as formalizable in the literature) if f ∗ : (H∗(Y ;Q), 0) → (H∗(X;Q), 0)
is a model for f .

Many authors have studied rational homotopy type of maps and their formality; see
e.g. [4,13,16–18,22].

These authors have studied spacesC( f ) closely associatedwith f , like themapping
cone of f , the cofibre of f , the homotopy fibre of f and have recorded results related
to problems of following types:

Problem 1.2 1. Find out if the rational homotopy of C( f ) is determined by the
rational homotopy of f .

2. Given that f is formal, determine if C( f ) is necessarily formal.

We study the following problems of a similar nature:

Problem 1.3 1. Find out if the rational homotopy of M × N\�( f ), where �( f ) is
the graph of f , is determined by the rational homotopy of f .

2. Given that f is formal, determine if M × N\�( f ) is necessarily formal.

Themotivation of this paper comes from thework of Lambrechts and Stanley [9] on
the rational homotopy type of configuration spaces of two points, and the observation
that if f is the identity map 1M : M → M then, the graph of f , �( f ) = �, the
diagonal, and M × M\�( f ) = M × M\� = F(M, 2), the configuration space of
two points. We begin with the following immediate observations:

1. If f : Rn → Rn is any continuous map then Rn × Rn\�( f ) is homeomorphic to
F(Rn, 2) under the homeomorphism (u, v) �→ (u, v − f (u)+ u).

123



The rational homotopy type of the complement of the graph of a map 155

2. For a topological space X if f : X → X is a homeomorphism then X × X\�( f )

is homeomorphic to X × X\� = F(X, 2) under the homeomorphism (x, y) �→
(x, f −1(y)).

3. Suppose that X = S2 ∨ S3, f : X → X is the constant map x �→ (0, 0, 1)
and g : X → X is the constant map x �→ (0, 0, 0,−1). Then X × X \ �( f ) 

X × (R2 ∨ S3) whereas X × X \ �(g) 
 X × (S2 ∨ R3). Therefore they are
not homotopy equivalent. Thus for an arbitrary space X and a continuous map
f : X → X , X × X\�( f ) need not even be homotopy equivalent to F(X, 2).

Lambrechts and Stanley [9,10] proved that if M is a simply-connected closed
manifold such that H2(M;Q) = 0 then the rational homotopy type of F(M, 2)
depends only on the rational homotopy type of M . They also proved in [9] that if M
is a 2-connected closed manifold, then F(M, 2) is formal if and only if M is formal
by constructing explicitly a CDGA model for F(M, 2) out of a differential Poincaré
duality algebra model of M and a model of the diagonal map.

We show that starting from a CDGA model of f : M → N one can construct a
CDGAmodel of (1M × f ) ◦�M : M → M × N , where �M (x) = (x, x) for x ∈ M .
This allows us by Corollary 1.5 of [10], to conclude that if we take M, N to be simply
connected and H2(N ;Q) = 0 then the rational homotopy type of M × N \ �( f ) is
determined by the rational homotopy class of f :

Theorem 1.4 Let f : M → N be a continuous map of closed connected oriented
manifolds of dimension n such that H1(M;Q) = 0 = H1(N ;Q) = H2(N ;Q), then
a CDGA-model of M×N \�( f ) can be explicitly determined out of any CDGA-model
of f .

Corollary 1.5 If f : M → N is a continuous map of closed simply connected
manifolds of dimension n such that H2(N ;Q) = 0, then the rational homotopy type
of M × N\�( f ) depends only on the rational homotopy class of f .

We relativize results of [9] by defining a class �ψ depending on a morphism ψ of
differential Poincaré duality algebras similar to the diagonal class � in [9]. We know
from Theorem 1.1 of [11] that if M, N are closed connected oriented manifolds with
H1(M;Q) = 0 = H1(N ;Q), then they admit differential Poincaré duality algebra
models. We also know from Proposition 1 of [2] that if f : M → N is a continuous
map of simply connected manifolds of dimension n ≥ 7 (it is a conjecture that this
dimensional restriction can be removed) such that H2( f ) is injective, then f admits
a Sullivan model ψ f : (AN , dAN )→ (AM , dAM ), where (AM , dAM ), (AN , dAN ) are
Poincaré duality algebras. Thus assuming the existence of such a model of f we can
construct a specific CDGA model of M × N \�( f ) from the model of f :

Theorem 1.6 Let f : M → N be a continuous map of closed connected oriented
manifolds of dimension n such that H1(M;Q) = 0 = H1(N ;Q) = H2(N ;Q). If
ψ f : (AN , dAN ) → (AM , dAM ) is a model of f, where (AM , dAM ), (AN , dAN ) are
oriented differential Poincaré duality algebras, {ai }1≤i≤l a homogeneous basis of AN

and {a∗i }1≤i≤l its Poincaré dual basis
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� =
lN∑

i=1
(−1)deg (ai )ai ⊗ a∗i ∈ (AN ⊗ AN )n,

is the diagonal class (defined in [9], p. 1030) and �ψ f := (ψ f ⊗1)(�), called the class
of ψ f , then the ideal (�ψ f ) = �ψ f .(AM ⊗ AN ) is a differential ideal of AM ⊗ AN ,
and the quotient CDGA

(
AM ⊗ AN

(�ψ f )
, dAM ⊗ dAN

)

is a CDGA model of M × N\�( f ).

This allows us to prove that if f is formal then M × N \�( f ) is also formal.

Corollary 1.7 Let f : M → N be a formal map of closed connected oriented formal
manifolds of dimension n such that H1(M;Q) = 0 = H1(N ;Q) = H2(N ;Q), then
M × N \ �( f ) is a formal space.

As the first major step in this paper we compute the cohomology algebra H∗(M ×
N\�( f )) using the Leray spectral sequence as described in §2 of Totaro [21]. We
analyze at depth the cohomology class μ f , as described in Chapter 30 of Greenberg
and Harper [6].

Let μ̃ ∈ Hn(M × N , M × N \�( f );Z) be the Thom class as in Lemma 2.1, and
μ̃′ = j∗(μ̃) ∈ Hn(M × N ;Z), where j : M × N → (M × N , M × N \ �( f ))

is the natural injection. Let us now take cohomology with rational coefficients (or
coefficients in any field). Let {bi }1≤i≤lN be a homogeneous basis of H∗(N ;Q), and
let {b∗i }1≤i≤lN be its Poincaré dual basis, that is 〈bi ∪ b∗j , [N ]〉 = δi j , where [N ]
is the fundamental homology class of N . Let μ′N := ∑lN

i=1(−1)deg (bi )bi × b∗i ∈
(H∗(N × N ;Q))n be the diagonal class of N , and let μ f := ( f × idN )∗(μ′N ), called
the cohomology class of the graph of f (see p. 284 of [6]). Then there is a unique
class � f ∈ (H∗(M;Q)⊗ H∗(N ;Q))n which maps to μ f under the isomorphism of

the Künneth theorem (H∗(M;Q)⊗ H∗(N ;Q))n
∼=−→ (H∗(M × N ;Q))n , we call � f

the class of f .

