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Abstract We examine the topological characteristic cohomology classes of complex-
ified vector bundles. In particular, all the classes coming from the real vector bundles
underlying the complexification are determined.
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1 Introduction and statement of the results

In the theory of characteristic classes (in the sense of Milnor and Stasheff [4], whom
we follow in terminology and notation in this article), it is well-known how the Chern
classes are mapped to even Stiefel–Whitney classes when converting complex vec-
tor space bundles to real vector space bundles by forgetting the complex structure.
In the other direction, we have the fibre-wise complexification: Given a real vector
bundle F → B with fibre R

n , its complexification is the complex vector bundle
FC := F ⊗R C → B obtained by declaring complex multiplication on F ⊕ F in
each fibre R

n ⊕ R
n by i(x, y) := (−y, x) for the imaginary unit i . The Pontrjagin

classes of a real vector bundle are (up to a sign) constructed as Chern classes of its
complexification. Conversely, which classes of a real vector bundle can be attributed
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538 A. D. Rahm

to its complexification? These are the complexifiable characteristic classes which we
determine in this article, under the request that they are characteristic classes in the
sense of [4].

Consider a real vector bundle F → B and a complex vector bundle E → B over
the same paracompact Hausdorff base space B (we keep the latter assumption on B
throughout this article).

Definition 1 A real vector bundle F is called a real generator bundle of E , if its
complexification FC is isomorphic to E . In the case that such a bundle F exists, we
call E real-generated.

Not every complex vector bundle is real-generated; as the odd degree Chern classes
have the property c2k+1(E) = −c2k+1(E) on the complex conjugate bundle E , it
is an easy exercise to show that no complex vector bundle with some nonzero and
non-2-torsion odd Chern class can admit a real generator bundle. This makes it seem
possible that the subcategory of real-generated vector bundles could admit information
additional to its Chern classes, in terms of complexifiable classes of the real generator
bundles. However, we will see that the Chern classes already contain all of the relevant
information.

Definition 2 A characteristic class c of real vector bundles is complexifiable if for all
pairs (F, G) of real vector bundles with isomorphic complexification FC ∼= GC, the
identity c(F) = c(G) holds.

We will now give a complete classification of the complexifiable characteristic
classes. Denote by Z2 := Z/2Z the group with two elements.

Theorem 1 Let c be a polynomial in the Stiefel–Whitney classes wi , i ∈ N ∪ {0}.
Then the following two conditions are equivalent:

(i) The class c is an element of the sub-ring Z2[w2
i ]i∈N∪{0} of the polynomials in the

Stiefel–Whitney classes.
(ii) The class c is complexifiable.

The implication (i)⇒(ii) follows easily from the fact that the square of the n-
th Stiefel–Whitney class of a real vector bundle is the mod-2-reduction of the n-th
Chern class of the complexified vector bundle. The proof of the implication (ii)⇒(i)
is prepared with several intermediary steps leading to it. One ingredient, Lemma 1,
follows essentially from work of Cartan on fibrations of H-spaces (at Cartan’s time
called Hopf spaces). But this only allows us to show that complexifiable characteristic
classes in cohomology withZ2-coefficients are contained in the ideal generated by the
squares of the Stiefel–Whitney classes. To show that they constitute exactly the subring
generated by the squares of the Stiefel–Whitney classes, which is much smaller, we
need the technical decomposition of Lemma 2 that we prove by induction.

By their naturality, characteristic classes are uniquely determined on the universal
bundle over the classifying space (BO for real vector bundles). As the cohomology
ring H∗(BO, Z2) is generated by the Stiefel–Whitney classes of the universal bundle,
all modulo 2 characteristic classes are polynomials in the Stiefel–Whitney classes,
and Theorem 1 tells us which of them are complexifiable.
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Complexifiable characteristic classes 539

We build on this result to investigate which integral cohomology classes are com-
plexifiable. To express our result, we use Feshbach’s description [3] of the cohomol-
ogy ring of the classifying space BO with Z-coefficients. Generators for this ring are
known since Thomas [5,6], and all the relations between its generators are known
since Brown [1] and Feshbach [3]. Consider the Steenrod squaring operation Sq1 and
the mod-2-reduction homomorphism

ρ : H∗(BO, Z) → H∗(BO, Z2).

