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Abstract The homotopy groups of a space are endowed with homotopy operations
which define the Π -algebra of the space. An Eilenberg–MacLane space is the realiza-
tion of aΠ -algebra concentrated in one degree. In this paper, we provide necessary and
sufficient conditions for the realizability of a Π -algebra concentrated in two degrees.
We then specialize to the stable case, and list infinite families of such Π -algebras that
are not realizable.
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1 Realization problem for homotopy operations

The homotopy groups π∗ X of a pointed space X are not merely a list of groups, but
carry the additional structure of an action of the (primary) homotopy operations, which
are natural transformations

Communicated by Mark Behrens.

H.-J. Baues
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
e-mail: baues@mpim-bonn.mpg.de

M. Frankland (B)
Department of Mathematics, University of Western Ontario, Middlesex College,
London, ON N6A 5B7, Canada
e-mail: mfrankla@uwo.ca

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-014-0086-3&domain=pdf


844 H.-J. Baues, M. Frankland

πn1 X × πn2 X × · · · × πn j X → πn X.

These include for example Whitehead products πp X × πq X → πp+q−1X , as well
as precomposition operations α∗ : πm X → πn X induced by any map α : Sn → Sm ,
defined by α∗(x) = x ◦ α. By the Yoneda lemma, j-ary homotopy operations are
parametrized by homotopy classes of pointed maps

Sn → Sn1 ∨ Sn2 ∨ · · · ∨ Sn j .

This information is encoded in a category as follows.

Definition 1.1 Let Top∗ denote the category of pointed topological spaces. Let Π

denote the full subcategory of the homotopy category HoTop∗ consisting of finite
wedges of spheres ∨Sni , ni ≥ 1. Note that the empty wedge (a point) is allowed.

A Π -algebra is a product-preserving functor Πop → Set, in other words, a con-
travariant functor Π → Set which sends wedges to products. Let ΠAlg denote the
category of Π -algebras, where morphisms are natural transformations.

The prototypical example is the homotopy Π -algebra [−, X ] of a pointed space X ,
which is the functor represented by X in the homotopy category. One can view this
data as the graded group π∗ X , with πn X = [Sn, X ], endowed with the structure of
primary homotopy operations. Likewise, given anyΠ -algebra A, the group A(Sn)will
be denoted An . Taking the homotopy groups π∗ X defines a functor π∗ : HoTop∗ →
ΠAlg sending X to its homotopy Π -algebra.

Definition 1.2 A Π -algebra A is called realizable if there is a space X together with
an isomorphism A � π∗ X of Π -algebras. Such a space X is called a realization of
A.

Example 1.3 A Π -algebra concentrated in a single degree n is the same as a group
An , which is abelian if n ≥ 2. All such Π -algebras are realizable (uniquely up to
weak equivalence), and the Eilenberg–MacLane space K (An, n) is a realization of
this Π -algebra.

In general, one has the following realization problem: Given a Π -algebra A, is A
realizable by a space? Here, one must realize not only the homotopy groups, but also
the prescribed homotopy operations.

1.1 Background on the problem

One has the following classic example due to Quillen.

Example 1.4 Let A be a simply-connected rational Π -algebra, i.e., satisfying A1 = 0
and An is a rational vector space. Then A is realizable. In fact, the category of such
Π -algebras is equivalent to the category of reduced graded Lie algebras, and each
such Lie algebra is the Samelson product Lie algebra of a space [24, Theorem I].
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The realizability of operations 845

Example 1.5 AΠ -algebra concentrated in degrees 1 and n consists of a group A1 and
an A1-module An , and can be realized by a generalized Eilenberg–MacLane space
[29]. Moreover, the moduli space of realizations is described in [20, Theorem 3.4,
Corollary 3.5].

Example 1.6 A Π -algebra concentrated in two consecutive degrees n, n + 1 (with
n ≥ 2) consists of two abelian groups An and An+1 together with a homomorphism
Γ 1

n (An) → An+1, where the functor Γ 1
n is given by

Γ 1
n (An) =

{
Γ (An) for n = 2

An ⊗ Z/2 for n ≥ 3

where Γ denotes Whitehead’s quadratic functor. The structure map Γ 1
n (An) → An+1

corresponds to precomposition η∗ : An → An+1 by the Hopf map η : Sn+1 → Sn .
More precisely, η∗ : An → An+1 is a quadratic map when n = 2 (resp. a linear map
of order 2 when n ≥ 3), and therefore corresponds by adjunction to a map of abelian
groups Γ 1

n (An) → An+1.
All suchΠ -algebras are realizable. This follows fromWhitehead’s homotopy clas-

sification of simply connected four-dimensional CW-complexes in terms of the certain
exact sequence [30]; see also [5, Theorem 3.3 (A)]. Moreover, the moduli space of
realizations is described in [20, Theorem 5.1].

Example 1.7 A Π -algebra concentrated in a stable range can be identified with a
module over the stable homotopy ring π S∗ , i.e., the homotopy groups of the sphere
spectrum; see Sect. 5. Our results provide examples of such modules that are not
realizable (by a space or, equivalently, by a spectrum).

For more background on Π -algebras, see for example [26, §4] [14, §3.1] [8, §2]
[16, §2] [11, §4]. For literature on the realization problem for Π -algebras and some
generalizations, see for example [9–12].

1.2 Main results and organization

In Sect. 2, we describe Π -algebras concentrated in two degrees in terms of homotopy
groups of spheres (Proposition 2.10). Section 3 is devoted to the metastable case in
degrees n and 2n − 1 (Proposition 3.7).

Section 4 explains themain result of this paper, which solves the realization problem
for Π -algebras concentrated in two degrees. Theorem 4.2 provides a necessary and
sufficient condition for such a Π -algebra to be realizable, in terms of homology of
Eilenberg–MacLane spaces.

Section 5 specializes to the stable case. In Sect. 6, we provide infinite families
of non-realizable examples, using elements in the image of the J -homomorphism
(Propositions 6.4 and 6.5). Section 7 contains proofs and technical material that would
have otherwise cluttered the exposition.
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1.3 Notations and conventions

All tensor products will be over Z unless otherwise stated, so that we write ⊗ := ⊗Z.
A Π -algebra A is called m-truncated if it satisfies Ai = 0 for i > m and m-

connected if it satisfies Ai = 0 for i ≤ m. We will be working with Π -algebras
concentrated in degrees n, n + 1, . . . , n + k for integers n ≥ 2 and k ≥ 0, in other
words, (n − 1)-connected (n + k)-truncated Π -algebras. We adopt the following
notation, which suggests “starting in degree n at the bottom and going up k degrees”:

– ΠAlgn is the full subcategory ofΠAlg consisting of (n−1)-connectedΠ -algebras.
– ΠAlgk

n is the full subcategory of ΠAlg consisting of Π -algebras concentrated in
degrees n to n + k.

We use a similar convention for categories of spheres of certain dimensions:

– Πn is the full subcategory of Π consisting of wedges of spheres of dimensions at
least n.

– Πk
n is the full subcategory of Π consisting of wedges of spheres of dimensions

from n to n + k.

We will use analogous notations for the stable picture in Sect. 7.

2 Homotopy operation functors

In this section, we first recall the machinery of [5, §1] encoding homotopy operations
inductively, one degree at a time. Then, we specialize to Π -algebras concentrated in
two degrees.

