

The rational homotopy type of the complement of the graph of a map

Angom Tiken Singh · Himadri Kumar Mukerjee

Received: 30 August 2011 / Accepted: 25 November 2014 / Published online: 16 December 2014 © Tbilisi Centre for Mathematical Sciences 2014

Abstract We prove that the rational homotopy type of the complement of the graph of a continuous map from a simply connected closed manifold to a 2-connected closed manifold of the same dimension depends only on the rational homotopy class of the map. We give a commutative differential graded algebra model (in the sense of Sullivan) of the complement of the graph and study its formality.

Keywords Commutative differential graded algebra · Sullivan model · Minimal model · Formal space and map · Leray spectral sequence

Mathematics Subject Classification 55P62 · 55M05 · 55N30 · 55R20 · 55U25

1 Introduction

In this paper we have considered only smooth manifolds. However using the results of Milnor [14], Kister [8] and Kirby–Siebenmann [7] the arguments given for smooth manifolds can be carried over to topological manifolds.

Let $f : M \to N$ be a continuous map of closed connected oriented manifolds of dimension *n*. We aim to study the rational homotopy of $M \times N \setminus \Gamma(f)$, where $\Gamma(f) = \{(x, f(x)) | x \in M\}$ is the graph of *f*.

Communicated by Pascal Lambrechts.

A. T. Singh · H. K. Mukerjee (⊠)

Department of Mathematics, North-Eastern Hill University, NEHU Campus, Shillong 793022, India e-mail: himadrinehu@gmail.com

A. T. Singh e-mail: angomtiken@gmail.com

We refer the reader to [3] and [5] for standard definitions and terminologies of: Free commutative differential graded algebra (CDGA), (minimal) Sullivan CDGA, (minimal) Sullivan model for a CDGA and for a space X, homotopy between morphisms of CDGAs, formality of spaces.

Definition 1.1 ([5], [22], [4], [12], [20]) A model for a continuous map f: $X \to Y$ between connected topological spaces is a morphism of CDGAs, ψ_f : $(A_Y, d_{A_Y}) \to (A_X, d_{A_X})$, such that there exists a homotopy commutative diagram, where $(\Lambda W, d_W), (\Lambda V, d_V)$ are minimal models of Y and X respectively and the vertical arrows are quasi-isomorphisms:

$$\begin{array}{ll} (A_Y, d_{A_Y}) & \stackrel{\psi_f}{\to} & (A_X, d_{A_X}) \\ \cong_q \uparrow \phi_W & \cong_q \uparrow \phi_V \\ (\Lambda W, d_W) & \stackrel{\psi_{\Lambda f}}{\to} & (\Lambda V, d_V) \\ \cong_q \downarrow \rho_W & \cong_q \downarrow \rho_V \\ (A_{PL}(Y), d_Y) & \stackrel{A_{PL}(f)}{\to} & (A_{PL}(X), d_X). \end{array}$$

A continuous map $f : X \to Y$ between formal spaces is said to be *formal* (also referred to as *formalizable* in the literature) if $f^* : (H^*(Y; \mathbb{Q}), 0) \to (H^*(X; \mathbb{Q}), 0)$ is a model for f.

Many authors have studied rational homotopy type of maps and their formality; see e.g. [4,13,16–18,22].

These authors have studied spaces C(f) closely associated with f, like the mapping cone of f, the cofibre of f, the homotopy fibre of f and have recorded results related to problems of following types:

Problem 1.2 1. Find out if the rational homotopy of C(f) is determined by the rational homotopy of f.

2. Given that f is formal, determine if C(f) is necessarily formal.

We study the following problems of a similar nature:

Problem 1.3 1. Find out if the rational homotopy of $M \times N \setminus \Gamma(f)$, where $\Gamma(f)$ is the graph of f, is determined by the rational homotopy of f.

2. Given that f is formal, determine if $M \times N \setminus \Gamma(f)$ is necessarily formal.

The motivation of this paper comes from the work of Lambrechts and Stanley [9] on the rational homotopy type of configuration spaces of two points, and the observation that if f is the identity map $1_M : M \to M$ then, the graph of f, $\Gamma(f) = \Delta$, the diagonal, and $M \times M \setminus \Gamma(f) = M \times M \setminus \Delta = F(M, 2)$, the configuration space of two points. We begin with the following immediate observations:

1. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is any continuous map then $\mathbb{R}^n \times \mathbb{R}^n \setminus \Gamma(f)$ is homeomorphic to $F(\mathbb{R}^n, 2)$ under the homeomorphism $(u, v) \mapsto (u, v - f(u) + u)$.

- 2. For a topological space X if $f: X \to X$ is a homeomorphism then $X \times X \setminus \Gamma(f)$ is homeomorphic to $X \times X \setminus \Delta = F(X, 2)$ under the homeomorphism $(x, y) \mapsto (x, f^{-1}(y))$.
- 3. Suppose that $X = S^2 \vee S^3$, $f : X \to X$ is the constant map $x \mapsto (0, 0, 1)$ and $g : X \to X$ is the constant map $x \mapsto (0, 0, 0, -1)$. Then $X \times X \setminus \Gamma(f) \simeq X \times (\mathbb{R}^2 \vee S^3)$ whereas $X \times X \setminus \Gamma(g) \simeq X \times (S^2 \vee \mathbb{R}^3)$. Therefore they are not homotopy equivalent. Thus for an arbitrary space X and a continuous map $f : X \to X$, $X \times X \setminus \Gamma(f)$ need not even be homotopy equivalent to F(X, 2).

Lambrechts and Stanley [9,10] proved that if M is a simply-connected closed manifold such that $H^2(M; \mathbb{Q}) = 0$ then the rational homotopy type of F(M, 2) depends only on the rational homotopy type of M. They also proved in [9] that if M is a 2-connected closed manifold, then F(M, 2) is formal if and only if M is formal by constructing explicitly a CDGA model for F(M, 2) out of a differential Poincaré duality algebra model of M and a model of the diagonal map.

We show that starting from a CDGA model of $f : M \to N$ one can construct a CDGA model of $(1_M \times f) \circ \Delta_M : M \to M \times N$, where $\Delta_M(x) = (x, x)$ for $x \in M$. This allows us by Corollary 1.5 of [10], to conclude that if we take M, N to be simply connected and $H^2(N; \mathbb{Q}) = 0$ then the rational homotopy type of $M \times N \setminus \Gamma(f)$ is determined by the rational homotopy class of f:

Theorem 1.4 Let $f : M \to N$ be a continuous map of closed connected oriented manifolds of dimension n such that $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q}) = H^2(N; \mathbb{Q})$, then a CDGA-model of $M \times N \setminus \Gamma(f)$ can be explicitly determined out of any CDGA-model of f.

Corollary 1.5 If $f : M \to N$ is a continuous map of closed simply connected manifolds of dimension n such that $H^2(N; \mathbb{Q}) = 0$, then the rational homotopy type of $M \times N \setminus \Gamma(f)$ depends only on the rational homotopy class of f.

We relativize results of [9] by defining a class Δ_{ψ} depending on a morphism ψ of differential Poincaré duality algebras similar to the diagonal class Δ in [9]. We know from Theorem 1.1 of [11] that if M, N are closed connected oriented manifolds with $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q})$, then they admit differential Poincaré duality algebra models. We also know from Proposition 1 of [2] that if $f: M \to N$ is a continuous map of simply connected manifolds of dimension $n \geq 7$ (it is a conjecture that this dimensional restriction can be removed) such that $H^2(f)$ is injective, then f admits a Sullivan model $\psi_f: (A_N, d_{A_N}) \to (A_M, d_{A_M})$, where (A_M, d_{A_M}) , (A_N, d_{A_N}) are Poincaré duality algebras. Thus assuming the existence of such a model of f we can construct a specific CDGA model of $M \times N \setminus \Gamma(f)$ from the model of f:

Theorem 1.6 Let $f : M \to N$ be a continuous map of closed connected oriented manifolds of dimension n such that $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q}) = H^2(N; \mathbb{Q})$. If $\psi_f : (A_N, d_{A_N}) \to (A_M, d_{A_M})$ is a model of f, where (A_M, d_{A_M}) , (A_N, d_{A_N}) are oriented differential Poincaré duality algebras, $\{a_i\}_{1 \le i \le l}$ a homogeneous basis of A_N and $\{a_i^*\}_{1 \le i \le l}$ its Poincaré dual basis

$$\Delta = \sum_{i=1}^{l_N} (-1)^{\deg (a_i)} a_i \otimes a_i^* \in (A_N \otimes A_N)^n,$$

is the diagonal class (defined in [9], p. 1030) and $\Delta_{\psi_f} := (\psi_f \otimes 1)(\Delta)$, called the class of ψ_f , then the ideal $(\Delta_{\psi_f}) = \Delta_{\psi_f} (A_M \otimes A_N)$ is a differential ideal of $A_M \otimes A_N$, and the quotient CDGA

$$\left(\frac{A_M\otimes A_N}{(\Delta_{\psi_f})},\ \overline{d_{A_M}\otimes d_{A_N}}\right)$$

is a CDGA model of $M \times N \setminus \Gamma(f)$.