As generators for H∗(BO, Z), Feshbach uses Pontrjagin classes and classes VI with
index sets I that are finite nonempty subsets of

{ 1
2

}∪N, admitting mod-2-reductions

ρ(VI ) = Sq1

(
⋃

i∈I

ω2i

)

,

where ωi is the i-th Stiefel–Whitney class of the universal bundle over BO. In par-
ticular, we have a generator V{ 12 }. We give the details of Feshbach’s description in the
appendix. Our final result now takes the following shape.

Theorem 2 Let C be a polynomial in V 2
I , with I arbitrary, V{ 12 } and the Pontrjagin

classes. Then C is complexifiable.

And conversely, we can say the following.

Theorem 3 Let C be a complexifiable integral characteristic class. Then for any real
vector bundle ξ , C(ξ) is completely determined by some Chern classes ck(ξ

C), k ∈ N.

2 Classes in cohomology with Z2-coefficients

In this section, we shall prove Theorem 1, after developing all the tools we need to
do so. For this entire section, we only consider cohomology with Z2-coefficients. We
write N for the natural numbers without 0.

Let F → B be a real vector bundle over a paracompact Hausdorff base space. Let c
be a complexifiable polynomial in the Stiefel–Whitney classes wi . LetO be the direct
limit of the orthogonal groups, U the direct limit of the unitary groups and EU the
universal total space to the classifying space BU for stable complex vector bundles.
Let BO := EU/O, via the inclusion O ⊂ U induced by the canonical inclusion
R ⊂ C. Let γ (R∞) be the universal bundle over BO, and denote its Stiefel–Whitney
classes by ωi := wi (γ (R∞)). Let ε be the trivial vector bundle.

Lemma 1 Let c be a complexifiable class in cohomology with Z2-coefficients. Then
c(γ (R∞)) − c(ε) is contained in the ideal 〈ω2

i 〉i∈N.

Proof We use Cartan’s fibration of H-spaces [2] p. 17–22 (fibration en espaces de
Hopf),

U/O f �� BO p �� �� BU.
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540 A. D. Rahm

The cohomology ring H∗(BO, Z2) is the polynomial algebra Z2[ω1, ω2, . . . ] with
generators the Stiefel–Whitney classes of the universal bundle. Cartan [2] p. 17–22
has shown that f ∗ maps these generators ωi to the generators νi := wi ( f ∗γ (R∞)) of
the exterior algebra

H∗(U/O, Z2) =
∧

(Z2[ν1, ν2, . . . ]),

which is obtained by dividing out the ideal 〈ν2i 〉i∈N of the polynomial algebra
Z2[ν1, ν2, . . . ]. Hence, exactly the ideal 〈ω2

i 〉i∈N is mapped to zero. So,

〈ω2
i 〉i∈N = ker f ∗.

Composing f with the projection p : BO → BU , we obtain a constant map and
therefore a trivial bundle (p ◦ f )∗γ (C∞). This pullback of the complex universal
bundle is the complexification of f ∗γ (R∞):

(p ◦ f )∗γ (C∞) = f ∗ p∗EU ×U C
∞ = f ∗EO ×O C

∞ = f ∗(EO ×O R
∞)C

= f ∗γ (R∞)C = ( f ∗γ (R∞))C.