2.1 Truncated Π -algebras

The Postnikov truncation functor Pn+k−1 : ΠAlgk
n → ΠAlgk−1

n admits a left
adjoint L . As in [5, Definition 1.5], consider the homotopy operation functor
Γ k

n : ΠAlgk−1
n → Ab defined as the composite

ΠAlgk−1
n

Γ k
n

��L �� ΠAlgk
n

πn+k �� Ab

where πn+k : ΠAlgk
n → Ab is evaluation on the sphere Sn+k , which extracts from a

Π -algebra A the abelian group An+k = A(Sn+k). Using these functors, ΠAlgk
n can

be described as an iterated comma category

ΠAlgk
n

∼= Γ k
n Ab

as in [5, Proposition 1.6]. Note that the inductive process starts with ΠAlg0n ∼= Ab
(assuming n ≥ 2). Let us recall some terminology and notation for comma categories
[4, Definition 1.1] [5, §1.5].
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Definition 2.1 Let C be a category and let Γ : C → A be a functor. Then we obtain
the category ΓA as follows. An object is a triple (X, A, η) where X is an object of C
and η : Γ X → A is a morphism in A. A morphism (X, A, η) → (Y, B, λ) in ΓA is
a pair ( f, g) where f : X → Y is a morphism in C such that the diagram

Γ X
Γ f ��

η

��

Γ Y

λ

��
A

g �� B

commutes in A. We call ΓA the comma category of Γ . An object (X, A, η) of ΓA
is also denoted by η.

Comma categories are also described in [22, §2.6], where our ΓA is denoted (Γ ↓
1A) or (Γ ↓ A). We will use the following facts about comma categories, whose
proofs are straightforward.

Lemma 2.2 Functors F, G : C → D are isomorphic if and only if the comma
categories FD, GD are equivalent as categories over C × D. Here the projection
FD → C × D sends an object (X, A, η) to (X, A).

Lemma 2.3 Let C,D be additive categories and F : C → D a functor. Then the
comma category FD is additive if and only if F is an additive functor.

2.2 Π -algebras concentrated in two degrees

Let ΠAlg(n, n + k) be the full subcategory of ΠAlg consisting of Π -algebras con-
centrated in degrees n and n + k for some n, k ≥ 1; these are sometimes called
2-stage Π -algebras. In light of Example 1.5, we will assume n ≥ 2. The category
ΠAlg(n, n + k) can be described as a comma category as follows.

Proposition 2.4 Let n ≥ 2. There is a unique functor (up to natural isomorphism)
Γ̃ k

n : Ab → Ab yielding an isomorphism

ΠAlg(n, n + k) ∼= Γ̃ k
n Ab

of categories over Ab × Ab.
For example, in the case k = 1, the functor Γ̃ 1

n = Γ 1
n is described in Example 1.6.

Proof Uniqueness follows from 2.2. For existence, take

Γ̃ k
n (An) = Γ k

n (An, 0, . . . , 0)

where (An, 0, . . . , 0) denotes the (unique) object A of ΠAlgk−1
n with An+1 = 0, . . .,

An+k−1 = 0. In other words, Γ̃ k
n is the restriction of Γ k

n : ΠAlgk−1
n → Ab to the full

subcategory Ab ∼= ΠAlg0n ↪→ ΠAlgk−1
n . The full subcategory ΠAlg(n, n + k) of

ΠAlgk
n is isomorphic to the comma category of Γ k

n restricted to objects of the form
(An, 0, . . . , 0), which is precisely the functor Γ̃ k

n . �

123



848 H.-J. Baues, M. Frankland

In particular, the equality Γ̃ k
n = 0 holds if and only if the projection ΠAlg(n, n +

k)
∼=−→ Ab × Ab is an isomorphism of categories, that is, the Π -algebra struc-

ture concentrated in degrees n and n + k is trivial. The corresponding Π -algebras
(An, An+k) are clearly realizable, for example by a product of Eilenberg–MacLane
spaces K (An, n) × K (An+k, n + k).

Remark 2.5 By 2.3 and 2.4, the category ΠAlg(n, n + k) is additive if and only if the
functor Γ̃ k

n is additive. This certainly happens in the stable range, but not always (e.g.
k = 2, n = 3 as in Example 2.6). In fact, we will see shortly that it happens often; see
Proposition 2.10.

Example 2.6 Taking k = 2, the formula for Γ 2
n in [5, 1.10] yields

Γ̃ 2
n (An) =

⎧⎪⎨
⎪⎩
0 for n = 2

Λ2(A3) for n = 3

0 for n ≥ 4

where Λ2(A) := A ⊗ A/(a ⊗ a ∼ 0) denotes the exterior square. Note that the map
Λ2(A3) → A5 encodes the Whitehead product [−,−]: A3 ⊗ A3 → A5.

In a Π -algebra concentrated in degrees n and n + k, any operation that factors
through intermediate degrees would automatically vanish. This suggests looking at
indecomposable operations, in the following sense.

Definition 2.7 An element x ∈ πn+k(Sn) is called decomposable if it admits a fac-
torization

Sn+k w �� ∨ Sn ∨ ∨
Sni �� Sn

where the dimensions ni satisfy n < ni < n + k and the composite Sn+k w−→ ∨
Sn ∨∨

Sni �
∨

Sn of w with the collapse map onto the first summand is null.
This means that x is obtained via primary homotopy operations from elements of

lower degree, possibly of degree n, but in a way that elements of intermediate degree
(between n and n + k) are essential. For example, the Whitehead product [y, ιn] ∈
πi+n−1(Sn) with y ∈ πi (Sn), i > n, is decomposable. However, the Whitehead
product [ιn, ιn] ∈ π2n−1(Sn) is not considered decomposable, a priori.

Let Qk,n denote the indecomposables of πn+k(Sn), i.e., the quotient of πn+k(Sn)

by the subgroup generated by all decomposable elements.
In the stable range k ≤ n−2, Qk,n = QS

k does not depend on n. Here QS∗ denotes the
indecomposables of the graded ring π S∗ (homotopy groups of the sphere spectrum S0),
with respect to the augmentation π S∗ → Z induced by the Hurewicz map S0 → HZ.

Warning 2.8 The definition of decomposable in [14, §2.2] does include elements
obtained via primary operations from elements of degree n. In particular, the lat-
ter definition makes every element x ∈ πn+k(Sn) decomposable, since it is obtained
as a precomposition of the identity class, x = ιn ◦ x = x∗(ιn), as noted in [14, §2.2.2].
Definition 2.7 should be thought of as “decomposable via intermediate degrees”.
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Remark 2.9 The subgroup generated by all decomposables is in fact generated by
compositions of the form Sn+k → Sm → Sn (with n < m < n + k) and 3-fold
iterated Whitehead products of the identity map ιn ∈ πn(Sn) of even-dimensional
spheres. This follows from the Barcus–Barratt formula and the fact that all 4-fold
iterated Whitehead products of the identity class for spheres vanish [28, Theorem
XI.8.8]. See the discussion before [8, Lemma 3.6].

Proposition 2.10 Assuming k �= n − 1, we have

Γ̃ k
n (An) = An ⊗ Qk,n .

In particular, in the stable range k ≤ n − 2, we have

Γ̃ k
n (An) = An ⊗ QS

k .

Proof See Sect. 7. �
Corollary 2.11 For all k and n with k �= n − 1 such that Qk,n = 0 holds, 2-stage
Π -algebras concentrated in degrees n and n + k have trivial homotopy operations
and are thus automatically realizable.

Example 2.12 EveryΠ -algebra concentrated in degrees 2 and 2+k is realizable. The
case k = 1 is settled in Example 1.6. For the case k ≥ 2, note that the Hopf map

η : S3 → S2 induces an isomorphism π2+k S3 �−→ π2+k S2. Hence every element in
x ∈ π2+k S2 is in fact a decomposable element η ◦ x ′ for some x ′ ∈ πn+k S3. Thus we
have Qk,2 = 0 and the result follows from 2.11.

As noted in Example 1.6, the realization problem is solved in the affirmative in the
case k = 1. The same is true for the case k = 2.

Proposition 2.13 Every Π -algebra concentrated in degrees n and n +2 is realizable.