This allows us to prove that if f is formal then $M \times N \setminus \Gamma(f)$ is also formal.

Corollary 1.7 Let $f : M \to N$ be a formal map of closed connected oriented formal manifolds of dimension n such that $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q}) = H^2(N; \mathbb{Q})$, then $M \times N \setminus \Gamma(f)$ is a formal space.

As the first major step in this paper we compute the cohomology algebra $H^*(M \times N \setminus \Gamma(f))$ using the Leray spectral sequence as described in §2 of Totaro [21]. We analyze at depth the cohomology class μ_f , as described in Chapter 30 of Greenberg and Harper [6].

Let $\tilde{\mu} \in H^n(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z})$ be the Thom class as in Lemma 2.1, and $\tilde{\mu'} = j^*(\tilde{\mu}) \in H^n(M \times N; \mathbb{Z})$, where $j : M \times N \to (M \times N, M \times N \setminus \Gamma(f))$ is the natural injection. Let us now take cohomology with rational coefficients (or coefficients in any field). Let $\{b_i\}_{1 \le i \le l_N}$ be a homogeneous basis of $H^*(N; \mathbb{Q})$, and let $\{b_i^*\}_{1 \le i \le l_N}$ be its Poincaré dual basis, that is $\langle b_i \cup b_j^*, [N] \rangle = \delta_{ij}$, where [N]is the fundamental homology class of N. Let $\mu'_N := \sum_{i=1}^{l_N} (-1)^{\deg(b_i)} b_i \times b_i^* \in$ $(H^*(N \times N; \mathbb{Q}))^n$ be the diagonal class of N, and let $\mu_f := (f \times id_N)^*(\mu'_N)$, called the cohomology class of the graph of f (see p. 284 of [6]). Then there is a unique class $\Delta_f \in (H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q}))^n \xrightarrow{\cong} (H^*(M \times N; \mathbb{Q}))^n$, we call Δ_f the Künneth theorem $(H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q}))^n \xrightarrow{\cong} (H^*(M \times N; \mathbb{Q}))^n$, we call Δ_f

Theorem 1.8 Let $f : M \to N$ be a continuous map of closed oriented manifolds of dimension $n \ge 2$ and $\Gamma(f)$ be the graph of f. Then we have the following isomorphism of rings:

$$H^*(M \times N \setminus \Gamma(f); \mathbb{Z}) \cong \frac{H^*(M \times N; \mathbb{Z})}{(\tilde{\mu}')},$$

where $(\tilde{\mu}')$ denotes the ideal $H^*(M \times N; \mathbb{Z}) \cup \tilde{\mu}'$. For coefficients in \mathbb{Q} , and $\Delta_f = \sum_{i=1}^{l_N} (-1)^{\deg(b_i)} f^*(b_i) \otimes b_i^*$, we have the following isomorphism of algebras:

$$H^*(M \times N \setminus \Gamma(f); \mathbb{Q}) \cong \frac{H^*(M \times N; \mathbb{Q})}{(\mu_f)} \cong \frac{H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q})}{(\Delta_f)}$$

The paper is arranged as follows. In §2 we determine the cohomology algebra of $M \times N \setminus \Gamma(f)$. In §3 we adapt for a continuous map $f : M \to N$ some results of [9] and [10] to construct a CDGA model of $M \times N \setminus \Gamma(f)$, and prove Theorem 1.4 and Corollary 1.5. In §4 we prove several results about differential Poincaré duality algebra associated to a morphism ψ by adapting similar results of [9], proved in the absolute case. These results and some results of [10] are used for the proofs of Theorem 1.6 and Corollary 1.7. In the final §5 we give some examples and applications of our results.

2 The cohomology algebra of $M \times N \setminus \Gamma(f)$

In this section we prove Theorem 1.8.

We assume that $f : M \to N$ is a continuous map of closed connected oriented manifolds of dimension *n* with graph $\Gamma(f)$. Since $\Gamma(f) \subset M \times N$ is an embedding, one can derive the following analogue of Corollary 11.2 of Milnor-Stasheff [15] (and also of Corollary (30.2) of Greenberg-Harper [6]) in a similar fashion. We follow the notations which preceded the statement of Theorem 1.8 in §1.

Lemma 2.1 There is a Thom class $\tilde{\mu} \in H^n(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z})$ associated to the oriented normal bundle of the embedding $\Gamma(f) \subset M \times N$.

We next prove the following analogue of Corollary (30.3) of [6]:

Theorem 2.2 Let $[N] \in H_n(N; \mathbb{Z})$ be the fundamental homology class of N, $j^*: H^n(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z}) \to H^n(M \times N; \mathbb{Z})$ be the homomorphism in cohomology induced by the map $j: M \times N \hookrightarrow (M \times N, M \times N \setminus \Gamma(f))$ and $\tilde{\mu}' = j^*(\tilde{\mu})$, then $\tilde{\mu}'/[N] = 1$.

Proof For $x \in M$, consider the commutative diagram:

$$\begin{array}{ccc} (N, N \setminus f(x)) \xrightarrow{i_x} (M \times N, M \times N \setminus \Gamma(f)) \\ j_{f(x)} \uparrow & j \uparrow \\ N & \xrightarrow{\tilde{i_x}} & M \times N \end{array}$$

where $\tilde{i_x}$: $(N, N \setminus f(x)) \to (M \times N, M \times N \setminus \Gamma(f))$ is defined by $\tilde{i_x}(x') = (x, x'), \forall x' \in N, \tilde{i_x} : N \to M \times N$ its restriction to (N, \emptyset) and $j_{f(x)} : N \to (N, N \setminus f(x))$ is the natural injection. If $s : N \to N^0$ is a section of the orientation sheaf N^0 over N, then

$$1 = [s(f(x)), \tilde{i_x}^*(\tilde{\mu})] = [j_{f(x)}[N], \tilde{i_x}^*(\tilde{\mu})] = [[N], j_{f(x)}^*\tilde{i_x}(\tilde{\mu})]$$

= $[[N], (\tilde{i_x} \circ j_{f(x)})^*(\tilde{\mu})] = [[N], (j \circ \tilde{i_x})^*(\tilde{\mu})] = [[N], \tilde{i_x}^* \circ j^*(\tilde{\mu})]$
= $[\tilde{i_x}[N], j^*(\tilde{\mu})] = [\tilde{i_x}[N], \tilde{\mu}'].$

Since $N \cong \{x\} \times N$, if \bar{x} is the homology class of the zero cycle x, $\tilde{i}_{x*}([N]) = \bar{x} \times [N]$. So from the above expression we get

 $1 = [\tilde{i}_{x*}[N], \tilde{\mu}'] = [\bar{x} \times [N], \tilde{\mu}'] = [\bar{x}, \tilde{\mu}'/[N]] \text{ for all } x \in M, \text{ which proves the result.}$

We now prove the following analogue of Lemma 11.8 of [15] (and also of Lemma (30.5) of [6]):

Theorem 2.3 If $a \in H^*(N; \mathbb{Z})$, then $(f^*(a) \times 1) \cup \tilde{\mu}' = (1 \times a) \cup \tilde{\mu}'$.

Proof Let $V_{\Gamma(f)}$ be a tubular neighborhood of the graph $\Gamma(f)$ in $M \times N$. So $\Gamma(f)$ is a deformation retract of $V_{\Gamma(f)}$. Let $i_{\Gamma(f)} : \Gamma(f) \to V_{\Gamma(f)}$ be the inclusion map and $r_{\Gamma(f)} : V_{\Gamma(f)} \to \Gamma(f)$ be the retraction map. Then $r_{\Gamma(f)} \circ i_{\Gamma(f)} = 1_{\Gamma(f)}$ and $i_{\Gamma(f)} \circ r_{\Gamma(f)} \simeq 1_{V_{\Gamma(f)}}$. Consider the projections $p_1 : M \times N \to M$ and $p_2 : M \times N \to N$. Since $f \circ p_1$ and p_2 coincide on $\Gamma(f)$, we have $(f \circ p_1) |_{V_{\Gamma(f)}} \circ i_{\Gamma(f)} \circ r_{\Gamma(f)} = p_2 |_{V_{\Gamma(f)}} \circ i_{\Gamma(f)} \circ r_{\Gamma(f)}$. So the $(f \circ p_1) |_{V_{\Gamma(f)}} \simeq p_2 |_{V_{\Gamma(f)}}$. Therefore the cohomology classes $(f \circ p_1)^*(a) = p_1^* \circ f^*(a) = f^*(a) \times 1$ and $p_2^*(a) = 1 \times a$ have the same image under the restriction homomorphism $H^i(M \times N; \mathbb{Z}) \to H^i(V_{\Gamma(f)}; \mathbb{Z})$. Now using the commutative diagram

$$\begin{array}{ccc} H^{i}(M \times N; \mathbb{Z}) & \longrightarrow & H^{i}(V_{\Gamma(f)}; \mathbb{Z}) \\ \downarrow \cup \tilde{\mu} & & \downarrow \cup \tilde{\mu} & |_{(V_{\Gamma(f)}, V_{\Gamma(f)} \setminus \Gamma(f))} \\ H^{i+n}(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z}) \cong H^{i+n}(V_{\Gamma(f)}, V_{\Gamma(f)} \setminus \Gamma(f); \mathbb{Z}) \end{array}$$

it follows that $(f^*(a) \times 1) \cup \tilde{\mu} = (1 \times a) \cup \tilde{\mu}$. So $j^*((f^*(a) \times 1) \cup \tilde{\mu}) = j^*((1 \times a) \cup \tilde{\mu})$, *j* as defined earlier. By the properties of mixed cup products $(f^*(a) \times 1) \cup j^*(\tilde{\mu}) = (1 \times a) \cup j^*(\tilde{\mu})$. So $(f^*(a) \times 1) \cup \tilde{\mu}' = (1 \times a) \cup \tilde{\mu}'$.