Theorem 1.8 Let f : M → N be a continuous map of closed oriented manifolds of
dimension n ≥ 2 and �( f ) be the graph of f . Then we have the following isomorphism
of rings:

H∗(M × N\�( f );Z) ∼= H∗(M × N ;Z)

(μ̃′)
,

where (μ̃′) denotes the ideal H∗(M × N ;Z) ∪ μ̃′. For coefficients in Q, and � f =∑lN
i=1(−1)deg (bi ) f ∗(bi )⊗ b∗i , we have the following isomorphism of algebras:

H∗(M × N \�( f );Q) ∼= H∗(M × N ;Q)

(μ f )
∼= H∗(M;Q)⊗ H∗(N ;Q)

(� f )
.
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The paper is arranged as follows. In §2 we determine the cohomology algebra of
M × N\�( f ). In §3 we adapt for a continuous map f : M → N some results of [9]
and [10] to construct a CDGA model of M × N\�( f ), and prove Theorem 1.4 and
Corollary 1.5. In §4we prove several results about differential Poincaré duality algebra
associated to a morphism ψ by adapting similar results of [9], proved in the absolute
case. These results and some results of [10] are used for the proofs of Theorem 1.6 and
Corollary 1.7. In the final §5 we give some examples and applications of our results.

2 The cohomology algebra of M × N\�( f )

In this section we prove Theorem 1.8.
We assume that f : M → N is a continuous map of closed connected oriented

manifolds of dimension n with graph �( f ). Since �( f ) ⊂ M × N is an embedding,
one can derive the following analogue of Corollary 11.2 of Milnor-Stasheff [15] (and
also of Corollary (30.2) of Greenberg-Harper [6]) in a similar fashion. We follow the
notations which preceded the statement of Theorem 1.8 in §1.

Lemma 2.1 There is a Thom class μ̃ ∈ Hn(M × N , M × N\�( f );Z) associated to
the oriented normal bundle of the embedding �( f ) ⊂ M × N.

We next prove the following analogue of Corollary (30.3) of [6]:

Theorem 2.2 Let [N ] ∈ Hn(N ;Z) be the fundamental homology class of N ,
j∗ : Hn(M × N , M × N\�( f );Z) → Hn(M × N ;Z) be the homomorphism in
cohomology induced by the map j : M × N ↪→ (M × N , M × N\�( f )) and
μ̃′ = j∗(μ̃), then μ̃′/[N ] = 1.

Proof For x ∈ M , consider the commutative diagram:

(N , N\ f (x))
˜ix−→ (M × N , M × N\�( f ))

j f (x) ↑ j ↑
N

˜ix−→ M × N

where ĩx : (N , N\ f (x)) → (M × N , M × N\�( f )) is defined by ĩx (x ′) =
(x, x ′),∀x ′ ∈ N , ĩx : N → M × N its restriction to (N ,∅) and j f (x) : N →
(N , N \ f (x)) is the natural injection. If s : N → N 0 is a section of the orientation
sheaf N 0 over N , then

1 = [s( f (x)), ĩx
∗
(μ̃)] = [ j f (x)∗[N ], ĩx

∗
(μ̃)] = [[N ], j∗f (x) ĩx

∗
(μ̃)]

= [[N ], (ĩx ◦ j f (x))
∗(μ̃)] = [[N ], ( j ◦ ĩx )

∗(μ̃)] = [[N ], ĩx
∗ ◦ j∗(μ̃)]

= [ĩx∗[N ], j∗(μ̃)] = [ĩx∗[N ], μ̃′].

Since N ∼= {x} × N , if x̄ is the homology class of the zero cycle x , ĩx∗([N ]) =
x̄ × [N ]. So from the above expression we get
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1 = [ĩx∗[N ], μ̃′] = [x̄ × [N ], μ̃′] = [x̄, μ̃′/[N ]] for all x ∈ M , which proves the
result. ��

We now prove the following analogue of Lemma 11.8 of [15] (and also of Lemma
(30.5) of [6]):

Theorem 2.3 If a ∈ H∗(N ;Z), then ( f ∗(a)× 1) ∪ μ̃′ = (1× a) ∪ μ̃′.

Proof Let V�( f ) be a tubular neighborhood of the graph �( f ) in M × N . So �( f )

is a deformation retract of V�( f ). Let i�( f ) : �( f ) → V�( f ) be the inclusion map
and r�( f ) : V�( f ) → �( f ) be the retraction map. Then r�( f ) ◦ i�( f ) = 1�( f ) and
i�( f )◦r�( f ) 
 1V�( f )

. Consider the projections p1 : M×N → M and p2 : M×N →
N . Since f ◦ p1 and p2 coincide on �( f ), we have ( f ◦ p1) |V�( f )

◦ i�( f ) ◦ r�( f ) =
p2 |V�( f )

◦ i�( f ) ◦ r�( f ). So the ( f ◦ p1) |V�( f )

 p2 |V�( f )

. Therefore the cohomology
classes ( f ◦ p1)∗(a) = p∗1 ◦ f ∗(a) = f ∗(a) × 1 and p∗2(a) = 1 × a have the same
image under the restriction homomorphism Hi (M × N ;Z) → Hi (V�( f );Z). Now
using the commutative diagram

Hi (M × N ;Z) −→ Hi (V�( f );Z)

↓ ∪μ̃ ↓ ∪μ̃ |(V�( f ),V�( f )\�( f ))

Hi+n(M × N , M × N\�( f );Z) ∼= Hi+n(V�( f ), V�( f )\�( f );Z)

it follows that ( f ∗(a)×1)∪ μ̃ = (1×a)∪ μ̃. So j∗(( f ∗(a)×1)∪ μ̃) = j∗((1×a)∪
μ̃), j as defined earlier. By the properties ofmixed cup products ( f ∗(a)×1)∪ j∗(μ̃) =
(1× a) ∪ j∗(μ̃). So ( f ∗(a)× 1) ∪ μ̃′ = (1× a) ∪ μ̃′. ��

The next theorem is an analogue of Theorem 11.11 of [15] (and also of Proposition
(30.18) of [6]):

Theorem 2.4 Let {bi }lN
i=1 be a homogeneous basis of H∗(N ;Q), and let {b∗i }lN

i=1 be
its Poincaré dual basis, then the cohomology class μ̃′ is given by

μ̃′ =
lN∑

i=1
(−1)deg (bi ) f ∗(bi )× b∗i ,

where deg (bi ) = k if bi ∈ Hk(N ;Q).

