
J. Homotopy Relat. Struct. (2014) 9:263–271
DOI 10.1007/s40062-013-0024-9

Existence of b0b1 g0γ̃s-element in the stable homotopy
of spheres

X. Liu · S. Liu · R. Huang

Received: 7 November 2012 / Accepted: 2 February 2013 / Published online: 23 February 2013
© Tbilisi Centre for Mathematical Sciences 2013

Abstract Let p be a prime greater than five and A be the mod p Steenrod alge-
bra. In this paper, we show that the composite map β1ϕs is nontrivial in the stable
homotopy of spheres π2(p−1)[(s+1)p2+(s+1)p+s]−9(S) , where 4 ≤ s < p and ϕs is

represented by b1g0γ̃s ∈ Exts+4,2(p−1)[(s+1)p2+sp+s]+s−3
A (Z/p, Z/p) in the Adams

spectral sequence.
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264 X. Liu et al.

1 Introduction and statement of the main results

Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an
arbitrary odd prime p. To determine the stable homotopy groups of spheres π∗(S) is
one of the central problems in homotopy theory. One of the main tools to reach it is
the Adams spectral sequence (see [1]):

Es,t
2 = Exts,t

A (Z/p, Z/p) ⇒ πt−s(S),

where the E2-term is the cohomology of A.
Throughout this paper, we fix q = 2(p−1). The known results on Ext∗,∗

A (Z/p, Z/p)

are as follows: Ext0,∗
A (Z/p, Z/p) = Z/p by its definition. From [6], we have that for

odd prime p Ext1,∗
A (Z/p, Z/p) has Z/p-basis consisting of a0 ∈ Ext1,1

A (Z/p, Z/p)

and hi ∈ Ext1,pi q
A (Z/p, Z/p) for all i ≥ 0 and Ext2,∗

A (Z/p, Z/p) has Z/p-basis
consisting of α2, a2

0 , a0hi (i > 0), gi (i ≥ 0), ki (i ≥ 0), bi (i ≥ 0), and hi h j

( j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2, pi q + 1, pi+1q +
2pi q, 2pi+1q + pi q, pi+1q and pi q + p j q, respectively. Aikawa [2] determined
Ext3,∗

A (Z/p, Z/p) by virtue of the lambda algebra.
Let M be the mod p Moore spectrum given by the following cofibration

S
p−→ S

i−→ M
j−→ �S. (1.1)

Let α : �q M −→ M be the known Adams map and K be its cofibre given by the
cofibration

�q M
α−→ M

i ′−→ K
j ′−→ �q+1 M. (1.2)

This spectrum which we briefly write as K is known to be the Smith-Toda spectrum
V (1). For p > 3, Smith [9] showed that there exists a periodic map

β : �(p+1)q K −→ K

which induces multiplication by v2 in K (2)-theory. Let V (2) be the cofibre of β :
�(p+1)q K −→ K given by the cofibration

�(p+1)q K
β−→ K

ī−→ V (2)
j̄−→ �(p+1)q+1 K . (1.3)

For p ≥ 7, there exists the Smith-Toda map γ : �q(p2+p+1)V (2) −→ V (2) (see
[10]).

Definition 1.1 For s ≥ 1, the β-element βs is defined to be the composite map

j j ′βs i ′i ∈ πq[sp+(s−1)]−2(S)
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and the γ -element γs is defined to be the composite map

j j ′ j̄γ s ī i ′i ∈ πq[sp2+(s−1)p+(s−2)]−3(S).

Theorem 1.2 (1) ([9]) For p ≥ 5 and s ≥ 1, βs 	= 0 in π∗(S).
(2) ([7]) For p ≥ 7 and s ≥ 1, γs 	= 0 in π∗(S).

So far, not so many families of homotopy elements in π∗S have been detected. For
example, Cohen [3] detected a new element ζn ∈ πq(pn+1+1)−3(S) for n ≥ 1, which

is represented by h0bn ∈ Ext3,q(pn+1+1)
A (Z/p, Z/p) in the Adams spectral sequence.

Liu [5] also detected an infinite family of homotopy elements in the stable homotopy
groups of spheres and obtained the following

Theorem 1.3 ([5, Theorem 1.1]) Let p ≥ 7 and 3 ≤ s < p. Then the product element

b1g0γ̃s ∈ Exts+4,∗
A (Z/p, Z/p)

is a permanent cycle in the Adams spectral sequence and converges nontrivially to a
homotopy element ϕs ∈ π∗(S).

In this paper, we consider the composite element β1ϕs and show its nontriviality
under some conditions. The main result can be stated as follows:

Theorem 1.4 Let p ≥ 7 and 4 ≤ s < p. Then the composite map β1ϕs is nontrivial
in π∗(S).