The next theorem is an analogue of Theorem 11.11 of [15] (and also of Proposition (30.18) of [6]):

Theorem 2.4 Let $\{b_i\}_{i=1}^{l_N}$ be a homogeneous basis of $H^*(N; \mathbb{Q})$, and let $\{b_i^*\}_{i=1}^{l_N}$ be its Poincaré dual basis, then the cohomology class $\tilde{\mu}'$ is given by

$$\tilde{\mu}' = \sum_{i=1}^{l_N} (-1)^{\deg(b_i)} f^*(b_i) \times b_i^*,$$

where deg $(b_i) = k$ if $b_i \in H^k(N; \mathbb{Q})$.

Proof Using the Künneth formula we can write $\tilde{\mu}' \in H^n(M \times N; \mathbb{Q})$ as

$$\tilde{\mu}' = c_1 \times b_1^* + \dots + c_{l_N} \times b_{l_N}^*,$$

where c_1, \ldots, c_{l_N} are certain well defined cohomology classes in $H^*(M; \mathbb{Q})$ with deg (b_i) + deg $(c_i) = n$. We apply the homomorphism /[N] on both sides of the identity $(f^*(a) \times 1) \cup \tilde{\mu}' = (1 \times a) \cup \tilde{\mu}'$, where $a \in H^*(N; \mathbb{Q})$. By Property 4 of slant product on p. 288 of Spanier [19] and by our Theorem 2.2 we get

$$((f^*(a) \times 1) \cup \tilde{\mu}')/[N] = f^*(a) \cup (\tilde{\mu}'/[N]) = f^*(a).$$
(1)

Also,

$$((1 \times a) \cup \tilde{\mu}')/[N] = (1 \times a) \cup \sum_{i=1}^{l_N} c_i \times b_i^*/[N] = \sum_{i=1}^{l_N} (-1)^{\deg(a) \deg(c_i)} c_i \times (a \cup b_i^*)/[N]$$
$$= \sum_{i=1}^{l_N} (-1)^{\deg(a) \deg(c_i)} c_i \langle a \cup b_i^*, [N] \rangle$$
(2)

Using equations (1) and (2) above and substituting b_i for a, we get

$$f^*(b_j) = \sum_{i=1}^{l_N} (-1)^{\deg(b_j)\deg(c_i)} c_i \langle b_j \cup b_i^*, [N] \rangle = (-1)^{\deg(b_j)\deg(c_j)} c_j,$$

but deg $(b_j) = deg (c_j)$, so we get that

$$(-1)^{\deg(b_j)} f^*(b_j) = (-1)^{\deg(b_j)} (-1)^{\deg(b_j)\deg(b_j)} c_j = (-1)^{\deg(b_j)(1+\deg(b_j))} c_j = c_j.$$

This proves the theorem.

Let $[\Gamma(f)] = (1_M \times f)_* \circ \Delta_{M*}([M])$. Let $\mu_N \in H^n(N \times N, N \times N \setminus \Gamma(1_N); \mathbb{Z})$ be the Thom class of the oriented normal bundle of the embedding $\Gamma(1_N) \hookrightarrow N \times N$, let $\mu'_N \in H^n(N \times N; \mathbb{Z})$ be its image under the homomorphism in cohomology induced by $j_N : N \times N \to (N \times N, N \times N \setminus \Gamma(1_N))$ and $\mu_f = (f \times 1_N)^*(\mu'_N) \in$ $H^n(M \times N; \mathbb{Z})$.

- *Remark* 2.5 1. When coefficients belong to \mathbb{Q} (or any field) by Theorem 11.11 of [15] (or by Proposition (30.18) of [6]), if $\{a_i\}_{i=1}^{l_M}$ is a homogeneous basis of $H^*(M; \mathbb{Q})$ and $\{a_i^*\}_{i=1}^{l_M}$ its Poincaré dual basis, we have $\mu'_M = \sum_{i=1}^{l_M} (-1)^{\deg(a_i)} a_i \times a_i^*$, and $\mu'_N = \sum_{i=1}^{l_N} (-1)^{\deg(b_i)} b_i \times b_i^*$. Therefore, we see using Theorem 2.4, that in rational cohomology, $\mu_f = \tilde{\mu}'$.
- 2. By Exercises (30.15) and (30.17) of [6] we have $[M \times M] \cap \mu'_M = \Delta_{M*}([M]) = [\Gamma(1_M)]$, and $[N \times N] \cap \mu'_N = \Delta_{N*}([N]) = [\Gamma(1_N)]$. Using this and Part 1 of this remark one can prove the following statement which is the assertion of the Exercise (30.22) of [6]:

$$[M] \times [N] \cap \tilde{\mu}' = [M] \times [N] \cap \mu_f = [\Gamma(f)] \tag{A}$$

We are now ready to prove Theorem 1.8.

Proof of Theorem.1.8 Let $h : M \times N \setminus \Gamma(f) \hookrightarrow M \times N$ denote the inclusion map. The Leray spectral sequence for this inclusion has the form

$$E_2^{i,j} = H^i(M \times N; R^j h_* \mathbb{Z}) \Rightarrow H^{i+j}(M \times N \setminus \Gamma(f); \mathbb{Z}).$$

🖉 Springer

Here $R^j h_*\mathbb{Z}$ is the Leray sheaf on $M \times N$ associated with the presheaf $U \to H^j(U \cap (M \times N \setminus \Gamma(f)); \mathbb{Z})$ where U runs over the family of all open subsets of $M \times N$. The stalk of $R^j h_*\mathbb{Z}$ at a point $\bar{x} = (x_1, x_2) \in M \times N$ is described below.

- 1. If $x_2 \neq f(x_1)$, we can choose small coordinate neighborhoods U_1 and U_2 of x_1 and x_2 in M and N respectively, such that $f(U_1) \cap U_2 = \emptyset$. If $U = U_1 \times U_2$, then $U \subset M \times N \setminus \Gamma(f)$. Therefore, for every $\bar{x} = (x_1, x_2) \in M \times N, x_2 \neq f(x_1),$ $(R^j h_* \mathbb{Z})_{\bar{x}} = H^j (U \cap (M \times N \setminus \Gamma(f)); \mathbb{Z}) = H^j (U; \mathbb{Z}) = H^j (U_1 \times U_2; \mathbb{Z}) = 0$ if $j \neq 0$, and $(R^0 h_* \mathbb{Z})_{\bar{x}} = \mathbb{Z}$.
- 2. If $x_2 = f(x_1)$, we can choose small coordinate neighborhoods U_1 and U_2 of x_1 and x_2 in M and N respectively, such that $f(U_1) \subset U_2$. For $U = U_1 \times U_2$, $(R^j g_* \mathbb{Z})_{\bar{x}} = H^j(U \cap (M \times N \setminus \Gamma(f)); \mathbb{Z}) = H^j(U \setminus \Gamma(f); \mathbb{Z}) = H^j(U_1 \times U_2 \setminus \Gamma(f); \mathbb{Z})$. Let $h_1 : U_1 \xrightarrow{\cong} \mathbb{R}^n$ and $h_2 : U_2 \xrightarrow{\cong} \mathbb{R}^n$, be the coordinate charts of U_1 and U_2 respectively. Consider the composite $\hat{f} = h_2 \circ f \circ h_1^{-1} : \mathbb{R}^n \to \mathbb{R}^n$, then $\Gamma(\hat{f}) = h_1 \times h_2(\Gamma(f)|_{U_1 \times U_2})$. Therefore, $(R^j h_* \mathbb{Z})_{\bar{x}} = H^j(U_1 \times U_2 \setminus \Gamma(f); \mathbb{Z}) \cong$ $H^j((\mathbb{R}^n \times \mathbb{R}^n) \setminus \Gamma(\hat{f}); \mathbb{Z})$. But as observed in the introduction $\mathbb{R}^n \times \mathbb{R}^n \setminus \Gamma(\hat{f})$ is homeomorphic to $F(\mathbb{R}^n, 2)$, so for every $\bar{x} = (x_1, x_2) \in M \times N$, $x_2 = f(x_1)$

$$(R^{j}h_{*}\mathbb{Z})_{\bar{x}} = H^{j}(F(\mathbb{R}^{n}, 2); \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } j = 0, n-1 \\ 0 & \text{otherwise} \end{cases}$$