So, f ∗γ (R∞) admits a trivial complexification, and all of the complexifiable classes
c must treat it like the trivial bundle ε:

c( f ∗γ (R∞)) = c(ε). A pullback of the trivial bundle is trivial too, so

0 = c( f ∗γ (R∞)) − c( f ∗ε) = f ∗(c(γ (R∞)) − c(ε))

by naturality. Whence, c(γ (R∞)) − c(ε) is an element of the kernel of f ∗, which we
have identified with the ideal 〈ω2

i 〉i∈N. ��
The above lemma allows us to write the characteristic class c under investigation

as a sum over products with squares of Stiefel–Whitney classes,

c(γ (R∞)) − c(ε) =
m∑

j=1

ω2
i j

∪ r j (γ (R∞)),

with r j some polynomials in the Stiefel–Whitney classes.Wemust inductively identify
squares of Stiefel–Whitney classes as factors of the remainders r j , until we achieve
the decomposition claimed in the following lemma.

Notation For indices j1, . . . , js ∈ N and i j1 , . . . , i( j1,..., js ) ∈ N, we shall write �js :=
( j1, . . . , js) and I ( �js) := {i �j1, . . . , i �js }. We set �j0 := 0.

Note that the classes c(ε), r �j (ε) of the trivial bundle ε that we are going to use now,

are just coefficients in H0(BO, Z2) ∼= {0, 1}.
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Complexifiable characteristic classes 541

Lemma 2 Any complexifiable characteristic class c admits a decomposition

c(γ (R∞)) − c(ε) =
(

∑m �jk−1
jk=1 ω2

i �jk
r �jk (γ (R∞))

)
∪

(⋃k−1
n=1

∑m �jn−1
jn=1 ω2

i �jn

)

+∑k−1
s=1

⋃s
n=1

∑m �jn−1
jn=1 ω2

i �jn
r �jn (ε) for some k, m �j0 , . . . , m �jk−1

∈ N ∪ {0}, some

i �j1, . . . , i �jk ∈ N, some r �jk (γ (R∞)) ∈ H∗(BO, Z2), and some coefficients
r �j1(ε), . . . , r �jk−1

(ε) ∈ {0, 1}, such that the following inequality holds:
2

∑
p∈I ( �jk ) p > deg c.

Remark A Once that this lemma is established, we use that the degree must be the
same on both sides in order to deduce that the sum over all terms containing a factor⋃

p∈I ( �jk ) ω2
p exceeding the degree of c via the requested inequality must already be

zero. So in fact, the decomposition is of the form

c(γ (R∞)) − c(ε) =
k−1∑

s=1

s⋃

n=1

m �jn−1∑

jn=1

ω2
i �jn

∪ r �jn (ε),

meaning that c(γ (R∞)) is a polynomial in some squares ω2
p , p ∈ N ∪ {0}, which

implies Theorem 1, (ii)⇒(i).

Before giving the proof of Lemma 2, we shall introduce two notations just to make
that proof more readable.

Definition 3 An index vector �j appears in a given decomposition of c(γ (R∞))−c(ε)

if both
(
2

∑
p∈I ( �j) p

)
≤ deg c and this decomposition admits a summand of the form

r �j (γ (R∞)) ∪ ⋃
p∈I ( �j) ω2

p.

Note that the terms
(

r �j (γ (R∞)) ∪ ⋃
p∈I ( �j) ω2

p

)
with

(
2

∑
p∈I ( �j) p > deg c

)
must

vanish in any decomposition of c(γ (R∞)) − c(ε). That is why we do not let them
contribute in the last definition.

Definition 4 Set � := min �j appears max I ( �j). Consider an index vector �j appearing in
a given decomposition of c(γ (R∞)) − c(ε).

If max I ( �j) = �, then we call r �j (γ (R∞)) − r �j (ε) a lower degree remainder.