The paper is arranged as follows: after recalling some knowledge on the May
spectral sequence in Sect. 2, we make use of the May spectral sequence and the
Adams spectral sequence to prove Theorem 1.4 in Sect. 3.

2 Preliminaries on the May spectral sequence

The May spectral sequence is one of our main tools in this paper. For the sake of
completeness, we briefly recall some knowledge on the May spectral sequence.

From [8], there is the May spectral sequence {Es,t,∗
r , dr } which converges to

Exts,t
A (Z/p, Z/p) with E1-term

E∗,∗,∗
1 = E(hm,i |m > 0, i ≥ 0) ⊗ P(bm,i |m > 0, i ≥ 0) ⊗ P(an|n ≥ 0), (2.1)

where E is the exterior algebra, P is the polynomial algebra, and

hm,i ∈ E1,2(pm−1)pi ,2m−1
1 , bm,i ∈ E2,2(pm−1)pi+1,p(2m−1)

1 , an ∈ E1,2pn−1,2n+1
1 .

(2.2)

One has

dr : Es,t,u
r −→ Es+1,t,u−r

r (2.3)
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266 X. Liu et al.

for r ≥ 1 and if x ∈ Es,t,∗
r and y ∈ Es′,t ′,∗

r , then

dr (x · y) = dr (x) · y + (−1)s x · dr (y). (2.4)

There also exists a graded commutativity in the May spectral sequence as follows:

x · y = (−1)ss′+t t ′ y · x

for x, y = hi, j , bk,l , or an . The first May differential d1 is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d1(hi, j ) =
∑

0<k<i

hi−k,k+ j hk, j ,

d1(ai ) =
∑

0≤k<i

hi−k,kak,

d1(bi, j ) = 0.

(2.5)

For convenience, we define dim x = s, deg x = t and M(x) = u for any element
x ∈ Es,t,u

1 .
For each integer t ≥ 0, it can be always expressed uniquely as

t = q(cn pn + cn−1 pn−1 + · · · + c1 p + c0) + e,

where 0 ≤ ci < p (0 ≤ i ≤ n), cn > 0, 0 ≤ e < q. Suppose g = x1x2 . . . xm ∈ Es̄,t,∗
1 ,

where m ≤ s̄, xi is one of ak ,hl, j or bu,z , 0 ≤ k ≤ n + 1, 0 ≤ l + j ≤ n + 1,
0 ≤ u + z ≤ n, l > 0, j ≥ 0, u > 0, z ≥ 0. We also suppose deg xi = q(ci,n pn +
ci,n−1 pn−1 + · · · + ci,0) + ei , where ci, j = 0 or 1, ei = 1 if xi = aki , or ei = 0. Then
we have dim g = ∑m

i=1 dim xi = s̄ and

deg g = t =
((

m
∑

i=1

ci,n

)

pn + · · · +
(

m
∑

i=1

ci,2

)

p2 +
(

m
∑

i=1

ci,1

)

p +
(

m
∑

i=1

ci,0

))

+
(

m
∑

i=1

ei

)

.

Lemma 2.1 If
(∑m

i=1 ci,0
) − (∑m

i=1 ei
) = v, then there exist integers iv > iv−1 >

· · · > i1 ≥ 1 and an element ĝ such that g = hiv,0hiv−1,0 . . . hi1,0 ĝ up to sign.

Proof By use of (2.2), there must exist v elements of the form hμ,0 at least among g.
Note that h2

i,0 = 0 for i ≥ 1. Thus, there exist integers ik (0 < k < v) and an element
ĝ such that iv > iv−1 > · · · > i1 ≥ 1 and g = hiv,0hiv−1,0 . . . hi1,0 ĝ up to sign. The
lemma follows. ��
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3 Proof of Theorem 1.4

Before showing our main theorem, we first give some important results on the May
Er -term (r ≥ 1) and the Adams E2-term.

The following Representation Theorem is due to X. Liu.

Lemma 3.1 ([4, Theorem 1.1]) Let p ≥ 7, 3 ≤ s < p. Then the element

as−3
3 h3,0h2,1h1,2 ∈ Es,t (s),∗

1

detects the third Greek letter element γ̃s ∈ Exts,t (s)
A (Z/p, Z/p) in the May spectral

sequence, where t (s) = sp2q + (s − 1)pq + (s − 2)q + s − 3 and γ̃s detects the
γ -element γs in the Adams spectral sequence.