This shows that the Leray sheaf $(\mathbb{R}^{n-1}h_*\mathbb{Z})$ is supported and is locally constant along the graph $\Gamma(f)$ with stalks \mathbb{Z} , and $(\mathbb{R}^0h_*\mathbb{Z})$ is locally constant on $M \times N$ with stalks \mathbb{Z} . Since M, N and hence $\Gamma(f)$ are orientable, we have

$$H^{i}(M \times N; R^{j}h_{*}\mathbb{Z}) = \begin{cases} H^{i}(M \times N; \mathbb{Z}) & \text{if } j = 0, \\ H^{i}(\Gamma(f); \mathbb{Z}) & \text{if } j = n - 1, \\ 0 & \text{otherwise} \end{cases}$$

Hence, the E_2 terms of Leray spectral sequence take the form:

$$\begin{split} & \begin{array}{c} 0 & 0 & \cdots & 0 & \cdots \\ E_2^{0,n-1} &= H^0(\Gamma(f);\mathbb{Z}) \ E_2^{1,n-1} &= H^1(\Gamma(f);\mathbb{Z}) \ \cdots \ E_2^{n,n-1} &= H^n(\Gamma(f);\mathbb{Z}) \ \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ E_2^{0,0} &= H^0(M \times N;\mathbb{Z}) \ E_2^{1,0} &= H^1(M \times N;\mathbb{Z}) \ \cdots \ E_2^{n,0} &= H^n(M \times N;\mathbb{Z}) \ \cdots \end{split}$$

and E_n terms coincide with E_2 terms:

$$E_n^{0,n-1} = \underbrace{H^0(\Gamma(f);\mathbb{Z})}_{0} \underbrace{E_n^{1,n-1} = H^1(\Gamma(f);\mathbb{Z})}_{0} \cdots \underbrace{E_n^{n,n-1} = H^n(\Gamma(f);\mathbb{Z})}_{0} \cdots \underbrace{E_n^{n,n-1} = H^n(\Gamma(f);\mathbb{Z})}_$$

We now determine d_n on the E_n page. Note that the differential d_n is 0 on the bottom row, since it maps each row to a lower row. Let $i : \Gamma(f) \to M \times N$ be the inclusion map and let $\pi : M \times N \to \Gamma(f)$ be defined by $\pi(x_1, x_2) = (x_1, f(x_1))$. Then $\pi \circ i = 1_{\Gamma(f)}$. Therefore, by the functoriality of cohomology, the homomorphisms induced in cohomology, π^* and i^* are, respectively, injective and surjective. Hence the long cohomology exact sequence of the pair $(M \times N, \Gamma(f))$ gives rise to the following split short exact sequence:

$$0 \to H^*(M \times N, \Gamma(f); \mathbb{Z}) \xrightarrow{j_1^*} H^*(M \times N; \mathbb{Z}) \xrightarrow{i^*}_{\pi^*} (H^*(\Gamma(f); \mathbb{Z})) \to 0,$$

where $j_1: M \times N \to (M \times N, \Gamma(f))$ is the natural injection.

As $\Gamma(f)$ is a smooth submanifold with an orientable normal bundle in the smooth manifold $M \times N$, the differentials d_n in the above Leray spectral sequence originating from the $(n-1)^{th}$ row are Gysin maps. If $z \in H^i(M \times N; \mathbb{Z}), i^*(z) \in H^i(\Gamma(f); \mathbb{Z})$ and we have $d_n(i^*(z)) = \pi^*(i^*(z)) \cup \tilde{\mu}'$. From the above split exact sequence we see that $z - \pi^*(i^*(z)) = j_1^*(w)$, for some element $w \in H^i(M \times N, \Gamma(f); \mathbb{Z})$. Recall that $\tilde{\mu}' = j^*(\tilde{\mu})$, the image of the Thom class $\tilde{\mu} \in H^*(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z})$, where $j: M \times N \to (M \times N, M \times N \setminus \Gamma(f))$ is the natural injection. So by Property 8 on p. 251 of [19] and the fact that $w \cup \tilde{\mu} = 0$ (since the mixed cup product \cup : $H^{i}(M \times N, \Gamma(f); \mathbb{Z}) \otimes H^{n}(M \times N, M \times N \setminus \Gamma(f); \mathbb{Z}) \rightarrow H^{i+n}(M \times N, \Gamma(f) \cup \mathbb{Z})$ $M \times N \setminus \Gamma(f); \mathbb{Z}) = H^{i+n}(M \times N, M \times N; \mathbb{Z}) = 0$ has its image in a zero module) we get that $(z - \pi^*(i^*(z))) \cup \tilde{\mu}' = j_1^*(w) \cup \tilde{\mu}' = j_1^*(w) \cup j^*(\tilde{\mu}) = 0$. This means, in particular, that $d_n(1) = \tilde{\mu}'$.

If $k: M \to \Gamma(f)$ denotes the mapping $x \mapsto (x, f(x))$ and $\pi_M: M \times N \to M$ be the projection onto M, then k^* is an isomorphism and $\pi^* = \pi_M^* \circ k^*$. Thus $d_n(i^*(z)) = \pi^*_M(k^*(i^*(z))) \cup \tilde{\mu}' = (k^*(i^*(z)) \times 1) \cup \tilde{\mu}'$. But by Property 4 of slant products on p. 288 of [19], $\{(k^*(i^*(z)) \times 1) \cup \tilde{\mu}'\}/[N] = (k^*(i^*(z)) \cup (\tilde{\mu}'/[N]) =$ $k^*(i^*(z))$, as $\tilde{\mu}'/[N] = 1$ by Theorem 2.2 above. So we have: if $i^*(z) \neq 0$ then $(k^*(i^*(z)) \times 1) \cup \tilde{\mu}' \neq 0$. Therefore d_n is injective on the $(n-1)^{th}$ -row of $E_n = E_2$. This yields $E_{n+1}^{i,j} = E_{\infty}^{i,j} = 0$ for $j \neq 0$, and $E_{\infty}^{i,0} = E_{n+1}^{i,0} = \frac{E_n^{i,0}}{\operatorname{im} d_n} = \frac{E_2^{i,0}}{\operatorname{im} d_n} = 0$ $\frac{H^{i}(M \times N;\mathbb{Z})}{\inf d_{n}} \text{ for all } i. \text{ But, for } 0 \le i \le n-1, \text{ we have } E_{\infty}^{i,0} = E_{n+1}^{i,0} = E_{n}^{i,0} = E_{2}^{i,0} =$ $H^i(M \times N; \mathbb{Z})$, and for $n \le i \le 2n$, $E_{n+1}^{i,0} = E_{\infty}^{i,0} = \frac{H^i(M \times N; \mathbb{Z})}{\operatorname{im} d_n}$.

Thus

$$H^*(M \times N \setminus \Gamma(f); \mathbb{Z}) \cong \frac{H^*(M \times N; \mathbb{Z})}{H^*(M \times N; \mathbb{Z}) \cup \tilde{\mu}'} \cong \frac{H^*(M \times N; \mathbb{Z})}{(\tilde{\mu}')}$$

as rings, where $(\tilde{\mu}')$ denotes the ideal of $H^*(M \times N; \mathbb{Z})$ generated by $\tilde{\mu}'$.

🖉 Springer

If we take cohomology with coefficients in \mathbb{Q} , then by an application of the Künneth theorem $H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q}) \xrightarrow{\cong} H^*(M \times N; \mathbb{Q})$. Hence there is a unique class $\Delta_f = \sum_{i=1}^n (-1)^{\deg(b_i)} f^*(b_i) \otimes b_i^*$ in $H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q})$ which maps to $\tilde{\mu}' = \sum_{i=1}^n (-1)^{\deg(b_i)} f^*(b_i) \times b_i^* = \mu_f$ in $H^*(M \times N; \mathbb{Q})$ under this isomorphism, and therefore

$$H^*(M \times N \setminus \Gamma(f); \mathbb{Q}) \cong \frac{H^*(M \times N; \mathbb{Q})}{(\mu_f)} \cong \frac{H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q})}{(\Delta_f)},$$

as algebras.

A similar argument can be given when \mathbb{Q} is replaced by an arbitrary field.

3 A CDGA model of $M \times N \setminus \Gamma(f)$

In this section we prove Theorem 1.4 and Corollary 1.5 by constructing a CDGA model of $(1_M \times f) \circ \Delta_M : M \to M \times M \to M \times N$ from a CDGA model of $f : M \to N$. (We refer the reader to [9], [10], [3] and [5] for necessary definitions, notations and results leading to the construction of a CDGA model of the configuration space of two points F(M, 2)).