Proof In the stable range n ≥ 4, it follows from 2.11 and QS
2 = 0, because of

π S
2 = Z/2

〈
η2

〉
. Likewise for n = 2, it follows from the fact Q2,2 = 0, obtained from

π4(S2) = Z/2 〈η ◦ η〉.
The only case where the Π -algebra data is non-trivial is n = 3, with Γ̃ 2

3 = Λ2 as
noted in Example 2.6. In that case, the Π -algebra A is realizable if and only if the
obstruction O(A) = η2 ◦ E3(η1) described in [5, Theorem 3.3 (B)] vanishes. The
map E3(η1) described in [5, §3.2] factors through A4 and is therefore zero in our case
(with A4 = 0). �

3 Metastable case

The situation is somewhat more complicated for the critical dimension k = n − 1,
which is in the metastable range. Let us recall some terminology and basic facts from
[2].
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850 H.-J. Baues, M. Frankland

Definition 3.1 [2, Definition 2.1] A quadratic module

M =
(

Me
H−→ Mee

P−→ Me

)

consists of a pair of abelian groups Me and Mee together with homomorphisms H and
P that satisfy PHP = 2P and HPH = 2H .

A morphism f : M → N of quadratic modules consists of a pair of homomor-
phisms f : Me → Ne and f : Mee → Nee which commute with H and P respectively.

For any quadratic module M , one has the involution

T := HP − 1 : Mee → Mee

which satisfies PT = P , TH = H , and T T = 1.

Note that in [2, Definition 2.1], quadratic modules are called quadratic Z-modules,
because more general ground rings besides Z are considered.

Example 3.2 [2, After Remark 9.2] Consider

πm{Sn} =
(
πm Sn H−→ πm S2n−1 P−→ πm Sn

)

where H is the Hopf invariant and P = [ιn, ιn]∗ is induced by the Whitehead square.
This data πm{Sn} is a quadratic module. In particular, we have

π3{S2} =
(
π3S2 H−→ π3S3 P−→ π3S2

)
=

(
Z

1−→ Z
2−→ Z

)
π5{S3} =

(
π5S3 H−→ π5S5 P−→ π5S3

)
=

(
Z/2

0−→ Z
0−→ Z/2

)
.

Definition 3.3 [2, Definition 4.1] Given an abelian group A and a quadratic module
M , their quadratic tensor product A⊗q M is the abelian group generated by symbols

a ⊗ m, a ∈ A, m ∈ Me

[a, b] ⊗ n, a, b ∈ A, n ∈ Mee

subject to the relations

(a + b) ⊗ m = a ⊗ m + b ⊗ m + [a, b] ⊗ H(m)

a ⊗ (m + m′) = a ⊗ m + a ⊗ m′

[a, a] ⊗ n = a ⊗ P(n)

[a, b] ⊗ n = [b, a] ⊗ T (n)

[a, b] ⊗ n is linear in each variable a, b, and n.
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The realizability of operations 851

Example 3.4 [2, Proposition 4.5] Taking the quadratic module

Z
Γ :=

(
Z

1−→ Z
2−→ Z

)
� π3{S2},

the quadratic tensor product with any abelian group A is A ⊗q
Z

Γ ∼= Γ (A), White-
head’s universal quadratic functor Γ : Ab → Ab described in [30] [6, §2.1].

Note that the usual tensor product with a given abelian group M defines an additive
functor − ⊗ M : Ab → Ab. Similarly, the quadratic tensor product with a fixed
quadratic module M defines a quadratic functor −⊗q M : Ab → Ab in the following
sense.

Definition 3.5 [6, §2] Let F : Ab → Ab be a functor satisfying F(0) = 0. Recall
that F is additive or linear if the natural projection

F(X ⊕ Y ) → F(X) ⊕ F(Y )

is an isomorphism.
We say that F is quadratic if the second cross effect

F(X |Y ) := ker (F(X ⊕ Y ) → F(X) ⊕ F(Y ))

viewed as a bifunctor is linear in both X and Y . In this case, one has a natural decom-
position

F(X ⊕ Y ) ∼= F(X) ⊕ F(Y ) ⊕ F(X |Y ).

Proposition 2.10 said that a 2-stage Π -algebra is described by indecomposable
homotopy operations, for k �= n − 1. There is an analogous notion in the metastable
case k = n − 1.

Definition 3.6 For n ≥ 2, the quadratic module of indecomposables of π2n−1{Sn}
is the quotient quadratic module

Qn−1{Sn} :=
(

Qn−1,n
H−→ π2n−1S2n−1 P−→ Qn−1,n

)

using the notation of 2.7. This is well defined since H : π2n−1Sn → π2n−1S2n−1 ∼= Z

vanishes on decomposable elements, namely compositions, since these are torsion
elements.

Proposition 3.7 In the metastable case k = n − 1, the functor Γ̃ n−1
n is the quadratic

functor given by

Γ̃ n−1
n (An) = An ⊗q Qn−1{Sn}.

Proof See Sect. 7. �
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Example 3.8 In the case n = 2 and k = 1, we have

π3{S2} =
� Q1{S2} ∼=

(
Z

1−→ Z
2−→ Z

)
= Z

Γ .

As noted in Example 3.4, the quadratic tensor product with this quadratic module is

A2 ⊗q
Z

Γ ∼= Γ (A2)

which recovers the case n = 2 of Example 1.6.

Example 3.9 In the case n = 3 and k = 2, we have

π5{S3} ∼=
(
Z/2

0−→ Z
0−→ Z/2

)
.

where the group π5S3 ∼= Z/2 is generated by the composite S5 η−→ S4 η−→ S3.
Therefore the quadratic module of indecomposables is

Q2{S3} ∼= (0 → Z → 0) = Z
Λ

using the notation of [2, Lemma 2.11]. By [2, Proposition 4.5], the quadratic tensor
product with this quadratic module is the exterior square functor

A3 ⊗q
Z

Λ ∼= Λ2(A3)

which recovers the case n = 3 of Example 2.6.

4 Criterion for realizability

First recall some notions and notation from [5, §1,2]. Let X be an (n − 1)-connected
CW-complex, whose homotopy Π -algebra is given inductively by the abelian group
πn := πn X and maps of abelian groups

η1 : Γ 1
n (πn) → πn+1

η2 : Γ 2
n (η1) → πn+2

. . .

ηk : Γ k
n (η1, η2, . . . , ηk−1) → πn+k

. . .

Note that ηk encodes the (n + k)-type of π∗ X .
Consider Whitehead’s “certain exact sequence” [30]

. . . → Hj+1X
b−→ Γ j X

i−→ π j X
h−→ Hj X

b−→ Γ j−1X → . . . (1)
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where h is the Hurewicz map. There is a natural transformation γ making the diagram

Γ k
n (η1, η2, . . . , ηk−1)

γX

��

ηk

��������������

Γn+k X i �� πn+k X

(2)

commute. In [5, Theorem 2.4], γ is exhibited as the left edge morphism of a spectral
sequence

E2
p,q = (L pΓ

q
n )(η1, η2, . . . , ηq−1) ⇒ Γn+p+q X.

Lemma 4.1 Postnikov truncation X → Pn X induces isomorphisms Γ j X
∼=−→ Γ j Pn X

for j ≤ n + 1.

Proof The truncation map X → Pn X can be chosen as a direct limit of maps X =
X0 → X1 → X2 → . . . which are cell attachments, where X j → X j+1 is attaching
cells of dimension at least n + j + 2 (in order to kill πn+ j+1). In particular, only cells
of dimension at least n + 2 are involved, so that with this particular cell structure, the
skeleta X (n+1) = (Pn X)(n+1) agree.

SinceΓ j X can be defined asΓ j X = im
(
π j X ( j−1) → π j X ( j)

)
induced by skeletal

inclusion, the result follows. �
Theorem 4.2 (Criterion for realizability) The 2-stage Π -algebra A corresponding to

ηk : Γ̃ k
n (An) → An+k

is realizable if and only if the map ηk factors through the map γK (An ,n) as illustrated
in the diagram

Γn+k K (An, n)

���
�
�

Γ̃ k
n (An)

γK (An ,n)

�������������

ηk
�� An+k .

Here we have the isomorphism Γn+k K (An, n) ∼= Hn+k+1K (An, n) by the White-
head exact sequence (1). The homology of Eilenberg–MacLane spaces is well known
[15,17–19].

