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Abstract We say that a simply connected space X is pre-c-symplectic if it is the
fibre of a rational fibration X → Y → CP∞ where Y is cohomologically symplectic
in the sense that there is a degree 2 cohomology class which cups to a top class. It is a
rational homotopical property but not a cohomological one. By using Sullivan’s mini-
mal models (Félix et al. in Rational homotopy theory. Graduate Texts in Mathematics,
vol. 205. Springer, Berlin, 2001), we give the necessary and sufficient condition that
the product of odd-spheres X = Sk1 × · · · × Skn is pre-c-symplectic and see some
related topics. Also we give a charactarization of the Hasse diagram of rational toral
ranks for a space X (Yamaguchi in Bull Belg Math Soc Simon Stevin 18:493–508,
2011) as a necessary condition to be pre-c-symplectic and see some examples in the
cases of finite-oddly generated rational homotopy groups.
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14 J. Sato, T. Yamaguchi

1 Introduction

Recall the question:“If a symplectic manifold is a nilpotent space, what special homo-
topical properties are apparent? Conversely, what nilpotent spaces have symplectic
or c-symplectic structures?” [9, (4.99)]. Here a rationally Poincaré dual space Y (the
graded algebra H∗(Y ;Q) is a Poincaré duality algebra [9, Def. 3.1]) with formal
dimension

f d(Y ) := max{i |Hi (Y ;Q) �= 0}

= 2n is said to be c-symplectic (cohomologically symplectic) if there is a rational coho-
mology class ω ∈ H2(Y ;Q) such that ωn is a top class for Y [9, Def. 4.87] [22,29],
many of which are known to be realized by 2n-dimensional smooth manifolds [9]. A
lot of results on the above problem and related topics are given in rational homotopy
theory (cf. [5,6,9,15,16,18–21,29]). For example, Lupton and Oprea [20] study the
formalising tendency of certain symplectic manifolds using techniques of D.Sullivan’s
rational model [28]. Notice that it is known that the connected sum CP2�CP2 is
c-symplectic but not symplectic [4] [21, p. 263], for the n-dimensional complex pro-
jective space CPn . In [15,18] [22, Theorem 6.3] [30], we can see conditions that a
total space with a degree 2 cohomology class admits a symplectic structure in a certain
fibration. But we don’t mention anything about symplectic geometry in this paper.

For a simply connected c-symplectic space Y, we have ω ∈ Hom(π2(Y ), Q) for
the class ω of H2(Y ;Q) from Hurewicz isomorphism. In particular, π2(Y )⊗Q �= 0.

So there is a simply connected space X that is the fibre of a fibration

X → Y → CP∞ (1)

where CP∞ = ∪∞n=1CPn(= K (Z, 2)), π∗(X) ⊗ Q ⊕ Q · t∗ = π∗(Y ) ⊗ Q for
a cohomology element t with deg(t) = 2 (necessarily we don’t need t = ω) and
H∗(CP∞;Q) = Q[t].
Definition 1.1 We say a simply connected space X to be pre-c-symplectic (pre-
cohomologically symplectic) if X is the fibre of a fibration (1) where Y is c-symplectic.

For example, CPn is a symplectic manifold, whose pre-c-symplectic space must
be the 2n + 1-dimensional sphere S2n+1. It is induced by the Hopf fibration S1 →
S2n+1 → CPn [1, p. 95]. We know that f d(Y ) = 2n if and only if f d(X) = 2n + 1
in (1) from the Gysin exact sequence of of the induced fibration S1 → X → Y. When
dim π2(Y )⊗Q > 1, (1) may not be rational homotopically unique for Y. For example,
when Y is S2×CP2, two spaces S3×CP2 and S2× S5 are both its pre-c-symplectic
spaces (there are three pre-c-symplectic spaces in the case of [20, Example 2.12]).
The being c-symplectic and the being pre-c-symplectic are complementary. If a space
is c-symplectic, it is not pre-c-symplectic and moreover if a space is pre-c-symplectic,
it is not c-symplectic. The being c-symplectic is preserved by product; i.e., Y1 × Y2
is pre-c-symplectic by the class ω1 + ω2 when Y1 and Y2 are both c-symplectic by
classes ω1 and ω2, respectively. But the being pre-c-symplectic can not since then the
formal dimension is even.

123



Pre-c-symplectic condition for the product of odd-spheres 15

Of course, the being pre-c-symplectic depends on the rational homotopy type of
X. Recall the Sullivan’s rational model theory [28]. Let the Sullivan minimal model
of X be M(X) = (�V, d). It is a free Q-commutative differential graded algebra
(dga) with a Q-graded vector space V =⊕

i≥2 V i where dim V i <∞ and a decom-
posable differential; i.e., d(V i ) ⊂ (�+V · �+V )i+1 and d ◦ d = 0. Here �+V is
the ideal of �V generated by elements of positive degree. Denote the degree of a
homogeneous element f of a graded algebra as | f |. Then xy = (−1)|x ||y|yx and
d(xy) = d(x)y + (−1)|x |xd(y). Note that M(X) determines the rational homotopy
type of X. In particular, it is known that

H∗(�V, d) ∼= H∗(X;Q) and V i ∼= Hom(πi (X), Q).