Proof Using the Künneth formula we can write μ̃′ ∈ Hn(M × N ;Q) as

μ̃′ = c1 × b∗1 + ...+ clN × b∗lN
,

where c1, . . . , clN are certain well defined cohomology classes in H∗(M;Q) with
deg (bi ) + deg (ci ) = n. We apply the homomorphism /[N ] on both sides of the
identity ( f ∗(a) × 1) ∪ μ̃′ = (1 × a) ∪ μ̃′, where a ∈ H∗(N ;Q). By Property 4 of
slant product on p. 288 of Spanier [19] and by our Theorem 2.2 we get

(( f ∗(a)× 1) ∪ μ̃′)/[N ] = f ∗(a) ∪ (μ̃′/[N ]) = f ∗(a). (1)

123



The rational homotopy type of the complement of the graph of a map 159

Also,

((1× a) ∪ μ̃′)/[N ] = (1× a) ∪
lN∑

i=1
ci × b∗i /[N ] =

lN∑

i=1
(−1)deg (a) deg (ci )ci

×(a ∪ b∗i )/[N ]

=
lN∑

i=1
(−1)deg (a) deg (ci )ci 〈a ∪ b∗i , [N ]〉 (2)

Using equations (1) and (2) above and substituting b j for a, we get

f ∗(b j ) =
lN∑

i=1
(−1)deg (b j ) deg (ci )ci 〈b j ∪ b∗i , [N ]〉 = (−1)deg (b j ) deg (c j )c j ,

but deg (b j ) = deg (c j ), so we get that

(−1)deg (b j ) f ∗(b j )=(−1)deg (b j )(−1)deg (b j ) deg (b j )c j =(−1)deg (b j )(1+deg (b j )c j = c j .

This proves the theorem. ��
Let [�( f )] = (1M × f )∗ ◦�M∗([M]). Let μN ∈ Hn(N × N , N × N\�(1N );Z)

be the Thom class of the oriented normal bundle of the embedding �(1N ) ↪→ N × N ,
let μ′N ∈ Hn(N × N ;Z) be its image under the homomorphism in cohomology
induced by jN : N × N → (N × N , N × N\�(1N )) and μ f = ( f × 1N )∗(μ′N ) ∈
Hn(M × N ;Z).

Remark 2.5 1. When coefficients belong toQ (or any field) byTheorem11.11 of [15]
(or by Proposition (30.18) of [6]), if {ai }lM

i=1 is a homogeneous basis of H∗(M;Q)

and {a∗i }lM
i=1 its Poincaré dual basis, we have μ′M =

∑lM
i=1(−1)deg (ai )ai × a∗i , and

μ′N = ∑lN
i=1(−1)deg (bi )bi × b∗i . Therefore, we see using Theorem 2.4 , that in

rational cohomology, μ f = μ̃′.
2. By Exercises (30.15) and (30.17) of [6] we have [M ×M] ∩μ′M = �M∗([M]) =
[�(1M )], and [N × N ] ∩ μ′N = �N ∗([N ]) = [�(1N )]. Using this and Part 1 of
this remark one can prove the following statement which is the assertion of the
Exercise (30.22) of [6]:

[M] × [N ] ∩ μ̃′ = [M] × [N ] ∩ μ f = [�( f )] (A)

We are now ready to prove Theorem 1.8.

Proof of Theorem.1.8 Let h : M × N \�( f ) ↪→ M × N denote the inclusion map.
The Leray spectral sequence for this inclusion has the form

Ei, j
2 = Hi (M × N ; R j h∗Z)⇒ Hi+ j (M × N \ �( f );Z).
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Here R j h∗Z is the Leray sheaf on M× N associated with the presheaf U → H j (U ∩
(M × N\�( f ));Z) where U runs over the family of all open subsets of M × N . The
stalk of R j h∗Z at a point x̄ = (x1, x2) ∈ M × N is described below.

1. If x2 �= f (x1), we can choose small coordinate neighborhoods U1 and U2 of x1
and x2 in M and N respectively, such that f (U1)∩U2 = ∅. If U = U1×U2, then
U ⊂ M × N \�( f ). Therefore, for every x̄ = (x1, x2) ∈ M × N , x2 �= f (x1),
(R j h∗Z)x̄ = H j (U ∩ (M × N\�( f ));Z) = H j (U ;Z) = H j (U1×U2;Z) = 0
if j �= 0, and (R0h∗Z)x̄ = Z.

2. If x2 = f (x1), we can choose small coordinate neighborhoods U1 and U2 of x1
and x2 in M and N respectively, such that f (U1) ⊂ U2. For U = U1 × U2,
(R j g∗Z)x̄ = H j (U ∩ (M × N\�( f ));Z) = H j (U\�( f );Z) = H j (U1 ×U2 \
�( f );Z). Let h1 : U1

∼=−→ Rn and h2 : U2
∼=−→ Rn , be the coordinate charts of

U1 and U2 respectively. Consider the composite f̂ = h2◦ f ◦h−11 : Rn → Rn , then
�( f̂ ) = h1×h2(�( f )|U1×U2). Therefore, (R j h∗Z)x̄ = H j (U1×U2\�( f );Z) ∼=
H j ((Rn × Rn)\�( f̂ );Z). But as observed in the introduction Rn × Rn\�( f̂ ) is
homeomorphic to F(Rn, 2), so for every x̄ = (x1, x2) ∈ M × N , x2 = f (x1)

(R j h∗Z)x̄ = H j (F(Rn, 2);Z) =
{

Z if j = 0, n − 1
0 otherwise

This shows that the Leray sheaf (Rn−1h∗Z) is supported and is locally constant along
the graph �( f ) with stalks Z, and (R0h∗Z) is locally constant on M × N with stalks
Z. Since M , N and hence �( f ) are orientable, we have

Hi (M × N ; R j h∗Z) =
⎧
⎨

⎩

Hi (M × N ;Z) if j = 0,
Hi (�( f );Z) if j = n − 1,
0 otherwise

Hence, the E2 terms of Leray spectral sequence take the form:

0 0 · · · 0 · · ·
E0,n−1
2 = H0(�( f );Z) E1,n−1

2 = H1(�( f );Z) · · · En,n−1
2 = Hn(�( f );Z) · · ·

0 0 · · · 0 · · ·
0 0 · · · 0 · · ·
0 0 · · · 0 · · ·
0 0 · · · 0 · · ·

E0,0
2 = H0(M × N ;Z) E1,0

2 = H1(M × N ;Z) · · · En,0
2 = Hn(M × N ;Z) · · ·

and En terms coincide with E2 terms:
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������������������

0 0 · · · 0 · · ·
E0,n−1

n = H0(�( f );Z) E1,n−1
n = H1(�( f );Z) · · · En,n−1

n = Hn(�( f );Z) · · ·
0 0 · · · 0 · · ·
0 dn · · · 0 · · ·
0 0 · · · 0 · · ·
0 0 · · · 0 · · ·

E0,0
n = H0(M × N ;Z) E1,0

n = H1(M × N ;Z) · · · En,0
n = Hn(M × N ;Z) · · ·

We now determine dn on the En page. Note that the differential dn is 0 on the bottom
row, since it maps each row to a lower row. Let i : �( f ) → M × N be the inclusion
map and let π : M × N → �( f ) be defined by π(x1, x2) = (x1, f (x1)). Then
π ◦ i = 1�( f ). Therefore, by the functoriality of cohomology, the homomorphisms
induced in cohomology, π∗ and i∗ are, respectively, injective and surjective. Hence
the long cohomology exact sequence of the pair (M × N , �( f )) gives rise to the
following split short exact sequence:

0→ H∗(M × N , �( f );Z)
j∗1−→ H∗(M × N ;Z)

i∗
�
π∗

(H∗(�( f );Z))→ 0,

where j1 : M × N → (M × N , �( f )) is the natural injection.
As �( f ) is a smooth submanifold with an orientable normal bundle in the smooth

manifold M× N , the differentials dn in the above Leray spectral sequence originating
from the (n− 1)th row are Gysin maps. If z ∈ Hi (M × N ;Z), i∗(z) ∈ Hi (�( f );Z)

and we have dn(i∗(z)) = π∗(i∗(z))∪ μ̃′. From the above split exact sequence we see
that z − π∗(i∗(z)) = j∗1 (w), for some element w ∈ Hi (M × N , �( f );Z). Recall
that μ̃′ = j∗(μ̃), the image of the Thom class μ̃ ∈ H∗(M × N , M × N \ �( f );Z),
where j : M × N → (M × N , M × N\�( f )) is the natural injection. So by Property
8 on p. 251 of [19] and the fact that w ∪ μ̃ = 0 (since the mixed cup product ∪ :
Hi (M × N , �( f );Z)⊗ Hn(M × N , M × N \ �( f );Z)→ Hi+n(M × N , �( f ) ∪
M × N \�( f );Z) = Hi+n(M × N , M × N ;Z) = 0 has its image in a zero module)
we get that (z − π∗(i∗(z))) ∪ μ̃′ = j∗1 (w) ∪ μ̃′ = j∗1 (w) ∪ j∗(μ̃) = 0. This means,
in particular, that dn(1) = μ̃′.

If k : M → �( f ) denotes the mapping x �→ (x, f (x)) and πM : M × N → M
be the projection onto M , then k∗ is an isomorphism and π∗ = π∗M ◦ k∗. Thus
dn(i∗(z)) = π∗M (k∗(i∗(z))) ∪ μ̃′ = (k∗(i∗(z)) × 1) ∪ μ̃′. But by Property 4 of slant
products on p. 288 of [19], {(k∗(i∗(z)) × 1) ∪ μ̃′}/[N ] = (k∗(i∗(z)) ∪ (μ̃′/[N ]) =
k∗(i∗(z)), as μ̃′/[N ] = 1 by Theorem 2.2 above. So we have: if i∗(z) �= 0 then
(k∗(i∗(z))× 1)∪ μ̃′ �= 0. Therefore dn is injective on the (n − 1)th-row of En = E2.

This yields Ei, j
n+1 = Ei, j∞ = 0 for j �= 0, and Ei,0∞ = Ei,0

n+1 = Ei,0
n

im dn
= Ei,0

2
im dn

=
Hi (M×N ;Z)

im dn
for all i . But, for 0 ≤ i ≤ n − 1, we have Ei,0∞ = Ei,0

n+1 = Ei,0
n = Ei,0

2 =
Hi (M × N ;Z), and for n ≤ i ≤ 2n, Ei,0

n+1 = Ei,0∞ = Hi (M×N ;Z)
im dn

.
Thus

H∗(M × N\�( f );Z) ∼= H∗(M × N ;Z)

H∗(M × N ;Z) ∪ μ̃′
∼= H∗(M × N ;Z)

(μ̃′)
,

as rings, where (μ̃′) denotes the ideal of H∗(M × N ;Z) generated by μ̃′.
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If we take cohomologywith coefficients inQ, then by an application of the Künneth

theorem H∗(M;Q)⊗ H∗(N ;Q)
∼=−→ H∗(M × N ;Q). Hence there is a unique class

� f =∑n
i=1(−1)deg (bi ) f ∗(bi )⊗ b∗i in H∗(M;Q)⊗ H∗(N ;Q) which maps to μ̃′ =∑N

i=1(−1)deg (bi ) f ∗(bi )× b∗i = μ f in H∗(M × N ;Q) under this isomorphism, and
therefore

H∗(M × N \ �( f );Q) ∼= H∗(M × N ;Q)

(μ f )
∼= H∗(M;Q)⊗ H∗(N ;Q)

(� f )
,

as algebras. ��

A similar argument can be given when Q is replaced by an arbitrary field.

3 A CDGA model of M × N\�( f )

In this sectionwe proveTheorem1.4 andCorollary 1.5 by constructing aCDGAmodel
of (1M × f ) ◦�M : M → M ×M → M × N from a CDGA model of f : M → N .
(We refer the reader to [9], [10], [3] and [5] for necessary definitions, notations and
results leading to the construction of a CDGAmodel of the configuration space of two
points F(M, 2)).