Proof (⇒) If A is realizable by a space X , then the natural transformation γ for X
yields a commutative diagram

Γ k
n (An, 0, . . . , 0) = Γ̃ k

n (An)

γX

��

ηk

������������������������

Γn+k X i �� πn+k X = An+k
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as noted in (2). Because X has (n + k − 1)-type Pn+k−1X ∼= K (An, n), Lemma 4.1
provides a natural isomorphism

Γn+k X ∼= Γn+k(Pn+k−1X) ∼= Γn+k K (An, n)

and therefore the desired factorization.
(⇐) We will use the theorem on the realizability of the Hurewicz morphism

[3, Theorem 3.4.7], starting from the (n + k − 1)-Postnikov section of a putative
realization, which is K (An, n). Note that for k ≥ 2, the map

in+k−1 : Γn+k−1K (An, n) → πn+k−1K (An, n) = 0

in Whitehead’s exact sequence is null, that is, ker in+k−1 = Γn+k−1K (An, n). In
the case k = 1, the argument below will work anyway, using ker in+k−1 instead of
Γn+k−1K (An, n).

We are given a factorization ηk = f ◦ γK (An ,n), with f : Γn+k K (An, n) → An+k .
Choose an epimorphism b1 : H1 � ker f where H1 is a free abelian group. Now take
H0 := coker f ⊕Γn+k−1K (An, n) with the map An+k → H0 surjecting onto the first
summand and b0 : H0 � Γn+k−1K (An, n) the projection. These maps assemble into
the exact sequence

H1
b1−→ Γn+k K (An, n)

f−→ An+k → H0 � Γn+k−1K (An, n) → 0.

By [3, Theorem 3.4.7], there exists a CW-complex X together with a map p : X →
K (An, n) inducing isomorphisms on homotopy groups πi for i ≤ n + k − 1 and
making the diagram

Hn+k+1X

�
��

�� Γn+k X

� p∗
��

�� πn+k X

�
��

�� Hn+k X

�
��

�� �� Γn+k−1X

� p∗
��

�� 0

H1
b1 �� Γn+k K (An, n)

f �� An+k �� H0 �� �� Γn+k−1K (An, n) �� 0

commute, where the top row is part ofWhitehead’s exact sequence for X . By naturality
of γ , the diagram

Γ̃ k
n (An)

γX ��

ηX
k

��
Γn+k X

∼= p∗
��

in+k �� πn+k X

∼=
��

Γ̃ k
n (An)

γK (An ,n)��

ηk

		Γn+k K (An, n)
in+k �� An+k
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commutes, so that X has the prescribedΠ -algebra structure up to degree n +k. Hence
the Postnikov section Pn+k X is a realization of A. �
Corollary 4.3 Fix n ≥ 2 and k ≥ 1. Then an abelian group An has the property that
“every Π -algebra concentrated in degrees n and n + k with prescribed group An is
realizable” if and only if the map

γK (An ,n) : Γ̃ k
n (An) → Γn+k K (An, n)

is split injective.

Proof (⇒) If γK (An ,n) is not split injective, then pick An+k := Γ̃ k
n (An) with the

structure map

ηk := id : Γ̃ k
n (An) → Γ̃ k

n (An)

which does not factor through γK (An ,n), and thus defines a non-realizable Π -algebra.
(⇐) If γK (An ,n) is split injective, then a factorization

Γn+k K (An, n) � Γ̃ k
n (An) ⊕ C

f

���
�
�

Γ̃ k
n (An)

� �

γK (An ,n)

		���������������

ηk
�� An+k

can always be found, taking f to be ηk on the summand Γ̃ k
n (An) and an arbitrary map

on the complementary summand C . �
Remark 4.4 As a particular case of Corollary 4.3, whenever γ is not injective, one
can find a corresponding non-realizable 2-stage Π -algebra. Here is another way of
thinking about this.

Say that a homotopy operation α ∈ πn+k Sn can be detected by a space X if there
is an x ∈ πn X satisfying α∗x �= 0 ∈ πn+k X . Using 2.10, Theorem 4.2 says that a
homotopy operation α ∈ Qk,n can be detected by a 2-stage space if and only if it
satisfies γK (Z,n)(α) �= 0. Indeed, one has the realizable 2-stage Π -algebra A with
An = Z, An+k = Γn+k K (Z, n), and γK (Z,n) : Qk,n → Γn+k K (Z, n) as structure
map.

Remark 4.5 In principle, the obstruction to realizability exhibited in 4.2 could be
interpreted in terms of an obstruction class in André–Quillen cohomology of the Π -
algebra A [11,20], or equivalently, in terms of higher homotopy operations [13].

4.1 Relationship to k-invariants

It is a classic fact that connected spaces are classified up to homotopy by their k-
invariants. In particular, a 2-stage space X with homotopy groups πn := πn X and
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πn+k := πn+k X (where n ≥ 2) is classified by its k-invariant

κ ∈ Hn+k+1 (K (πn, n);πn+k) .

Via the natural surjective map

θ : Hn+k+1 (K (πn, n);πn+k) � HomZ (Hn+k+1(K (πn, n),Z), πn+k)

this yields a map of abelian groups

Γn+k K (πn, n) ∼= Hn+k+1(K (πn, n),Z)
θ(κ)−−→ πn+k .

Another point of view on Theorem 4.2, as well as an alternate proof, is that the
Π -algebra π∗ X is given by the structure map

Γ̃ k
n (πn)

γK (πn ,n)��

ηk

		Γn+k K (πn, n)
θ(κ) �� πn+k .

This follows from the theorem on k-invariants in [3, Theorem 2.5.10 (b)] and diagram
(2). Therefore, the realizable 2-stage Π -algebras are precisely those whose structure
map ηk factors through γK (πn ,n).

5 Stable case

A Π -algebra concentrated in a stable range n, n + 1, . . . , n + k with k ≤ n − 2 can
be identified with a module over the stable homotopy ring π S∗ , or more precisely its
Postnikov truncation π S

∗≤k . Indeed, in such a Π -algebra A, all Whitehead products
vanish for dimension reasons, and all precomposition operations α∗ : An+i → An+ j

are induced by maps α : Sn+ j → Sn+i that live in stable homotopy groups π S
j−i . The

identification is made more precise in 7.4.

Proposition 5.1 A Π -algebra concentrated in a stable range n, n + 1, . . . , n + k is
realizable (by a space) if and only if the corresponding π S∗ -module is realizable (by a
spectrum).

Proof (⇒) Let A be a Π -algebra concentrated in said stable range, and denote also
by A the corresponding π S∗ -module. If X is a space realizing A, then the Postnikov
truncation Pn+kΣ

∞ X of the suspension spectrum of X is a spectrum realizing A.
(⇐) Let M be aπ S∗ -module concentrated in a stable range, so that the corresponding

Π -algebra isΩ∞M , by 7.4. If Z is a spectrum realizing M , then the infinite loop space
Ω∞Z is a space realizing Ω∞M , by 7.3. �
Remark 5.2 A π S∗ -module M is realizable if and only if any of its shifts Σ j M (for
j ∈ Z) is realizable. This follows from the isomorphism π∗(Σ j Z) ∼= Σ j (π∗Z) of
π S∗ -modules.
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The criterion 4.2 indicates that the map

γK (An ,n) : Γ̃ k
n (An) → Γn+k K (An, n) ∼= Hn+k+1K (An, n)

plays a key role for determining realizability. In the stable range k ≤ n − 2, we have
seen in 2.10 that the domain of γK (An ,n) is

Γ̃ k
n (An) = An ⊗ QS

k

while its codomain is

Hn+k+1K (An, n) ∼= (HZ)k+1(HAn) ∼= (HAn)k+1(HZ)

where H A denotes the Eilenberg–MacLane spectrum of an abelian group A. The
universal coefficient theorem yields a natural exact sequence

0 → An ⊗ HZk+1HZ ↪→ (H An)k+1HZ � TorZ1 (An, HZk HZ) → 0

which is split (non-naturally).

