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Abstract Small Bénabou’s bicategories and, in particular, Mac Lane’s monoidal cat-
egories, have well-understood classifying spaces, which give geometric meaning to
their cells. This paper contains some contributions to the study of the relationship
between bicategories and the homotopy types of their classifying spaces. Mainly,
generalizations are given of Quillen’s Theorems A and B to lax functors between
bicategories.
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1 Introduction and summary

Categorical structures have numerous applications outside of category theory proper as
they occur naturally in many branches of mathematics, physics and computer science.
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126 M. Calvo et al.

In particular, higher-dimensional categories provide a suitable tool for the treatment of
an extensive list of issues with recognized mathematical interest in algebraic topology,
algebraic geometry, algebraic K -theory, string field theory, conformal field theory
and statistical mechanics, as well as in the study of geometric structures on low-
dimensional manifolds. See the recent book Towards Higher Categories [1], which
provides a useful background for this subject.

Like small categories [28], small Bénabou’s bicategories and, in particular, Mac
Lane’s monoidal categories, are closely related to topological spaces through the clas-
sifying space construction. This assigns to each bicategory B a CW-complex BB
whose cells give a natural geometric meaning to the cells of the bicategory [9]. By
this correspondence, for example, bigroupoids correspond to homotopy 2-types (CW-
complexes whose nth homotopy group at any base point vanishes for n ≥ 3), and
certain monoidal categories to delooping of the classifying spaces of the underly-
ing categories (up to group completion). The process of taking classifying spaces of
bicategories reveals a way to transport categorical coherence to homotopical coher-
ence since the construction B �→ BB preserves products, any lax or oplax functor
between bicategories, F : A → B, induces a continuous map on classifying spaces
BF : BA → BB, any lax or oplax transformation between these, α : F ⇒ F ′,
induces a homotopy between the corresponding induced maps Bα : BF ⇒ BF ′, and
any modification between these, ϕ : α � β, a homotopy Bϕ : Bα � Bβ between
them. Thus, if A and B are biequivalent bicategories or if a homomorphism A → B
has a biadjoint, then their associated classifying spaces are homotopy equivalent.

In this paper we show the subtlety of this theory by analyzing the homotopy fibers of
the map BF : BA → BB, which is induced by a lax functor between small bicategories
F : A → B, such as Quillen did in [28] where he stated his celebrated Theorems A
and B for the classifying spaces of small categories. Every object b ∈ ObB has an
associated homotopy fiber bicategory F↓b whose objects are the 1-cells f : Fa → b
in B, with a an object of A; the 1-cells consist of all triangles

Fa
Fu ��

f ���
��

�� β⇒
Fa′

f ′����
��
�

b

with u : a → a′ a 1-cell in A and β : f ⇒ f ′ ◦ Fu a 2-cell in B, and the 2-cells of
this bicategory are commutative diagrams of 2-cells in B of the form

f
β

�� ��
��
��
�

��
��
��
�

β ′

���
��

��
��

��
��

��
�

f ′ ◦ Fu
1 f ′ ◦Fα

�� f ′ ◦ Fu′

with α : u ⇒ u′ a 2-cell in A. Compositions, identities, and the structure associativity
and unit constraints in F↓b are canonically provided by those of the involved bicate-
gories and the structure 2-cells of the lax functor (see Sect. 5 for details). For the case
F = 1B, we have the comma bicategory B↓b. Then, we prove (see Theorem 5.4):
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Bicategorical homotopy fiber sequences 127

“For every object b of the bicategory B, the induced square

B(F↓b)

��

�� B(B↓b)

��
BA BF �� BB

is homotopy cartesian if and only if all the maps Bp : B(F↓ b) → B(F↓ b′),
induced by the 1-cells p : b → b′ of B, are homotopy equivalences.”

Since the spaces B(B↓b) are contractible (Lemma 5.2), the result above tells us that,
under the minimum necessary conditions, the classifying space of the homotopy fiber
bicategory F↓ b is homotopy equivalent to the homotopy fiber of BF : BA → BB
at its 0-cell Bb ∈ BB. Thus, the name ‘homotopy fiber bicategory’ is well chosen.
Furthermore, as a corollary, we obtain (see Theorem 5.6):

“If all the spaces B(F↓ b) are contractible, then the map BF : BA → BB is a
homotopy equivalence.”

When the bicategories A and B involved in the results above are actually categories,
then they are reduced to the well-known Theorems A and B by Quillen [28]. Indeed,
the methods used in the proof of Theorem 5.4 we give follow similar lines to those used
by Quillen in his proof of Theorem B. However, the situation with bicategories is more
complicated than with categories. Let us stress the two main differences between both
situations: On one hand, every 2-cell σ : p ⇒ q : b → b′ in B gives rise to a homotopy

Bσ : Bp 
 Bq : B(F↓b) → B(F↓b′)

that must be taken into account. On the other hand, for p : b → b′ and p′ : b′ → b′′
any two composable 1-cells in B, we have a homotopy

Bp′ ◦ Bp 
 B(p′ ◦ p) : B(F↓b) → B(F↓b′′),

rather than the identity Bp′ ◦ Bp = B(p′ ◦ p), as it happens in the category case.
This unfortunate behavior is due to the fact that neither is the horizontal composition
of 1-cells in the bicategories involved (strictly) associative nor does the lax functor
preserve (strictly) that composition. Therefore, in the process of taking homotopy fiber
bicategories, F↓ : b �→ F↓b, we are forced to deal with lax bidiagrams of bicategories

F : B → Bicat, b �→ Fb,

which are a type of lax functors in the sense of Gordon et al. [18] from the bicategory
B to the tricategory of small bicategories, rather than ordinary diagrams of small
categories, that is, functors F : B → Cat, as it happens when both A and B are
categories.

After this introductory Sect. 1, the paper is organized in four sections. Section 2 is
an attempt to make the paper as self-contained as possible; hence, at the same time
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128 M. Calvo et al.

as we set notations and terminology, we define and describe in detail the kind of lax
functors F : B → Bicat we are going to work with. Section 3 is very technical but
crucial to our discussions. It is mainly dedicated to describing in detail a bicategor-
ical Grothendieck construction, which assembles any lax bidiagram of bicategories
F : B → Bicat into a bicategory

∫
B F. This is similar to what the ordinary con-

struction, due to Grothendieck [20,21], Giraud [15,16], and Thomason [32] on lax
diagrams of categories with the shape of any given category. By means of this higher
Grothendieck construction, in Sect. 4 we establish the third relevant result of the paper,
namely (see Theorem 4.3):

“If F : B → Bicat is a lax bidiagram of bicategories such that each 1-cell
p : b → b′ in the bicategory B induces a homotopy equivalence BFb 
 BFb′ ,
then, for every object b ∈ ObB, there is an induced homotopy cartesian
square

BFb ��

��

B
∫
B F

��
pt Bb �� BB.

That is, the classifying space BFb is homotopy equivalent to the homotopy
fiber of the map induced on classifying spaces by the projection homomorphism∫
B F → B at the 0-cell corresponding to the object b.”

Thanks to Thomason’s Homotopy Colimit Theorem [32], when B is a small cate-
gory and F values in Cat, the result above is equivalent to the relevant lemma used
by Quillen in his proof of Theorem B. Similarly here, the proof of the bicategor-
ical Theorem B, given in the last Sect. 5, essentially consists of two steps: First,
to apply that key result above to the lax bidiagram of homotopy fiber bicategories,
F↓ : B → Bicat, of a lax functor F : A → B. Second, to prove that there is a homo-
morphism

∫
B F↓ → A inducing a homotopy equivalence B(

∫
B F↓) 
 BA, so that

the bicategory
∫
B F↓ may be thought of as the “total bicategory” of the lax functor

F . Section 5 also includes some applications to classifying spaces of monoidal cate-
gories. For instance, we find a new proof of the well-known result by Mac Lane [26] and
Stasheff [29]:

“Let (M,⊗) = (M,⊗, I, a, l, r) be a monoidal category. If multiplication for
each object x ∈ ObM, y �→ y ⊗ x , induces a homotopy autoequivalence on
BM, then there is a homotopy equivalence

BM 
 �B(M,⊗),

between the classifying space of the underlying category and the loop space of
the classifying space of the monoidal category.”
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Bicategorical homotopy fiber sequences 129

2 Bicategorical preliminaries: Lax bidiagrams of bicategories

In this paper we shall work with small bicategories, and we refer the reader to the
papers by Bénabou [4], Street [30], Gordon et al. [18], Gurski [22], and Leinster
[25], for the background. The bicategorical conventions and the notations that we
use along the paper are the same as in [10, Sect. 2.1] and [9, Sect. 2.4]. Thus, given
any bicategory B, the composition in each hom-category B(a, b), that is, the vertical
composition of 2-cells, is denoted by β · α, while the symbol ◦ is used to denote the
horizontal composition functors B(b, c)× B(a, b)

◦→ B(a, c). Identities are denoted
as 1 f : f ⇒ f , for any 1-cell f : a → b, and 1a : a → a, for any object a ∈ ObB.
The associativity, right unit, and left unit constraints of the bicategory are respectively
denoted by the letters a, r , and l .

We will use that, in any bicategory, the commutativity of the two triangles

(1 ◦ g) ◦ f
a ��

l◦1 		�
��

��
��

��
�

1 ◦ (g ◦ f )

l

 ��
��

�
��

��
�

g ◦ f

(g ◦ f ) ◦ 1 a ��

r ��
��

��
��

��
��

��
g ◦ ( f ◦ 1)

1◦ r�� 		
		

		

		
		

		

g ◦ f

(1)

and the equality

r1 = l1 : 1 ◦ 1 ∼= 1 (2)

are consequence of the other axioms (this is not obvious, but a proof can be done
paralleling the given, for monoidal categories, by Joyal and Street in [24, Proposition
1.1]).

A lax functor is usually written as a pair F = (F, F̂) : A → B since we will
generally denote its structure constraints by

F̂g, f : Fg ◦ F f ⇒ F(g ◦ f ), F̂a : 1Fa ⇒ F1a .

The lax functor is termed a pseudo functor or homomorphism whenever all the structure
constraints F̂ are invertible. If the unit constraints F̂a are all identities, then the lax
functor is qualified as (strictly) unitary or normal and if, moreover, the constraints
F̂g, f are also identities, then F is called a 2-functor.

If F,G : A → B are lax functors, then we follow the convention of [18] in what is
meant by a lax transformation α = (α, α̂) : F ⇒ G. Thus, α consists of morphisms
αa : Fa → Ga, a ∈ ObA, and of 2-cells α̂ f : αb ◦ F f ⇒ G f ◦ αa, subject to the
usual axioms. When the 2-cells α̂ are all invertible, we say that α : F ⇒ G is a pseudo
transformation.

In accordance with the orientation of the naturality 2-cells chosen, if α, β : F ⇒ G
are two lax transformations, then a modification σ : α � β will consist of 2-cells
σa : αa ⇒ βa, a ∈ ObA, subject to the commutativity condition, for any morphism
f : a → b of A:
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130 M. Calvo et al.

Fa ��

αa

⇑σ
βa ��

F f

��

Ga

Gf

��

=

Fb

⇒α̂

αb
�� Gb

Fa
βa ��

F f

��

⇒β̂
Ga

Gf

��
Fb


βb

⇑σ
αb

�� Gb.

Bicat denotes the tricategory of bicategories, homomorphisms, pseudo natural trans-
formations, and modifications. In the structure of Bicat we use, the composition of
pseudo transformations is taken to be

(
B

G
��⇓β

G ′
�� C

)(
A

F
��⇓α

F ′
�� B

) = (
A

G F
��⇓βα

G ′F ′
�� C

)
,

where βα = βF ′ ◦ Gα : (
G F

Gα �� G F ′ βF ′
�� G ′F ′ )

, but note the existence of
the useful invertible modification

G F
�

βF ��

Gα ��

G ′F
G ′α��

G F ′ βF ′
�� G ′F ′

(3)

whose component at an object a of A, is β̂αa , the component of β at the morphism
αa.