Proof of Theorem 1.4 We first note that a CDGA-model (AN , dN )
ψ f−→ (AM , dM ) of

f determines a CDGA-model (AM ⊗ AN , dAM ⊗ dAN )
1AM⊗ψ f−−−−−→ (AM ⊗ AM , dAM ⊗

dAM ) of 1M × f , whose verification is left to the reader. This together with the fact
that a CDGA-model of M determines a CDGA-model of �M (see, e.g. Example
2.48 on p.73 of [5]) yields the conclusion that a CDGA-model of f determines a

CDGA-model (AM ⊗ AN )
1AM⊗ψ f−−−−−→ (AM ⊗ AM )

νAM−−→ AM , defined by x ⊗ y �→
(νAM ◦ (1AM ⊗ ψ f ))(x ⊗ y) = x .ψ f (y), of (1M × f ) ◦�M .

By our hypotheses H1(M;Q) = 0 and H1(N ;Q) = 0 = H2(N ;Q), it follows
that for the embedding (1M× f )◦�M : M → M×N , which actually embeds M as the
graph �( f ) of f in M×N , the hypotheses of Theorem 1.4 of [10], namely H1((1M ×
f ) ◦�M ;Q) is an isomorphism and H2((1M × f ) ◦�M ;Q) is an epimorphism are
satisfied. Therefore by applying Theorem 1.4 of [10] one can determine explicitly a
model of M × N \ �( f ) from the above model of f , and our result follows. ��

Proof of Corollary. 1.5 By hypothesis the dimension of N is at least three, so
dim M = dim N ≥ 3. Therefore the hypothesis of Corollary 1.5 of [10], namely the
codimension of the embedding of �( f ) in M× N is≥ 3, and H∗((1M × f )◦�M ;Q)

is 2-connected are satisfied. Hence, the rational homotopy type of M × N\�( f ) is
determined by the rational homotopy class of 1M × f . But the homotopy class of
1M × f is determined by the homotopy class of f ; hence the corollary holds. ��
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4 The CDGA model of M × N\�( f ) based on
differential-Poincaré-duality-algebra models of M and N

In this section we consider a continuous map f : M → N of closed connected
oriented manifolds of dimension n with H1(M;Q) = 0 = H1(N ;Q) having a

CDGA model (AN , dAN )
ψ f→ (AM , dAM ) in which (AM , dAM ) and (AN , dAN ) are

differential connected Poincaré duality algebras of formal dimension n (refer to the
para preceding Theorem 1.6 of the introduction).

We note that all the algebras and relevant results of [9], proved by them in the
absolute case, can analogously be developed for any given CDGA morphism of
Poincaré duality algebras.

Definition 4.1 Let (A2, dA2)
ψ→ (A1, dA1) be a morphism of Poincaré duality alge-

bras of formal dimension n. Define �ψ := (ψ ⊗ 1)(�), where � is the diagonal
class defined in the statement of Theorem 1.6 and the element �ψ , which belongs to
(A1 ⊗ A2)

n , will be called the class of ψ .

As in Proposition 4.3 of [9] the element�ψ does not depend on the choice of the basis
{ai }1≤i≤l of A2.

Remark 4.2 If s−n A1 is the suspension of A1 as defined in §2 of [9] then there is an
(A1 ⊗ A2)-module structure on s−n A1 given by

(x ⊗ y).(s−na) = (−1)n deg (x)+n deg (y)+deg (a) deg (y)s−n(x .a.ψ(y))

for homogeneous elements a, x ∈ A1, and y ∈ A2 and an obvious (A1 ⊗ A2)-
module structure on (A1 ⊗ A2). In other words the (A1 ⊗ A2)-module structure
on s−n A1 is obtained from the obvious structure of A1 ⊗ A1-module on s−n A1 by
transporting it along the CDGA map 1⊗ ψ : A1 ⊗ A2 → A1 ⊗ A1.

In view of the above, statements below follow from the corresponding statements
of [9], proved there in the absolute case.

1. Let ψ : (A2, ωA2) → (A1, ωA1) be a CDGA morphism of oriented Poincaré
duality algebras of finite dimension and of formal dimension n. Then the map
�̂ψ : s−n A1 → A1 ⊗ A2, defined by s−na �→ �ψ.(a ⊗ 1) is a morphism of
(A1 ⊗ A2)-modules.

2. Let ψ : (A2, dA2 , ωA2) → (A1, dA1 , ωA1) be a morphism of oriented differential
Poincaré algebras of formal dimension n. Then �ψ is a cocycle.

3. If ψ : (A2, dA2 , ωA2) → (A1, dA1 , ωA1) is a morphism of connected differential
oriented Poincaré duality algebras of formal dimension n and �̂ψ : s−n A1 →
A1 ⊗ A2 is defined by s−na �→ �ψ.(a ⊗ 1), then
(a) �̂ψ is a morphism of (A1 ⊗ A2)-dgmodules and hence its mapping cone

C(�̂ψ) := A1 ⊗ A2 ⊕�̂ψ
ss−n A1

is an (A1 ⊗ A2)-dgmodule.

123



164 A. T. Singh, H. K. Mukerjee

(b) C(�̂ψ) is also a C DG A under the following multiplication rules: If
a, a′, x, y ∈ A1, and b, b′ ∈ A2,

(a ⊗ b).(a′ ⊗ b′) = (−1)deg (b) deg (a′)(a.a′ ⊗ b.b′),
(a ⊗ b).(ss−n x) = (−1)(n−1)(deg (a)+deg (b))ss−n(a.ψ(b).x),

(ss−n x).(a ⊗ b) = ss−n(x .a.ψ(b)),

(ss−n x).(ss−n y) = 0.

Definition 4.3 Let (A, ω) be a connected oriented Poincaré duality algebra of formal
dimension n with orientation class ω (refer to Definition 4.1 of [9]). Since An ∼= Q,
there exists a unique elementμ ∈ An such thatω(μ) = 1which called the fundamental
class of A.

Our goal in this section is to proveTheorem1.6.Throughoutwe considermorphisms
ψ : (A2, dA2 , ωA2) → (A1, dA1 , ωA1) of connected differential oriented Poincaré
duality algebras of formal dimension n.

Lemma 4.4 The ideal (�ψ) := �ψ.(A1 ⊗ A2) generated by �ψ in A1 ⊗ A2 is a
differential ideal and the quotient (A1 ⊗ A2)/(�ψ) is a CDGA.

Proof By Remark 4.2 (2), dA1⊗A2(�ψ) = 0; hence the ideal (�ψ) is a differential
ideal. This implies immediately that the quotient (A1 ⊗ A2)/(�ψ) inherits a C DG A
structure.

��
Lemma 4.5 The map �̂ψ induces an isomorphism

�̂ψ : s−n A1 → (�ψ).