Lemma 5.3 Let R be a commutative ring, RMod the category of R-modules, and
ι : RModff → RMod the inclusion of the full subcategory of finitely generated free
R-modules.

Let F : RModff → RMod be an additive functor. Then there is a unique (up to
unique natural isomorphism) extension F : RMod → RMod of F which preserves
all (small) colimits. Moreover, F is natural in F. It is given by F = − ⊗R F R. For
any functor G : RMod → RMod, there is a natural transformation ι∗G → G, which
is natural in G.

Proof The left Kan extension F = Lanι F satisfies all the properties in the statement.
�

Remark 5.4 The functor ι∗G is not the 0th left derived functor L0G of G, which
provides the best approximation of G by a right exact functor, with comparison map
L0G → G. Indeed, there exist additive right exact functors Ab → Ab which do
not preserve infinite direct sums. However, the comparison maps do fit together as
ι∗G → L0G → G.

Proposition 5.5 In the stable range k ≤ n − 2, the map

γK (An ,n) : An ⊗ QS
k → (HZ)k+1(H An)

factors through the summand An ⊗ HZk+1HZ, that is, we have

γK (An ,n) : An ⊗ QS
k → An ⊗ HZk+1HZ ↪→ (HZ)k+1(H An).
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Proof First, note that the assignment A �→ HZk+1H A defines an additive functor
G : Ab → Ab. Indeed, for abelian groups A, B, we have:

G(A ⊕ B) = HZk+1H(A ⊕ B)

∼= HZk+1(H A ∨ HB)

∼= HZk+1H A ⊕ HZk+1HB

= G(A) ⊕ G(B).

Now γ : F → G is a natural transformation from the functor F = − ⊗ QS
k to G and,

by Lemma 5.3, induces a commutative diagram

ι∗F

εF

��

ι∗γ �� ι∗G

εG

��
F γ

�� G.

Because F is of the form F = − ⊗ FZ, it preserves all colimits, and thus εF is an
isomorphism. Moreover we have

ι∗G = − ⊗ GZ = − ⊗ HZk+1HZ

and the coaugmentation

(εG)A : A ⊗ HZk+1HZ → H Ak+1HZ

is the usual inclusion of the tensor summand. Therefore γ factors through said inclu-
sion. �
Corollary 5.6 In the stable range k ≤ n−2, every Π -algebra concentrated in degrees
n and n + k is realizable if and only if the map

γK (Z,n) : QS
k → HZk+1HZ

is split injective. Note that the map does not depend on n, only on the stable stem k.

Proof By 4.3, every Π -algebra concentrated in degrees n and n + k is realizable if
and only if the maps

γK (An ,n) : An ⊗ QS
k → (HZ)k+1(HAn)

are split injective for every abelian group An . By 5.5, this is equivalent to the maps

γK (An ,n) : An ⊗ QS
k → An ⊗ HZk+1HZ

being split injective. Since applying An ⊗− (or any functor) to a split monomorphism
yields a split monomorphism, this is equivalent to the single map
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γK (Z,n) : QS
k → HZk+1HZ

being split injective. �

6 Non-realizable examples

As noted in Example 1.6 and Proposition 2.13, all 2-stageΠ -algebras with stem k = 1
or k = 2 are realizable – for any value of n, not only stably. We will show that the
smallest stem where a non-realizable example appears is k = 3.

Let us recall the first few stable homotopy groups of spheres; see [5, §4]. In degrees
∗ ≤ 6, the stable homotopy ring π S∗ is generated (as an algebra) by elements η ∈ π S

1 ,
ν ∈ π S

3 , and α ∈ π S
3 , subject to relations

2η = 0

4ν = η3

ην = 0

2ν2 = 0

3α = 0

α2 = 0.

Here η is the stabilization of the Hopf map S3 → S2 and ν is the 2-primary part of
the stabilization of the Hopf map H : S7 → S4. Integrally, ν can be thought of as, say,
3H . The element α is the first in the 3-primary alpha family.

The first few stable homotopy groups are

π S
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z i = 0

Z/2 〈η〉 i = 1

Z/2
〈
η2

〉
i = 2

Z/24 � Z/8 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

Z/2
〈
ν2

〉
i = 6

and their indecomposables are

QS
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z i = 0

Z/2 〈η〉 i = 1

0 i = 2

Z/12 � Z/4 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

0 i = 6.
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Proposition 6.1 Let n ≥ 5. The (stable) Π -algebra A concentrated in degrees n and
n +3 given by An = Z and An+3 = Z/4 with structure map η3 : An ⊗ QS

3 → An+3 =
Z/4 given by the projection

An ⊗ QS
3

∼= QS
3 = Z/4 〈ν〉 ⊕ Z/3 〈α〉 � Z/4

sending ν to 1 is not realizable.

Proof According to [18, Theorem 25.1], we have HZ4HZ � Z/6 = Z/2 ⊕ Z/3.
Therefore the map γ : QS

3 � Z/12 → Z/6 � HZ4HZ sends 2ν to 0, whereas η3
does not. The result follows from 4.2. �

Theorem 4.2 reduces realizability questions to the algebraic problem of under-
standing the map γ , but it can also be used the other way around. In the following
proposition, we start from a realizable 2-stage Π -algebra and deduce information
about the map γ using Theorem 4.2.

Proposition 6.2 The map γ : QS
3 → HZ4HZ sends α to a non-zero element (there-

fore of order 3).

Proof Take n ≥ 5 and consider the localization at 3 of the sphere Sn → Sn
(3), then

take Postnikov sections Pn+3Sn → Pn+3Sn
(3) =: X . Because this map induces 3-

localization on homotopy groups (and a map of Π -algebras), the Π -algebra π∗ X
consists of two non-zero groups

πn X ∼= Z(3)

πn+3X ∼= Z/3 〈α〉

with structure map

η3 : πn X ⊗ QS
3

�−→ πn+3X

sending α to α, i.e. the identity via the identification

πn X ⊗ QS
3

∼= Z(3) ⊗ (Z/4 〈ν〉 ⊕ Z/3 〈α〉) = Z/3 〈α〉 .

By 4.2, we deduce that the map

Z(3) ⊗ γ : Z(3) ⊗ QS
3

∼= Z/3 〈α〉 → Z(3) ⊗ HZ4HZ � Z/3

sends α to a non-zero element, and therefore so does γ . �
In fact, the same argument yields a more general statement.

Proposition 6.3 Fix a prime p ≥ 3 and consider the Greek letter element α1 ∈
QS

2(p−1)−1. The map γ : QS
2(p−1)−1 → HZ2(p−1) HZ sends α1 to a non-zero element

(therefore of order p).
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Proof Write the stable stem k := |α1| = 2(p − 1) − 1 and take n very large, namely
n ≥ k +2. Consider the localization at p of the sphere Sn → Sn

(p), then take Postnikov
sections Pn+k Sn → Pn+k Sn

(p) =: X .

A key feature of α1 is that it generates π S
2p−3 ⊗Z(p) � Z/p and is the first element

of order a power of p in π S∗ [27, (13.4)]. Thus the p-localization of all lower (positive)
stems is zero. Therefore the Π -algebra π∗ X consists of two non-zero groups

πn X ∼= Z(p)

πn+k X ∼= (π S
k )(p) � Z/p

in which α1 is detected. More precisely, taking 1 ∈ πn X we have α∗
1(1) = α1 �= 0 in

πn+k X . By 4.2 (and Remark 4.4), γ sends α1 to a non-zero element. �

6.1 Infinite families

Proposition 6.1 provides a non-realizable 2-stage Π -algebra with the lowest possible
stem dimension k = 3. Our next goal is to find an infinite family of such examples,
in infinitely many stem dimensions k. For this we need an infinite family of indecom-
posables in Q∗. The Greek letter elements, for example the α and β families, are good
candidates.

The next proposition provides non-realizable examples using a different method:
finding elements of homotopy groups of spheres which are indecomposable as primary
operations, but decomposable as secondary operations.