Proof of Theorem 1.4 We first note that a CDGA-model $(A_N, d_N) \xrightarrow{\psi_f} (A_M, d_M)$ of f determines a CDGA-model $(A_M \otimes A_N, d_{A_M} \otimes d_{A_N}) \xrightarrow{1_{A_M} \otimes \psi_f} (A_M \otimes A_M, d_{A_M} \otimes d_{A_M})$ of $1_M \times f$, whose verification is left to the reader. This together with the fact that a CDGA-model of M determines a CDGA-model of Δ_M (see, e.g. Example 2.48 on p.73 of [5]) yields the conclusion that a CDGA-model of f determines a CDGA-model $(A_M \otimes A_N) \xrightarrow{1_{A_M} \otimes \psi_f} (A_M \otimes A_M) \xrightarrow{v_{A_M}} A_M$, defined by $x \otimes y \mapsto (v_{A_M} \circ (1_{A_M} \otimes \psi_f))(x \otimes y) = x \cdot \psi_f(y)$, of $(1_M \times f) \circ \Delta_M$.

By our hypotheses $H^1(M; \mathbb{Q}) = 0$ and $H^1(N; \mathbb{Q}) = 0 = H^2(N; \mathbb{Q})$, it follows that for the embedding $(1_M \times f) \circ \Delta_M : M \to M \times N$, which actually embeds M as the graph $\Gamma(f)$ of f in $M \times N$, the hypotheses of Theorem 1.4 of [10], namely $H_1((1_M \times f) \circ \Delta_M; \mathbb{Q})$ is an isomorphism and $H_2((1_M \times f) \circ \Delta_M; \mathbb{Q})$ is an epimorphism are satisfied. Therefore by applying Theorem 1.4 of [10] one can determine explicitly a model of $M \times N \setminus \Gamma(f)$ from the above model of f, and our result follows.

Proof of Corollary. 1.5 By hypothesis the dimension of N is at least three, so dim $M = \dim N \ge 3$. Therefore the hypothesis of Corollary 1.5 of [10], namely the codimension of the embedding of $\Gamma(f)$ in $M \times N$ is ≥ 3 , and $H_*((1_M \times f) \circ \Delta_M; \mathbb{Q})$ is 2-connected are satisfied. Hence, the rational homotopy type of $M \times N \setminus \Gamma(f)$ is determined by the rational homotopy class of $1_M \times f$. But the homotopy class of $1_M \times f$ is determined by the homotopy class of f; hence the corollary holds.

4 The CDGA model of $M \times N \setminus \Gamma(f)$ based on differential-Poincaré-duality-algebra models of M and N

In this section we consider a continuous map $f : M \to N$ of closed connected oriented manifolds of dimension n with $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q})$ having a CDGA model $(A_N, d_{A_N}) \xrightarrow{\psi_f} (A_M, d_{A_M})$ in which (A_M, d_{A_M}) and (A_N, d_{A_N}) are differential connected Poincaré duality algebras of formal dimension n (refer to the para preceding Theorem 1.6 of the introduction).

We note that all the algebras and relevant results of [9], proved by them in the absolute case, can analogously be developed for any given CDGA morphism of Poincaré duality algebras.

Definition 4.1 Let $(A_2, d_{A_2}) \xrightarrow{\psi} (A_1, d_{A_1})$ be a morphism of Poincaré duality algebras of formal dimension *n*. Define $\Delta_{\psi} := (\psi \otimes 1)(\Delta)$, where Δ is the diagonal class defined in the statement of Theorem 1.6 and the element Δ_{ψ} , which belongs to $(A_1 \otimes A_2)^n$, will be called the *class of* ψ .

As in Proposition 4.3 of [9] the element Δ_{ψ} does not depend on the choice of the basis $\{a_i\}_{1 \le i \le l}$ of A_2 .

Remark 4.2 If $s^{-n}A_1$ is the suspension of A_1 as defined in §2 of [9] then there is an $(A_1 \otimes A_2)$ -module structure on $s^{-n}A_1$ given by

$$(x \otimes y).(s^{-n}a) = (-1)^{n \deg(x) + n \deg(y) + \deg(a) \deg(y)} s^{-n}(x.a.\psi(y))$$

for homogeneous elements $a, x \in A_1$, and $y \in A_2$ and an obvious $(A_1 \otimes A_2)$ module structure on $(A_1 \otimes A_2)$. In other words the $(A_1 \otimes A_2)$ -module structure on $s^{-n}A_1$ is obtained from the obvious structure of $A_1 \otimes A_1$ -module on $s^{-n}A_1$ by transporting it along the CDGA map $1 \otimes \psi : A_1 \otimes A_2 \to A_1 \otimes A_1$.

In view of the above, statements below follow from the corresponding statements of [9], proved there in the absolute case.

- 1. Let $\psi : (A_2, \omega_{A_2}) \to (A_1, \omega_{A_1})$ be a CDGA morphism of oriented Poincaré duality algebras of finite dimension and of formal dimension *n*. Then the map $\widehat{\Delta_{\psi}} : s^{-n}A_1 \to A_1 \otimes A_2$, defined by $s^{-n}a \mapsto \Delta_{\psi}.(a \otimes 1)$ is a morphism of $(A_1 \otimes A_2)$ -modules.
- 2. Let $\psi : (A_2, d_{A_2}, \omega_{A_2}) \to (A_1, d_{A_1}, \omega_{A_1})$ be a morphism of oriented differential Poincaré algebras of formal dimension *n*. Then Δ_{ψ} is a cocycle.
- 3. If $\psi : (A_2, d_{A_2}, \omega_{A_2}) \to (A_1, d_{A_1}, \omega_{A_1})$ is a morphism of connected differential oriented Poincaré duality algebras of formal dimension *n* and $\widehat{\Delta_{\psi}} : s^{-n}A_1 \to A_1 \otimes A_2$ is defined by $s^{-n}a \mapsto \Delta_{\psi} . (a \otimes 1)$, then
 - (a) $\widehat{\Delta_{\psi}}$ is a morphism of $(A_1 \otimes A_2)$ -dgmodules and hence its mapping cone

$$C(\widehat{\Delta_{\psi}}) := A_1 \otimes A_2 \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_1$$

is an $(A_1 \otimes A_2)$ -dgmodule.

(b) C(Â_ψ) is also a CDGA under the following multiplication rules: If a, a', x, y ∈ A₁, and b, b' ∈ A₂,

$$\begin{aligned} (a \otimes b).(a' \otimes b') &= (-1)^{\deg(b) \deg(a')} (a.a' \otimes b.b'), \\ (a \otimes b).(ss^{-n}x) &= (-1)^{(n-1)(\deg(a) + \deg(b))} ss^{-n} (a.\psi(b).x) \\ (ss^{-n}x).(a \otimes b) &= ss^{-n} (x.a.\psi(b)), \\ (ss^{-n}x).(ss^{-n}y) &= 0. \end{aligned}$$

Definition 4.3 Let (A, ω) be a connected oriented Poincaré duality algebra of formal dimension *n* with orientation class ω (refer to Definition 4.1 of [9]). Since $A^n \cong \mathbb{Q}$, there exists a unique element $\mu \in A^n$ such that $\omega(\mu) = 1$ which called the *fundamental class* of *A*.

Our goal in this section is to prove Theorem 1.6. Throughout we consider morphisms ψ : $(A_2, d_{A_2}, \omega_{A_2}) \rightarrow (A_1, d_{A_1}, \omega_{A_1})$ of connected differential oriented Poincaré duality algebras of formal dimension n.

Lemma 4.4 The ideal $(\Delta_{\psi}) := \Delta_{\psi} . (A_1 \otimes A_2)$ generated by Δ_{ψ} in $A_1 \otimes A_2$ is a differential ideal and the quotient $(A_1 \otimes A_2)/(\Delta_{\psi})$ is a CDGA.

Proof By Remark 4.2 (2), $d_{A_1 \otimes A_2}(\Delta_{\psi}) = 0$; hence the ideal (Δ_{ψ}) is a differential ideal. This implies immediately that the quotient $(A_1 \otimes A_2)/(\Delta_{\psi})$ inherits a *CDGA* structure.