As seen in Lemma 1, c(γ (R∞)) − c(ε) lies in ker f ∗ = 〈ω2
i 〉i∈N, so there is a

decomposition

c(γ (R∞)) − c(ε) =
m∑

j1=1

ω2
i �j1

∪ r �j1(γ (R∞)),

for some m ∈ N ∪ {0}, some i �j1 ∈ N, and some r �j1(γ (R∞)) ∈ H∗(BO, Z2). We will
show that there is a lower degree remainder r �j1(γ (R∞))−r �j1(ε) in this decomposition
that lies in ker f ∗. Then, that lower degree remainder admits a decomposition as
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542 A. D. Rahm

a linear combination of squares ω2
i �j2

with coefficients r �j2(γ (R∞)) in H∗(BO, Z2),

leading to a new decomposition of c(γ (R∞)) − c(ε). So, inductively, we will replace
a lower degree remainder in any given decomposition of c(γ (R∞))− c(ε) by a linear
combination the coefficients of which are remainders with longer index vectors. That
is why after a finite number of these steps, the index vectors �j will no longer appear,

because the sums
(
2

∑
p∈I ( �j) p

)
will exceed the degree of c. This is the moment

when all lower degree remainders are eliminated and the decomposition described in
Lemma 2 is achieved.

To carry out this strategy, we first need to introduce the following truncation pro-
cedure.

2.1 Truncated stable invariance

With Lemma 3, we shall give a sense to “the truncation of the equation c(F ⊕ G) =
c(G) at the dimension �”. Define the bundles

F := pr∗
1 f ∗γ (R∞) −→ U/O × BO

and

G := pr∗
2γ (R∞) −→ U/O × BO,

where pri is the projection on the i-th factor of the base space U/O× BO. Let � ∈ N.
Consider the map

(id, emb�) : (U/O × BO�) ↪→ (U/O × BO)

where emb� : BO� ↪→ BO is the natural embedding into the direct limit. Then
the bundle G� := (id, emb�)

∗G admits Stiefel–Whitney classes that are in bijective
correspondence with those of the �-dimensional universal bundle γ�(R

∞) → BO�.
To be precise, G�

∼= prBO�
∗γ�(R

∞) and the situation is

γ�(R
∞)

��

G�
∼= prBO�

∗γ�(R
∞)

��

G := pr∗
2γ (R∞)

��

γ (R∞)

��
BO� (U/O × BO�)

prBO��� � � (id,embl ) �� (U/O × BO)
pr2 �� BO.

Especially, wp(G�) vanishes for p > �. Compare the latter statements with [4].

Lemma 3 Under the above assumptions, the following equation holds:

max I ( �j)≤�∑

�j appears
r �j (F ⊕ G�)

⋃

p∈I ( �j)
w2

p(G�) =
max I ( �j)≤�∑

�j appears
r �j (G�)

⋃

p∈I ( �j)
w2

p(G�).

We will call it the equation c(F ⊕ G) = c(G) truncated at dimension �.

123



Complexifiable characteristic classes 543

Proof The bundle F inherits from f ∗γ (R∞) the property of admitting a trivial com-
plexification. As c is complexifiable, we have c(F ⊕G) = c(G).Applying the induced
cohomology map (id, emb�)

∗ to this equation, we obtain

c(id∗F ⊕ emb∗
� G) = c(emb∗

� G)

and hence

c(F ⊕ G�) = c(G�).

By the universality of γ (R∞), and the naturality of all characteristic classes with
respect to the classifying maps of G� and F ⊕ G�, any given decomposition

c(γ (R∞)) − c(ε) =
∑

�j
r �j (γ (R∞))

⋃

p∈I ( �j)
ω2

p

gives analogous decompositions

c(G�) − c(ε) =
∑

�j
r �j (G�)

⋃

p∈I ( �j)
w2

p(G�)

and

c(F ⊕ G�) − c(ε) =
∑

�j
r �j (F ⊕ G�)

⋃

p∈I ( �j)
w2

p(F ⊕ G�).

By Theorem 1, (i)⇒(ii) the square w2
p is complexifiable and hence invariant under

adding the bundle F of trivial complexification:

w2
p(F ⊕ G�) = w2

p(G�).

Thus, the equation c(F ⊕ G�) = c(G�) can be rewritten using that all summands
containing a factor wp(G�) with p > � vanish:

max I ( �j)≤�∑

�j
r �j (F ⊕ G�)

⋃

p∈I ( �j)
w2

p(G�) =
max I ( �j)≤�∑

�j
r �j (G�

⋃

p∈I ( �j)
w2

p(G�).