Proposition 6.4 Fix a prime p ≥ 3 and consider the alpha elements αi ∈ QS
2i(p−1)−1

[25, Definition 1.3.10, Theorem 1.3.11]. For every i ≥ 2, the map γ : QS
2i(p−1)−1 →

HZ2i(p−1) HZ sends αi to zero.

Proof For i ≥ 2, there is a Toda bracket [27, (13.4)]

αi ∈ 〈α1, p, αi−1〉

so that αi cannot be detected by a 2-stage space (or spectrum), and by 4.4 we have
γ (αi ) = 0.

In more detail, write s = |α1| and t = |αi−1| so that |αi | = s + t + 1, and assume
X is a space with homotopy concentrated in degrees n and n + s + t + 1 (for n large).
Let us illustrate the Toda bracket setup:

Sn+s+t αi−1−−→ Sn+s p−→ Sn+s α1−→ Sn .

Pick any x ∈ πn X . We claim that the precomposition α∗
i (x) = xαi is null. Postcom-

posing by x defines a map [27, Proposition 1.2 (iv)]

〈α1, p, αi−1〉 x◦−−−→ 〈xα1, p, αi−1〉
= 〈0, p, αi−1〉

123



862 H.-J. Baues, M. Frankland

using the fact xα1 ∈ πn+s X = 0. The indeterminacy of 〈0, p, αi−1〉 is

0[Sn+s+t+1, Sn+s] + [Sn+s+1, X ]αi−1

= (πn+s+1X)αi−1

= {0}

again using the assumption on π∗ X . Moreover, 0 is clearly a representative in
〈0, p, αi−1〉 [27, Proposition 1.2 (0)], thus we have equality 〈0, p, αi−1〉 = {0}. There-
fore xαi ∈ 〈0, p, αi−1〉 is null, as claimed. �
Proposition 6.5 Fix a prime p ≥ 3 and consider the divided alpha elements αi/j ∈
QS

2i(p−1)−1, where j ≤ νp(i)+1, and νp denotes the p-adic valuation [25, Definition
1.3.19]. For every j ≥ 2, we have pαi/j �= 0 but γ (pαi/j ) = 0.

Proof Recall a few properties of the divided alpha elements [25] [7, §1]. The element

αi/j ∈ Ext1,2i(p−1)
B P∗ B P (BP∗, BP∗)

defined in the E2-term of the Adams–Novikov spectral sequence is a permanent cycle
and therefore represents an element in homotopy αi/j ∈ π S

2i(p−1)−1 which is known to

be in the image of the J -homomorphism. It has (additive) order p j , is indecomposable,
and its order in QS∗ is still p j . This proves pαi/j �= 0 in QS∗ .

On the other hand, the p-torsion in HZ∗ HZ is annihilated by a single power of p
[21, Theorem 3.1] [15, §11, Theorem 2]. Therefore the map γ : QS∗ → HZ∗+1HZ

must send pαi/j to zero. �
Remark 6.6 In Proposition 6.5, we may as well take i = p j−1.

Whenever γ : QS
k → HZk+1HZ is non-injective, we can find a corresponding

non-realizable 2-stage Π -algebra in stem dimension k. Therefore, Propositions 6.4
and 6.5 provide infinite families of non-realizable examples, in infinitely many stem
dimensions.

Note that [9, Theorem 8.1] also provides a (different) infinite family of non-
realizableΠ -algebras, which can be truncated to two non-zero degrees. The argument
used there is similar to that of 6.4.

6.2 A 3-stage example

Proposition 6.7 The stable 3-stage Π -algebra A defined by An = An+1 = An+2 =
Z/2 (where n ≥ 4) with structure maps

η1 : Γ 1
n (An) = An ⊗ Z/2 = Z/2

∼=−→ Z/2 = An+1

η2 : Γ 2
n (An, η1) = An+1 ⊗ Z/2 = Z/2

∼=−→ Z/2 = An+2

is non-realizable.

123



The realizability of operations 863

Proof The map En(η1) described in [5, §3.2] is the composite

Tor(An,Z/2) � � i �� An
q �� �� An ⊗ Z/2

η1 �� An+1
q �� �� An+1 ⊗ Z/2 ∼= Γ 2

n (An, η1)

which in our case is the isomorphism

Z/2 � � i
∼=

�� Z/2
q

∼=
�� �� Z/2

η1

∼=
�� Z/2

q

∼=
�� �� Z/2.

The obstruction O(A) = η2◦ En(η1) described in [5, Theorem 3.3 (B)] is the non-zero

map Z/2
∼=−→ Z/2

∼=−→ Z/2. Therefore A is non-realizable. �
Remark 6.8 By contrast, the example in [9, Example 7.18] with the same homotopy
groups but a different Π -algebra structure is in fact realizable.

7 Proofs

7.1 Theories and π S∗ -modules

The category Π forms a theory in the sense of Lawvere [4, §6], more precisely a
graded (or multisorted) theory [4, §8]. We adopt the following convention.

Definition 7.1 A theory is a category with finite coproducts, including the empty
coproduct (initial object ∗).

Let T be a theory. A model for T is a product-preserving functor Top → Set, in
other words, a contravariant functor sending coproducts to products.

As in [5, §1], let model(T) := Fun×(Top,Set) denote the category of models for
a theory T.

In this terminology, Π -algebras are models for Π, or in symbols: ΠAlg =
model(Π). Note that Πn and Πk

n are also theories, and the inclusion functors
Πk

n → Πn → Π are maps of theories, i.e., preserve coproducts. The equivalences
ΠAlgn

∼= model(Πn) and ΠAlgk
n

∼= model(Πk
n) are proved in [20, Proposition 4.5,

Remark 4.6].
Let us study the stable case as in Sect. 5 more precisely. Given a spectrum Z , its

homotopy groups π∗Z naturally form a π S∗ -module, where π S∗ is the stable homotopy
ring. This algebraic structure can also be described as a model for a theory.

Notation 7.2 Let HoSp denote the stable homotopy category [23, §2.2] and let Πst

denote its full subcategory consisting of finite wedges of sphere spectra ∨Sni , ni ∈ Z.
Here again, the empty wedge (a point) is allowed.

We have the isomorphism of categories model(Πst) ∼= π S∗ Mod, sending a model
M to the π S∗ -module with i th graded piece Mi := M(Si ), endowed with the induced
precomposition operations. Given a spectrum Z , the realizable π S∗ -module π∗Z cor-
responds to the functor [−, Z ].
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We can now make the relationship between Π -algebras and π S∗ -modules precise.
Consider the suspension spectrum functor Σ∞ : Π → Πst which sends maps to their
stabilization. Because Σ∞ preserves coproducts (wedges), it induces a restriction
functor on models

Ω∞ := (Σ∞)∗ : π S∗ Mod → ΠAlg.

Concretely, Ω∞M has the same underlying graded group as M in degrees i ≥ 1,
and maps between spheres act on Ω∞M via their stabilization. The notation Ω∞ is
justified by the following proposition.

Proposition 7.3 For any spectrum Z, there is an isomorphism of Π -algebras
π∗(Ω∞Z) ∼= Ω∞(π∗Z), which is natural in Z.

Proof Let S be an object of Π, that is, a finite wedge of spheres. By definition, we
have:

π∗(Ω∞Z)(S) = [S,Ω∞Z ]
Ω∞(π∗Z)(S) = (π∗Z)(Σ∞S) = [Σ∞S, Z ].

Moreover, Σ∞ is left adjoint to Ω∞ so that we have an isomorphism of sets

[S,Ω∞Z ] ∼= [Σ∞S, Z ]

which is natural in S and Z . Naturality in S provides the isomorphism of Π -algebras
π∗(Ω∞Z) � Ω∞(π∗Z), while naturality in Z implies that this isomorphism of Π -
algebras is also natural. �

Consider the full subcategories (Πst)n and (Πst)k
n of Πst, which are themselves

theories. As in the unstable picture, the inclusion functors (Πst)k
n → (Πst)n → Πst

are maps of theories. Here again, there are isomorphisms of categories π S∗ Modn ∼=
model((Πst)n) and π S∗ Modk

n
∼= model((Πst)k

n).