Lemma 4.5 The map Δ_{ψ} induces an isomorphism

$$\widehat{\Delta_{\psi}}: s^{-n}A_1 \to (\Delta_{\psi}).$$

Proof We first show that im $(\widehat{\Delta_{\psi}}) = (\Delta_{\psi})$. Clearly im $(\widehat{\Delta_{\psi}}) \subseteq (\Delta_{\psi})$. For the reverse inclusion we have

$$\begin{aligned} (\Delta_{\psi}) &= \{ \Delta_{\psi}.(x \otimes y) \mid x \in A_1, y \in A_2 \} \\ &= \{ \Delta_{\psi}.(-1)^{\deg(x)\deg(y)}(1 \otimes y).(x \otimes 1) \mid x \in A_1, y \in A_2 \} \\ &= \{ \widehat{\Delta_{\psi}}((-1)^{\deg(x)\deg(y)}s^{-n}(\psi(y).x)) \mid x \in A_1, y \in A_2 \} \\ &\subseteq \operatorname{im}(\widehat{\Delta_{\psi}}). \end{aligned}$$

Next we show that $\widehat{\Delta_{\psi}}$ is injective. Let ω_{A_1} and ω_{A_2} be the orientation classes of the Poincaré duality algebras A_1 and A_2 respectively. So there exist unique elements $\mu_{A_1} \in A_1^n$ and $\mu_{A_2} \in A_2^n$, fundamental classes of A_1 and A_2 , such that $\omega_{A_1}(\mu_{A_1}) = 1$ and $\omega_{A_2}(\mu_{A_2}) = 1$. Fix a basis $\{a_i\}_{i=1}^l$ of A_2 and its Poincaré dual basis $\{a_i^*\}_{i=1}^l$. Since $A_2^0 = \mathbb{Q}$ we can assume that $1 = a_1 \in A_2^0$ and remaining a_i , 's are of degree > 0 so that $a_i \mu_{A_2} \in A_2^{>n} = 0$ for i > 1. Also $\omega_{A_2}(a_1.a_1^*) = 1$ implies that $1.a_i^* = a_1.a_1^* = \mu_{A_2}$ so that $a_1^* = a_1^{-1}.\mu_{A_2} = \mu_{A_2}$. This yields from the definition of Δ_{ψ} that

$$\Delta_{\psi}.(\mu_{A_1} \otimes 1) = \sum_{i=1}^{l} (-1)^{\deg(a_i)} (\psi(a_i) \otimes a_i^*).(\mu_{A_1} \otimes 1)$$

= $\sum_{i=1}^{l} (-1)^{\deg(a_i^*)} (-1)^{n \deg(a_i^*)} (\psi(a_i).\mu_{A_1} \otimes a_i^*) = \psi(a_1).\mu_{A_1} \otimes a_1^*$
= $\psi(a_1).\mu_{A_1} \otimes a_1^{-1}.\mu_{A_2} = \mu_{A_1} \otimes \mu_{A_2} \neq 0.$

Let *a* be a non-zero element of A_1^i . By Poincaré duality there exists an element $b \in A_1^{n-i}$ such that $a.b = \mu_{A_1}$. We have

$$\widehat{\Delta_{\psi}}(s^{-n}a).(b\otimes 1) = \Delta_{\psi}.(a\otimes 1).(b\otimes 1) = \Delta_{\psi}.(a.b\otimes 1) = \Delta_{\psi}.(\mu_{A_1}\otimes 1)$$
$$= \mu_{A_1} \otimes \mu_{A_2} \neq 0.$$

Consider the projection $A_1 \otimes A_2 \xrightarrow{\pi} (A_1 \otimes A_2)/(\Delta_{\psi})$. We extend π to a map $\hat{\pi}$: $A_1 \otimes A_2 \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_1 \to (A_1 \otimes A_2)/(\Delta_{\psi})$ by setting $\hat{\pi}(ss^{-n}A_1) = 0$.

Lemma 4.6 The map $\hat{\pi}$: $A_1 \otimes A_2 \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_1 \rightarrow (A_1 \otimes A_2)/(\Delta_{\psi})$ defined above is a CDGA quasi-isomorphism.

Proof The map $\hat{\pi}$ can be seen to be a *CDGA* morphism by a straightforward computation. Since $\widehat{\Delta_{\psi}}$ is injective, we have a short exact sequence

$$0 \to s^{-n}A_1 \xrightarrow{\widehat{\Delta_{\psi}}} A_1 \otimes A_2 \xrightarrow{\pi} (A_1 \otimes A_2) / \operatorname{im}(\widehat{\Delta_{\psi}}) \to 0.$$

Comparing the long cohomology exact sequence corresponding to this exact sequence and that of the mapping cone $s^{-n}A_1 \xrightarrow{\widehat{\Delta_{\psi}}} A_1 \otimes A_2 \hookrightarrow C(\widehat{\Delta_{\psi}}) := A_1 \otimes A_2 \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_1$ we get the following commutative diagram:

Applying five lemma and using Lemma 4.5 we get that the map

$$A_1 \otimes A_2 \oplus_{\widehat{\Delta_{\psi}}} ss^{-n} A_1 \xrightarrow{\hat{\pi} = \pi \oplus 0} (A_1 \otimes A_2) / \operatorname{im}(\widehat{\Delta_{\psi}}) = (A_1 \otimes A_2) / (\Delta_{\psi})$$

is a quasi isomorphism.

We are now ready to prove Theorem 1.6.

🖄 Springer

Proof of Theorem. 1.6 We have proved in Lemma 4.4 that (Δ_{ψ_f}) is a differential ideal. Since (A_M, d_{A_M}) and (A_N, d_{A_N}) are connected differential Poincaré duality algebras of formal dimension n and since $H^n(A_M, d_{A_M}) = H^n(M; \mathbb{Q}) \neq 0$ and $H^n(A_N, d_{A_N}) = H^n(N; \mathbb{Q}) \neq 0$, Proposition 4.8 of [9] implies that $(A_M, d_{A_M}, \omega_{A_M})$ and $(A_N, d_{A_N}, \omega_{A_N})$ are oriented differential Poincaré duality algebras in the sense of Definition 4.6 of [9] for orientations $\omega_{A_M} \in \#A^n_M$ and $\omega_{A_N} \in \#A^n_N$.

We have proved in §3 that a CDGA model $\psi_f : (A_N, d_{A_N}) \to (A_M, d_{A_M})$ of f gives a CDGA model

$$\Phi := \nu_{A_M} \circ (1_{A_M} \otimes \psi_f) : (A_M \otimes A_N, d_{A_N} \otimes d_{A_M}) \to (A_M, d_{A_M})$$

of $(1_M \times f) \circ \Delta : M \to M \times N$, and is given by $x \otimes y \mapsto x.\psi_f(y)$. Set n = 2m. The morphism Φ induces an obvious $(A_M \otimes A_N)$ -dgmodule structure on A_M , hence on $s^{-n}#A_M$. By Proposition 4.7 of [9] $s^{-n}#A_M = s^{-m}(s^{-m}#A_M)$ is isomorphic to $s^{-m}A_M$ as an A_M -dgmodule, therefore also an isomorphism as an $(A_M \otimes A_N)$ dgmodule.

By Remark 4.2a the map $\widehat{\Delta_{\psi}} : s^{-n}A_M \to A_M \otimes A_N$ is a map of $(A_M \otimes A_N)$ -dgmodules. Moreover, it induces an isomorphism in the cohomology in the top degree, because $\widehat{\Delta_{\psi}}(s^{-n}\mu) = \mu_{A_M} \otimes \mu_{A_N}$. Thus $\widehat{\Delta_{\psi}}$ is a shriek map (or, a top-degree map) in the sense of Definition 5.1 of [10].

Let I_0 be a complement of the cocycles in $(A_M \otimes A_N)^{n-3}$ and set $I = I_0 \oplus (A_M \otimes A_N)^{>n-3}$. Let K_0 be a complement of the cocycles in $(s^{-n}A_M)^{n-2}$ and set $K = K_0 \oplus (s^{-n}A_M)^{>n-2}$. Consider the quotient

$$\frac{A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M}{I \oplus sK}.$$

By the hypothesis of the theorem concerning f, it follows that the embedding $(1_M \times f) \circ \Delta_M : M \hookrightarrow M \times N$, which embeds M as $\Gamma(f)$ in $M \times N$, satisfies the hypothesis of Theorem 1.4 of [10], namely that $H_1((1_M \times f) \circ \Delta_M; \mathbb{Q})$ is an isomorphism and $H_2((1_M \times f) \circ \Delta_M; \mathbb{Q})$ is an epimorphism, hence by Theorem 1.4 of [10] we get that

$$\left(\frac{A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M}{I \oplus sK}, \bar{d}\right)$$

is a CDGA model of $M \times N \setminus \Gamma(f)$.

Comparing the semi-trivial CDGA structure as defined in Definition 4.1 of [10] on $(A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M)/(I \oplus sK)$ with the multiplication in the mapping cone given in this section, we conclude that the projection

$$(A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M, d) \to \left(\frac{A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M}{I \oplus sK}, \bar{d}\right)$$

is a CDGA map. Moreover it is a quasi-isomorphism by Lemma 8.6 of [10].

Therefore $(A_M \otimes A_N \oplus_{\widehat{\Delta_{\psi}}} ss^{-n}A_M, d)$ is a CDGA model of $M \times N \setminus \Gamma(f)$. Hence by Lemma 4.6 $((A_M \otimes A_N)/(\Delta_{\psi}), \overline{d_{A_M} \otimes d_{A_N}})$ is a CDGA model of $M \times N \setminus \Gamma(f)$.

We finally prove Corollary 1.7 on formality of the complement of the graph of a map.

Proof of corollary. 1.7 Since $f: M \to N$ is formal, $(H^*(N; \mathbb{Q}), 0) \xrightarrow{f^*} (H^*(M; \mathbb{Q}), 0)$ is a model of f.