Refer [8, Sections 12–15] for detail. Especially, (1) is replaced with the relative model
(KS-model) [8]

(Q[t], 0)→ (Q[t] ⊗�V, D)→ (�V, d) (2)

where |t | = 2 and D = d. We often say that M(Y ) = (Q[t]⊗�V, D) is c-symplectic
when Y is so. When π∗(X)⊗Q <∞ and dim H∗(X;Q) <∞, a simply connected
space X is said to be elliptic. It is known that

f d(X) = f d(�V, d) =
∑

i

|yi | −
∑

i

(|xi | − 1)

for V odd = Q(yi )i and V even = Q(xi )i when X is elliptic [8, Section 32]. When is
a simply connected space X pre-c-symplectic? Notice that if a pure model M(Y ) =
(�U, dY ), which satisfies dY U even = 0 and dY U odd ⊂ �U even, is c-symplectic,
then dim U even = dim U odd [20]. For example, any simply connected symplectic
homogeneous space is a maximal rank homogeneous space [20, Corollary 2.5]. So,
from (2), it may be natural to expect that dim V even = dim V odd − 1 if a pure model
M(X) = (�V, d) is pre-c-symplectic. But it is false (cf. Theorem 1.2 below). If
anything, “it is relatively easy to construct c-symplectic Sullivan minimal models”
(cf. [20, Example 2.9] [21, p. 263]) and furthermore pre-c-symplectic spaces exist
everywhere. The latter is nearly true if we can suitably change the ratio of degrees of
basis elements of V for M(X) = (�V, d). For example, for any even dimensional
simply connected compact manifold B, the product space X = B × SN for the
N -dimensional sphere SN is pre-c-symplectic for any odd integer N with N > dim B.

Indeed, we can put the model of (2) as M(Y ) = (Q[t] ⊗�V ⊗�v, D) by

D(v) = α · t (N+1−dim B)/2 − t (N+1)/2 and D(b) = dB(b)

for b ∈ M(B) = (�V, dB), the fundamental class [α] of H∗(B;Q) and M(SN ) =
(�v, 0) with |v| = N . Then

H∗(Y ;Q) = H∗(B;Q)[t]/(α · t (N+1−dim B)/2 − t (N+1)/2)
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16 J. Sato, T. Yamaguchi

and [t](dim B+N−1)/2 = [α · t (N−1)/2] �= 0. Since f d(Y ) = dim B+ N − 1, we see Y
is c-symplectic, that is, X is pre-c-symplectic. In general, it seems difficult to find the
smallest N such that X is pre-c-symplectic. This is a symbolic example in this paper.

We will study the conditions of spaces to be pre-c-symplectic, especially in the most
rational homotopically simple case, that is, we suppose that a finite simply connected
complex X has the rational cohomology structure of the exterior algebra over Q:

H∗(X;Q) ∼= �(v1, v2, . . . , vn)

with 1 < |v1| = k1 ≤ |v2| = k2 ≤ · · · ≤ |vn| = kn all odd. Then X has the rational
homotopy type of the n-product of simply connected odd-spheres:

X �Q Sk1 × Sk2 × · · · × Skn ki ; odd

(�Q means “is rational homotopy equivalent to”) and the Sullivan minimal model is
given by

M(X) ∼= (�(v1, v2, . . . , vn), 0).

For example, simply connected compact Lie groups of rank n satisfy the condition
(H.Hopf). In this case, (2) is written as

(Q[t], 0)→ (Q[t] ⊗�(v1, v2, . . . , vn), D)→ (�(v1, v2, . . . , vn), 0).

In this paper, we show

Theorem 1.2 When H∗(X;Q) ∼= �(v1, v2, . . . , vn) with all |vi | odd and 1 < |v1| ≤
|v2| ≤ · · · ≤ |vn|, then X is pre-c-symplectic if and only if n is odd and |v1|+|vn−1| <
|vn|, |v2| + |vn−2| < |vn|, . . . , |v(n−1)/2| + |v(n+1)/2| < |vn|.
Remark 1.3 The “if” part of Theorem 1.2 does not follow when H∗(X;Q) is not
free; i.e., d �= 0 for M(X) = (�(v1, . . . , vn), d). For example, when M(X) =
(�(v1, v2, v3, v4, v5), d) with |v1| = 3, |v2| = |v3| = 5, |v4| = 9, |v5| = 13, dv1 =
dv2 = dv3 = dv5 = 0 and dv4 = v2v3, any model (Q[t] ⊗�(v1, v2, v3, v4, v5), D)