Proposition 7.4 In the stable range k ≤ n − 2, the functor Ω∞ restricts to an equiv-
alence of categories

Ω∞ : π S∗ Modk
n

∼=−→ ΠAlgk
n .

Proof In the stable range, the stabilization functor Σ∞ : Πk
n → (Πst)k

n is an equiva-
lence of categories. Therefore, it induces an equivalence on models

(Σ∞)∗ : model((Πst)k
n)

∼=−→ model(Πk
n)

which is the desired equivalence. �
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7.2 Split linear extension of theories

Proposition 7.5 Let n ≥ 2 and k ≥ 1. Consider the functor

D : (Π0
n+k)

op × Πk−1
n → Ab

(S, U ) �→ [S, U ].

Then the theory Πk
n with its natural projection

Πk
n → Π0

n+k × Πk−1
n

given by “collapse” functors [20, §4] is the split linear extension [4, Definition 7.1]
of Π0

n+k × Πk−1
n by D.

Proof Note that D takes values in Ab because every object S = ∨i Sn+k of Π0
n+k is

an abelian cogroup object (of Π or Πk
n). Moreover, D is additive in Π0

n+k :

D(S1 ∨ S2, U ) = [S1 ∨ S2, U ] = [S1, U ]∗ × [S2, U ] = D(S1, U ) × D(S2, U )

and satisfies D(S, ∗) = [S, ∗] = 0 for any S ∈ Π0
n+k . Therefore, there is such

a thing as the split linear extension T of Π0
n+k × Πk−1

n by D, with its projection
q : T → Π0

n+k × Πk−1
n .

Let us construct an equivalence of categories ϕ : Πk
n

∼=−→ T with inverse ψ : T ∼=−→
Πk

n . Note that every object X ofΠk
n , i.e. a finite wedge of spheres of dimensions from n

to n+k, can be uniquely expressed as a wedge X = S∨U with S ∈ Π0
n+k, U ∈ Πk−1

n ,
i.e. S contains the spheres of dimension n + k and U contains the remaining spheres,
of dimensions from n to n + k − 1. Moreover, extracting either summand from X is
functorial in X , using the collapse functors

colhi : Πk
n → Π0

n+k

collo : Πk
n → Πk−1

n

which extract the spheres of highest dimension n + k and lower dimensions n to
n + k − 1, respectively. By abuse of notation, write colhi : X � S and collo : X � U
for the corresponding collapse maps.

Step 1: Construction of ϕ : Πk
n → T. On objects, take

ϕ(X ∼= S ∨ U ) := (S, U ) = (colhiX, colloX)
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and for a morphism X1 ∼= S1 ∨ U1
f−→ S2 ∨ U2 ∼= X2, ϕ( f ) is defined by the data⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
S1

inchi1
↪→ S1 ∨ U1

f−→ S2 ∨ U2
colhi2� S2

U1
inclo1
↪→ S1 ∨ U1

f−→ S2 ∨ U2
collo2� U2

S1
inchi1
↪→ S1 ∨ U1

f−→ S2 ∨ U2
collo2� U2

where the last piece of data is an element of [S1, U2]∗ = D(S1, U2). In symbols:

ϕ( f ) =
(
colhi( f ), collo( f ), collo2 ◦ f ◦ inchi1

)
=:

(
f hi, f lo, f hilo

)
.

We have ϕ(idX ) = idϕX = (idS, idU , 0). Remains to check that ϕ respects composi-

tion. Given a composite X1
f−→ X2

g−→ X3 in Πk
r , which we write as

S1 ∨ U1
f−→ S2 ∨ U2

g−→ S3 ∨ U3

applying ϕ yields

ϕ(g f ) =
(
(g f )hi, (g f )lo, (g f )hilo

)
=

(
ghi f hi, glo f lo, (g f )hilo

)

whereas the composite in T is

ϕ(g)ϕ( f ) =
(

ghi, glo, ghilo
) (

f hi, f lo, f hilo
)

=
(

ghi f hi, glo f lo, ( f hi)∗ghilo + (glo)∗ f hilo
)

.

A straightforward calculation proves the equality (g f )hilo = ( f hi)∗ghilo+(glo)∗ f hilo.

Step 2: Construction of ψ : T → Πk
n . On objects, take

ψ(S, U ) := S ∨ U

and for a morphism

( f h, f l , δ) : (S1, U1) → (S2, U2)

in T, with δ ∈ D(S1, U2) = [S1, U2], define the morphism

ψ( f h, f l , δ) : S1 ∨ U1 → S2 ∨ U2
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ψ( f h, f l , δ) =
(
inchi2 f h + inclo2 δ

)
; inclo2 f l .

We have

ψ1(S,U ) = ψ(1S, 1U , 0) = inchi ∨ inclo = 1S∨U

and it remains to check that ψ respects composition. Given a composite

(S1, U1)
( f h , f l ,δ)��

(gh f h ,gl f l ,( f h)∗ε+(gl )∗δ)



(S2, U2)
(gh ,gl ,ε)�� (S3, U3)

in T, applying ψ yields

S1 ∨ U1
inchi2 f h+inclo2 δ;inclo2 f l

��

inchi3 gh f h+inclo3 (( f h)∗ε+(gl )∗δ);inclo3 gl f l

��S2 ∨ U2
inchi3 gh+inclo3 ε;inclo3 gl

�� S3 ∨ U3

which is still commutative. This follows from right distributivity for maps between
spheres [28, Theorem X.8.1], as well as Hilton’s formula [28, Theorem XI.8.5] [3,
§A.9] and the fact that f h : S1 → S2 is a map between spheres of equal dimensions
(namely n + k). In that case, the Hilton–Hopf invariants vanish and composition is in
fact left distributive, in other words precomposition by f h is linear.

Step 3: ψϕ = idΠk
n
. On objects, the composite of functors does

(X ∼= S ∨ U )
ϕ�→ (S, U )

ψ�→ S ∨ U

and on a map X1 ∼= S1 ∨ U1
f−→ S2 ∨ U2 ∼= X2, the composite does

f
ϕ�→

(
f hi, f lo, f hilo

)
ψ�→

(
inchi2 f hi + inclo2 f hilo

)
; inclo2 f lo.

Here comes the topological argument. Note that S is (n + k − 1)-connected and U
is (n − 1)-connected, so that the natural map S ∨ U → S × U is (n + k + n − 1)-
connected. This implies that for i ≤ n + k + n − 2 (in particular for i ≤ n + k), any
map g : Si → S ∨ U is homotopic to inchicolhig + inclocollog.

On the first summand S1, the map f is

f inchi1 = inchi2 col
hi
2 f inchi1 + inclo2 col

lo
2 f inchi1

= inchi2 f hi + inclo2 f hilo
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and on the second summand U1, the map f is

f inclo1 = inclo2 col
lo
2 f inclo1 (by cellular approximation)

= inclo2 f lo

from which we obtain the desired equality ψϕ( f ) = f .

Step 4: ϕψ = idT. On objects, the composite of functors does

(S, U )
ψ�→ S ∨ U

ϕ�→ (S, U )

and on a map ( f h, f l , δ) : (S1, U1) → (S2, U2), the composite does

( f h, f l , δ)
ψ�→

(
inchi2 f h + inclo2 δ

)
; inclo2 f l

ϕ�→
(
colhi2

(
inchi2 f h + inclo2 δ

)
, collo2 inc

lo
2 f l , collo2

(
inchi2 f h + inclo2 δ

))
=

(
colhi2 inc

hi
2 f h + colhi2 inc

lo
2 δ, collo2 inc

lo
2 f l , collo2 inc

hi
2 f h + collo2 inc

lo
2 δ

)
=

(
f h, f l , δ

)
.

�
Remark 7.6 Proposition 7.5 was implicitly used in [5, Proposition 1.6] without being
proved there.