2.1 Lax bidiagrams of bicategories

The next concept of fibered bicategory in bicategories is the basis of most of our
subsequent discussions. Let B be a bicategory. Regarding B as a tricategory in which
the 3-cells are all identities, we define a lax bidiagram of bicategories

F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat (4)

to be a contravariant lax functor of tricategories from B to Bicat, all of whose coherence
modifications are invertible. More explicitly, a lax bidiagram of bicategories F as above
consists of the following data:

(D1) for each object b in B, a bicategory Fb;
(D2) for each 1-cell f : a → b of B, a homomorphism f ∗ : Fb → Fa ;

(D3) for each 2-cell a

f
��

g
��⇓α b of B, a pseudo transformation α∗ : f ∗ ⇒ g∗;

Fb

f ∗
��

g∗
��⇓α∗ Fa
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Bicategorical homotopy fiber sequences 131

(D4) for each two composable 1-cells a
f �� b

g �� c in the bicategory B, a pseudo
transformation χg, f : f ∗g∗ ⇒ (g ◦ f )∗;

Fc
g∗

��






 (g ◦ f )∗

���
��

��

⇒
χ

Fb
f ∗

�� Fa

(D5) for each object b of B, a pseudo transformation χb : 1Fb ⇒ 1∗
b;

Fb

1Fb
��

1∗
b

��⇓χ Fb

(D6) for any two vertically composable 2-cells a
f

�	

g
��⇓α b and a

g
�	

h

��⇓β b in B, an

invertible modification ξβ,α : β∗ ◦ α∗ � (β · α)∗;

f ∗
α∗
�� ��

����
�� (β·α)∗

��
��

��
�

��
��

�

�
ξ

g∗
β∗

�� h∗

(D7) for each 1-cell f : a → b of B, an invertible modification ξ f : 1 f ∗ � 1∗
f ;

f ∗

1 f ∗
��

1∗
f

��
�
ξ

f ∗

(D8) for every two horizontally composable 2-cells a

f
��

h

��⇓α b

g


k

��⇓β c , an invertible

modification χβ,α : (β ◦ α)∗◦ χg, f � χk,h ◦ (α∗β∗);

f ∗ g∗ α∗β∗
��

χ

��
�
χ

h∗ k∗

χ

��
(g ◦ f )∗

(β◦α)∗
�� (k ◦ h)∗

(D9) for every three composable 1-cells a
f �� b

g �� c h �� d in B, an invertible mod-
ification ωh,g, f : a∗◦ (χh◦g, f ◦ f ∗χh,g ) � χh,g◦ f ◦ χg, f h∗;
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132 M. Calvo et al.

f ∗g∗h∗ χh∗
��

f ∗χ
��

�ω
(g ◦ f )∗h∗

χ

��
f ∗(h ◦ g)∗

χ �� ((h ◦ g) ◦ f )∗ a∗
�� (h ◦ (g ◦ f ))∗

(D10) for any 1-cell f : a → b of B, two invertible modifications

γ f : l∗f ◦ (χ1b , f ◦ f ∗χb) � 1 f ∗ , δ f : r∗
f ◦ (χ f,1a

◦ χa f ∗) � 1 f ∗ .

f ∗1∗
b

χ

��
�
γ

f ∗

1 f ∗
��

f ∗χ � χ f ∗
��

�δ
1∗

a f ∗

χ

��
(1b ◦ f )∗

l∗
�� f ∗ ( f ◦ 1a)

∗
r∗

 �

These data must satisfy the following coherence conditions:

(C1) for any three composable 2-cells f α �� g
β �� h

ζ �� k : a → b in B, the equa-
tion on modifications below holds;

g∗

β∗

��

�ξ
f ∗α∗

 �

(ζ ·β·α)∗

��

(β·α)∗�
��
��

��
��
�

�� ��
����
��

=

g∗

β∗

��

(ζ ·β)∗










!






�ξ

k∗α∗
 �

(ζ ·β·α)∗

��
h∗

ζ ∗
��

�
ξ

k∗ h∗
�
ξ

ζ ∗
�� k∗

(C2) for any 2-cell f α �� g : a → b of B,

1 f ∗

�
ξ

f ∗

"�

α∗

��













#�
�
ξ = rα∗ ,

f ∗
α∗

��
1∗

f
g∗

1g∗

�
ξ

g∗

�
ξ = lα∗;

g∗

$�
��

1∗
g

f ∗

α∗
% 



α∗
 �

Notation 2.1 Thanks to conditions (C1) and (C2), for each objects a, b ∈ ObB, we
have a homomorphism B(a, b) → Bicat(Fb,Fa) such that

a

f
��

g
��⇓α b �→ Fb

f ∗
��

g∗
��⇓α∗ Fa,

and whose structure constraints are the deformations ξ in (D6) and (D7). Then, when-
ever it is given a commutative diagram in the category B(a, b) of the form
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f

α0
��

β0 �� g1
β1 �� · · · �� gn

βn
��

f1
α1 �� · · · �� fm

αm �� g,

(5)

we will denote by

f ∗

α∗
0
��

∼=
ξ

β∗
0 �� g∗

1

β∗
1 �� · · · �� g∗

n

β∗
n

��
f ∗
1

α∗
1 �� · · · �� f ∗

m
α∗

m �� g∗

(6)

the invertible modification obtained by an (any) appropriate composition of the mod-
ifications ξ and their inverses ξ−1, once any particular bracketing in the strings
α∗

0 , . . . , α
∗
m and β∗

0 , . . . , β
∗
n has been chosen. That diagram (6) is well defined from

diagram (5) is a consequence of the coherence theorem for homomorphisms of bicat-
egories [18, Theorem 1.6].

Furthermore, for any diagram a
f �� b

g
��

g′
��⇓α c h �� d in B, we shall denote by

χ
α, f : (α ◦ 1 f )

∗ ◦ χg, f � χ
g′, f

◦ f ∗α∗, χh,α : (1h ◦ α)∗ ◦ χh,g � χ
h,g′ ◦ α∗h∗,

f ∗g∗

�
χ

f ∗α∗
��

χ

��

f ∗g′∗

χ

��
(g ◦ f )∗

(α◦1 f )
∗
�� (g′ ◦ f )∗

g∗h∗

�
χ

α∗h∗
��

χ

��

g′∗h∗

χ

��
(h ◦ g)∗

(1h◦α)∗
�� (h ◦ g′)∗

the modifications obtained, respectively, by pasting the diagrams in Bicat below.

f ∗g∗

�
χ

χ

��

1f ∗α∗ ��
∼=

∼=
ξ1α∗

f ∗α∗

&!

1∗
f α

∗

�"f
∗g′∗

χ

��
(g ◦ f )∗

(α◦1 f )
∗

�� (g′ ◦ f )∗

g∗h∗

�
χ

χ

��

α∗1h∗ ��
∼=

∼=
1α∗ ξ

α∗h∗

&!

α∗1∗
h

�"g
′∗h∗

χ

��
(h ◦ g)∗

(1h◦α)∗
�� (h ◦ g′)∗

(C3) for every diagram of 2-cells a

f

��
f ′ ��

f ′′
'# b

g

�$
g′ ��

g′′

(% c
α��
α′��

β��
β ′��

in B,
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134 M. Calvo et al.

(g ◦ f )∗

�
χ

(β◦α)∗

��

f ∗g∗

=

χ �

(α′ ·α)∗(β ′ ·β)∗

�&

α∗β∗



 ��
���

���
���

���
���

���
��

(α′∗◦α∗)(β ′∗◦β∗)

)�

(g′ ◦ f ′)∗

(β ′◦α′)∗

��

�
χ

f ′∗g′∗

α′∗β ′∗
		�

��
���

���
��

��
���

���
���

χ � (3)∼= ∼=
ξξ

(g′′ ◦ f ′′)∗ f ′′∗g′′∗
χ

 �

(g ◦ f )∗

((β ′ ·β)◦(α′ ·α))∗

��

(β◦α)∗

��

f ∗g∗χ �

(α′ ·α)∗(β ′ ·β)∗

�&

(g′ ◦ f ′)∗

(β ′◦α′)∗

��

∼=
ξ

�
χ

(g′′ ◦ f ′′)∗ f ′′∗g′′∗
χ

 �

(C4) for every pair of composable 1-cells a
f �� b

g �� c,

(g◦ f )∗

*'
1(g◦ f )∗ 1∗

g◦ f

+(
�
ξ

f ∗g∗χ �

�
χ

1∗
f 1∗

g

+(
=

(g◦ f )∗ f ∗g∗χ �

(g◦ f )∗

*'
1(g◦ f )∗ ∼=

f ∗g∗

�
ξξ

χ �

1∗
f 1∗

g

+(*'
1 f ∗1g∗

(g◦ f )∗ f ∗g∗χ �

(C5) for every 2-cells a

f
��

f ′
��⇓α b

g


g′
��⇓β c

h
��

h′
��⇓ζ d , the equation A = A′ holds, where

A =

((h ◦ g) ◦ f )∗

((ζ◦β)◦α)∗

��

�
χ

a∗

,) ��
��

��
��

��
��

�

��
��

��
��

��
��

�
f ∗(h ◦ g)∗

�
α∗χ

χ �

α∗(ζ◦β)∗

��

f ∗g∗h∗f ∗χ �

(α∗β∗)ζ ∗

��

∼=
-*

α∗(β∗ζ ∗)

(h ◦ (g ◦ f ))∗ ∼=
ξ

&!��
��

��
��

��
��

�

��
��

��
��

��
��

�

(ζ◦(β◦α))∗

((h′ ◦ g′) ◦ f ′)∗

�ωa∗

��

f ′∗(h′ ◦ g′)∗
χ

 � f ′∗g′∗h′∗

χh′∗
,) ��

���
���

���
��

���
���

���
���

�f ′∗χ
 �

(h′ ◦ (g′ ◦ f ′))∗ (g′ ◦ f ′)∗h′∗χ �

A′ =

((h ◦ g) ◦ f )∗

a∗

,) ��
��

��
��

��
��

�

��
��

��
��

��
��

�

�ω
f ∗(h ◦ g)∗

χ � f ∗g∗h∗f ∗χ �

(α∗β∗)ζ ∗

��

χh∗

,) ���
���

���
���

��

���
���

���
���

��

(h ◦ (g ◦ f ))∗

�
χ

&!��
��

��
��

��
��

�

��
��

��
��

��
��

�

(ζ◦(β◦α))∗

(g ◦ f )∗h∗

(β◦α)∗ζ ∗

��

χ � �
χζ ∗

f ′∗g′∗h′∗

χh′∗
,) ��

���
���

���
��

���
���

���
���

�

(h′ ◦ (g′ ◦ f ′))∗ (g′ ◦ f ′)∗h′∗χ �
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Bicategorical homotopy fiber sequences 135

(C6) for every four composable 1-cells a
f �� b

g �� c h �� d
k �� e, the equation B =

B ′ holds, where

B = f ∗g∗h∗k∗

������
����

����
����

���

����
����

����
����

��� χh∗k∗

.+ �����
�����

�����
����

�����
�����

�����
����f ∗g∗χ

f ∗g∗(k◦h)∗

f ∗χ
��

(3)∼=
χ(k◦h)∗ �� (g◦ f )∗(k◦h)∗

χ

��

(g◦ f )∗h∗k∗

χk∗

��

(g◦ f )∗χ �

f ∗((k◦h)◦g)∗ �
ω

χ

��

�
ω

(h◦(g◦ f ))∗k∗

χ

��
(((k◦h)◦g)◦ f )∗ a∗ ��

/,���
���

���
�

���
���

���
�

(a◦1 f )
∗

((k◦h)◦(g◦ f ))∗ a∗ ��

∼=
ξ

(k◦(h◦(g◦ f )))∗

((k◦(h◦g))◦ f )∗
a∗

�� (k◦((h◦g)◦ f ))∗
(1k◦a)∗

0�����������

����������

B ′ = f ∗g∗h∗k∗

�������
�����

�����
�����

�����
�����

�����
����� χh∗k∗

.+ �����
�����

�����
�����

�����
�����

�����
�����f ∗g∗χ

f ∗χ k∗

��
f ∗g∗(k◦h)∗

f ∗χ
��

�
f ∗ω

f ∗(h◦g)∗k∗

χk∗

/,���
���

���
�

���
���

���
�

f ∗χ

1- ���
���

���
�

���
���

���
�

�
ωk∗

(g◦ f )∗h∗k∗

χk∗

��
f ∗((k◦h)◦g)∗

f ∗a∗
��

χ

�� �
χ

f ∗(k◦(h◦g))∗

χ

��

�
ω

((h◦g)◦ f )∗k∗ a∗k∗ ��

χ

��

�
χ

(h◦(g◦ f ))∗k∗

χ

��
(((k◦h)◦g)◦ f )∗

.���
���

���
��

���
���

���
��

(a◦1 f )
∗

(k◦(h◦(g◦ f )))∗

((k◦(h◦g))◦ f )∗
a∗

�� (k◦((h◦g)◦ f ))∗
(1k◦a)∗

2������������

�����������

(C7) for every 2-cell f α �� g : a → b, the following two equations on modifications
hold:

1∗
a f ∗

χ



 ��
���

���
�

���
���

���

�δ
f ∗χ f ∗

 �

3� ��
��
��
��

��
��
��
��1 f ∗

α∗

��
( f ◦1a)

∗

∼=
ξ

r∗
��

(α◦1)∗
��

f ∗ ∼=
α∗

��

g∗

1g∗3� ��
��
��
��

��
��
��
��

(g◦ 1a)
∗ r∗

�� g∗

=

1∗
a f ∗

χ



 ��
���

���
�

���
���

���

��
1∗

aα
∗

(3)∼=
f ∗χ f ∗

 �

α∗

��
( f ◦1a)

∗ �
χ

(α◦1)∗
��

1∗
ag∗

χ



 ��
���

���
�

���
���

���

�δ
g∗χg∗

 �

1g∗3� ��
��
��
��

��
��
��
��

(g◦ 1a)
∗ r∗

�� g∗

123



136 M. Calvo et al.

f ∗1∗
b

χ



 ��
��

��
��

��
��

��
��

�
γ

f ∗f ∗χ �

3� ��
��
��
��

��
��
��
��1 f ∗

α∗

��
(1b◦ f )∗

∼=
ξ

l∗ ��

(1◦α)∗
��

f ∗ ∼=
α∗

��

g∗

1g∗3� ��
��
��
��

��
��
��
��

(1b◦ g)∗ l∗ �� g∗

=

f ∗1∗
b

χ



 ��
���

���
�

���
���

���

��
α∗1∗

b

(3)∼=
f ∗f ∗χ �

α∗

��
(1b◦ f )∗ �

χ

(1◦α)∗
��

g∗1∗
b

χ



 ��
��

��
��

��
��

��
��

�
γ

g∗g∗χ �

1g∗3� ��
��
��
��

��
��
��
��

(1b◦ g)∗ l∗ �� g∗

(C8) for every pair of composable 1-cells a
f �� b

g �� c, the following equation holds:

f ∗1∗
bg∗

�
γ g∗

f ∗χ
��

χg∗

.���
���

��

���
���

��
f ∗g∗

1 f ∗g∗
��

f ∗χg∗
 �

=
f ∗(g◦1b)

∗

�
ω

χ

��

(1b◦ f )∗g∗

χ

��

l∗g∗
�� f ∗g∗

χ

��

(g◦(1b◦ f ))∗ �
χ

(1g◦ l)∗

&!���
���

�

���
���

�

((g◦1b)◦ f )∗
∼=
ξ

a∗ 2���������
��������

(r◦1 f )
∗

�� (g◦ f )∗

f ∗1∗
bg∗

f ∗χ

��

f ∗g∗f ∗χg∗
 �

1 f ∗g∗

��)�

f ∗1g∗ ∼=

f ∗(g◦1b)
∗

�
χ

�
f ∗δ

f ∗r∗
��

χ

��

f ∗g∗

χ

��
((g◦1b)◦ f )∗

(r◦1 f )
∗

�� (g◦ f )∗

A lax bidiagram of bicategories F : Bop → Bicat is called a pseudo bidiagram
of bicategories whenever each of the pseudo transformations χ , in (D4) and (D5),
is a pseudo equivalence; that is, regarding B as a tricategory whose 3-cells are all
identities, a trihomomorphism F : Bop → Bicat in the sense of Gordon et al. [18,
Definition 3.1].