In order not to exceed the degree of c, also all terms with 2
∑

p∈I ( �j) p > deg c must
vanish:

max I ( �j)≤�∑

�j appears
r �j (F ⊕ G�)

⋃

p∈I ( �j)
w2

p(G�) =
max I ( �j)≤�∑

�j appears
r �j (G�)

⋃

p∈I ( �j)
w2

p(G�).
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544 A. D. Rahm

So, this last equation is the equation c(F ⊕ G) = c(G) truncated at the dimension �.
��

Proof of Lemma 2 We carry out the proof by induction over the index vector identi-
fying a lower degree remainder.

Base case. Lemma 1 implies c(γ (R∞)) − c(ε) = ∑m
j1=1 ω2

i �j1
∪ r �j1(γ (R∞)),

with r �j1 some polynomials in the Stiefel–Whitney classes.
Rename i1, . . . , im such that i1 < i2 < · · · < im .
We truncate the equation c(F ⊕ G) = c(G) at the dimension i1, and obtain

i j1≤i1∑

�j1 appears
r �j1(F ⊕ Gi1) ∪ w2

i �j1
(Gi1) =

i j1≤i1∑

�j1 appears
r �j1(Gi1) ∪ w2

i �j1
(Gi1).

As i1 < i2 < · · · < im , this is just r1(F ⊕ Gi1) ∪ w2
i1
(Gi1) = r1(Gi1) ∪ w2

i1
(Gi1).

Injectivity of themultiplicationmap∪w2
i1
(Gi1) in H

∗(U/O× BOi1 , Z2) then holds
r1(F ⊕ Gi1) = r1(Gi1). Then we pull this back with

(id × const) : U/O → (U/O × BOi1),

(where the map const takes just one, arbitrary, value), to obtain

r1( f ∗γ (R∞) ⊕ ε) = r1(ε).

Due to the Whitney sum formula, the Stiefel–Whitney classes in which r1 is a poly-
nomial are stable under adding a trivial bundle; and the above left hand term equals
r1( f ∗γ (R∞)).

Using naturality of characteristic classes with respect to pullbacks, this shows that
r1(γ (R∞))−r1(ε) lies in ker f ∗. So we can replace it with a linear (over the field with
2 elements) combination of strictly quadratic terms, providing a new decomposition,

c(γ (R∞))−c(ε) = ω2
i1

m1∑

j2=1

ω2
i(1, j2)

r(1, j1)(γ (R∞)) + ω2
i1r1(ε) +

m∑

j1=2

ω2
i j1

r j1(γ (R∞)).

Induction hypothesis. Consider a given decomposition

c(γ (R∞)) − c(ε) =
⎛

⎝
∑

�jk
r �jk (γ (R∞))

⋃

p∈I ( �jk )
ω2

p

⎞

⎠ +
k−1∑

s=1

s⋃

n=1

m �jn−1∑

jn=1

ω2
i �jn

∪ r �jn (ε).
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Complexifiable characteristic classes 545

Inductive claim. The decomposition of the induction hypothesis admits a lower degree
remainder that lies in ker f ∗. We show this in the inductive step.

Inductive step. We truncate the equation c(F ⊕ G) = c(G) at the dimension

� := min
�j appears

max I ( �j).

Then the remaining terms of c(G�) − c(ε) do all have the common factor w2
l (G�).

This is not a zero divisor in H∗(U/O × BO�, Z2) and furthermore its multiplication
map ∪w2

l (G�) is injective. Now, in c(F ⊕ G�) = c(G�), this injectivity implies

max I ( �j)≤�∑

�j appears
r �j (F ⊕ G�)

⋃

p∈I ( �j)\{�}
w2

p(G�) =
max I ( �j)≤�∑

�j appears
r �j (G�)

⋃

p∈I ( �j)\{�}
w2

p(G�).