7.3 Homotopy operation functors

Proof of Proposition 2.10 Let An be an abelian group.Wewant to compute the abelian
group Γ̃ k

n (An) = Γ k
n (An, 0, . . . , 0).

Our functor Γ k
n is the functor denoted ρ∗Δ in [4, (7.3)]. By Proposition 7.5 and [4,

Lemma 7.5; Lemma 7.10], Γ k
n can be computed using a free presentation, as we will

explain shortly. Here we will implicitly use the identification model(Π0
n+k)

∼= Ab
sending a model M to the abelian group M(Sn+k).

Let g : T → S be a map between wedges of spheres of dimensions n, n + 1, . . .,
n + k − 1 satisfying

1. coker πn(g) = An ;
2. coker πi (g) = 0 for n < i < n + k, that is, πi (g) is surjective in those degrees.

Then the sequence of abelian groups

πn+k(T ∨ S)2
πn+k (g,1)−−−−−→ πn+k(S) � Γ̃ k

n (An) → 0 (3)

is exact, where the left-hand group is

πn+k(T ∨ S)2 := ker

(
πn+k(T ∨ S)

πn+k (0,1)−−−−−→ πn+k(S)

)
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i.e. the kernel of the collapse map. In other words, our functor can be computed as
Γ̃ k

n (An) = coker πn+k(g, 1).

A free presentation can be obtained as follows. Let R
f−→ F � An → 0 be a free

presentation of An as abelian group, i.e., an exact sequence where R and F are free
abelian groups. Realize R → F as πn(g′) for a map g′ : S′ → S between wedges of
spheres of dimension n (with a sphere Sn for each summand Z). Now insert spheres of
higher dimensions to kill all the homotopy of S. More precisely, consider the wedge

S′′ :=
∨

x∈πi S
n<i<n+k

Si

and the map g′′ : S′′ → S defined on each summand Si by (a representative of) the
indexing element x ∈ πi S. The map

T = S′′ ∨ S′ g=(g′′,g′)−−−−−→ S

provides a free presentation as described above.

Step 1: Assume An � Z is free on one generator.
The free presentation of An is given by R = 0 and F = Z, so that we take S′ = ∗

and S = Sn . We want to compute the cokernel illustrated in (3). We claim that the
image of πn+k(g, 1) is the subgroup Dec ⊂ πn+k(Sn) generated by decomposable
elements, which would prove the result Γ̃ k

n (Z) = Qk,n .
Take x ∈ πn+k(T ∨ Sn)2 and consider its image πn+k(g, 1)(x) ∈ πn+k(Sn) as

illustrated in the diagram

Sn+k

�����������
x �� T ∨ Sn

(g,1)
��

Sn .

Since T is a wedge of spheres (of dimensions strictly between n and n + k), the
Hilton–Milnor theorem [28, Theorem XI.8.1] implies

πn+k(T ∨ Sn) �
⊕

j

πn+k(Sm j )

for some appropriate dimensions m j , and x can be expressed as

x =
∑

j

p j ◦ x j
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where the p j are certain iterated Whitehead products of summand inclusions of the
individual spheres of T ∨ Sn . In particular, the element

(g, 1) ◦ x = (g, 1) ◦
⎛
⎝∑

j

p j ◦ x j

⎞
⎠ =

∑
j

(g, 1) ◦ p j ◦ x j

is a sum of decomposables, except possibly one term, corresponding to the summand
inclusion Sn ↪→ T ∨ Sn . However, that one term is precisely x j = (0, 1) ◦ x =
πn+k(0, 1)(x) = 0 by assumption. Hence πn+k(g, 1)(x) is decomposable.

Conversely, take any decomposable element x ∈ πn+k(Sn). By the assumption
k �= n −1, x must be a sum of compositions x = ∑

i xi ◦αi for some αi ∈ πn+k(Smi ),
xi ∈ πmi (Sn), n < mi < n+k. But each such composite is in the image ofπn+k(g, 1).
By construction of T , there is a wedge summand Smi ↪→ T corresponding to xi ∈
πmi (Sn). The diagram

Sn+k

�������������������
αi �� Smi

xi

��			
		

		
		

� � ι �� T ∨ Sn

(g,1)
��

Sn .

illustrates the equality xi ◦αi = (g, 1)◦ ι◦αi = πn+k(g, 1)(ι◦αi ). Moreover, the map
(0, 1)◦ι : Smi → Sn is null,whichguarantees ι◦αi ∈ ker πn+k(0, 1) = πn+k(T ∨Sn)2.

Step 2: Assume An is free.
Take S = ∨l Sn satisfying An = F � ⊕lZ = πn(S) and take S′ = ∗. Consider the

composition function

πn(S) × πn+k(Sn) → πn+k(S)

(x, α) �→ x ◦ α.

It is linear in the second variable α but not in the first variable x . Failure to be linear
in x is measured by the “distributive law of homotopy theory” or Hilton’s formula
[28, Theorem XI.8.5]. The error terms are composites which are all in the image of
πn+k(g, 1) : πn+k(T ∨ S)2 → πn+k(S) as explained in step 1. By modding out this
image, we obtain a well-defined bilinear map

πn(S) ⊗ πn+k(Sn) → Γ̃ k
n (An).

This map vanishes on elements x ⊗ α where α is decomposable, since such an α is in
the image of πn+k(g, 1). Thus there is an induced canonical map

ϕ : πn(S) ⊗ Qk,n → Γ̃ k
n (An).
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We claim that ϕ is an isomorphism. The Hilton–Milnor theorem provides an isomor-
phism

πn+k(S) = πn+k(∨l Sn)

�
⊕

j

πn+k(Sm j )

�
⊕

l

πn+k(Sn) ⊕
⊕

j such that m j >n

πn+k(Sm j )

so that we can project onto the first summand ⊕lπn+k(Sn) ∼= F ⊗ πn+k(Sn) and then
mod out the decomposables:

πn+k(S) � F ⊗ πn+k(Sn) � F ⊗ Qk,n = πn(S) ⊗ Qk,n .

This map vanishes on the image of πn+k(g, 1) and therefore induces a map on the
cokernel

ψ : Γ̃ k
n (An) → πn(S) ⊗ Qk,n .

One readily checks that ψ is inverse to ϕ.

Step 3: An is an arbitrary abelian group.
The free presentation of An can be canonically turned into the reflexive coequalizer

diagram:

R ⊕ F
( f,1) ��

(0,1)
�� F �� �� An

where the summand inclusion F ↪→ R ⊕ F is a common section of the pair of maps.
Since the functor − ⊗ Qk,n : Ab → Ab preserves reflexive coequalizers (in fact it is
additive and right exact), it suffices to show that Γ̃ k

n preserves reflexive coequalizers
to obtain the natural isomorphism

Γ̃ k
n (An) = An ⊗ Qk,n

using Step 2.
To prove that Γ̃ k

n preserves reflexive coequalizers, recall that this functor is the
composite

Ab ∼= ΠAlg0n

Γ̃ k
n

��
� � ι �� ΠAlgk−1

n

Γ k
n

��L �� ΠAlgk
n

πn+k �� Ab
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where L is left adjoint to Postnikov truncation, and in particular L preserves coli-
mits. The inclusion ι : ΠAlg0n → ΠAlgk−1

n admits a right adjoint, and thus preserves
colimits. By [1, Chapter 3], reflexive coequalizers in ΠAlgk

n are computed at the level
of underlying graded sets, and are in particular preserved by the restriction functor
πn+k : ΠAlgk

n → Ab. �
Proof of Proposition 3.7 Similar to the proof of 2.10 above. The key ingredient here
is the computation of [2, Corollary 9.4]:

π2n−1(S) ∼= πn(S) ⊗q π2n−1{Sn}

where S = ∨l Sn is a wedge of n–spheres, so that πn(S) ∼= ⊕lZ is a free abelian
group. Decomposables (compositions) must be modded out for the same reason as in
the proof of 2.10.

The functor − ⊗q Qn−1{Sn} : Ab → Ab is not additive and does not preserve
cokernels in general, but it does preserve reflexive coequalizers. �
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