Example 2.2 If C is any small category viewed as a bicategory, then a lax bidiagram
of bicategories over C, as above, in which the deformations ξ in (D6) and (D7),
and χ in (D8), are all identities is the same thing as a lax diagram of bicategories
F : Cop → Bicat as in [10, Sect. 2.2].

For instance, let X be any topological space and let C(X) denote its poset of open
subsets, regarded as a category. Then a fibered bicategory in bigroupoids above X is a
lax diagram of bicategories

F : C(X)op → Bicat,

such that all the bicategories FU are bigroupoids, that is, bicategories whose 1-cells are
invertible up to a 2-cell, and whose 2-cells are strictly invertible. In particular, when
all the bigroupoids FU are strict, that is, 2-categories, and all the homomorphisms
f ∗ : FU → FV associated to the inclusions of open sets f : V ↪→ U are 2-functors,
we have the notion of fibered 2-category in 2-groupoids above the space X . Thus,
2-stacks and 2-gerbes on spaces are relevant examples of lax diagrams of bicategories
(see e.g. Breen [5, Definitions 6.1, 6.2, and 6.3]).
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For another example, if T is any small tricategory, as in [18, Definition 2.2], then
its Grothendieck nerve

NT : �op → Bicat,

whose bicategory of p-simplices is

NpT =
⊔

(x0,...,x p)∈ObT p+1

T (x1, x0)× T (x2, x1)× · · · × T (x p, x p−1),

[12, Theorem 3.3.1] gives a striking example of a pseudo diagram of bicategories.

Example 2.3 For any bicategory B, a lax bidiagram of categories over B, that is, a lax
bidiagram F : Bop → Bicat in which every bicategory Fa , a ∈ ObB, is a category (i.e.,
a bicategory where all the 2-cells are identities) is the same thing as a contravariant
lax functor F : Bop → Cat to the 2-category Cat of small categories, functors, and
natural transformations, since the condition of all Fa being categories forces all the
modifications in (D6)− (D10) to be identities.

For example, any object b of a bicategory B defines a pseudo bidiagram of categories
[30, Example 10]

B(−, b) : Bop → Cat,

which carries an object x ∈ ObB to the hom-category B(x, b), a 1-cell g : x → y to
the functor g∗ : B(y, b) → B(x, b) defined by

y

f


f ′
��⇓β b

� g∗
�� x

f ◦g
��

f ′◦g

��⇓β◦1g b ,

and a 2-cell α : g ⇒ g′ is carried to the natural transformation α∗ : g∗ ⇒ g′∗
that assigns to each 1-cell f : y → b in B the 2-cell 1f ◦ α : f ◦ g ⇒ f ◦ g′.
For x

g→ y
h→ z any two composable 1-cells of B, the structure natural equivalence

χ : g∗h∗ ∼= (h ◦ g)∗, at any f : z → b, is provided by the associativity constraint
a : ( f ◦h)◦g ∼= f ◦(h◦g), whereas for any x ∈ ObB, the structure natural equivalence
χ : 1B(x,b) ∼= 1∗

x , at any f : x → b, is the right unit isomorphism r−1 : f ∼= f ◦ 1x .

3 The Grothendieck construction on lax bidiagrams of bicategories

The well-known ‘Grothendieck construction’, due to Grothendieck [20,21] and Giraud
[15,16], on pseudo diagrams (F, χ) : Bop → Cat of small categories with the shape
of any given small category, was implicitly used in the proof given by Quillen of
his famous Theorems A and B for the classifying spaces of small categories [28].
Subsequently, since Thomason established his celebrated Homotopy Colimit Theorem
[32], the Grothendieck construction has become an essential tool in homotopy theory
of classifying spaces.
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In this section, our work is dedicated to extending the Grothendieck construction to
lax bidiagrams of bicategories F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat, where B is any
bicategory, since its use is a key for proving our main results in the paper. But we are not
claiming here much originality, since extensions of the ubiquitous Grothendieck con-
struction have been developed in many general frameworks. In particular, we should
mention here three recent approaches to our construction: In [10], Carrasco, Cegarra,
and Garzón study the bicategorical Grothendieck construction on lax diagrams of bicat-
egories, as in Example 2.2. In [2,3], Baković performs the Grothendieck construction
on normal pseudo bidiagrams of bicategories, that is, lax bidiagrams F whose modi-
fications χb in (D5) and ξ f in (D7) are identities, and whose pseudo transformations
χg, f in (D4) are pseudo equivalences. Buckley, in [6], presents the more general case
of pseudo bidiagrams, that is, when all the pseudo transformations χg, f and χb in
(D4) and (D5) are pseudo equivalences.

The Grothendieck construction on a lax bidiagram of bicategories F : Bop →
Bicat, as in (4), assembles it into a bicategory, denoted by

∫
BF ,

which is defined as follows:
The objects are pairs (x, a), where a ∈ ObB and x ∈ ObFa .

The 1-cells are pairs (u, f ) : (x, a) → (y, b), where f : a → b is a 1-cell in B
and u : x → f ∗y is a 1-cell in Fa .

The 2-cells are pairs (x, a) ⇓(φ,α)
(u, f )

4,

(v,g)
0/ (y, b), consisting of a 2-cell a

f
��

g
��⇓α b of B

together with a 2-cell φ : α∗y ◦ u ⇒ v in Fa ,

f ∗y

⇓φ
α∗y
����

��

x

u ��					
v

�� g∗y.

The vertical composition of 2-cells in
∫
B F, (x, a)

(u, f )
4,

(v,g)
0/

⇓(φ,α) (y, b) and

(x, a)

(v,g)
4,

(w,h)
0/

⇓(ψ,β) (y, b), is the 2-cell

(x, a)

(u, f )
5!

⇓(ψ�φ,β·α)

(w,h)

60 (y, b),
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where β ·α is the vertical composition of β with α in B, andψ�φ : (β ·α)∗y ◦u ⇒ w

is the 2-cell of Fa obtained by pasting the diagram below.

ψ � φ :

f ∗y

(β·α)∗ y

�$�
��

��
��

��
��

��
��

��

α∗ y
��

g∗y

β∗ y ����
���

���
��
ξ∼=

x

u

71                 
v

������������
w

��

⇓φ

⇓ψ

h∗y

The vertical composition of 2-cells so defined is associative and unitary thanks to
the coherence conditions (C1) and (C2). The identity 2-cell, for each 1-cell (u, f ) :
(x, a) → (y, b), is

1(u, f ) = (
·
1(u, f ), 1 f ) : (u, f ) ⇒ (u, f ).

·
1(u, f ) = (

1∗
f y ◦ u

ξ−1◦1 �� 1 f ∗y ◦ u
l⇒ u

)

Hence, we have defined the hom-category
∫
B F

(
(x, a), (y, b)

)
, for any two objects

(x, a) and (y, b) of
∫
B F. Before continuing the description of this bicategory, we shall

do the following useful observation:

Lemma 3.1 A 2-cell (φ, α) : (u, f ) ⇒ (v, g) in
∫
B F

(
(x, a), (y, b)

)
is an isomor-

phism if and only if both α : f ⇒ g, in B(a, b), and φ : α∗y ◦ u ⇒ v, in Fa(x, g∗y),
are isomorphisms.

Proof It is quite straightforward, and we leave it to the reader. ��
We return now to the description of the bicategory

∫
B F.

The horizontal composition of two 1-cells (x, a)
(u, f ) �� (y, b)

(u′, f ′)�� (z, c) is the
1-cell

(u′, f ′) ◦ (u, f ) = (u′ � u, f ′ ◦ f ) : (x, a) −→ (z, c),

where f ′ ◦ f : a → c is the composite in B of the 1-cells f and f ′, while

u′ � u = χ z ◦ ( f ∗u′ ◦ u) : x −→ ( f ′ ◦ f )∗z

is the composite in Fa of x u �� f ∗y
f ∗u′

�� f ∗ f ′∗z
χ z �� ( f ′ ◦ f )∗z .

The horizontal composition of 2-cells is defined by

(x, a) ⇓(φ,α)

(u, f )
��

(v,g)

��(y, b) ⇓(φ′,α′)

(u′, f ′)
��

(v′,g′)
��(z, c)

◦�→ (x, a) ⇓(φ′�φ,α′◦α)

(u′�u, f ′◦ f )

��

(v′�v,g′◦g)

��(z, c),
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where α′ ◦ α is the horizontal composition in B of α′ with α, and φ′ � φ is the 2-cell
in Fa canonically obtained by pasting the diagram below.

φ′ � φ :
f ∗y

α∗y

��

f ∗u′
��

����
���

���
���

f ∗v′
⇓ f ∗φ′

f ∗ f ′∗z
χ z ��

f ∗α′∗z
��

( f ′ ◦ f )∗z

(α′◦α)∗z

��

x ⇓φ

u
������������

v
���

��
��

��
��

� f ∗g′∗z

α∗g′∗z
��

χ z∼=

g∗y

α̂∗∼=

g∗v′
�� g∗g′∗z

χ z
�� (g′ ◦ g)∗z

Owing to the coherence conditions (C3) and (C4), the horizontal composition so
defined truly gives, for any three objects (x, a), (y, b), (z, c) of

∫
BF, a functor

∫
BF((y, b), (z, c))× ∫

BF((x, a), (y, b)) ◦ ��
∫
BF((x, a), (z, c)).

The structure associativity isomorphism, for any three composable morphisms

(x, a)
(u, f )−→ (y, b)

(v,g)−→ (z, c)
(w,h)−→ (t, d),

(
◦
a, a) : (

(w � v)� u, (h ◦ g) ◦ f
) ∼= (

w � (v � u), h ◦ (g ◦ f )
)
,

is provided by the associativity constraint a : (h◦g)◦ f ∼= h◦(g◦ f ) of the bicategory
B, together with the isomorphism in the bicategory Fa

◦
a : a∗t ◦ ((w � v)� u) ∼= w � (v � u),

canonically obtained from the 2-cell pasted of the diagram

f ∗(h ◦ g)∗t
χ t �� ((h ◦ g) ◦ f )∗t

a∗t

��

x

∼=

u ��

v�u 5!!!!
!!!!

!!!!
!!!!

!! f ∗y ��f ∗v

f ∗(w�v)
0/""""""""""""""""""""

f ∗g∗z ��f ∗g∗w

χ z

��

∼=
f ∗g∗h∗t

f ∗χ t

82

χh∗t
��

∼=ωt

(g ◦ f )∗z
(g◦ f )∗w

��

χ̂∼=
(g ◦ f )∗h∗t

χ t
�� (h ◦ (g ◦ f ))∗t

By Lemma 3.1, these associativity 2-cells are actually isomorphisms in
∫
BF. Fur-

thermore, they are natural thanks to the coherence condition (C5), while the pentagon
axiom for them holds because of condition (C6).

123



Bicategorical homotopy fiber sequences 141

The identity 1-cell for each object (x, a) in
∫
BF, is provided by the pseudo trans-

formation χa : 1Fa ⇒ 1∗
a , by

1(x,a) = (χx, 1a) : (x, a) → (x, a).

The left and right unit constraints for each morphism (u, f ) : (x, a) → (y, b) in
∫
BF,

(
◦
l, l) : 1(y,b) ◦ (u, f ) ∼= (u, f ), (

◦
r, r) : (u, f ) ◦ 1(x,a) ∼= (u, f ),

are respectively given by the 2-cells l : 1b ◦ f ⇒ f and r : f ◦1a ⇒ f of B, together
with the 2-cells in Fa obtained by pasting the diagrams below.

f ∗y

◦
l :

���
��

��
��

��
��

��
��

��
��

��
�

1 f ∗y

f ∗χy �� f ∗1∗
b y

χy �� (1b ◦ f )∗y

l∗y

��
x

∼=l

∼=
γ y

u

82

u
�� f ∗y

1∗
a x

◦
r :

1∗
au �� 1∗

a f ∗y
χy �� ( f ◦ 1a)

∗y

r∗ y

��

∼=
χ̂

f ∗y

82

χ f ∗y

����
���

���
��

1 f ∗y

∼=
δy

x

∼=l
��									

u

χx

82

u
�� f ∗y

These unit constraints in
∫
BF are isomorphisms by Lemma 3.1, natural due to

coherence condition (C7), and the coherence triangle for them follows from condition

(C8). Hence,
∫
BF is actually a bicategory.

As a consequence of the above construction we obtain the following equalities on
lax bidiagram of bicategories, which is used many times along the paper for several
proofs:

Lemma 3.2 Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be a lax bidiagram of bicate-
gories. The equations on modifications below hold.