The following lemma plays an important role in showing Theorem 1.4 and can be
stated as follows:

Lemma 3.2 Let p ≥ 7, 4 ≤ s < p and r ≥ 1. Then the May E1-term

Es+6−r,t (s,r),∗
1 =

{

G, r = 1,

0, r > 1,

where t (s, r) = q[(s+1)p2+(s+1)p+s]+s−r −2 and G is the Z/p-module gener-
ated by as−3

3 h3,0h2,0h1,0h2,1b2,0b1,1, as−3
3 h3,0h2,0h1,0h1,2b2

2,0, as−3
3 h3,0h2,0h1,0h2,1

h1,1h1,2b1,1.

Proof When r ≥ s − 1, it is easy to check that that the May E1-term

Es+6−r,t (s,r),∗
1 = 0. (3.1)

Therefore, we assume 1 ≤ r ≤ s − 2 in the rest of the proof.
If s = 4, then r may equal 1 or 2 by 1 ≤ r ≤ s − 2. We can show that

E9,t (4,1),∗
1 = Z/p{a3h3,0h2,0h1,0h2,1b1,1b2,0, a3h3,0h2,0h1,0h1,2b2

2,0,

a3h3,0h2,0h1,0h2,1h1,1h1,2b1,1}

and

E8,t (4,2),∗
1 = 0

through easy computations. Thus, we assume s ≥ 5 in the rest of the proof.

Case 1 5 ≤ s < p − 1. By replacing s̄ and t by s + 6 − r and t (s, r) in the argument
given above Lemma 2.1 respectively, we have dim g = ∑m

i=1 dim xi = s + 6 − r
which implies that m ≤ s + 6 − r ≤ s + 5 < p + 4. Thus, we have
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

m
∑

i=1

ei = s − r − 2,

m
∑

i=1

ci,0 = s,

m
∑

i=1

ci,1 = s + 1,

m
∑

i=1

ci,2 = s + 1.

(3.2)

Subcase 1.1 2 ≤ r ≤ s − 2. Note that

m
∑

i=1

ci,0 −
m

∑

i=1

ei = s − (s − r − 2) = r + 2 > 2 + 1.

By Lemma 2.1, we have

Es+6−r,t (s,r),∗
1 = 0.

Subcase 1.2 r = 1. Note that in this case
∑m

i=1 ci,0 − ∑m
i=1 ei = s − (s − 3) = 3.

From Lemma 2.1, g = ĝh1,0h2,0h3,0 up to sign if g exists, where ĝ = x1 . . . xm−3.
For the above ĝ, we have:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m−3
∑

i=1

ei = s − 3,

m−3
∑

i=1

ci,0 = s − 3,

m−3
∑

i=1

ci,1 = s − 1,

m−3
∑

i=1

ci,2 = s.

(3.3)

Note that m−3 ≤ s+2 and
∑m−3

i=1 ci,2+∑m−3
i=1 ei −(m−3) ≥ s+(s−3)−(s+2) =

s − 5. By (2.2) and degree reason, ĝ must be of the form ĝ = as−5
3

ˆ̂g up to sign, where
ˆ̂g = xs−4 . . . xm−3 ∈ E7,q(5p2+4p+2)+2,∗

1 . By (2.1) and (2.2), we easily get that

E7,q(5p2+4p+2)+2,∗
1 = Z/p{a2

3h2,1b2,0b1,1, a2
3h1,2b2

2,0, a2
3h2,1h1,1h1,2b1,1,

a3a0h3,0h2,1h1,2b2,0}.

Thus, we have that up to sign g = as−3
3 h3,0h2,0h1,0h2,1b2,0b1,1, as−3

3 h3,0h2,0h1,0h1,2

b2
2,0, as−3

3 h3,0h2,0h1,0h2,1h1,1h1,2b1,1, as−4
3 a0h2

3,0h2,0h1,0h2,1h1,2b2,0 in which the

last one is trivial by h2
3,0 = 0.

Case 2 s = p − 1. By replacing s̄ and t by p + 5 − r and t (p − 1, r) in the argument
given above Lemma 2.1 respectively, we have dim g = ∑m

i=1 dim xi = p + 5 − r
which implies that m ≤ p + 5 − r ≤ p + 4. Thus, we have:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m
∑

i=1

ei = p − 3 − r,

m
∑

i=1

ci,0 = p − 1,

m
∑

i=1

ci,1 = λ1 p, λ1 ≥ 0,

m
∑

i=1

ci,2 + λ1 = 1 + λ2 p, λ2 ≥ 0,

m
∑

i=1

ci,3 + λ2 = 1.

(3.4)

From
∑m

i=1 ci,1 = λ1 p and m ≤ p + 4, we have λ1 = 0 or 1.