♦ If there is just one lower degree remainder r �j (γ (R∞)) − r �j (ε), then we use the
injectivity of the multiplication map

∪
⎛

⎝
⋃

p∈I ( �j)\{�}
w2

p(G�)

⎞

⎠ on H∗(U/O × BO�, Z2)

to obtain r �j (F ⊕ G�) = r �j (G�). Then we pull this back with

(id × const) : U/O → (U/O × BO�)

to obtain r �j ( f ∗γ (R∞) ⊕ ε) = r �j (ε). Using naturality, we see now that the lower
degree remainder r �j (γ (R∞)) − r �j (ε) lies in ker f ∗.

♦ Otherwise, we truncate the remaining equation again at the dimension

�′ :=
max I ( �j)=�

min
�j appears

max(I ( �j)\{�}),

so as to obtain

max(I ( �j)\{�})≤�′
∑

�j appears
r �j (F ⊕ G�′)

⋃

p∈(I ( �j)\{�})
w2

p(G�′)

=
max(I ( �j)\{�})≤�′

∑

�j appears
r �j (G�′)

⋃

p∈(I ( �j)\{�})
w2

p(G�′).

Now we proceed analogously with the choice marked with the “♦” signs and, after
finitelymany steps, find a lower degree remainder in ker f ∗. This lower degree remain-
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546 A. D. Rahm

der can be replaced by a linear combination of squares, holding a new decomposition
of c(γ (R∞)) − c(ε). This completes the induction. ��

Proof of Theorem 1 (ii)⇒(i) Let c be a complexifiable characteristic class. ByRemark
A and the universality of γ (R∞), the decomposition of Lemma 2 yields the decom-
position

c = c(ε) +
k−1∑

s=1

s⋃

n=1

m �jn−1∑

jn=1

w2
i �jn

∪ r �jn (ε).

As c(ε), r �j1(ε), . . . , r �jk−1
(ε) are elements of {0, 1 = w0 = w2

0}, the class c is in the

sub-ring Z2[w2
i ]i∈N∪{0} of the polynomial ring of Stiefel–Whitney classes. ��

This completes the proof of Theorem 1.

3 Classes in cohomology with integral coefficients

We will build on our results obtained for Z2-coefficients and use the mod-2-reduction
homomorphism

ρ : H∗(−, Z) → H∗(−, Z2)

to prove the theoremswithZ-coefficients stated in the introduction. Define the element
VI ∈ H∗(BO, Z) as in the appendix, and let vI be the characteristic class that is VI

on the universal bundle.

Lemma 4 For any real bundle ξ , the mod-2-reduced class ρ(v2I (ξ)) equals

⎛

⎜
⎝

∑

i∈I∩{ 12 }
w2
1 ∪

⋃

j∈I\{i}
w4 j +

∑

i∈I\{ 12 }
(w4i+2 + w2 ∪ w4i ) ∪

⋃

j∈I\{i}
w4 j

⎞

⎟
⎠ (ξ ⊕ ξ).

Proof By Feshbach’s description (in the appendix), the mod-2-reduction is

ρ
(
v2I (ξ)

)
=

(

Sq1

(
⋃

i∈I

w2i (ξ)

))2

.

We expand this expression until it is a polynomial in the Stiefel–Whitney classes. Then
we rearrange the expression using the Whitney sum formula and the symmetry of the
terms. ��
Proof of Theorem 2 For v{ 12 } and the Pontrjagin classes, the result is obvious. Now

let F → B, G → B be real bundles with FC ∼= GC. Forgetting the complex
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Complexifiable characteristic classes 547

structure, this is F ⊕ F ∼= G ⊕ G. By naturality of the Stiefel–Whitney classes, for
any finite nonempty index set I ⊂ ({ 12 } ∪ N), the polynomial given in Lemma 4 is the
same for the arguments (F ⊕ F) and (G ⊕ G). Applying Lemma 4, this means that
ρ(v2I (F)) = ρ(v2I (G)). As V 2