(i) For any object a of B,

1∗
a

1

!
##

##
##

##
##

##
##

##
##

##
##

##
##

##
##

##
##

##

1∗
aχ

��
∼=

1Fa

χ

��

χ �

=1∗
a1∗

a

χ

��

�
γ

(1a ◦ 1a)
∗

l∗1=r∗
1

�� 1∗
a

1∗
a

1∗
aχ

��

(3)∼=

1Fa

χ

��

χ �

93 $$
$$
$$

$$
$$
$$χ

1∗
a1∗

a

χ

��

1∗
a

χ1∗
a �

1 :4
%%

%%
%%

%%
%%

%%
∼=

�δ

(1a ◦ 1a)
∗

l∗1=r∗
1

�� 1∗
a
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(ii) for every pair of composable 1-cells a
f �� b

g �� c in B,

f ∗g∗1∗
c

(3)∼=f ∗χ
��

χ1∗
c

.���
���

��

���
���

��
f ∗g∗

χ

��

f ∗g∗χ �

=
f ∗(1c ◦g)∗

�
ω

χ

��

(g◦ f )∗1∗
c

χ

��

(g◦ f )∗

1(g◦ f )∗

��

(g◦ f )∗χ �

(1c ◦(g◦ f ))∗
�
γ

l∗

/,���
���

�

���
���

�

((1c ◦g)◦ f )∗
∼=
ξ

a∗ 2���������
��������
(l◦1 f )

∗
�� (g◦ f )∗

f ∗g∗1∗
c

f ∗χ

��

f ∗g∗f ∗g∗χ �

χ

��;5 &&
&&
&&
&&
&&

&&
&&
&&
&&
&&

f ∗1g∗

f ∗(1c ◦g)∗
f ∗ l∗ ��

�
f ∗γ

χ

��

f ∗g∗

χ

!















∼= (g◦ f )∗

1(g◦ f )∗

��
((1c ◦g)◦ f )∗

�
χ

(l◦1 f )
∗

�� (g◦ f )∗

1∗
a f ∗g∗

�
δg∗

1∗
aχ

�� χg∗ /,���
���

��

���
���

��
f ∗g∗

1 f ∗g∗
��

χ f ∗g∗
 �

=
1∗

a(g ◦ f )∗

�
ω

χ

��

( f ◦1a)
∗g∗ r∗g∗

��

χ

��

f ∗g∗

χ

��

(g◦( f ◦1a))
∗ �

χ

(1g◦r)∗

&!���
���

�

���
���

�

((g◦ f )◦1a)
∗

∼=
ξ

a∗ 0��������
�������

r∗
�� (g◦ f )∗

1∗
a f ∗g∗

1∗
aχ

��

f ∗g∗χ f ∗g∗
 �

1 f ∗g∗

��

χ

�� ''
''
''
''
''

''
''
''
''
''

1∗
a(g◦ f )∗

(3)∼=

χ

��

(g◦ f )∗
χ(g◦ f )∗ �

��
















1(g◦ f )∗

∼= f ∗g∗

χ

��
((g◦ f )◦1a)

∗

�
δ

r∗
�� (g◦ f )∗

Proof (i) follows from the equality (2) in the bicategory
∫
B F, that is, r1(x,a) = l1(x,a) ,

for any x ∈ Fa . Similarly, (i i) is consequence of the commutativity of triangles
(1) in

∫
B F, for any pair of composable 1-cells of the form

( f ∗g∗x, a)
(1, f ) �� (g∗x, b)

(1,g) �� (x, c),

for any x ∈ ObFc. ��

3.1 A cartesian square

Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be any given lax bidiagram of bicategories.
For any bicategory A and any lax functor F : A → B, we shall denote by

FF = (FF, χF , ξF , ωF , γF , δF ) : Aop → Bicat (7)

the lax bidiagram of bicategories obtained by composing, in the natural sense, F with
F ; that is, the lax bidiagram consisting of the following data:

(D1) for each object a in A, the bicategory FFa ;
(D2) for each 1-cell f : a → b of A, the homomorphism (F f )∗ : FFb → FFa ;
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(D3) for each 2-cell a

f
��

g
��⇓α b of A, the pseudo transformation (Fα)∗ : (F f )∗ ⇒

(Fg)∗;

(D4) for each two composable 1-cells a
f �� b

g �� c in the bicategory A, the pseudo
transformation χFg, f

: (F f )∗(Fg)∗ ⇒ F(g ◦ f )∗ obtained by pasting

FFc

9
''
''
''
''
'

(Fg)∗
(Fg◦F f )∗

��

F(g◦ f )∗

����
���

���
���

��

FFb
(F f )∗

��
⇒
χ

⇒F̂∗

FFa;

(D5) for each object a of A, the pseudo transformation

χFa
= (

1FFa

χFa �� 1∗
Fa

F̂∗
a �� F(1a)

∗);
(D6) for any two vertically composable 2-cells f α �� g

β �� h in A, the invertible
modification ξF β,α

= ξFβ,Fα : F(β)∗ ◦ F(α)∗ � F(β · α)∗;
(D7) for each 1-cell f : a → b of A, the invertible modification ξF f

= ξF f : 1F( f )∗ �
1∗

F f ;

(D8) for every two horizontally composable 2-cells a

f
��

h

��⇓α b

g


k

��⇓β c in A,

χF β,α
: F(β ◦ α)∗◦ χF g, f � χF k,h ◦ (F(α)∗F(β)∗)

is the invertible modification obtained by pasting the diagram below;

F( f )∗F(g)∗
F(α)∗ F(β)∗ ��

χ

��

�
χ

F(h)∗F(k)∗
χ �� (Fk ◦ Fh)∗

F̂∗

��
(Fg ◦ F f )∗

F̂∗
��

<������������������������������

�����������������������������

(Fβ◦Fα)∗

F(g ◦ f )∗
�
ξ

F(β◦α)∗
�� F(k ◦ h)∗

(D9) for every three composable 1-cells a
f �� b

g �� c h �� d in A, the invertible
modification

ωF h,g, f : F(a)∗◦ (χF h◦g, f
◦ F( f )∗χF h,g

) � χF h,g◦ f
◦ χF g, f

F(h)∗

is obtained from the modification pasted of the diagram below;
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F( f )∗ F(g)∗ F(h)∗

F( f )∗χ
��

χ F(h)∗ ��

∼=
ω

(Fg ◦ F f )∗ F(h)∗

∼=
χχ

�6!!!
!!!

!!!
!!!

!

!!!
!!!

!!!
!!!

!
F̂∗ F(h)∗ �� F(g ◦ f )∗ F(h)∗

χ

�6!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

F( f )∗(Fh ◦ Fg)∗

∼=
χ

χ ��

F( f )∗ F̂∗

��

((Fh ◦ Fg) ◦ F f )∗

∼=
ξ

a∗
��

(F̂◦1)∗

��

(Fh ◦ (Fg ◦ F f ))∗
(1◦F̂)∗ �� (Fh ◦ F(g ◦ f ))∗

F̂∗
��

F( f )∗ F(h ◦ g)∗
χ

�� (F(h ◦ g) ◦ F f )∗
F̂∗

�� F((h ◦ g) ◦ f )∗
F(a)∗

�� F(h ◦ (g ◦ f ))∗

(D10) for any 1-cell f : a → b of A, the invertible modifications

γF f
: F(l f )

∗ ◦ (χF 1, f
◦ F( f )∗χFb

) � 1F( f )∗ ,

δF f : F(r f )
∗ ◦ (χF f,1

◦ χFa
F( f )∗) � 1F( f )∗ ,

are, respectively, canonically obtained from the modification pasted of the diagrams
below.

F( f )∗F(1b)
∗

γF :
χ

��
∼=
χ

F( f )∗1∗
Fb

χ

��

F( f )∗ F̂∗
 �

∼=
γ

F( f )∗

1

��

F( f )∗χ �

(F1b ◦ F f )∗

F̂∗
��

∼=
ξ

(1Fb ◦ F f )∗
(F̂◦1)∗

 �

l∗

�6(((
(((

(((
((

(((
(((

(((
((

F(1b ◦ f )∗
F(l)∗

�� F( f )∗

F(1a)
∗F( f )∗

δF :
χ

��
∼=
χ

1∗
Fa F( f )∗

χ

��

F̂∗ F( f )∗ �

∼=
δ

F( f )∗

1

��

χF( f )∗ �

(F f ◦ F1a)
∗

F̂∗
��

∼=
ξ

(F f ◦ 1Fa)
∗

(1◦F̂)∗
 �

r∗

�6(((
(((

(((
((

(((
(((

(((
((

F( f ◦ 1a)
∗

F(r)∗
�� F( f )∗

There is an induced lax funtor

F̄ : ∫
A FF → ∫

B F (8)

given on cells by

(x, a) ⇓(φ,α)

(u, f )
��

(v,g)

��(y, b)
F̄�→ (x, Fa) ⇓(φ,Fα)

(u,F f )
�	

(v,Fg)

��(y, Fb),
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and whose structure constraints are canonically given by those of F , namely: For every

two composable 1-cells (x, a)
(u, f ) �� (y, b)

(v,g) �� (z, c) in
∫
A FF , the corresponding

structure 2-cell of F̄ for their composition is

(a−1, F̂) : F̄(v, g) ◦ F̄(u, f ) ∼= F̄((v, g) ◦ (u, f )),

where F̂ = F̂g, f : Fg ◦ F f ⇒ F(g ◦ f ) is the structure 2-cell of F , and

a−1 : F̂∗
g, f ◦ (χFg,F f z ◦ (F( f )∗(v) ◦ u)) ∼= (F̂∗

g, f ◦ χFg,F f z) ◦ (F( f )∗(v) ◦ u)

is the associativity isomorphism in the bicategory FFa . For (x, a) any object of the
bicategory

∫
A FF , the corresponding structure 2-cell of F̄ for its identity is

(1, F̂) : 1F̄(x,a) ⇒ F̄1(x,a),

where F̂ = F̂a : 1Fa ⇒ F(1a) is the structure 2-cell of F , and 1 is the is the identity
2-cell of the 1-cell F̂∗

a x ◦ χFa x : x → F(1a)
∗x in the bicategory FFa .

Then, although the category of bicategories and lax functors has no pullbacks in
general, if, for any lax bidiagram of bicategories F : Bop → Bicat as above, we denote
by

P : ∫
B F → B (9)

the canonical projection 2-functor, which is defined by

(x, a) ⇓(φ,α)

(u, f )
��

(v,g)

��(y, b)
P�→ a ⇓α

f
��

g
�� b,

the following fact holds:

Lemma 3.3 Let F : Bop → Bicat be a lax bidiagram of bicategories. For any lax
functor F : A → B, the induced square

∫
A FF

P

��

F̄ ��
∫
B F

P

��
A F �� B

is cartesian in the category of bicategories and lax functors.
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Proof Any pair of lax functors, say L : C → A and M : C → ∫
B F, such that

F L = P M determines a unique lax functor N : C → ∫
A FF

C

L

*7)
))

))
))

))
))

))
))

)
M

5!!!!
!!!

!!!
!!!

!!!
!!!

N
/�∫
A FF

P

��

F̄ ��
∫
B F

P

��
A F �� B

such that P N = L and F̄ N = M , which is defined as follows: Observe that the
lax functor M carries any object a ∈ ObC to an object of

∫
B F which is necessarily

written in the form Ma = (Da, F La) for some object Da of the bicategory FF La .
Similarly, for any 1-cell f : a → b in C, we have M f = (D f, F L f ), for some 1-cell
D f : Da → F L( f )∗Db in FF La , and, for any 2-cell α : f ⇒ g ∈ C(a, b), we have
Mα = (Dα, F Lα), for Dα : F L(α)∗Db ◦ D f ⇒ Dg a 2-cell in FF La . Also, for any

pair of composable 1-cells a
f→ b

g→ c and any object a in C, the structure 2-cells of
M can be respectively written in a similar form as

M̂g, f = (D̂g, f , F L̂g, f ◦ F̂Lg,L f ) : (Dg, F Lg) ◦ (D f, F L f ) ⇒ (D(g ◦ f ), F L(g ◦ f ))

M̂a = (D̂a, F(L̂a) ◦ F̂La) : 1(Da,F La) ⇒ (D1a, F L1a),

for some 2-cells D̂g, f and D̂a of the bicategory FF La . Then, the claimed N : C →∫
A FF is the lax functor which acts on cells by

a

f
��

g
��⇓α b

N�→ (Da, La)

(D f,L f )

��

(Dg,Lg)

��⇓(Dα,Lα) (Db, Lb)

and whose respective structure 2-cells, for any pair of composable 1-cells a
f→ b

g→ c
and any object a in C, are

N̂g, f = (D̂g, f , L̂ g, f ) : (Dg, Lg) ◦ (D f, L f ) ⇒ (D(g ◦ f ), L(g ◦ f )),

N̂a = (D̂a, L̂a) : 1(Da,La) ⇒ (D1a, L1a).

��
Remark 3.4 There exist different other ‘dual’ notions of bidiagrams of bicategories,
depending on the covariant or contravariant choices for (D2) and (D3), and the direc-
tion of the pseudo transformations χ in (D4) and (D5), but the results we present about
lax bidiagrams are similarly proved for the different cases. For example, in a covariant
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oplax bidiagram of bicategories F : B → Bicat the data in (D2) are specified with
homomorphisms f∗ : Fa → Fb for the 1-cells f : a → b of B, while in (D4), the
pseudo transformations are of the form χg, f : (g ◦ f )∗ ⇒ g∗ f∗. The correspond-
ing data in (D5), (D8), (D9) and (D10) change in a natural way. The Grothendieck
construction on such a bidiagram, has now 1-cells (u, f ) : (x, a) → (y, b) given
by f : a → b a 1-cell in B and u : f∗x → y a 1-cell in Fb. The 2-cells
(φ, α) : (u, f ) ⇒ (v, g) are now given by a 2-cell α : f ⇒ g in B and a 2-cell
φ : u ⇒ v ◦ α∗x . The compositions and constraints of this bicategory are defined in
the same way as in the contravariant lax case.