of (2) is not pre-c-symplectic. Indeed, the element v1v4 can not be a D-cocycle and
Dv5 can not contain the cocycle viv4t for i = 2, 3 from degree reasons. So we can
not construct the form Dv5 = vavbt∗ + vcvd t∗ + t7 with {a, b, c, d} = {1, 2, 3, 4}.
Also the “only if” part of Theorem 1.2 does not follow when H∗(X;Q) is not free. For
example, when n = 3, |v1| = |v2| = 3, |v3| = 5, dv1 = dv2 = 0, dv3 = v1v2, the
model (Q[t] ⊗�(v1, v2, v3), D) of (2) with Dv1 = Dv2 = 0 and Dv3 = v1v2 + t3

is c-symplectic by [t5] �= 0 but |v1| + |v2| > |v3| (see Theorem 2.6).

Corollary 1.4 Let X be a compact connected simple Lie group G of rank G > 1.

Then X is pre-c-symplectic if and only if G is Bn or Cn with n odd, or E7.

For example, for the 5-th symplectic group Sp(5), the rational cohomology is given
as H∗(Sp(5);Q) = �(v1, v2, v3, v4, v5) with the degrees |v1|=3, |v2|=7, |v3|=11,
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Pre-c-symplectic condition for the product of odd-spheres 17

|v4| = 15 and |v5| = 19. From Corollary 1.4, it is pre-c-symplectic. There are at least
the four rational homotopy types of c-symplectic models:

(i) Dv5 = v1v4t + v2v3t + t10, Dv1 = Dv2 = Dv3 = Dv4 = 0
(ii) Dv5 = v1v4t + v2v3t + t10, Dv3 = v1v2t, Dv4 = 0

(iii) Dv5 = v1v4t + v2v3t + t10, Dv3 = 0, Dv4 = v1v3t
(iv) Dv5 = v1v4t + v2v3t + t10, Dv3 = v1v2t, Dv4 = v1v3t.

Although the cohomology algebra structures of them are very different, they are all
c-symplectic with formal dimension 54. For example, the cohomology algebras of (i),
(ii) and (iv) are given as

(i) Q[t] ⊗�(v1, v2, v3, v4)/(v1v4t + v2v3t + t10)

(ii) Q[t, u1, u2]⊗�(v1, v2, v4)/(v1v4t+u2t+ t10, v2u1+v1u2, v1v2t, v1u1, v2u2)

(iv) Q[t, u1, u2, u3] ⊗�(v1, v2)/(u2t + u3t + t10, v2u1 + v1u2, v1v2t, v1u1, v2u2,

v1u3, u1u2, u1u3, u1t), where u1 = [v1v3], u2 = [v2v3] and u3 = [v1v4].
Let r0(X) be the rational toral rank of X, which is the largest integer r such that

an r -torus T r = S1 × · · · × S1(r -factors) can act continuously on a space X ′ in the
rational homotopy type of X with all its isotropy subgroups finite (almost free action)
[9,10]. For example, r0(Sk1 × · · · × Skn ) = n when ki are all odd and r0(CPn) = 0.

Pre-c-symplectic spaces are related to almost free toral actions. Indeed, for (1), there is
a free S1-action on a finite complex X ′ with X ′

Q
� XQ, from Halperin’s Proposition

3.1 of Sect. 3. Here XQ means the rationalization of X [11]. Thus we have the Borel
fibration

X ′ → E S1 ×S1 X ′ → BS1 (3)

with dim H∗(E S1 ×S1 X ′;Q) <∞. It is rationally equivalent to (1). Namely,

Theorem 1.5 A simply connected space X is pre-c-symplectic if and only if there is
rationally an almost free circle action on X such that the orbit space is c-symplectic.

In particular, we see that r0(X) > 0 for a pre-c-symplectic space X. The being
c-symplectic is surely a cohomological property. But the being pre-c-symplec depends
on the dga and not simply on its cohomology. For example, when two spaces X1 and
X2 are given by X1 = (S3 × S8)�(S3 × S8) and M(X2) = (�(v1, v2, v3), d) with
|v1| = |v2| = 3, |v3| = 5, dv1 = dv2 = 0 and dv3 = v1v2, we have a graded algebra
isomorphism

H∗(Xi ;Q) ∼= �(x, y)⊗Q[w, u]/(xy, xu, xw + yu, yw,w2, wu, u2)

with |x | = |y| = 3 and |w| = |u| = 8 for i = 1, 2. When i = 2, u = [v1v3] and
w = [v2v3]. Recall that r0(X1) = 0 [17, Theorem 1.1(2)], so X1 can not be pre-
c-symplectic from Theorem 1.5, but X2 is pre-c-symplectic (see Remark 1.3). The
following proposition seems a special case of [21, Corollary 3.7, Theorem 5.2].