I is in the torsion of H∗(BO, Z), restricted on which ρ

is injective [3] p. 513, this proves the theorem: v2I (F) = v2I (G). ��
Proof of Theorem 3 Feshbach [3] p. 513 shows that

H∗(BO, Z) = Z[πi ]i∈N ⊕ {2-torsion},

where πi is the i-th Pontrjagin class of the universal bundle. Then C = P(pi ) + T
with P a polynomial in the Pontrjagin classes pi and T some 2-torsion class. So for
every real bundle ξ ,

ρ(C)(ξ) = P (ρ (pi (ξ))) + ρ(T )(ξ).

Bydefinition of the Pontrjagin classes, pi (ξ) = (−1)i c2i (ξ
C) ; and using the reduction

ρ
(
c2i (ξ

C)
) = w4i (ξ ⊕ ξ) from Chern classes to Stiefel–Whitney classes, further the

Whitney sum formula and the symmetry of the summands, we deduce

ρ(C)(ξ) = P(w2
2i (ξ)) + ρ(T )(ξ).

It follows from Theorem 1 that the mod-2-reduction ρ(C)(ξ) is a polynomial in the
squares of Stiefel–Whitney classes; and hence also ρ(T )(ξ) is a polynomial Q(w2

j (ξ))

in the squares of Stiefel–Whitney classes. As according to [3] p. 513, ρ is injective
on the torsion elements, there is an inverse for the restricted map ρ|{2-torsion}, lifting
ρ(T ) back to T . So, from

T (ξ) = ρ|{2-torsion}
−1

(
Q(w2

j (ξ))
)

,

we obtain

C(ξ) = P
(
(−1)i c2i (ξ

C)
)

+ ρ|{2-torsion}
−1

(
Q

(
ρ(c j (ξ

C))
))

.
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Appendix: The cohomology ring of BO with Z-coefficients

The cohomology ring of BO with Z-coefficients is known since Thomas [5,6] and
with all relations between its generators since Brown [1] and Feshbach [3]. It can be
derived as follows. Define the set of generators of H∗(BOn, Z) as in [3, definition 1]:
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It consists of the Pontrjagin classes pi of the universal bundle over BOn , and classes
VI with I ranging over all finite nonempty subsets of

{
1

2

}
∪

{
k ∈ N

∣
∣
∣
∣0 < k <

n + 1

2

}

with the proviso that I does not contain both 1
2 and n

2 , for n > 1.
According to [3, theorem 2], H∗(BOn, Z) is for all n ≤ ∞ isomorphic to the

polynomial ring over Z generated by the above specified elements modulo the ideal
generated by the following six types of relations.

In all relations except the first, the cardinality of I is less than or equal to that of
J and greater than one. On the index sets I and J , we perform set-theoretic unions
(∪), intersections (∩) and differences (\). By convention, p 1

2
where it occurs means

V{
1
2

}. Also, if
{ n
2 , 1

2

} ⊂ I ∪ J , then VI∪J shall mean V{ n
2 }V

(I∪J )\
{

n
2 , 12

}. As Feshbach

remarks, most of the restrictions on I and J are to avoid repeating relations.

1) 2VI = 0.
2) VI VJ + VI∪J VI∩J + VI\J VJ\I

∏
i∈I∩J pi = 0 (for I ∩ J �= ∅, I � J ).

3) VI VJ + ∑
i∈I V{i}V(J\I )∪{i}

∏
j∈I\{i} p j = 0 (for I ⊂ J ).

4) VI VJ + ∑
i∈I V{i}V(I∪J )\{i} = 0 (for I ∩ J = ∅; if I and J have the same

cardinality, then the smallest element of I is to be less than that of J ).
5)

∑
i∈I V{i}VI\{i} = 0.

6) V{ 12 } p n
2

+ V 2
{ n
2 } = 0, if n is even.

Then ρ(VI ) = Sq1(
⋃

i∈I w2i ).
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