4 The homotopy cartesian square induced by a lax bidiagram

For the general background on simplicial sets we mainly refer to the book by Goerss
and Jardine [17]. In particular, we will use the following result, which can be easily
proved from the discussion made in [17, IV, 5.1] and Quillen’s Lemma [28, Lemma
in p. 14] (or [17, IV, Lemma 5.7]):

Lemma 4.1 Let p : E → B be an arbitrary simplicial map. For any n-simplex
x ∈ Bn, let p−1(x) be the simplicial set defined by the pullback diagram

p−1(x) ��

��

E

p

��
�[n] �x �� B,

where�[n] = �(−, [n]) is the standard simplicial n-simplex, whose m-simplices are
the maps [m] → [n] in the simplicial category �, and �x : �[n] → B denotes the
simplicial map such that �x(1[n]) = x.

Suppose that, for every n-simplex x ∈ Bn, and for any map σ : [m] → [n] in the
simplicial category, the induced simplicial map p−1(σ ∗x) → p−1(x)

p−1(σ ∗x)

�	
�.****

*****
*****

****

��

p−1(x)

��

�� E

p

��

�[m]
�σ 5!+++

++++
++ �(σ ∗x)

******
****

=6*****
***

�[n]
�x

�� B

gives a homotopy equivalence on geometric realizations |p−1(σ ∗x)| 
 |p−1(x)|.
Then, for each vertex v ∈ B0, the induced square of spaces
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|p−1(v)| ��

��

|E |
|p|
��

pt
|v| �� |B|

is homotopy cartesian, that is, |p−1(v)| is homotopy equivalent to the homotopy fiber
of the map |p| : |E | → |B| over the 0-cell |v| of |B|.

Like categories, bicategories are closely related to spaces through the classifying
space construction. We shall recall briefly from [9, Theorem 6.1] that the classifying
space of a (small) bicategory can be defined by means of several, but always homotopy
equivalent, simplicial and pseudo simplicial objects that have been characteristically
associated to it. For instance, the classifying space BB of the bicategory B may be
thought of as

BB = |�B|,

the geometric realization of its (non-unitary) geometric nerve [9, Definition 4.3]; that
is, the simplicial set

�B : �op → Set, [n] �→ Lax Func([n],B),

whose n-simplices are all lax functors z : [n] → B. Here, the ordered sets
[n] = {0, 1, . . . , n} are considered as categories with only one morphism (i, j) : i →
j when 0 ≤ i ≤ j ≤ n, so that a non-decreasing map [m] → [n] is the same as a
functor. Hence, a geometric n-simplex of B is a list of cells of the bicategory

z = (zi , zi, j , ẑi, j,k, ẑi )

which is geometrically represented by a diagram in B with the shape of the 2-skeleton
of an oriented standard n-simplex, whose faces are triangles

z j

⇓ ẑi, j,k

z j,k

	4�
��

��
��

zi

zi, j
>8'''''''
zi,k

�� zk

with objects zi placed on the vertices, 1-cells zi, j : zi → z j on the edges, and 2-cells
ẑi, j,k : z j,k ◦ zi, j ⇒ zi,k in the inner, together with 2-cells ẑi : 1zi ⇒ zi,i . These data
are required to satisfy the condition that, for 0 ≤ i ≤ j ≤ k ≤ l ≤ n, each tetrahedron
is commutative in the sense that

zi
zi,l ��

zi,k




	4


zi, j

��

zl

ẑ⇑ =
z j

⇒ẑ

z j,k
�� zk

zk,l

82 zi
zi,l ��

zi, j

��

ẑ⇑
zl

z j
⇐ẑ

z j,k
��

z j,l''''

>8''''

zk

zk,l

82
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and, moreover,

1zi

⇒ẑ
zi

?9

zi, j

	4





1:
⇒ẑ = rzi, j ,

zi zi, j
��

zi,i z j

1z j

⇒ẑ
z j

⇒ẑ
= lzi, j .

z j

@;
2�

z j, j
zi

zi, j
A<

zi, j
.=

If σ : [m] → [n] is any map in�, that is, a functor, the induced σ ∗ : �Bn → �Bm

carries any z : [n] → B to σ ∗z = zσ : [m] → B, the composite lax functor of z with
σ .

On a small category C, viewed as a bicategory in which all 2-cells are identities, the
geometric nerve construction �C gives the usual Grothendieck nerve of the category
[20], since, for any integer n ≥ 0, we have Lax Func([n], C) = Func([n], C). Hence,
the space BC = |�C| of a category C, is the usual classifying space of the category, as
considered by Quillen in [28]. In particular, the geometric nerve of the category [n]
is precisely �[n], the standard simplicial n-simplex, so the notation is not confusing.
Furthermore, for any bicategory B, the simplicial map �z : �[n] → �B defined
by a n-simplex z ∈ �Bn , that is, such that �z(1[n]) = z, is precisely the simplicial
map obtained by taking geometric nerves on the lax functor z : [n] → B. Thus, if
σ : [m] → [n] is any map in �, then

�(σ ∗z) = �(zσ) = �z�σ : �[m] → �B.

The following fact, which is proved in [9, Proposition 7.1], will be used repeatedly
in our subsequent discussions:

Lemma 4.2 If F,G : A → B are two lax functors between bicategories, then any lax
or oplax transformation, ε : F ⇒ G, canonically defines a homotopy Bε : BF 
 BG
between the induced maps on classifying spaces BF,BG : BA → BB.

Suppose that F : Bop → Cat is a functor, where B is any small category, such
that for every morphism f : b → c of B the induced map B f ∗ : BFc → BFb is a
homotopy equivalence. Then, by Quillen’s Lemma [28, Lemma in p. 14], the induced
commutative square of spaces

BFa ��

��

hocolimBBF

��
pt �� BB

is homotopy cartesian. By Thomason’s Homotopy Colimit Theorem [32], there is a
natural homotopy equivalence hocolimBBF 
 B

∫
B F. Therefore, there is a homotopy

cartesian square
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BFa ��

��

B
∫
B F

��
pt �� BB.

We are now ready to state and prove the following important result in this paper,
which generalizes the result above, as well as the results in [9, Theorem 7.4] and [11,
Theorem 4.3]:

Theorem 4.3 Let F = (F, χ, ξ, ω, γ, δ) : Bop → Bicat be any given lax bidiagram
of bicategories. For any object a ∈ ObB, there is a commutative square in Bicat

Fa
J ��

��

∫
B F

P

��[0] a �� B

(10)

where P is the projection 2-functor (9), a denotes the normal lax functor carrying 0
to a, and J is the natural embedding homomorphism (12) described below, such that,
whenever each 1-cell f : b → c in B induces a homotopy equivalence B f ∗ : BFc 

BFb, then the square of spaces induced on classifying spaces below is homotopy
cartesian.

BFa
BJ ��

��

B
∫
B F

BP

��
pt Ba �� BB

(11)

Proof This is divided into four parts.
Part 1. Here we exhibit the embedding homomorphism in the square (10)

J = J (F, a) : Fa ��
∫
B F. (12)

It is defined on cells of Fa by

x

u
��

v

��⇓φ y J�→ (x, a)

(χy◦u,1a)

��

(χy◦v,1a)

��⇓(φ̃,1) (y, a)

where χy ◦u is the 1-cell of Fa composite of x u �� y
χa y �� 1∗

a y , 1 = 11a , the identity

2-cell in B of the identity 1-cell of a, and φ̃ is the 2-cell given by the pasting in the
diagram below.
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φ̃ :

1∗
a y

1∗
1a

y

B>C?

1 ξ∼=x
u

��

v

��⇓φ y

χy
>8��������

χy 	4�
��

��
��

� ∼=
l

1∗
a y

For x u �� y v �� z , two composable 1-cells in Fa , the corresponding constraint 2-cell
for their composition is ( Ĵ , l) : Jv ◦ Ju ∼= J (v ◦ u), where l = l1a : 1a ◦ 1a ∼= 1a ,
while Ĵ = Ĵv,u is the 2-cell of Fa given by pasting the diagram

x

Ĵv,u :

u ��

v◦u

-@,
,,

,,
,,

,,
,,

,

=

y
χy ��

v

��

1∗
a y

1∗
a(χ z◦v) ��

/��
���

��

1∗
av∼=

χ̂
∼=

1∗
a1∗

az
χ z ��

∼=
γ

(1a ◦ 1a)
∗z

l∗z

��

1∗
az

1

4,---
----

----
----

---
1∗

aχ z

��������

l∼=
z

χ z
��.............. χ z �� 1∗

az,

and, for any object x of Fa , the structure isomorphism for its identity is ( Ĵ , 1) : 1J x ∼=
J (1x ), where 1 = 11a , and Ĵ = Ĵx is provided by pasting the diagram in Fa below.

x

∼=

χx ��

1x

��

Ĵx :

1∗
a x

1∗
1a

x

����

1 ξ∼=

x
χx �� 1∗

a x

So defined, it is straightforward to verify that J is functorial on vertical composition
of 2-cells in Fa . The naturality of the structure 2-cells Jv◦ Ju ∼= J (v◦u) follows from
the coherence conditions in (C1) and (C2), whereas the hexagon coherence condition
for them is verified thanks to conditions (C1), (C2), and (C7), and the result in Lemma
3.2(i i) relating γ with ω. As for the other two coherence conditions, one amounts to
the equality in Lemma 3.2(i), and the other is easily checked.

Part 2. Let z : [n] → B be any given geometric n-simplex of the bicategory, n ≥ 0.
Then, as in (7), we have a composite lax bidiagram of bicategories Fz : [n] → Bicat.
In this part of the proof, we prove that the homomorphism

J = J (Fz, 0) : Fz0
��
∫
[n] Fz

induces a homotopy equivalence on classifying spaces:
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BJ : BFz0 
 B
∫
[n] Fz. (13)

��
This is a direct consequence of the following general observation:

Lemma 4.4 Suppose C is a small category with an initial object 0, and let us regard
C as a bicategory whose 2-cells are all identities. Then, for any lax bidiagram of
bicategories L : Cop → Bicat, the homomorphism J = J (L, 0) : L0 → ∫

CL induces
a homotopy equivalence on classifying spaces, BJ : BL0 
 B

∫
C L.

Proof For any object a ∈ ObC, let 0a : 0 → a denote the unique morphism in C from
the initial object to a. There is a homomorphism

K = K (L, 0) : ∫
C L → L0,

which carries any object (x, a) to K (x, a) = 0∗
a x , the image of x by the homomor-

phism 0∗
a : La → L0, a 1-cell (u, f ) : (x, a) → (y, b) to

K (u, f ) = (
0∗

a x
0∗

au �� 0∗
a f ∗y

χ f,0a
y

�� ( f ◦ 0a)
∗y = 0∗

b y
)
,

and a 2-cell (x, a) ⇓(φ,1)
(u, f )

4,

(v, f )

0/ (y, b) to the 2-cell K (φ, 1) : K (u, f )⇒ K (v, f ) obtained

by pasting the diagram below, where (A)=(
10∗

a f ∗ y
0̂∗

a �� 0∗
a1 f ∗ y

0∗
aξ �� 0∗

a1∗
f y

)
.

K (φ, 1) :
0∗

a f ∗y
χy

����
���

���
���

��

0∗
a1∗

f y

��

1

D�

∼=
(A) ∼=

r0∗
a x

0∗
au

��								

0∗
av /��

��
��

��
�

⇓ 0∗
aφ 0∗

b y

0∗
a f ∗y

χy

���������������

For each object (x, a) of
∫
C L, the structure isomorphism K̂ : 1K (x,a) ∼= K 1(x,a) is

0∗
a x

K̂ :
0∗

aχx ��

1

��

∼=
γ

∼=l

0∗
a1∗

a x

χx
EA

χx

�-//
//

//
//

0∗
a x

11:

1∗
0a

x

B>
∼=ξ

0∗
a x
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while the constraint K̂ : K (v, g) ◦ K (u, f ) ∼= K ((v, g) ◦ (u, f )), for each pair of

composable 1-cells (x, a)
(u, f )�� (y, b)

(v,g)�� (z, c) of
∫
C L, is given by pasting in L0 the

diagram below.

0∗
a f ∗y

K̂ :

χy ��

=

0∗
b y

∼=
χ̂

0∗
bv �� 0∗

bg∗z
χ z ��

∼=ω
∼=
ξ

0∗
c z

0∗
a f ∗y

χy

82

0∗
a f ∗v

��

∼=

0∗
a f ∗g∗z

0∗
aχ z ����

���
���

��

χg∗z

82

0∗
c z

1∗
0c

z

FB

1

GC

∼=l

0∗
a x

0∗
au

82

0∗
au

����������� 0∗
a(χ z◦( f ∗v◦u)) �� 0∗

a(g ◦ f )∗z

χ z

82
χ z

HD

There are also two pseudo transformations

ε : J K ⇒ 1∫
CL, η : 1L0 ⇒ K J,

which are defined as follows: The component of ε at an object (x, a) of
∫
C L is

ε(x, a) = (10∗
a x , 0a) : (0∗

a x, 0) → (x, a),

and its naturality component at a morphism (u, f ) : (x, a) → (y, b) is

(̂ε, 1) : ε(y, b) ◦ J K (u, f ) ∼= (u, f ) ◦ ε(x, a),

where ε̂ is the 2-cell of L0 pasted of the diagram below.