Proposition 1.6 For a simply connected c-symplectic space Y, r0(Y ) = 0.
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18 J. Sato, T. Yamaguchi

If ET a ×μ
T a X is c-symplectic for some T a-action μ, then (ET a−1 ×τ

T a−1 X is

pre-c-symplectic for any restriction τ on T a−1 of μ and) ET b×τ
T b X (a �= b) can not

be c-symplectic for any restriction or extension τ on T b of μ from Proposition 1.6.
But notice that when X or ET a ×μ

T a X is pre-c-symplectic, ET b ×τ
T b X (a < b) may

be pre-c-symplectic for an extension τ. It may complicate the being pre-c-symplectic
than the being c-symplectic. For example, when X �Q S3 × S3 × S7 with M(X) =
(�(v1, v2, v3), 0), X is pre-c-symplectic since the model (Q[t]⊗�(v1, v2, v3), D) of
(3) is given by Dv1 = Dv2 = 0 and Dv3 = v1v2t+t4. Indeed, then f d(E S1×S1 X) =
12 and [t6] �= 0 (see Example 3.6). On the other hand, for any almost free T 2-action
on X, the Borel space ET 2 ×T 2 X is also pre-c-symplectic since the model of (3) is
given by Proposition 3.1 as

(Q[t3], 0)→ (Q[t1, t2, t3] ⊗�(v1, v2, v3), D)→ (Q[t1, t2] ⊗�(v1, v2, v3), D)

where (Q[t1, t2] ⊗ �(v1, v2, v3), D) = M(ET 2 ×T 2 X) and Dv1 = f1, Dv2 =
f2, Dv3 = f3 with f1, f2, f3 a regular sequence in Q[t1, t2, t3] (see Corollary 3.3).
Indeed, then f d(ET 3 ×T 3 X) = f d(Q[t1, t2, t3] ⊗ �(v1, v2, v3), D) = 10 and
ω5 �= 0 for ω = [λ1t1 + λ2t2 + λ3t3] for some λi ∈ Q. Especially, Proposition 1.6
does not always deduce r0(X) = 1 when X is pre-c-symplectic (cf. Theorem 1.2).

Recall the Hasse diagram H(X) of rational toral ranks for a simply connected
space X [31], which is the Hasse diagram of a poset induced by ordering of the Borel
fibrations of rationally almost free toral actions on X. When there exists a free t-toral
action on a finite complex X ′ of same rational homotopy with X (Proposition 3.1),
we can describe a point P = [ET t ×T t X ′] rationally presented by the Borel space
Y = ET t ×T t X ′ in the lattice points of the quadrant I. The coordinate is

P := (s, t) ; 0 ≤ s, t, s + t ≤ r0(X)

when r0(ET t ×T t X ′) = r0(X)− s − t. In particular, the root (0, 0) is presented by
X itself. There is an order Pi < Pj given by the existence of a rational fibration

Y1 → Y2 → BT t2−t1

for Pi = [Y1] = (s1, t1) and Pj = [Y2] = (s2, t2) with s1 ≤ s2 and t1 < t2. It is also
realized by a T t2−t1 -Borel fibration (Proposition 3.1). Then {Pi ,<}makes a poset and
we denote its Hasse diagram as H(X). It may be useful to organize knowledge about
almost free toral actions (often looks like the framework of a broken Japanese fan).
Now, from Proposition 1.6, we immediately obtain a necessary condition for X to be
pre-c-symplectic as

Theorem 1.7 If X is pre-c-symplectic, then there exists the point P = (r0(X)− 1, 1)

in H(X).

It schematically gives a necessary condition for the existence of a c-symplectic space
Y = E S1×S1 X ′ with X ′

Q
� XQ, in all classes (associated with rational toral ranks) of

orbit spaces of rational almost free toral actions on X. When X is pre-c-symplectic, the
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Pre-c-symplectic condition for the product of odd-spheres 19

points (r0(X)− i, i) of H(X), i.e., the leaves of the Hasse diagram, may be presented
by c-symplectic models. For example, the point (0, 3) is surely presented by them
when X �Q S3× S3× S7 as we see in above. Also see Examples 3.7 and 3.8. When a
pre-c-symplectic space X is a product of n odd-spheres, we can easily check that there
are at least the points (2, 1), (2, 2), . . . , (2, n − 2) in H(X). When a c-symplectic
space is a homogeneous space as in [20], it presents the point (0, r0(X)) of H(X)

for some pure space X with π2(X) ⊗ Q = 0 (see Remark 3.9). On the other hand,
any c-symplectic space Y presents (r0(X)− 1, 1) of H(X) for some pre-c-symplectic
space X with dim π2(X)⊗Q = dim π2(Y )⊗Q− 1.