Moreover, since $(H^*(N; \mathbb{Q}), 0)$ and $(H^*(M; \mathbb{Q}), 0)$ are oriented differential Poincaré duality algebras, by Theorems 1.6 and 1.8,

$$\left(\frac{H^*(M;\mathbb{Q})\otimes H^*(N;\mathbb{Q})}{(\Delta_f)},0\right)\cong (H^*(M\times N\setminus\Gamma(f);\mathbb{Q}),0) \text{ (as CDGAs)}$$

is a CDGA-model of $M \times N \setminus \Gamma(f)$, and hence it is a formal space.

5 Examples and applications

In the last section we saw that if $f: M \to N$ is a formal map of closed connected oriented formal manifolds of dimension *n* such that $H^1(M; \mathbb{Q}) = 0 = H^1(N; \mathbb{Q}) =$ $H^2(N; \mathbb{Q})$, then $M \times N \setminus \Gamma(f)$ is formal (Corollary 1.7). In Proposition 6.6 of [9] Lambrechts and Stanley proved that if *M* is a closed connected orientable manifold of dimension *n* such that $M \times M \setminus \Gamma(1_M) = F(M, 2)$ is formal then *M* is formal. We ask a similar question (this is the converse of Corollary 1.7):

Question 5.1 *Given closed connected oriented formal manifolds* M *and* N *of dimension* n *and* a *continuous map* $f : M \to N$ *such that* $M \times N \setminus \Gamma(f)$ *is formal, is* f *necessarily a formal map?*

The answer is in the negative. Here we construct such an example.

Example 5.2 Consider $S^7 \xrightarrow{f=(h,c)} S^4 \times S^3$, where $h: S^7 \to S^4$ is the Hopf map and $c: S^7 \to S^3$ is a constant map. It follows from Proposition 2.5 of [1] that any formal map $S^7 \to S^4 \times S^3$ must be nullhomotopic; but f is not nullhomotopic. Therefore f is *not* formal.

Now we show that $S^7 \times (S^4 \times S^3) \setminus \Gamma(f)$ is formal. Since $S^3 \xrightarrow{j} S^7 \xrightarrow{h} S^4$ is a Hopf fibration we have the following commutative diagram [see example (2.68) page 82 of [5] or Chapter 15 of [3]

$$\begin{array}{cccc} (\Lambda(x,y),d') & \stackrel{i}{\longrightarrow} & (\Lambda(x,y) \otimes \Lambda(z),d) & \stackrel{\eta}{\longrightarrow} & (\Lambda(z),d'') \\ & \rho \\ & \rho \\ & & \sigma \\ & & \downarrow & & \xi \\ & A_{PL}(S^4) & \stackrel{A_{PL}(h)}{\longrightarrow} & A_{PL}(S^7) & \stackrel{A_{PL}(j)}{\longrightarrow} & A_{PL}(S^3). \end{array}$$

Here deg (x) = 4, deg (y) = 7, and deg (z) = 3; d'x = 0, $d'y = x^2$, dx = 0, $dy = x^2$, dz = x; and d''z = 0; the morphism $\rho : (\Lambda(x, y), d') \to A_{PL}(S^4)$ is the

minimal model of S^4 , $\sigma : (\Lambda(x, y) \otimes \Lambda(z), d) \to A_{PL}(S^7)$ is a quasi-isomorphism, $\xi : (\Lambda(z), d'') \to A_{PL}(S^3)$ is the minimal model of S^3 , $i : (\Lambda(x, y), d') \to (\Lambda(x, y) \otimes \Lambda(z), d)$ is a relative minimal CDGA and $\eta : (\Lambda(x, y) \otimes \Lambda(z), d) \to (\Lambda(z), d'')$ is the projection.

From the above diagram we get the following commutative diagram

$$\begin{array}{ccc} (\Lambda(x,y) \otimes \Lambda(z), d' \otimes d'') & \stackrel{i}{\longrightarrow} & (\Lambda(x,y) \otimes \Lambda(z), d) \\ & & & & \\ \rho \otimes \xi \\ & & & \sigma \\ & & & \\ A_{PL}(S^4) \otimes A_{PL}(S^3) & \stackrel{A_{PL}(h).A_{PL}(c)}{\longrightarrow} & & A_{PL}(S^7), \end{array}$$

where i(x) = x, i(y) = y and i(z) = 0.

Let us define CDGAs

$$(B, 0) := (\Lambda(e_4, e_3)/I_B, 0)$$

where deg $(e_4) = 4$; deg $(e_3) = 3$, I_B is the ideal generated by e_4^2 , and

$$(A, d_A) := (\Lambda(u_4, u_3)/I_A, d_A),$$

where deg $(u_4) = 4$; deg $(u_3) = 3$, I_A is the ideal generated by u_4^2 , $d_A \overline{u_3} = \overline{u_4}$, and $d_A \overline{u_4} = 0$. It is easily checked that (B, 0), and (A, d_A) are oriented differential Poincaré duality algebras.

We define morphisms

$$\rho_B : (\Lambda(x, y) \otimes \Lambda(z), d' \otimes d'') \to (B, 0),$$

where $\rho_B(x) = \overline{e_4}$, $\rho_B(y) = 0$, $\rho_B(z) = \overline{e_3}$ and

$$\rho_A : (\Lambda(x, y) \otimes \Lambda(z), d) \to (A, d_A),$$

where $\rho_A(x) = \overline{u_4}$, $\rho_A(y) = 0$, $\rho_A(z) = \overline{u_3}$.

Clearly ρ_B and ρ_A are quasi-isomorphisms.

Define $\psi_f : (B, 0) \to (A, d_A)$ by $\psi_f(\overline{e_4}) = \overline{u_4}, \ \psi_f(\overline{e_3}) = 0$ so that the following diagram is commutative.

169

Using the fact that if $X \xrightarrow{(k,l)} Y \times Z$ is a continuous map then $A_{PL}(k) \cdot A_{PL}(l)$: $A_{PL}(Y) \otimes A_{PL}(Z) \rightarrow A_{PL}(X)$ is its model, we get the following commutative diagram

Therefore ψ_f is a model of f = (h, c). So, by Theorem 1.6

$$\left(\frac{A\otimes B}{(\bigtriangleup_{\psi_f})}, \overline{d_A\otimes 0}\right)$$

is a CGDA model of $S^7 \times (S^4 \times S^3) \setminus \Gamma(f)$.

Note that $\{a_1 = 1, a_2 = \overline{e_3}, a_3 = \overline{e_4}, a_4 = \overline{e_4} \cdot \overline{e_3}\}$ is a homogeneous basis of (B, 0) with Poincaré dual basis $\{a_1^* = \overline{e_4} \cdot \overline{e_3}, a_2^* = \overline{e_4}, a_3^* = \overline{e_3}, a_4^* = 1\}$, therefore by definition

$$\Delta_{\psi_f} = \psi_f(1) \otimes \overline{e_4} \cdot \overline{e_3} - \psi_f(\overline{e_3}) \otimes \overline{e_4} + \psi_f(\overline{e_4}) \otimes \overline{e_3} - \psi_f(\overline{e_4} \cdot \overline{e_3}) \otimes 1$$
$$= 1 \otimes \overline{e_4} \cdot \overline{e_3} - \overline{u_4} \otimes \overline{e_3}.$$

Therefore as a CDGA

$$\begin{pmatrix} \underline{A \otimes B} \\ (\underline{\Delta\psi_f}), \overline{d_A \otimes 0} = \overline{d} \end{pmatrix} = \mathbb{Q}(\overline{1 \otimes 1}) \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Q}(\overline{1 \otimes \overline{e_3}}, \overline{u_3 \otimes 1})$$
$$\xrightarrow{\overline{d}} \mathbb{Q}(\overline{1 \otimes \overline{e_4}}, \overline{u_4 \otimes 1}) \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Q}(\overline{u_3 \otimes \overline{e_3}}) \xrightarrow{\overline{d}} \mathbb{Q}(\overline{u_3 \otimes \overline{e_4}}, \overline{u_4 \otimes \overline{e_3}}, \overline{u_4 \cdot u_3 \otimes 1})$$
$$\xrightarrow{\overline{d}} \mathbb{Q}(\overline{u_4 \otimes \overline{e_4}}) \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Q}(\overline{u_4 \cdot u_3 \otimes \overline{e_3}}) \xrightarrow{0} \mathbb{Q}(\overline{u_4 \cdot u_3 \otimes \overline{e_4}}) \xrightarrow{0} 0 \cdots$$

Let $c_3 \in H^3(S^3; \mathbb{Q})$, $c_4 \in H^4(S^4; \mathbb{Q})$ and $c_7 \in H^7(S^7; \mathbb{Q})$ be bases of the respective vector spaces. Then $\{b_1 = 1 \otimes 1, b_2 = 1 \otimes c_3, b_3 = c_4 \otimes 1, b_4 = c_4 \otimes c_3\}$ form a homogeneous basis of $H^*(S^4 \times S^3; \mathbb{Q}) = H^*(S^4; \mathbb{Q}) \otimes H^*(S^3; \mathbb{Q})$ with Poincaré dual basis $\{b_1^* = c_4 \otimes c_3, b_2^* = c_4 \otimes 1, b_3^* = 1 \otimes c_3, b_4^* = 1 \otimes 1\}$. We know by