0∗
a x

1

��

0∗
au �� 0∗

a f ∗y
χy �� 0∗

b y
χ0∗

b y
��

1

����
���

���
���

���
���

���
���

���
� 1∗

00∗
b y

1∗
010∗

b y

∼=
��

1
60

δ∼= χy
��((

(((
(((

(((
((

1∗
00∗

b y

χy

��
∼=
r

∼= 0∗
b y

��
1∗

0b
y

0∗
a x

0∗
au �� 0∗

a f ∗y
χy �� 0∗

b y

The pseudo transformation η : 1 ⇒ K J assigns to each object x of the bicategory
L0 the 1-cell ηx = χx : x → 1∗

0x , while its naturality isomorphism at any 1-cell
u : x → y,

η̂ : ηy ◦ u ∼= K J (u) ◦ ηx,

is obtained by pasting the diagram below.
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x u ��

χx

��

χ̂∼=

y

χy

��

χy

I������
�����

�����
�����

�����
��

l∼=1∗
0 y

1∗
0χy

��

1

C?

γ∼=
1∗

0 y 1∗
0 y

�E1
JF

ξ∼=∼=

1∗
0x

1∗
0(χy◦u)

��

1∗
0u

(%000000000000000000
1∗

01∗
0 y

χy
��

χy
��������������

∼=

1∗
0 y

Hence, by Lemma 4.2, there are induced homotopies Bε : BJ BK = B(J K ) 

B1∫

CL = 1B
∫
C L and Bη : 1BL0 = B1L0 
 B(K J ) = BK BJ , and it follows that

both maps BJ and BK are actually homotopy equivalences. ��
Part 3. Let σ : [m] → [n] be a map in the simplicial category. By Lemma 3.3, for

any geometric n-simplex z : [n] → B of the bicategory B, we have the square

∫
[m] Fzσ σ̄ ��

P

��

∫
[n] Fz

P

��
[m] σ �� [n]

which is cartesian in the category of bicategories and lax functors. This part has the
goal of proving that the lax functor σ̄ induces a homotopy equivalence on classifying
spaces:

Bσ̄ : B
∫
[m] Fzσ 
 B

∫
[n] Fz. (14)

To do that, let us consider the square of lax functors

Fzσ0

z∗
0,σ0

��

J=J (Fzσ,0) ��
∫
[m] Fzσ

σ̄

��
Fz0

J=J (Fz,0) ��
∫
[n] Fz,

where z∗
0,σ0 is the homomorphism attached by the lax diagram F : Bop → Bicat to the

1-cell z0,σ0 : z0 → zσ0 of B, and the homomorphisms J are defined as in (12). This
square is not commutative, but there is a pseudo transformation θ : Jz∗

0,σ0 ⇒ σ̄ J ,
whose component at any object x of Fzσ0 is the 1-cell of

∫
[n] Fz

θx = (1z∗
0,σ0x , (0, σ0)) : (z∗

0,σ0x, 0) → (x, σ0),
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and whose naturality isomorphism, at any 1-cell u : x → y in Fzσ0, is

θ̂u = (θ̃ , 1(0,σ0)) : θy ◦ Jz∗
0,σ0u ∼= σ̄ Ju ◦ θx,

where θ̃ is given by pasting in Fz0 the diagram below.

z∗
0,σ0x

z∗
0,σ0u

��

1

��

∼=

z∗
0,σ0 y

χzz∗
0,σ0 y

��

z∗
0,σ0χz y

��

1

�*

∼=

∼=
γ

z∗
0,0z∗

0,σ0 y
z∗

0,01

∼=
��

1
FB

χz y
�	11

111
111

111
111

∼=
δ

z∗
0,0z∗

0,σ0 y

χz y

��
∼=

z∗
0,σ0 y

1∗
z0,σ0

y

��

z∗
0,σ0 y

1∗
z0,σ0

y

��
1

=6

∼=ξ∼=

z∗
0,σ0x

z∗
0,σ0(χz y◦u)

��

z∗
0,σ0u

71222222222222222222222222222
z∗

0,σ0z∗
σ0,σ0 y

χz y ��

χz y
��..............

z∗
0,σ0 y

Hence, by Lemma 4.2, the induced square on classifying spaces

BFzσ0

Bz∗
0,σ0

��

BJ �� B
∫
[m] Fzσ

Bσ̄
��

BFz0
BJ �� B

∫
[n] Fz

is homotopy commutative. Moreover, both maps BJ in the square are homotopy
equivalences, as we showed in the proof of Lemma 4.4 above. Since, by hypoth-
esis, the map Bz∗

0,σ0 : BFzσ0 → BFz0 is also a homotopy equivalence, it fol-
lows that the remaining map in the square have the same property, that is, the map

Bσ̄ : B
∫
[m] Fzσ �� B

∫
[n] Fz is a homotopy equivalence.

Part 4. Finally, we are ready to complete here the proof of the theorem as follows:
Let us consider the induced simplicial map on geometric nerves�P : � ∫

B F → �B.
This verifies the hypothesis in Lemma 4.1. In effect, thanks to Lemma 3.3, for any
geometric n-simplex of B, z : [n] → B, the square

∫
[n] Fz z̄ ��

P

��

∫
B F

P

��[n] z �� B
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is a pullback in the category of bicategories and lax functors, whence the square
induced by taking geometric nerves

�
∫
[n] Fz �z̄ ��

�P

��

�
∫
B F

�P

��
�[n] �z �� �B

is a pullback in the category of simplicial sets. Thus, �P−1(�z) = �
∫
[n] Fz .

Furthermore, for any map σ : [m] → [n] in the simplicial category, since the
diagram of lax functors

∫
[m] Fzσ

σ̄ ��((
(((

( zσ

�.3333
33333

33333
333

P

��

∫
[n] Fz

P

��

z̄
��
∫
B F

P

��

[m]
σ 5!!!

!!!
!!!

! zσ
******

****

=6*****
****

[n] z
�� B

is commutative, the induced diagram of simplicial maps

�
∫
[m] Fzσ

�σ̄ �	!!
!!!

! �zσ

=6*****
******

******
**

�P

��

�
∫
[n] Fz

�P

��

�z̄
�� �

∫
B F

�P

��

�[m]
�σ 4,444

4444
444 �(zσ)

555555
55555

=6555555
5555

�[n]
�z

�� �B

is also commutative. Then, as σ ∗z = zσ , the induced simplicial map �P−1(σ ∗z) →
�P−1(z) is precisely the map�σ̄ : � ∫

[m] Fzσ → �
∫
[n] Fz, whose induced map on

geometric realizations is the homotopy equivalence (14), Bσ̄ : B
∫
[m] Fzσ 
 B

∫
[n] Fz .

Hence, by Lemma 4.1, for each object a ∈ ObB, the square

|�P−1(a)| ��

��

|� ∫
B F|
|�P|
��

=
pt

|�a| �� |�B|

B
∫
[0] Fa Bā ��

��

B
∫
B F

BP

��
B�[0] Ba �� BB
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is homotopy cartesian. Furthermore, since the diagram of lax functors

Fa

J (Fa,0) ��((
(((

(( J (F,a)

�.****
*****

*****
*****

*

��

∫
[0] Fa

��

ā
��
∫
B F

P

��

[0]
�	11

111
111

1 a ******
***

=6*****
******

[0] a
�� B

commutes, it follows that the square (11) is homotopy cartesian as it is the composite
of the squares

BFa
BJ (Fa,0) ��

��

B
∫
[0] Fa Bā ��

��

B
∫
B F

BP

��
pt �� pt Ba �� BB

where the map BJ (Fa, 0) : BFa 
 B
∫
[0] Fa in the left square is one of the homotopy

equivalences (13), while the square on the right is homotopy cartesian.

5 The homotopy cartesian square induced by a lax functor

In this section we prove the main theorem of this paper, that is, a generalization to
lax functors (monoidal functors, for instance) of the well-known Quillen’s Theorem
B [28]. We shall first extend Gray’s construction [19, Section 3.1] of homotopy fiber
2-categories to homotopy fiber bicategories of an arbitrary lax functor between bicat-
egories, so we can state the corresponding ‘Theorem B’ in terms of them.

Let F : A → B be any given lax functor between bicategories. As in Example 2.3,
each object b of B gives rise to a pseudo bidiagram of categories

B(−, b) : Bop → Cat,

which carries an object x ∈ ObB to the hom-category B(x, b), and then also to the
lax bidiagram of categories

B(−, b)F : Aop → Cat, (15)

obtained, as in (7), by composing B(−, b) with F . The Grothendieck construction on
these lax bidiagrams leads to the notions of homotopy fiber and comma bicategories:

Definition 5.1 The homotopy fiber, F↓ b, of a lax functor between bicategories F :
A → B over an object b ∈ ObB, is the bicategory obtained as the Grothendieck
construction on the lax bidiagram (15), that is,
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F↓b = ∫
A B(−, b)F.

In particular, when F = 1B is the identity functor on B,

B↓b = ∫
B B(−, b)

is the comma bicategory of objects over b of the bicategory B.

It will be useful to develop here the Grothendieck construction, exposed in Sect. 3,
in this particular case. Its objects are pairs

( f : Fa → b, a) (16)

with a a 0-cell of A and f a 1-cell of B whose source is Fa and target the fixed
object b. The 1-cells

(β, u) : ( f, a) → ( f ′, a′) (17)

consist of a 1-cell u : a → a′ in A, together with a 2-cell β : f ⇒ f ′ ◦ Fu in the
bicategory B,

Fa
Fu ��

f ���
��

�� β⇒
Fa′

f ′����
��
�

b

A 2-cell in F↓b,

( f, a)

(β,u)
�	

(β ′,u′)
��

⇓α ( f ′, a′), (18)

is a 2-cell α : u ⇒ u′ in A, such that the equation below holds in the category
B(Fa, b).

Fa
Fu′

⇑Fα
��

f

�E6
66

66
66

66 ��
Fu

Fa′

f ′
K522
22
22
22
22

=

b

⇒β

Fa
Fu′

��

f

�E6
66

66
66

66
Fa′

f ′
K522
22
22
22
22

b

⇒β
′

(19)

Compositions, identities, and the structure associativity and unit constraints in F↓b are
as follows: For any given objects ( f, a) and ( f ′, a′) as in (16), the vertical composition
of 2-cells
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( f, a) (β ′,u′) ��

(β,u)

��

(β ′′,u′′)

��

⇓α

⇓α′
( f ′, a′) ·�→ ( f, a)

(β,u)
5!

(β ′′,u′′)
60

⇓α′·α ( f ′, a′)

is given by the vertical composition α′ ·α of 2-cells in A. The horizontal composition
of two 1-cells in F↓b,

( f, a)
(β,u) �� ( f ′, a′)

(γ,v) �� ( f ′′, a′′)

is the 1-cell

(γ, v) ◦ (β, u) = (γ � β, v ◦ u) : ( f, a) → ( f ′′, a′′),

where the second component is the horizontal composition v ◦ u in A, while the first
one is the 2-cell in B obtained by pasting the diagram below.

Fa
Fu ��

F(v◦u)

F̂⇑ ��

f
�*





 β⇒γ � β :

Fa′ Fv ��

f ′

��

γ⇒
Fa′′

f ′′
9
��
��
��
��
��

b

(20)

The horizontal composition of 2-cells is simply given by the horizontal composition
of 2-cells in B,

( f, a)

(β,u)
�	

(β ′,u′)
2�

⇓α ( f ′, a′)

(γ,v)

5!

(γ ′,v′)
2�⇓α′ ( f ′′, a′′) �→ ( f, a)

(γ�β,v◦u)
5!

(γ ′�β ′,v′◦u′)
60

⇓α′◦α ( f ′′, a′′),

and the identity 1-cell of each 0-cell ( f : Fa → b, a) is

1( f,a) = (
◦
1( f,a), 1a) : ( f, a) → ( f, a),

◦
1( f,a) = (

f r−1
�� f ◦ 1Fa

1 f ◦F̂
�� f ◦ F(1a)

)

Finally, the associativity, left and right unit constraints are obtained from those of
A by the formulas

a(β ′′,u′′),(β ′,u′),(β,u) = au′′,u′,u, r(β,u) = ru, l(β,u) = lu .

We shall prove below that, under reasonable necessary conditions, the classifying
spaces of the homotopy fiber bicategories B(F↓b), of a lax functor F : A → B, realize
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the homotopy fibers of the induced map on classifying spaces, BF : BA → BB. This
fact will justify the name of ‘homotopy fiber bicategories’ for them. As a first step to do
it, we state the following particular case, when F = 1B is the identity homomorphism:

Lemma 5.2 For any object b of a bicategory B, the classifying space of the comma
bicategory B↓b is contractible, that is, B(B↓b) 
 pt.

Proof Let [0] → B↓b denote the normal lax functor that carries 0 to the object (1b, b),
and let Ct : B↓b → B↓b be the composite of B↓b → [0] → B↓b. Then, the induced
map on classifying spaces

B(B↓b)
BCt �� B(B↓b) = B(B↓b) �� B[0] = pt �� B(B↓b)

is a constant map. Now, let us observe that there is a canonical oplax transformation
1B↓b ⇒ Ct, whose component at any object ( f : a → b, a) is the 1-cell (l−1

f , f ) :
( f, a) → (1b, b), and whose naturality component at a 1-cell (β, u) : ( f, a) →
( f ′, a′) is

( f, a)
(l−1, f ) ��

(β,u)
��

β·l⇐

(1b, b)

(r−1,1b)

��
( f ′, a′)

(l−1, f ′)
�� (1b, b).

This oplax transformation gives, thanks to Lemma 4.2, a homotopy between
B(1B↓b ) = 1B(B↓b) and the constant map BCt, and so we obtain the result. ��
Example 5.3 Let B be a bicategory, and suppose b ∈ ObB is an object such that
the induced maps Bp∗ : BB(y, b) → BB(x, b) are homotopy equivalences for the
different morphisms p : x → y in B (for instance, any object of a bigroupoid). By
Theorem 4.3, we have the homotopy fiber sequence

BB(b, b) → BB↓b → BB

in which the space BB↓ b is contractible by Lemma 5.2. Hence, we conclude the
existence of a homotopy equivalence

�(BB,Bb) 
 B(B(b, b)) (21)

between the loop space of the classifying space of the bicategory with base point Bb
and the classifying space of the category of endomorphisms of b in B.