Remark 1.8 The converse of Theorem 1.7 is not true. For example, put X = S3 ×
S3 × S9 × S11 × S13 × S15 × S19, which is not pre-c-symplectic from Theorem 1.2
since k3+ k4 = 9+11 > 19 = k7 (n = 7). But there is a point P = (r0(X)−1, 1) =
(6, 1) in H(X) presented by a model (Q[t] ⊗�(v1, . . . , v7), D) with the differential
Dv1 = · · · = Dv4 = 0, Dv5 = v2v3t, Dv6 = v1v4t, Dv7 = v1v6t + v2v5t2 + t10 in
(4) for H∗(X;Q) = �(v1, . . . , v7) with |v1| = |v2| = 3, |v3| = 9, |v4| = 11, |v5| =
13, |v6| = 15 and |v7| = 19. We can directly check r0(Q[t]⊗�(v1, . . . , v7), D) = 0
from Proposition 3.1.

This paper is purely a Sullivan model approach to the opening question restricted
on c-symplectic structures in the simply connected case. Then we see that the ratio
of degrees in elliptic model structure (homotopy rank type [25]) play an important
role to be pre-c-symplectic. It consists of three sections. In Sect. 2, we give the proof
of Theorem 1.2 and see some related topics. In particular, we see in Theorem 2.6
that a space is pre-c-symplectic imposes a restrict on the degrees when its rational
homotopy group is finite oddly generated. In Sect. 3, we prove Proposition 1.6 under
a Halperin’s criterion (Proposition 3.1) and see some examples of H(X) when X is
pre-c-symplectic in the cases of r0(X) ≤ 5.

2 Proof and related topics

In the following Lemmas 2.1 and 2.2, we assume that M(X) = (�(v1, v2, . . . , vn), d)

where |vi | = ki are odd for all i and 1 < k1 ≤ · · · ≤ kn for an odd integer n.

The symbol ( f1, . . . , fk) means the ideal of Q[t] ⊗ �(v1, v2, . . . , vn) generated by
elements f1, . . . , fk and ‘ f ∼ g’ means the D-cocycles f and g are cohomologuous
in (Q[t] ⊗�(v1, v2, . . . , vn), D) of (2); i.e., [ f ] = [g] in H∗(Y ;Q).

Lemma 2.1 If (Q[t] ⊗�(v1, v2, . . . , vn), D) is c-symplectic, then we can put D up
to dga-isomorphisms so that

(i) Dvi ∈ (v1, . . . , vi−1) for all i < n,

(ii) Dvn = f − λt (kn+1)/2 for some f ∈ (v1, v2, . . . , vn−1) and λ �= 0 ∈ Q,

(iii) v1v2 . . . vn−1 · t (kn−1)/2 ∼ λt ( f d(X)−1)/2 for some λ �= 0 ∈ Q.

Proof (i) Suppose that there is an element vi with i < n such that Dvi = g −
λt (ki+1)/2 for some g ∈ (v1, . . . , vi−1) and λ �= 0 ∈ Q. Then dim H∗(Q[t] ⊗
�(v1, v2, . . . , vi ), D) < ∞ and f d(Q[t] ⊗ �(v1, v2, . . . , vi ), D) = k1 +
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20 J. Sato, T. Yamaguchi

· · · + ki − 1 [8]. Therefore we deduce ta/2+1 ∼ 0; i.e., [ta/2+1] = 0 for
some a < f d(X) − 1 = k1 + · · · + kn − 1. It contradicts the definition of a
c-symplectic space.

(ii) It is required from (i) and dim H∗(Q[t] ⊗�(v1, v2, . . . , vn), D) <∞.

(iii) The element v1v2 . . . vn−1 is a D-cocycle from Dv1 = Dv2 = 0 and (i). It is
not D-exact from (ii). Then we have [v1v2 . . . vn−1] · [ta] = λ[t ( f d(X)−1)/2] in
H∗(Q[t] ⊗�(v1, . . . , vn), D) for a = ( f d(X) − 1 − k1 − · · · − kn−1)/2 =
(kn − 1)/2 from the Poincaré duality property. ��

Lemma 2.2 Suppose that (Q[t]⊗�(v1, v2, . . . , vn), D) satisfies Dvn= f−t (|vn |+1)/2

for some f = g1ta1 + · · · + gktak with monomials gi ∈ �(v1, . . . , vn−1) and ai ≥ 0.

If it is c-symplectic, then gi1 . . . gim �= 0 ∈ (v1v2 . . . vn−1) for some gi1, . . . , gim

(m ≤ k).

Proof From the assumption, for M := (|vn| + 1)/2, we have

g1ta1 + · · · + gktak ∼ t M .