Proof We first show that im (�̂ψ) = (�ψ). Clearly im(�̂ψ) ⊆ (�ψ). For the reverse
inclusion we have

(�ψ) = {�ψ.(x ⊗ y) |x ∈ A1, y ∈ A2}
= {�ψ.(−1)deg (x) deg (y)(1⊗ y).(x ⊗ 1) |x ∈ A1, y ∈ A2}
= {�̂ψ((−1)deg (x) deg (y)s−n(ψ(y).x)) |x ∈ A1, y ∈ A2}
⊆ im(�̂ψ).

Next we show that �̂ψ is injective. Let ωA1 and ωA2 be the orientation classes of
the Poincaré duality algebras A1 and A2 respectively. So there exist unique elements
μA1 ∈ An

1 and μA2 ∈ An
2, fundamental classes of A1 and A2, such that ωA1(μA1) = 1

andωA2(μA2) = 1. Fix a basis {ai }li=1 of A2 and its Poincaré dual basis {a∗i }li=1. Since
A0
2 = Qwe can assume that 1 = a1 ∈ A0

2 and remaining ai ,’s are of degree> 0 so that
aiμA2 ∈ A>n

2 = 0 for i > 1. Also ωA2(a1.a
∗
1) = 1 implies that 1.a∗i = a1.a∗1 = μA2

so that a∗1 = a−11 .μA2 = μA2 . This yields from the definition of �ψ that
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�ψ.(μA1 ⊗ 1) =
l∑

i=1
(−1)deg (ai )(ψ(ai )⊗ a∗i ).(μA1 ⊗ 1)

=
l∑

i=1
(−1)deg (a∗i )(−1)n deg (a∗i )(ψ(ai ).μA1 ⊗ a∗i ) = ψ(a1).μA1 ⊗ a∗1

= ψ(a1).μA1 ⊗ a−11 .μA2 = μA1 ⊗ μA2 �= 0.

Let a be a non-zero element of Ai
1. By Poincaré duality there exists an element b ∈

An−i
1 such that a.b = μA1 . We have

�̂ψ(s−na).(b ⊗ 1) = �ψ.(a ⊗ 1).(b ⊗ 1) = �ψ.(a.b ⊗ 1) = �ψ.(μA1 ⊗ 1)

= μA1 ⊗ μA2 �= 0.

��
Consider the projection A1 ⊗ A2

π−→ (A1 ⊗ A2)/(�ψ). We extend π to a map π̂ :
A1 ⊗ A2 ⊕�̂ψ

ss−n A1 → (A1 ⊗ A2)/(�ψ) by setting π̂(ss−n A1) = 0.

Lemma 4.6 The map π̂ : A1 ⊗ A2 ⊕�̂ψ
ss−n A1 → (A1 ⊗ A2)/(�ψ) defined

above is a CDGA quasi-isomorphism.

Proof The map π̂ can be seen to be a C DG A morphism by a straightforward com-
putation. Since �̂ψ is injective , we have a short exact sequence

0→ s−n A1
�̂ψ−−→ A1 ⊗ A2

π−→ (A1 ⊗ A2)/im(�̂ψ)→ 0.

Comparing the long cohomology exact sequence corresponding to this exact sequence

and that of the mapping cone s−n A1
�̂ψ−−→ A1 ⊗ A2 ↪→ C(�̂ψ) := A1 ⊗ A2 ⊕�̂ψ

ss−n A1 we get the following commutative diagram:

→ Hq (s−n A1)→ Hq (A1 ⊗ A2)→ Hq (C(�̂ψ ))→ Hq+1(s−n A1)→ Hq+1(A1 ⊗ A2)→
↓ ↓ ↓ ↓

→ Hq (s−n A1)→ Hq (A1 ⊗ A2)→ Hq
(

A1⊗A2
im (�̂ψ )

)
→ Hq+1(s−n A1)→ Hq+1(A1 ⊗ A2)→

Applying five lemma and using Lemma 4.5 we get that the map

A1 ⊗ A2 ⊕�̂ψ
ss−n A1

π̂=π⊕0−−−−→ (A1 ⊗ A2)/im(�̂ψ) = (A1 ⊗ A2)/(�ψ)

is a quasi isomorphism. ��
We are now ready to prove Theorem 1.6.
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Proof of Theorem. 1.6 We have proved in Lemma 4.4 that (�ψ f ) is a differential
ideal. Since (AM , dAM ) and (AN , dAN ) are connected differential Poincaré duality
algebras of formal dimension n and since Hn(AM , dAM ) = Hn(M;Q) �= 0 and
Hn(AN , dAN ) = Hn(N ;Q) �= 0, Proposition 4.8 of [9] implies that (AM , dAM , ωAM )

and (AN , dAN , ωAN ) are oriented differential Poincaré duality algebras in the sense
of Definition 4.6 of [9] for orientations ωAM ∈ #An

M and ωAN ∈ #An
N .

We have proved in §3 that a CDGA model ψ f : (AN , dAN ) → (AM , dAM ) of f
gives a CDGA model


 := νAM ◦ (1AM ⊗ ψ f ) : (AM ⊗ AN , dAN ⊗ dAM )→ (AM , dAM )

of (1M × f ) ◦� : M → M × N , and is given by x ⊗ y �→ x .ψ f (y). Set n = 2m.
The morphism 
 induces an obvious (AM ⊗ AN )-dgmodule structure on AM , hence
on s−n#AM . By Proposition 4.7 of [9] s−n#AM = s−m(s−m#AM ) is isomorphic
to s−m AM as an AM -dgmodule, therefore also an isomorphism as an (AM ⊗ AN )-
dgmodule.

By Remark 4.2a the map �̂ψ : s−n AM → AM ⊗ AN is a map of (AM ⊗ AN )-
dgmodules.Moreover, it induces an isomorphism in the cohomology in the top degree,
because �̂ψ(s−nμ) = μAM ⊗μAN . Thus �̂ψ is a shriek map (or, a top-degree map)
in the sense of Definition 5.1 of [10].

Let I0 be a complement of the cocycles in (AM ⊗ AN )n−3 and set I = I0 ⊕
(AM ⊗ AN )>n−3. Let K0 be a complement of the cocycles in (s−n AM )n−2 and set
K = K0 ⊕ (s−n AM )>n−2. Consider the quotient

AM ⊗ AN ⊕�̂ψ
ss−n AM

I ⊕ sK
.