The homotopy equivalence above is already known when the bicategory is strict,
that is, when B is a 2-category. It appears as a main result in the paper by Del Hoyo
[14, Theorem 8.5], and it was also stated at the same time by Cegarra in [11, Example
4.4]. Indeed, that homotopy equivalence (21), for the case when B is a 2-category, can
be deduced from a result by Tillman about simplicial categories in [31, Lemma 3.3].
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Returning to an arbitrary lax functor F : A → B, we shall now pay attention
to two constructions with fiber homotopy bicategories. First, we have that any 1-cell
p : b → b′ in B determines a 2-functor

p∗ : F↓b → F↓b′ (22)

whose function on objects is defined by

p∗(Fa
f→ b, a) = (Fa

p◦ f−→ b′, a).

A 1-cell (β, u) : ( f, a) → ( f ′, a′) of F↓b, as in (17), is carried to the 1-cell of F↓b′

p∗(β, u) = (p � β, u) : (p ◦ f, a) → (p ◦ f ′, a′),

p � β = (
p ◦ f

1p◦β�� p ◦ ( f ′ ◦ Fu)
a−1

�� (p ◦ f ′) ◦ Fu
)

while, for α : (β, u) ⇒ (β ′, u′) any 2-cell in F↓b as in (18),

p∗(α) = α : (p � β, u) ⇒ (p � β ′, u′).

Secondly, by Lemma 3.3, we have a pullback square in the category of bicategories
and lax functors for any b ∈ ObB

F↓b

P
��

F̄ �� B↓b

P
��

=
A F �� B

∫
A B(−, b)F

P

��

F̄ ��
∫
B B(−, b)

P

��
A F �� B

(23)

where, recall, the 2-functors P are the canonical projections (9), and F̄ is the induced
lax functor (8), which acts on cells by

( f, a)

(β,u)
�.

(β ′,u′)
2�

⇓α ( f ′, a′) F̄�→ ( f, Fa)

(β,Fu)
�.

(β ′,Fu′)
2�

⇓Fα ( f ′, Fa′),

and whose structure constraints are canonically given by those of F .
We are now ready to state and prove the following theorem, which is just the

well-known Quillen’s Theorem B [28] when the lax functor F in the hypothesis is an
ordinary functor between categories. The result therein also generalizes a similar result
by Cegarra [11, Theorem 3.2], which was stated for the case when F is a 2-functor
between 2-categories, but the extension to arbitrary lax functors between bicategories
is highly nontrivial and the proof we give here uses different tools.

Theorem 5.4 Let F : A → B be a lax functor between bicategories. The following
statements are equivalent:
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(i) For every 1-cell p : b → b′ in B, the induced map Bp∗ : B(F↓b) → B(F↓b′) is
a homotopy equivalence.

(ii) For every object b of B, the induced square by (23) on classifying spaces

B(F↓b)

BP
��

BF̄ �� B(B↓b)

BP
��

BA BF �� BB

(24)

is homotopy cartesian.
Therefore, in such a case, for each object a ∈ ObA such that Fa = b, there is a
homotopy fibre sequence

B(F↓b) → BA → BB,

relative to the base 0-cells Ba of BA, Bb of BB and B(1b, a) of B(F↓ b), that
induces a long exact sequence on homotopy groups

· · · → πn+1BB → πnB(F↓b) → πnBA → πnBB → · · · .

Proof (i i) ⇒ (i) Suppose that p : b → b′ is any 1-cell of B. Then, taking z : [1] → B
the normal lax functor such that z0,1 = p, we have the path Bz : B[1] = I → BB,
whose origen is the point Ba and whose end is Bb (actually, Bb′ is a CW-complex and
Bz is one of its 1-cells). Since the homotopy fibers of a continuous map whose over
points are connected by a path are homotopy equivalent, the result follows.

(i) ⇒ (i i) This is divided into three parts.
Part 1. We begin here by noting that the bicategorical homotopy fiber construction

is actually the function on objects of a covariant oplax bidiagram of bicategories

F↓ = (F↓ , χ, ξ, ω, γ, δ) : B → Bicat

consisting of the following data:
(D1) for each object b in B, the homotopy fiber bicategory F↓b;
(D2) for each 1-cell p : b → b′ of B, the 2-functor p∗ : F↓b → F↓b′ in (22);

(D3) for each 2-cell b

p
��

p′
��⇓σ b′ of B, the pseudo transformation σ∗ : p∗ ⇒ p′∗, whose

component at an object ( f, a) of F↓b, is the 1-cell

σ∗( f, a) = (σ � f, 1a) : (p ◦ f, a) → (p′ ◦ f, a),

σ � f = (
p ◦ f σ◦1 �� p′ ◦ f

r−1
�� (p′ ◦ f ) ◦ 1Fa

1◦F̂ �� (p′ ◦ f ) ◦ F1a
)
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and whose naturality component at any 1-cell (β, u) : ( f, a) → ( f ′, a′), as in (17), is
the canonical isomorphism r−1 · l : 1a′ ◦ u ∼= u ◦ 1a ;

(p ◦ f, a)
(σ� f,1a) ��

(p�β,u)
��

r−1· l∼=

(p′ ◦ f, a)

(p′�β,u)
��

(p ◦ f ′, a′)
(σ� f ′,1a′ )

�� (p′ ◦ f ′, a′)

(D4) for each two composable 1-cells b
p �� b′ p′

�� b′′ in the bicategory B, the pseudo
transformation χ

p′,p : (p′ ◦ p)∗ ⇒ p′∗ p∗ has component, at an object ( f, a) of F↓ b,
the 1-cell

(å, 1a) : ((p′ ◦ p) ◦ f, a) → (p′ ◦ (p ◦ f ), a),

å = (
(p′ ◦ p) ◦ f

a �� p′ ◦ (p ◦ f )
r−1

�� (p′ ◦ (p ◦ f )) ◦ 1Fa
1◦F̂ �� (p′ ◦ (p ◦ f )) ◦ F1a

)

and whose naturality component at a 1-cell (β, u) : ( f, a) → ( f ′, a′), is

((p′ ◦ p) ◦ f, a)
(å,1) ��

((p′◦p)�β),u)
��

r−1· l∼=

(p′ ◦ (p ◦ f ), a)

(p′�(p�β),u)
��

((p′ ◦ p) ◦ f ′, a′)
(å,1)

�� (p′ ◦ (p ◦ f ′), a′);

(D5) for each object b of B, χb : 1b∗ ⇒ 1F↓b is the pseudo transformation whose
component at any object ( f, a) is the 1-cell

(
◦
1 · l, 1a) : (1b ◦ f, a) → ( f, a),

◦
1 · l = (

1b ◦ f l �� f r−1
�� f ◦ 1Fa

1◦F̂ �� f ◦ F1a
)

and whose naturality component, at a 1-cell (β, u) : ( f, a) → ( f ′, a′), is

(1b ◦ f, a)
(
◦
1,1) ��

(1b�β,u)
��

r−1· l∼=

( f, a)

(β,u)
��

(1b ◦ f ′, a′)
(
◦
1,1)

�� ( f ′, a′);

(D6) for any two vertically composable 2-cells p σ �� p′ τ �� p′′ in B, the invertible
modification ξτ,σ : τ∗ ◦ σ∗ � (τ · σ)∗ has component, at any object ( f, a), the
canonical isomorphism l : 1a ◦ 1a ∼= 1a

123



164 M. Calvo et al.

(p ◦ f, a)
(σ� f,1a)

�G777
777 ((τ ·σ)� f,1a)

����
���

�
∼=l

(p′ ◦ f, a)
(τ� f,1a)

�� (p′′ ◦ f, a);

(D7) for each 1-cell p : b → b′ of B, (1p)∗ = 1p∗ , and ξp is the identity modification;

(D8) for every two horizontally composable 2-cells b

p
�	

q
��⇓σ b′

p′
5!

q ′
60⇓τ b′′ in B, the equal-

ity (τ∗σ∗)◦ χ p′,p = χq ′,q ◦ (τ ◦ σ)∗ holds and the modification χτ,σ is the identity;

(D9) for every three composable 1-cells b
p �� b′ p′

�� b′′ p′′
�� b′′′ in B, the invertible

modification ω
p′′,p′,p , at any object ( f, a), is the canonical isomorphism r : (1a ◦1a)◦

1a ∼= 1a ◦ 1a ,

(((p′′ ◦ p′) ◦ p) ◦ f, a)
(a� f,1a) ��

(å,1a)

��
∼=r

((p′′ ◦ (p′ ◦ p)) ◦ f, a)

(å,1a)

��
((p′′ ◦ p′) ◦ (p ◦ f ), a)

(å,1a) �� (p′′ ◦ (p′ ◦ (p ◦ f )), a) (p′′ ◦ ((p′ ◦ p) ◦ f ), a);(p′′�å,1a).=

(D10) for any 1-cell p : b → b′ of B, the invertible modifications γp and δp, at any
object ( f, a) are given by the canonical isomorphism 1a ◦ (1a ◦ 1a) ∼= 1a ,

(1b′ ◦ (p ◦ f ), a)
(
◦
1·l,1a) ��

∼=r·r
(p ◦ f, a)

(
◦
1,1a)

��
((1b′ ◦ p) ◦ f, a)

(å,1a)

82

(l� f,1a)
�� (p ◦ f, a)

(p ◦ (1b′ ◦ f ), a)
(p�(◦1·l),1a)��

∼=r·r
(p ◦ f, a)

(
◦
1,1a)

��
((p ◦ 1b′) ◦ f, a)

(å,1a)

82

(r� f,1a)
�� (p ◦ f, a).

Observe that all the 2-cells given above are well defined since all the data is obtained
from the constraints of the bicategories involved and the lax functor F . Then the
coherence conditions of these give us the equality (19) in each case. For the same
reason the axioms (C1)–(C8) hold.

Part 2. In this part, we consider the Grothendieck construction on the oplax bidia-
gram of homotopy fibers F↓ : B → Bicat, and we shall prove the following:

Lemma 5.5 There is a homomorphism

Q : ∫
B F↓ → A, (25)

inducing a homotopy equivalence on classifying spaces, BQ : B
∫
B F↓ 
 BA.

Before starting the proof of the lemma, we shall briefly describe the bicategory∫
B F↓. It has objects the triplets ( f, a, b), with a ∈ ObA, b ∈ ObB, and f : Fa → b

a 1-cell of B. Its 1-cells
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(β, u, p) : ( f, a, b) → ( f ′, a′, b′),

consist of a 1-cell p : b → b′ in B, together with a 1-cell (β, u) : p∗( f, a) =
(p ◦ f, a) → ( f ′, a′) in F ↓ b′ , that is, a 1-cell u : a → a′ in A and a 2-cell
β : p ◦ f ⇒ f ′ ◦ Fu in B

Fa
β⇒

Fu ��

f

��

Fa′

f ′
��

b
p �� b′.

A 2-cell in
∫
B F↓,

( f, a, b)

(β,u,p)
5!

(β ′,u′,p′)
60

⇓(α,σ ) ( f ′, a′, b′) ,

consists of a 2-cell σ : p ⇒ p′ in B, together with a 2-cell α : (β, u) ⇒ (β ′, u′) ◦
σ∗( f, a) in F↓ b′ , that is, (after some work using coherence equations) a 2-cell α :
u ⇒ u′ ◦ 1a in A, such that the equation below holds.

Fa
Fu′

��

f

��

Fa′

f ′

��

=

b
⇑σ ��

p′
⇒β

′

p
�� b′

Fa ��

Fu

Fu′

⇑F(r·α)
��

f

��

Fa′

f ′

��
b

⇒β

p
�� b′

We shall look carefully at the vertical composition of 2-cells and the horizontal
composition of 1-cells in

∫
B F ↓ since we will use them later: Given two vertically

composable 2-cells, say (α, σ ) as above and (α′, σ ′) : (β ′, u′, p′) ⇒ (β ′′, u′′, p′′),
their vertical composition is given by the formula

(α′, σ ′) · (α, σ ) = (α′ · r · α, σ ′ · σ) : (β, u, p) ⇒ (β ′′, u′′, p′′).

Given two composable 1-cells, say (β, u, p) as above and (β ′, u′, p′) : ( f ′, a′, b′) →
( f ′′, a′′, b′′), their horizontal composition is

(β ′, u′, p′) ◦ (β, u, p) = (F r−1 · (β ′ � (1p′ ◦ β)), (u′ ◦ u) ◦ 1a, p′ ◦ p) : ( f, a, b)

→ ( f ′′, a′′, b′′),
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where β ′ � (1p′ ◦ β) is as in (20), thus

Fa
F r−1 · (β ′ � (1p′ ◦ β)) :

F((u′◦u)◦1a)

&'⇑F r−1·F̂

⇒β

Fu ��

f

��

Fa′

⇒β
′

Fu′
��

f ′
��

Fa′′

f ′′
��

b
p �� b′ p′

�� b′′.

The identity 1-cell at an object ( f, a, b) is

1( f,a,b) = (
◦
1( f,a) · l, 1a, 1b) : ( f, a, b) → ( f, a, b).

◦
1( f,a) · l =

(
1b ◦ f l �� f r−1

�� f ◦ 1Fa
1 f ◦F̂

�� f ◦ F(1a)
)

Proof of Lemma 5.5 The homomorphism Q in (25) is defined on cells by

( f, a, b)

(β,u,p)
5!