Suppose gi1 . . . gim �= 0. By the multiplication of t M−ai1 on the both sides, we have

gi1 gi2 tai2 + · · · = gi1(g1ta1 + · · · + gktak )+ · · · ∼ gi1 t M + · · · ∼ t2M−ai1 .

Again by the multiplication of t M−ai2 on the both sides, we have

gi1 gi2 gi3 tai3 + · · · ∼ t3M−ai1−ai2 .

Iterate the multiplication of t M−ai j to j = m − 1. Then we have

gi1 gi2 . . . gim taim + · · · ∼ tm M−ai1−···−aim−1 .

Finally we have

gi1 gi2 . . . gim t M−1 + · · · ∼ t (m+1)M−ai1−···−aim−1 = t (|gi1 |+···+|gim |+|vn |−1)/2.

If gi1 . . . gim = λv1v2 . . . vn−1 for some λ �= 0 ∈ Q, then

(λ+ · · · )v1v2 . . . vn−1t M−1 ∼ t (k1+k2+···+kn−1)/2 = t ( f d(X)−1)/2

and it makes a non-zero class of H f d(X)−1(Q[t] ⊗�(v1, v2, . . . , vn), D) when λ +
· · · �= 0. If there are no such elements gi1, gi2 , . . . , gim , then (Q[t] ⊗ �(v1, v2, . . . ,

vn), D) is not c-symplectic from Lemma 2.1(iii). ��
Proof of Theorem 1.2. The “if” part: We can define the model (Q[t] ⊗�(v1, v2, . . . ,

vn), D) of (2) by putting Dv1 = · · · = Dvn−1 = 0 and
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Dvn = v1vn−1ta1 + v2vn−2ta2 + · · · + v(n−1)/2v(n+1)/2tan−1 − tan

for suitable ai . Then v1vn−1ta1 + v2vn−2ta2 + · · · + v(n−1)/2v(n+1)/2tan−1 ∼ tan

deduces, by iterated multiplications of t,

v1 · · · vn−1t (kn−1)/2 ∼ t (dim X−1)/2,

where the left side is not D-exact. Thus (Q[t]⊗�(v1, v2, . . . , vn), D) is c-symplectic
The “only if” part: From Lemma 2.1(ii), we can put

Dvn =
r∑

i=1

gi t
ni − t (kn−1)/2

with g1, . . . , gr some monomials in �(v1, . . . , vn−1) and ni = (|vn| − |gi | + 1)/2.

From Lemma 2.2, there is the set

S := { vi1 , v j1 , . . . , vi(n−1)/2 , v j(n−1)/2 }

such that S = {v1, . . . , vn−1} and that there are indexes lk for k = 1, . . . , (n − 1)/2
such that glk contains the term vik v jk ; i.e., glk ∈ (vik v jk ). Then

|vik | + |v jk | = |vik v jk | ≤ |glk | < |vn|

for k = 1, . . . , (n − 1)/2. From Proposition 2.4 below, we have |v1| + |vn−1| <

|vn|, |v2| + |vn−2| < |vn|, · · · and |v(n−1)/2| + |v(n+1)/2| < |vn|. ��
Lemma 2.3 Let S = {a1, a2, . . . , a2n} be a set of real numbers with a1 ≤ a2 ≤ · · · ≤
a2n . For any partition

T = {{ai1, a j1}, {ai2 , a j2}, . . . , {ain , a jn }}

of S into 2-subsets, where ik, jk ∈ {1, 2, . . . , 2n} and ik �= jk for k = 1, 2, . . . , n,

there exists an element {aik , a jk } of T such that

⎧
⎪⎪⎨

⎪⎪⎩

a1 + a2n ≤ aik + a jk
a2 + a2n−1 ≤ aik + a jk

. . .

an + an+1 ≤ aik + a jk .

Proof We show the result by induction on the positive integer n. For n = 1, the
statement is true since a1+ a2 ≤ a1+ a2. Assume the statement is true for n− 1. We
must prove the assertion is also true for n. Let

T = {{ai1, a j1}, {ai2 , a j2}, . . . , {ain , a jn }}

123



22 J. Sato, T. Yamaguchi

be any partition of S into 2-subsets and let {ai , a2n}(1 ≤ i ≤ 2n − 1) be an element
of T containing a2n .

Case of an ≤ ai . Then we have

⎧
⎪⎪⎨

⎪⎪⎩

a1 + a2n ≤ an + a2n ≤ ai + a2n

a2 + a2n−1 ≤ an + a2n ≤ ai + a2n

. . .

an + an+1 ≤ an + a2n ≤ ai + a2n,

hence we may take {aik , a jk } as {ai , a2n}.
Case of ai ≤ an−1. Then we have

⎧
⎪⎪⎨

⎪⎪⎩

a1 + a2n ≤ ai + a2n

a2 + a2n−1 ≤ ai + a2n

. . .

ai + a2n+1−i ≤ ai + a2n .