Subcase 2.1 λ1 = 0. From
∑m

i=1 ci,0 − ∑m
i=1 ei = p − 1 − (p − 3 − r) = r + 2 and

Lemma 2.1, we have that there would be r + 2 factors of the form hi,0 at least among
g if g exists. Note that

∑m
i=1 ci,1 = 0 and h2

i,0=0 for any i ≥ 1. From (2.2), it follows
that g is impossible to exist in this case.

Subcase 2.2 λ1 = 1. From
∑m

i=1 ci,2 = λ2 p, we have that λ2 = 0 or 1 by m ≤ p +4.
If λ2 = 0, from (3.4) and (2.2) we can deduce that there must exist a factor h1,3 or

b1,2 among g if g exists. Thus we can write g as g = x1x2 . . . xm−1ḡ, where ḡ=h1,3
or b1,2. Let g1 = x1x2 . . . xm−1. By Lemma 2.1, g1 is impossible to exist. Thus, g
is impossible to exist. If λ2 = 1, by an argument similar to that used in Case 1, we
have that, g exists only when r = 1, and up to sign g = a p−4

3 h3,0h2,0h1,0h2,1b2,0b1,1,

a p−4
3 h3,0h2,0h1,0h1,2b2

2,0, a p−4
3 h3,0h2,0h1,0h2,1h1,1h1,2b1,1.

The Proof of Lemma 3.2 is completed. ��
From the above lemma, we easily have the following:

Theorem 3.3 Let p ≥ 7, 4 ≤ s < p, r ≥ 2, then we have

Exts+6−r,t (s,r)
A (Z/p, Z/p) = 0,

where t (s, r) = q[(s + 1)p2 + (s + 1)p + s] + s − r − 2.

Theorem 3.4 Let p ≥ 7, 4 ≤ s < p. Then the product element b0b1g0γ̃s is nontrivial
in the Adams E2-term.

Proof It is known that b1,i and h2,0h1,0 are permanent cocycles in the May spectral
sequence and converge to bi and g0 for i ≥ 1, respectively. From Lemma 3.1, γ̃s is
represented by as−3

3 h3,0h2,1h1,2 in the May spectral sequence. Thus,

b0b1g0γ̃s ∈ Exts+6,∗
A (Z/p, Z/p)

is represented by
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b1,0b1,1h2,0h1,0as−3
3 h3,0h2,1h1,2

for s ≥ 4 in the May spectral sequence. Now we show that nothing can hit the
permanent cocycle b1,0b1,1h2,0h1,0as−3

3 h3,0h2,1h1,2 under the May differential dr for
r ≥ 1.

Denote the generators b1,0b1,1h2,0h1,0as−3
3 h3,0h2,1h1,2, as−3

3 h3,0h2,0h1,0h2,1b2,0

b1,1, as−3
3 h3,0h2,0h1,0h1,2b2

2,0 and as−3
3 h3,0h2,0h1,0h2,1h1,1h1,2b1,1 by G, G1, G2 and

G3, respectively. Since M(G) = 2p + 7s − 8 > p + 7s − 7 = M(G3), we have that
in the May spectral sequence dr (G3) 	= G for any r ≥ 1 up to a nonzero scalar. For
the others, the possibilities are d2p−1(G1) = G and d4p−3(G2) = G up to a nonzero
scalar. Note that up to sign d1(G1) = as−3

3 h3,0h2,0h1,0h1,1h1,2b2,0b1,1 + · · · 	= 0 and
d1(G2) = as−4

3 a1h3,0h2,0h1,0h2,1h1,2b2
2,0 + · · · 	= 0. Thus, G1 and G2 both die at the

May E2-term. From the above discussion, we have that nothing can hit G under the
May differential dr for r ≥ 1. This completes the Proof of Theorem 3.4. ��

Now we are in a position to complete the Proof of Theorem 1.4.

Proof of Theorem 1.4 It is known that b0 ∈ Ext2,pq
A (Z/p, Z/p) is a permanent cycle

in the spectral sequence and converges nontrivially to the β-family β1 ∈ πpq−2(S).
Moreover, from Theorem 1.3 we have that b1g0γ̃s ∈ Exts+4,∗

A (Z/p, Z/p) detects the
homotopy element ϕs ∈ π∗(S) in the Adams spectral sequence. Thus, the composite
map

β1 ◦ ϕs

is represented up to a nonzero scalar by

b0b1g0γ̃s

in the Adams spectral sequence. From Theorem 3.4, the product element b0b1g0γ̃s is
nontrivial in the Adams E2-term. Meanwhile, from Theorem 3.3, b0b1g0γ̃s does not
bound in the Adams spectral sequence. Consequently, b0b1g0γ̃s is a permanent cycle
in the Adams spectral sequence and converges nontrivially to the homotopy element
β1 ◦ ϕs . This finishes the Proof of Theorem 1.4. ��
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