(β ′,u′,p′)
60

⇓(α,σ ) ( f ′, a′, b′) Q�→ a

u
��

u′
��⇓r·α a′,

r · α = (
u

α⇒ u′ ◦ 1a
r⇒ u′)

This homomorphism Q is strictly unitary, and its structure isomorphism at any
two composable 1-cells, say (β, u, p) as above and (β ′, u′, p′) : ( f ′, a′, b′) →
( f ′′, a′′, b′′), is

Q̂ = ru′◦u : Q((β ′, u′, p′) ◦ (β, u, p)) ∼= Q(β ′, u′, p′) ◦ Q(β, u, p).

To prove that this homomorphism Q induces a homotopy equivalence on classifying
spaces, let us observe that there is also a lax functor L : A → ∫

B F ↓, such that
Q L = 1A. This is defined on cells of A by

a

u
��

u′
��⇓α a′ L�→ (1Fa, a, Fa)

(l−1·r,u,Fu)
�.

(l−1·r,u′,Fu′)

2�⇓(r−1·α,Fα) (1Fa′ , a′, Fa′),

r−1 · α = (
u

α⇒ u′ r−1⇒ u′ ◦ 1a
)

where the first component of (l−1 · r, u, Fu) is the canonical isomorphism Fu◦1Fa ∼=
1Fa′ ◦ Fu. Its structure 2-cells, at any pair of composable 1-cells a

u→ a′ u′→ a′′ and
at any object a of A, are respectively defined by

L̂u′,u = (1(u′◦u)◦1a , F̂u′,u) : Lu′ ◦ Lu ⇒ L(u′ ◦ u),

L̂a = (r−1
1a
, F̂a) : 1La ⇒ L1a .
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The equality QL = 1A is easily checked. Furthermore, there is an oplax transfor-
mation ι : L Q ⇒ 1∫

B F↓ assigning to each object ( f, a, b) of the bicategory
∫
B F↓

the 1-cell

ι( f, a, b) = (1 f ◦ F̂a, 1a, f ) : (1Fa, a, Fa) → ( f, a, b),

and whose naturality component at any 1-cell (β, u, p) : ( f, a, b) → ( f ′, a′, b′) is
the 2-cell

(1Fa, a, Fa)

ι̂=((l−1◦1)◦1,β)⇒

(l−1·r,u,Fu)��

(1 f ◦F̂a ,1a , f )
��

(1Fa′ , a′, Fa′)

(1 f ′ ◦F̂a′ ,1a′ , f ′)
��

( f, a, b)
(β,u,p)

�� ( f ′, a′, b′).

Therefore, by taking classifying spaces, we have BQ BL=1BA and, by Lemma 4.2,
BL BQ 
 1B

∫
B F↓, whence BQ is actually a homotopy equivalence.

Part 3. We complete here the proof of the theorem as follows: There is a canonical
homomorphism

F̄ : ∫
B F↓−→ ∫

B B↓ (26)

making commutative, for any object b ∈ ObB, the diagrams

(A) :

F↓b
J ��

F̄
��

P

��∫
B F↓ Q ��

F̄
���
�
�

A

F

��
B↓b

J ��

P

��
∫
B B↓ Q �� B

(B) :

F↓b F ��

J
��

��
B↓b ��

J
��

[0]
b

��∫
B F↓ F̄ ��888

P

��
∫
B B↓ P �� B

in which Q : ∫
B F↓→ A is the homomorphism in (25) and Q : ∫

B B↓→ B is the
corresponding one for F = 1B, all the 2-functors P are the canonical projections (9),
and the embedding homomorphisms J are the corresponding ones defined as in (12).
This homomorphism (26) is defined on cells by

( f, a, b)

(β,u,p)
5!

(β ′,u′,p′)
60

⇓(α,σ ) ( f ′, a′, b′) F̄�→ ( f, Fa, b)

(β,Fu,p)
�.

(β ′,Fu′,p′)
2�⇓(r−1·F r·Fα,σ) ( f ′, Fa′, b′).

r−1 · F r · Fα =
(

Fu
Fα �� F(u′ ◦ 1a)

F r �� Fu′ r−1
�� Fu′ ◦ 1Fa

)
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Its composition constraint at a pair of composable 1-cells, say (β, u, p) as above and
(β ′, u′, p′) : ( f ′, a′, b′) → ( f ′′, a′′, b′′), is the 2-cell

(F̃, 1p′◦p) : F̄(β ′, u′, p′) ◦ F̄(β, u, p) ⇒ F̄((β ′, u′, p′) ◦ (β, u, p)),

F̃ =
(
(Fu′ ◦ Fu) ◦ 1Fa

F̂◦1 �� F(u′ ◦ u) ◦ 1Fa
F(r−1)◦1�� F((u′ ◦ u) ◦ 1a) ◦ 1Fa

)

while its unit constraint at an object ( f, a, b) is

(F̃, 11b ) : 1F̄( f,a,b) ⇒ F̄(1( f,a,b)).

F̃ =
(

1Fa
r−1

�� 1Fa ◦ 1Fa
F̂◦1 �� F(1a) ◦ 1Fa

)

Let us now observe that (the covariant and oplax version of) Theorem 4.3 applies
both to the bidiagram of homotopy fibres F ↓, by hypothesis, and to the bidiagram
of comma bicategories B↓, since the spaces BB↓ b are contractible by Lemma 5.2
and therefore any 1-cell p : b → b′ in B obviously induces a homotopy equivalence
Bp∗ : BB↓b 
 BB↓b′ . Hence, the squares

F↓b
J ��

��

∫
B F↓

P

��[0] b �� B

B↓b
J ��

��

∫
B B↓

P

��[0] b �� B

(27)

induce homotopy cartesian squares on classifying spaces

BF↓b
BJ ��

��

B
∫
B F↓

BP
��

pt Bb �� BB,

BB↓b
BJ ��

��

B
∫
B B↓

BP

��
pt Bb �� BB.

By [17, II, Lemma 8.22 (2)(b)], it follows from the commutativity of diagram (B)
above that the induced square

BF↓b
BF̄ ��

BJ
��

BB↓b

BJ
��

B
∫
B F↓ BF̄ �� B

∫
B B↓

is homotopy cartesian. Then, by [17, II, Lemma 8.22 (1), (2)(a)], the theorem fol-
lows from the commutativity of diagram (A), since, by Lemma 5.5, in the induced
square
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B
∫

B F↓ BF̄ ��

BQ

��

B
∫
B B↓

BQ

��
BA BF �� BB

both maps BQ are homotopy equivalences and therefore it is homotopy cartesian. ��
The following corollary generalizes Quillen’s Theorem A in [28]:

Theorem 5.6 Let F : A → B be a lax functor between bicategories. The induced
map on classifying spaces BF : BA → BB is a homotopy equivalence whenever the
classifying spaces of the homotopy fiber bicategories BF↓ b are contractible for all
objects b of B.

Particular cases of the result above have been also stated in [7, Theorem 1.2], for
the case when F : A → B is any 2-functor between 2-categories, and in [14, Theorem
6.4], for the case when F is a lax functor from a category A to a 2-category B. In [13,
Théorème 6.5], it is stated a relative Theorem A for lax functors between 2-categories,
which also implies the particular case of Theorem 5.6 above when F is any lax functor
between 2-categories.

Example 5.7 Let (M,⊗) = (M,⊗, I, a, l, r) be a monoidal category (see e.g. [27]),
and let �(M,⊗) denote its suspension or delooping bicategory. That is, �(M,⊗)
is the bicategory with only one object, say �, whose hom-category is M, and whose
horizontal composition is given by the tensor functor ⊗ : M×M → M. The identity
1-cell on the object is the unit object I of the monoidal category, and the constraints
a, l , and r for �(M,⊗) are just those of the monoidal category.

By [7, Theorem 1],

B(M,⊗) = B�(M,⊗),

that is, the classifying space of the monoidal category is the classifying space of its
suspension bicategory. Then, Theorem 5.4 is applicable to monoidal functors between
monoidal categories.

However, we should stress that the homotopy fiber bicategory of the homomorphism
between the suspension bicategories that a monoidal functor F : (M,⊗) → (M′,⊗)
defines, �F : �(M,⊗) → �(M′,⊗), at the unique object of �(M′,⊗), is not a
monoidal category but a genuine bicategory: The 0-cells of �F ↓� are the objects
x ′ ∈ M′, its 1-cells (u′, x) : x ′ → y′ are pairs with x an object in M and u′ : x ′ →
y′ ⊗ F(x) a morphism in M′, and its 2-cells

x ′
(u′,x)

��

(v′,y)
��⇓u y′
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are those morphisms u : x → y in M making commutative the triangle

x ′ u′
��

v′
�

��
��

��
��

y′ ⊗ Fx

y′⊗Fu
��

y′ ⊗ Fy.

The vertical composition of 2-cells is given by the composition of arrows in M. The

horizontal composition of two 1-cells x ′ (u′,x) �� y′ (v′,y) �� z′ is the 1-cell (v′ �u′, y ⊗
x) : x ′ → z′,

v′ � u′ =
(

x ′ u′
�� y′ ⊗ Fx

v′⊗Fx �� (z′ ⊗ Fy)⊗ Fx ∼= z′ ⊗ (Fy ⊗ Fx) ∼= z′ ⊗ F(y ⊗ x)
)

and the horizontal composition of 2-cells is given by tensor product of arrows in M.

The identity 1-cell of any 0-cell x is (
◦
1x , I ) : x → x , where

◦
1x = (x ′ ∼= x ′ ⊗ I ′ ∼=

x ′⊗F I ). The associativity, left and right constraints are obtained from those of (M,⊗)
by the formulas

a(w′,z),(v′,y),(u′,x) = az,y,x , r(u′,x) = rx , l(u′,x) = l x .

Following the terminology of [8, p. 228], we shall call this bicategory �F ↓� the
homotopy fiber bicategory of the monoidal functor F : (M,⊗) → (M′,⊗), and
write it by KF .

Every object z′ of M′, determines a 2-endofunctor z′ ⊗ − : KF → KF , which is
defined on cells by

x ′
(u′,x)

��

(v′,y)
��⇓u y′ �→ z′ ⊗ x ′

(z′�u′,x)
=6

(z′�v′,y)
FB⇓u z′ ⊗ y′,

where z′ � u′ =
(

z′ ⊗ x ′ z′⊗u′
�� z′ ⊗ (y′ ⊗ Fx) ∼= (z′ ⊗ y′) ⊗ Fx

)
, and from

Theorems 5.4 and 5.6, we get the following:

Theorem 5.8 For any monoidal functor F : (M,⊗) → (M′,⊗), the following
statements hold:

(i) There is an induced homotopy fiber sequence

BKF → B(M,⊗) BF−→ B(M′,⊗),

whenever the induced maps B(z′ ⊗ −) : BKF → BKF are homotopy autoequiv-
alences, for all z′ ∈ ObM′.

(ii) The induced map BF : B(M,⊗) → B(M′,⊗) is a homotopy equivalence if the
space BKF is contractible.
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For any monoidal category (M,⊗), pseudo bidiagrams of categories over its sus-
pension bicategory,

N = (N , χ) : �(M,⊗)op → Cat,

are interesting to consider, since they can be regarded as a category N (the one asso-
ciated to the unique object of the suspension bicategory) endowed with a coherente
right pseudo action of the monoidal category (M,⊗) (see e.g. [23, Sect. 1]). Namely,
by the functor ⊗ : N × M → N , which is defined on objects by a ⊗ x = x∗a and
on morphism by

(a
f→ b)⊗ (x

u→ y) = (
x∗a

x∗ f �� x∗b
u∗b �� y∗b

) = (
x∗a

u∗a �� y∗a
y∗ f �� y∗b

)
,

together with the coherent natural isomorphisms

(a ⊗ x)⊗ y = y∗x∗a
χx,ya �� (x ⊗ y)∗a = a ⊗ (x ⊗ y)

a
χI a

�� I ∗a = a ⊗ I.

For each such (M,⊗)-category N , the cells of the bicategory
∫
�(M,⊗) N has the

following easy description: Its objects are the same as the objects of the category N . A
1-cell ( f, x) : a → b is a pair with x an object of M and f : a → b ⊗ x a morphism
in N , and a 2-cell

a

( f,x)
��

(g,y)

��⇓u b

is a morphism u : x → y in M such that the triangle

a
g

&'9
99

99
9

f

+)��
��
��

b ⊗ x
b⊗u �� b ⊗ y.

is commutative. Many of the homotopy theoretical properties of the classifying space
of the monoidal category, B(M,⊗), can actually be more easily reviewed by using
Grothendieck bicategories

∫
�(M,⊗) N , instead of the Borel pseudo simplicial cate-

gories

E(M,⊗)N : �op → Cat, [p] �→ N × Mp

as, for example, Jardine did in [23] for (M,⊗)-categories N .
Thus, one sees, for example, that if the action is such that multiplication by each

object x of M, that is, the endofunctor − ⊗ x : N → N , induces a homotopy
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equivalence BN 
 BN , then, by Theorem 4.3, one has an induced homotopy fiber
sequence (cf. [23, Proposition 3.5])

BN → B
∫
�(M,⊗) N

BP−→ B(M,⊗).

In particular, the right action of (M,⊗) on the underlying category M leads to the
bicategory

∫
�(M,⊗) M = �(M,⊗)↓� ,

the comma bicategory of the suspension bicategory over its unique object, whose
classifying space is contractible by Lemma 5.2 (cf. [23, Proposition 3.8]). Then, it
follows the well-known result by Mac Lane [26] and Stasheff [29] that there is a
homotopy equivalence

BM 
 �B(M,⊗),

between the classifying space of the underlying category and the loop space of the
classifying space of the monoidal category, whenever multiplication by each object
x ∈ ObM, y �→ y ⊗ x , induces a homotopy autoequivalence on BM (cf. Example
5.3).
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