(∗)

We consider T ′ = T \{ai , a2n}. Since �T ′ = n−1 (� denotes the cardinality of a set),
we can apply the induction hypothesis to T ′. Since a1 ≤ a2 ≤ · · · ≤ ai−1 ≤ ai+1 ≤
· · · ≤ a2n−1, there exsits an element {aik , a jk } of T ′ such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2n ≤ aik + a jk
a2 + a2n−1 ≤ aik + a jk

. . .

ai−1 + a2n−i+1 ≤ aik + a jk
ai+1 + a2n−i ≤ aik + a jk

. . .

an + an+1 ≤ aik + a jk .

(∗∗)

From (∗) and (∗∗), we conclude that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2n ≤ ai + a2n

a2 + a2n−1 ≤ ai + a2n

. . .

ai−1 + a2n−i+1 ≤ ai + a2n

ai+1 + a2n−i ≤ aik + a jk
. . .

an + an+1 ≤ aik + a jk .

If we put Max{ai ,+a2n, aik + a jk } = as + at , then {as, at } satisfies the desired
inequality. ��

From this lemma, we have immediately

Proposition 2.4 (cf. [26, Proposition 1.1]) Let S = {a1, a2, . . . , a2n} be a set of
positive integers with a1 ≤ a2 ≤ · · · ≤ a2n . Assume that there exsits a positive integer
N such that
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⎧
⎪⎪⎨

⎪⎪⎩

ai1 + a j1 ≤ N
ai2 + a j2 ≤ N

. . .

ain + a jn ≤ N

for a partition

T = {{ai1, a j1}, {ai2 , a j2}, . . . , {ain , a jn }}

of S into 2-subsets, where ik, jk ∈ {1, 2, . . . , 2n} and ik �= jk for k = 1, 2, . . . , n.

Then we have the following inequality:

⎧
⎪⎪⎨

⎪⎪⎩

a1 + a2n ≤ N
a2 + a2n−1 ≤ N

. . .

an + an+1 ≤ N .

In [26], we can see various versions of Proposition 2.4.
From the proof of Lemma 2.2, we have

Proposition 2.5 Suppose that M(X) = (�(v1, v2, . . . , vn), d) with all |vi | odd and
that (Q[t] ⊗ �(v1, v2, . . . , vn), D) satisfies Dvn = f − t (|vn |+1)/2 for some f =
g1ta1 + · · · + gktak with monomials g j = λ jv j1 · · · v jm j

∈ �(v1, . . . , vn−1), λ j �=
0 ∈ Q and a j ≥ 0. If

∏k
j=1 v j1 · · · v jm j

�= 0 ∈ (v1v2 · · · vn−1), then it is c-symplectic.

From the proof of the “only if” part of Theorem 1.2, we have

Theorem 2.6 Suppose that M(X) = (�(v1, v2, . . . , vn), d) with all |vi | odd and
1 < |v1| ≤ |v2| ≤ · · · ≤ |vn|. If X is pre-c-symplectic, then n is odd and |v1|+|vn−1| ≤
|vn| + 1, |v2| + |vn−2| ≤ |vn| + 1, . . . , |v(n−1)/2| + |v(n+1)/2| ≤ |vn| + 1.

Question 2.7 What is the necessary and sufficient condition for a model (�(v1,

v2, . . . , vn), d) with all |vi | odd to be pre-c-symplectic?

Proof of Corollary 1.4 The rational types of compact connected simple Lie groups
are given as

An (3, 5, . . . , 2n + 1),

Bn (3, 7, . . . , 4n − 1),

Cn (3, 7, . . . , 4n − 1),

Dn (3, 7, . . . , 4n − 5, 2n − 1),

G2 (3, 11),

F4 (3, 11, 15, 23),

E6 (3, 9, 11, 15, 17, 23),

E7 (3, 11, 15, 19, 23, 27, 35),

E8 (3, 15, 23, 27, 35, 39, 47, 59)
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(see [23]). For An, even if n is odd, we have 3 + (2n − 1) = 2n + 1, which does
not satisfy the condition of Theorem 1.2. It is obvious that Bn (Cn) and E7 satisfy the
condition of Theorem 1.2 as

3+ 4(n − 1)− 1 < 4n − 1, 7+ 4(n − 2)− 1 < 4n − 1, . . . , (2n − 3)

+(2n + 1) < 4n − 1 and 3+ 27 < 35, 11+ 23 < 35, 15+ 19 < 35,

respectively. Since the ranks of G2, F4, E6 and E8 are even, they are not pre-c-
symplectic. Finally we check Dn . Put an odd integer n = 2k + 1(k ≥ 1). Assume
there is an integer N as in Proposition 2.4 for the set S = {3, 7, . . . , 8k − 5, 4k + 1}.
Then N = 4n − 5 = 4(2k + 1)− 5 = 8k − 1. Sorting elements of S into increasing
order, we have

a1 = 3 ≤ a2 = 7 ≤ · · · ≤ ak = 4k − 1 ≤ ak+1 = 4k + 1 ≤ ak+2 = 4k + 3

≤ · · · ≤ a2k−1 = 8k − 9 ≤ a2k = 8k − 5.