By the hypothesis of the theorem concerning f , it follows that the embedding
(1M × f ) ◦ �M : M ↪→ M × N , which embeds M as �( f ) in M × N , satisfies
the hypothesis of Theorem 1.4 of [10], namely that H1((1M × f ) ◦ �M ;Q) is an
isomorphism and H2((1M × f ) ◦�M ;Q) is an epimorphism, hence by Theorem 1.4
of [10] we get that

(
AM ⊗ AN ⊕�̂ψ

ss−n AM

I ⊕ sK
, d̄

)

is a CDGA model of M × N \ �( f ).
Comparing the semi-trivial CDGA structure as defined in Definition 4.1 of [10] on

(AM ⊗ AN ⊕�̂ψ
ss−n AM )/(I ⊕ sK ) with the multiplication in the mapping cone

given in this section, we conclude that the projection

(AM ⊗ AN ⊕�̂ψ
ss−n AM , d)→

(
AM ⊗ AN ⊕�̂ψ

ss−n AM

I ⊕ sK
, d̄

)

is a CDGA map. Moreover it is a quasi-isomorphism by Lemma 8.6 of [10].
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Therefore (AM⊗ AN ⊕�̂ψ
ss−n AM , d) is a CDGAmodel of M×N \�( f ). Hence

by Lemma 4.6
(
(AM ⊗ AN )/(�ψ), dAM ⊗ dAN

)
is a CDGAmodel of M×N \�( f ).

��
We finally prove Corollary 1.7 on formality of the complement of the graph of a map.

Proof of corollary. 1.7 Since f : M → N is formal, (H∗(N ;Q), 0)
f ∗→ .(H∗(M;Q), 0)

is a model of f .
Moreover, since (H∗(N ;Q), 0) and (H∗(M;Q), 0) are oriented differential

Poincaré duality algebras, by Theorems 1.6 and 1.8,

(
H∗(M;Q)⊗ H∗(N ;Q)

(� f )
, 0

)
∼= (H∗(M × N \ �( f );Q), 0) (as CDGAs)

is a CDGA-model of M × N \ �( f ), and hence it is a formal space. ��

5 Examples and applications

In the last section we saw that if f : M → N is a formal map of closed connected
oriented formal manifolds of dimension n such that H1(M;Q) = 0 = H1(N ;Q) =
H2(N ;Q), then M × N \ �( f ) is formal (Corollary 1.7). In Proposition 6.6 of [9]
Lambrechts and Stanley proved that if M is a closed connected orientable manifold
of dimension n such that M ×M \�(1M ) = F(M, 2) is formal then M is formal. We
ask a similar question (this is the converse of Corollary 1.7):

Question 5.1 Given closed connected oriented formal manifolds M and N of dimen-
sion n and a continuous map f : M → N such that M × N \ �( f ) is formal, is f
necessarily a formal map?

The answer is in the negative. Here we construct such an example.

Example 5.2 Consider S7 f=(h,c)−−−−→ S4× S3, where h : S7 → S4 is the Hopf map and
c : S7 → S3 is a constant map. It follows from Proposition 2.5 of [1] that any formal
map S7 → S4 × S3 must be nullhomotopic; but f is not nullhomotopic. Therefore f
is not formal.

Now we show that S7 × (S4 × S3) \ �( f ) is formal. Since S3 j−→ S7 h−→ S4 is a
Hopf fibration we have the following commutative diagram [see example (2.68) page
82 of [5] or Chapter 15 of [3]

(�(x, y), d ′) i−−−−→ (�(x, y)⊗�(z), d)
η−−−−→ (�(z), d ′′)

ρ

⏐⏐� σ

⏐⏐� ξ

⏐⏐�

AP L(S4)
AP L (h)−−−−→ AP L(S7)

AP L ( j)−−−−→ AP L(S3).

Here deg (x) = 4, deg (y) = 7, and deg (z) = 3; d ′x = 0, d ′y = x2, dx = 0,
dy = x2, dz = x; and d ′′z = 0; the morphism ρ : (�(x, y), d ′) → AP L(S4) is the
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minimalmodel of S4,σ : (�(x, y)⊗�(z), d) → AP L(S7) is a quasi-isomorphism, ξ :
(�(z), d ′′)→ AP L(S3) is the minimal model of S3 , i : (�(x, y), d ′)→ (�(x, y)⊗
�(z), d) is a relative minimal CDGA and η : (�(x, y) ⊗ �(z), d) → (�(z), d ′′) is
the projection.

From the above diagram we get the following commutative diagram

(�(x, y)⊗�(z), d ′ ⊗ d ′′) i−−−−→ (�(x, y)⊗�(z), d)

ρ⊗ξ

⏐⏐� σ

⏐⏐�

AP L(S4)⊗ AP L(S3)
AP L (h).AP L (c)−−−−−−−−−→ AP L(S7),

where i(x) = x, i(y) = y and i(z) = 0.
Let us define CDGAs

(B, 0) := (�(e4, e3)/IB, 0),

where deg (e4) = 4; deg(e3) = 3, IB is the ideal generated by e24, and

(A, dA) := (�(u4, u3)/IA, dA),

where deg (u4) = 4; deg(u3) = 3, IA is the ideal generated by u2
4, dAu3 = u4,

and dAu4 = 0. It is easily checked that (B, 0), and (A, dA) are oriented differential
Poincaré duality algebras.

We define morphisms

ρB : (�(x, y)⊗�(z), d ′ ⊗ d ′′)→ (B, 0),

where ρB(x) = e4, ρB(y) = 0, ρB(z) = e3 and

ρA : (�(x, y)⊗�(z), d)→ (A, dA),

where ρA(x) = u4, ρA(y) = 0, ρA(z) = u3.

Clearly ρB and ρA are quasi-isomorphisms.
Define ψ f : (B, 0)→ (A, dA) byψ f (e4) = u4, ψ f (e3) = 0 so that the following

diagram is commutative.

(B, 0) = (�(e4, e3)/IB, 0)
ψ f−−−−→ (�(u4, u3)/IA, dA) = (A, dA)

ρB

�⏐⏐ ρA

�⏐⏐

(�(x, y)⊗�(z), d ′ ⊗ d ′′) i−−−−→ (�(x, y)⊗�(z), d).
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Using the fact that if X
(k,l)−−→ Y × Z is a continuous map then AP L(k) · AP L(l) :

AP L(Y ) ⊗ AP L(Z) → AP L(X) is its model, we get the following commutative
diagram

(B, 0) = (�(e4, e3)/IB, 0)
ψ f−−−−→ (�(u4, u3)/IA, dA) = (A, dA)

ρB

�⏐⏐ ρA

�⏐⏐

(�(x, y)⊗�(z), d ′ ⊗ d ′′) i−−−−→ (�(x, y)⊗�(z), d)

ρ⊗ξ

⏐⏐� σ

⏐⏐�

AP L(S4)⊗ AP L(S3)
AP L (h).AP L (c)−−−−−−−−−→ AP L(S7)

AP L (πS4 )⊗AP L (πS4 )

⏐⏐� =
⏐⏐�

AP L(S4 × S3)
AP L (h,c)−−−−−→ AP L(S7).