Theorem 1.8 that

$$H^*(S^7 \times (S^4 \times S^3) \setminus \Gamma(f); \mathbb{Q}) = \frac{H^*(S^7; \mathbb{Q}) \otimes H^*(S^4 \times S^3; \mathbb{Q})}{(\Delta_f)},$$

where

$$\Delta_f = f^*(1 \otimes 1) \otimes c_4 \otimes c_3 - f^*(1 \otimes c_3) \otimes c_4 \otimes 1 + f^*(c_4 \otimes 1) \otimes 1 \otimes c_3$$
$$-f^*(c_4 \otimes c_3) \otimes 1 \otimes 1$$
$$= 1 \otimes c_4 \otimes c_3.$$

Therefore as a CDGA

$$\begin{aligned} (H^*(S^7 \times (S^4 \times S^3) \setminus \Gamma(f); \mathbb{Q}), \ 0) \\ &= \mathbb{Q}(\overline{1 \otimes 1 \otimes 1}) \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} \\ \mathbb{Q}(\overline{1 \otimes 1 \otimes c_3}) \\ &\xrightarrow{0} \mathbb{Q}(\overline{1 \otimes c_4 \otimes 1}) \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{Q}(\overline{c_7 \otimes 1 \otimes 1}) \xrightarrow{0} 0 \xrightarrow{0} 0 \\ &\xrightarrow{0} \mathbb{Q}(\overline{c_7 \otimes 1 \otimes c_3}) \xrightarrow{0} \mathbb{Q}(\overline{c_7 \otimes c_4 \otimes 1}) \xrightarrow{0} 0 \dots \end{aligned}$$

Now we define a CDGA morphism

$$\eta: (H^*(S^7 \times (S^4 \times S^3) \setminus \Gamma(f); \mathbb{Q}), \ 0) \to \left(\frac{A \otimes B}{(\bigtriangleup \psi_f)}, d_A \otimes 0\right),$$

by defining it on generators as follows:

$$\eta(\overline{1 \otimes 1 \otimes 1}) = \overline{1 \otimes 1}, \eta(\overline{1 \otimes 1 \otimes c_3}) = \overline{1 \otimes \overline{e_3}}, \eta(\overline{1 \otimes c_4 \otimes 1}) = \overline{1 \otimes \overline{e_4}} + \overline{u_4} \otimes \overline{1}, \\ \eta(\overline{c_7 \otimes 1 \otimes 1}) = \overline{u_4}, \overline{u_3} \otimes \overline{1}, \eta(\overline{c_7 \otimes 1 \otimes c_3}) = \overline{u_4}, \overline{u_3} \otimes \overline{e_3}, \eta(\overline{c_7 \otimes c_4 \otimes 1}) \\ = \overline{u_4}, \overline{u_3} \otimes \overline{e_4}.$$

It is checked easily that η is a quasi-isomorphism. Therefore $(H^*(S^7 \times (S^4 \times S^3) \setminus \Gamma(f); \mathbb{Q}), 0)$ is a CDGA model of $S^7 \times (S^4 \times S^3) \setminus \Gamma(f)$. Hence $S^7 \times (S^4 \times S^3) \setminus \Gamma(f)$ is a formal space.

Remark 5.3 It is known (see e.g. Lemma 6.3 of [9]) that if M is a simply connected closed manifold, if $x \in M$, and if $M \setminus \{x\}$ is formal, then M is formal.

Against this background we may ask the following question.

Question 5.4 Let $f : M \to N$ be a continuous map between simply connected formal manifolds and let $x \in M$. Suppose that $f|_{M \setminus \{x\}} : M \setminus \{x\} \longrightarrow N \setminus \{f(x)\}$ is formal. Is it necessarily true that f is formal?

The following example shows that the answer to this question is in the negative.

Example 5.5 Take $M = S^3$, $N = S^2$ and f the Hopf map $h : S^3 \to S^2$. Now $S^3 \setminus \{(0, 0, 0, 1)\} \cong \mathbb{R}^3$ and $S^2 \setminus \{(0, 0, 1)\} \cong \mathbb{R}^2$. Since any continuous map form $\mathbb{R}^3 \to \mathbb{R}^2$ is formal, $h|_{S^3 \setminus \{(0, 0, 0, 1)\}} : S^3 \setminus \{(0, 0, 0, 1)\} \longrightarrow S^2 \setminus \{(0, 0, 1)\}$ is formal. But h is not formal.

We end the paper by recording a few simple applications of Theorem 1.6 and Corollary 1.7:

- **Application 5.6** 1. Let *M* and *N* be two simply connected closed formal manifolds of dimension *n*. For any element $y \in N$, since the constant map $f_y : M \to N$ defined by $f_y(x) = y$ for all $x \in X$ is formal, by Corollary 1.7, $M \times N \setminus \Gamma(f)$ is formal. But $M \times N \setminus \Gamma(f) = M \times (N \setminus \{y\})$. Therefore $M \times (N \setminus \{y\})$ is formal.
- 2. Let *M* be a simply connected closed formal manifold of dimension *n*. Since the identity map $f = 1_M : M \to M$ is formal, by Corollary 1.7, $M \times M \setminus \Gamma(f)$ is formal. But $M \times M \setminus \Gamma(f) = F(M, 2)$. Therefore F(M, 2) is formal, which is one of the main results (Corollary 6.1) in [9].
- 3. Let *M* and *N* be two simply connected Lie groups of dimension *n*. It is known that the minimal model of a Lie group is of the form $(\Lambda V, 0)$. Hence Lie groups are formal and continuous maps between Lie groups are also formal. Therefore, by Corollary 1.7, for a continuous map $f : M \to N, M \times N \setminus \Gamma(f)$ is formal.

Acknowledgments The authors would like to thank the referee for many valuable suggestions. Thanks are also due to Prof. M. B. Rege for suggestions in shortening the presentation.

References

- Arkowitz, M.: Formal differential graded algebras and homomorphisms. J. Pure Appl. Algebra 51, 35–52 (1988)
- Félix, Y.: Mapping spaces between manifolds and the evaluation map. Proc. Am. Math. Soc. 139(10), 3763–3768 (2011)
- Félix, Y., Halperin, S., Thomas, J.C., Rational homotopy theory, graduate texts in mathematics, 205 Springer (2001)
- Félix, Y., Tanré, D.: Formalite d'une application et suite spectrale d'Eilenberg-Moore, Algebraic topology rational homotopy, Lect. Notes in Math., 1318, In: Proceedings, Louvain-la-Neuve, 1986, S.V. pp. 99–123 (1988)
- Félix, Y., Opera, J., Tanré, D., Algebraic models in geometry, Oxford graduate texts in mathematics, Oxford University Press, p. 17 (2008)
- Greenberg, M.J., Harper, J.R.: Algebraic topology—a first course, The Benjamin/Cummings Publishing Co. (1981)
- Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds. Annals of mathematics studies, smoothings and triangulations, Princeton University Press (1977)
- 8. Kister, J.M.: Microbundles are fibre bundles. Ann. Math. 80, 190-199 (1964)
- Lambrechts, P., Stanley, D.: The rational homotopy type of configuration spaces of two points. Ann. Inst. Fourier (Grenoble) 54(4), 1029–1052 (2004)
- Lambrechts, P., Stanley, D.: Algebraic models of Poincaré embeddings. Algebra. Geom. Topol. 5(9), 135–182 (2005)
- Lambrechts, P., Stanley, D.: Poincaré duality and commutative differential graded algebras, (2008). arXiv: 0701309v3 [math.AT]
- Lemaire, J.-M., Sigrist, F.: Sur les invvariants d'homotopie rationnelle liés à la L.S. catégorie. Comment. Math. Helvetici 56, 103–122 (1981)
- 13. Merle, P.: Formalité des espaces et des applications continues. Thèse, Nice (1983)
- 14. Milnor, J.W.: Microbundles, Part I, Topology 3. Supplement I, 53-80 (1964)

- Milnor, J.W., Stasheff, J.D.: Characteristic classes, annals of mathematics studies. No. 76, Princeton University Press (1974)
- 16. Papadima, S.: On the formality of maps. Ann. Univ. Timisoara. Seria Math. 20, 30–40 (1982)
- 17. Shiga, H.: Rational homotopy type and self maps. J. Math. Soc. Japan 31, 427–434 (1979)
- 18. Shiga, H.: Rational homotopy type of cofibrations. SMF Aster. 113-114, 298-307 (1984)
- 19. Spanier, E.H.: Algebraic Topology. Tata-McGraw Hill Publ. Company (1977)
- 20. Thomas, J.C.: Eilenberg-Moore models for fibrations. Trans. Am. Math. Soc. 274(1), 203-225 (1982)
- 21. Totaro, B.: Configuration spaces of algebraic varieties. Topology 35, 1057-1067 (1996)
- 22. Vigue-Poirrier, M.: Formalité d'une application continue, C.R.A.S. Paris, t 289 (1979)