Therefore ψ f is a model of f = (h, c). So, by Theorem 1.6

(
A ⊗ B

( ψ f )
, dA ⊗ 0

)

is a CGDA model of S7 × (S4 × S3) \ �( f ).
Note that {a1 = 1, a2 = e3, a3 = e4, a4 = e4 · e3} is a homogeneous basis of

(B, 0) with Poincaré dual basis {a∗1 = e4 · e3, a∗2 = e4, a∗3 = e3, a∗4 = 1}, therefore
by definition

 ψ f = ψ f (1)⊗ e4 · e3 − ψ f (e3)⊗ e4 + ψ f (e4)⊗ e3 − ψ f (e4 · e3)⊗ 1

= 1⊗ e4 · e3 − u4 ⊗ e3.

Therefore as a CDGA

(
A ⊗ B

( ψ f )
, dA ⊗ 0 = d

)
= Q(1⊗ 1)

0−→ 0
0−→ 0

0−→ Q(1⊗ e3, u3 ⊗ 1)

d−→ Q(1⊗ e4, u4 ⊗ 1)
0−→ 0

0−→ Q(u3 ⊗ e3)
d−→ Q(u3 ⊗ e4, u4 ⊗ e3, u4.u3 ⊗ 1)

d−→ Q(u4 ⊗ e4)
0−→ 0

0−→ Q(u4.u3 ⊗ e3)
0−→ Q(u4.u3 ⊗ e4)

0−→ 0 · · ·

Let c3 ∈ H3(S3;Q), c4 ∈ H4(S4;Q) and c7 ∈ H7(S7;Q) be bases of the respective
vector spaces. Then {b1 = 1 ⊗ 1, b2 = 1 ⊗ c3, b3 = c4 ⊗ 1, b4 = c4 ⊗ c3} form
a homogeneous basis of H∗(S4 × S3;Q) = H∗(S4;Q)⊗ H∗(S3;Q) with Poincaré
dual basis {b∗1 = c4 ⊗ c3, b∗2 = c4 ⊗ 1, b∗3 = 1 ⊗ c3, b∗4 = 1 ⊗ 1}. We know by
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Theorem 1.8 that

H∗(S7 × (S4 × S3)\�( f );Q) = H∗(S7;Q)⊗ H∗(S4 × S3;Q)

( f )
,

where

 f = f ∗(1⊗ 1)⊗ c4 ⊗ c3 − f ∗(1⊗ c3)⊗ c4 ⊗ 1+ f ∗(c4 ⊗ 1)⊗ 1⊗ c3
− f ∗(c4 ⊗ c3)⊗ 1⊗ 1

= 1⊗ c4 ⊗ c3.

Therefore as a CDGA

(H∗(S7 × (S4 × S3)\�( f );Q), 0)

= Q(1⊗ 1⊗ 1)
0−→ 0

0−→ 0
0−→

Q(1⊗ 1⊗ c3)
0−→ Q(1⊗ c4 ⊗ 1)

0−→ 0
0−→ 0

0−→ Q(c7 ⊗ 1⊗ 1)
0−→ 0

0−→ 0
0−→ Q(c7 ⊗ 1⊗ c3)

0−→ Q(c7 ⊗ c4 ⊗ 1)
0−→ 0 . . .

Now we define a CDGA morphism

η : (H∗(S7 × (S4 × S3)\�( f );Q), 0)→
(

A ⊗ B

( ψ f )
, dA ⊗ 0

)
,

by defining it on generators as follows:

η(1⊗ 1⊗ 1) = 1⊗ 1, η(1⊗ 1⊗ c3) = 1⊗ e3, η(1⊗ c4 ⊗ 1) = 1⊗ e4 + u4 ⊗ 1,

η(c7 ⊗ 1⊗ 1) = u4.u3 ⊗ 1, η(c7 ⊗ 1⊗ c3) = u4.u3 ⊗ e3, η(c7 ⊗ c4 ⊗ 1)

= u4.u3 ⊗ e4.

It is checked easily that η is a quasi-isomorphism. Therefore (H∗(S7 × (S4 × S3)\
�( f );Q), 0) is a CDGAmodel of S7×(S4×S3)\�( f ). Hence S7×(S4×S3)\�( f )

is a formal space.

Remark 5.3 It is known (see e.g. Lemma 6.3 of [9]) that if M is a simply connected
closed manifold, if x ∈ M , and if M\{x} is formal, then M is formal.

Against this background we may ask the following question.

Question 5.4 Let f : M → N be a continuous map between simply connected formal
manifolds and let x ∈ M. Suppose that f |M\{x} : M\{x} −→ N\{ f (x)} is formal. Is
it necessarily true that f is formal ?

The following example shows that the answer to this question is in the negative.
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Example 5.5 Take M = S3, N = S2 and f the Hopf map h : S3 → S2. Now
S3 \{(0, 0, 0, 1)} ∼= R3 and S2 \{(0, 0, 1)} ∼= R2. Since any continuous map form
R3 → R2 is formal, h|S3\{(0,0,0,1)} : S3\{(0, 0, 0, 1)} −→ S2\{(0, 0, 1)} is formal.
But h is not formal.

We end the paper by recording a few simple applications of Theorem 1.6 and
Corollary 1.7:

Application 5.6 1. Let M and N be two simply connected closed formal manifolds
of dimension n. For any element y ∈ N , since the constant map fy : M → N
defined by fy(x) = y for all x ∈ X is formal, by Corollary 1.7, M × N \ �( f ) is
formal. But M × N \ �( f ) = M × (N \{y}). Therefore M × (N \{y}) is formal.

2. Let M be a simply connected closed formal manifold of dimension n. Since the
identity map f = 1M : M → M is formal, by Corollary 1.7, M × M \�( f ) is
formal. But M × M \ �( f ) = F(M, 2). Therefore F(M, 2) is formal, which is
one of the main results (Corollary 6.1) in [9].

3. Let M and N be two simply connected Lie groups of dimension n. It is known
that the minimal model of a Lie group is of the form (�V, 0). Hence Lie groups
are formal and continuous maps between Lie groups are also formal. Therefore,
by Corollary 1.7, for a continuous map f : M → N , M × N \�( f ) is formal.
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