Then ak + ak+1 = (4k − 1) + (4k + 1) = 8k > N . It contradicts Proposition 2.4.
Therefore, Theorem 1.2 does not hold for Dn . ��

Example 2.8 Even when a space X is a product of odd-spheres, the c-symplectic
spaces whose pre-c-symplectic space is X are various. For example, when X = S3 ×
S5 × S9 × S15 × S33, there are at least the following twenty rational homotopy types
of c-symplectic models with the differential Dv1 = Dv2 = 0 and

(1) Dv5 = v1v4t8 + v2v3t10 + t17, Dv3 = Dv4 = 0
(2) Dv5 = v1v4t8 + v2v3t10 + t17, Dv3 = 0, Dv4 = v1v2t4

(3) Dv5 = v1v4t8 + v2v3t10 + t17, Dv3 = 0, Dv4 = v1v3t2

(4) Dv5 = v1v4t8 + v2v3t10 + t17, Dv3 = v1v2t, Dv4 = 0
(5) Dv5 = v1v4t8 + v2v3t10 + t17, Dv3 = v1v2t, Dv4 = v1v3t
(6) Dv5 = v1v2t13 + v3v4t5 + t17, Dv3 = Dv4 = 0
(7) Dv5 = v1v2t13 + v3v4t5 + t17, Dv3 = 0, Dv4 = v1v3t2

(8) Dv5 = v1v2t13 + v3v4t5 + t17, Dv3 = 0, Dv4 = v2v3t
(9) Dv5 = v1v3t11 + v2v4t7 + t17, Dv3 = Dv4 = 0

(10) Dv5 = v1v3t11 + v2v4t7 + t17, Dv3 = 0, Dv4 = v1v2t4

(11) Dv5 = v1v3t11 + v2v4t7 + t17, Dv3 = 0, Dv4 = v2v3t
(12) Dv5 = v1v3t11 + v2v4t7 + t17, Dv3 = v1v2t, Dv4 = 0
(13) Dv5 = v1v3t11 + v2v4t7 + t17, Dv3 = v1v2t, Dv4 = v2v3t
(14) Dv5 = v1v2v3v4t + t17, Dv3 = Dv4 = 0
(15) Dv5 = v1v2v3v4t + t17, Dv3 = 0, Dv4 = v1v2t4

(16) Dv5 = v1v2v3v4t + t17, Dv3 = 0, Dv4 = v1v3t2

(17) Dv5 = v1v2v3v4t + t17, Dv3 = 0, Dv4 = v2v3t
(18) Dv5 = v1v2v3v4t + t17, Dv3 = v1v2t, Dv4 = 0
(19) Dv5 = v1v2v3v4t + t17, Dv3 = v1v2t, Dv4 = v1v3t2

(20) Dv5 = v1v2v3v4t + t17, Dv3 = v1v2t, Dv4 = v2v3t

for |v1| = 3, |v2| = 5, |v3| = 9, |v4| = 15, |v5| = 33. Note that only (1), (6), (9) and
(14) are two stage models and formal; i.e., the minimal model is formally constructed
from its cohomology [8,20]. Note that (1)–(20) make a poset structure as in [32].
For example, we have “(5) < (3) < (1) < (14) < (0)” where the maximal
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element (0) is given by Dv1 = · · · = Dv5 = 0 (the model of X ). For a product
Sk1 × Sk2 × Sk3 × Sk4 × Sk5 of odd spheres with k1 ≤ · · · ≤ k5, the inequations that

k1 + k2 < k3, k2 + k3 < k4, k1 + k2 + k3 + k4 < k5

make the most c-symplectic models. Conversely, when

k1 + k2 > k4, k2 + k4 > k5

the c-symplectic model is uniquely determined up to dga-isomorphism. For example,
when (k1, . . . , k5) = (3, 5, 5, 7, 11),

Dv1 = · · · = Dv4 = 0, Dv5 = v1v4t + v2v3t + t6.

Remark 2.9 Put the set C-Symp(X) := {rational homotopy types of c-symplectic
spaces in (1) with the fibre X}. Then C-Symp(X) = φ if X is not pre-c-symplectic.
For example, �C-Symp(Sk1 × Sk2 × Sk3) ≤ 1 when ki are odd, �C-Symp(Sp(5)) ≥ 4
(see §1) and �C-Symp(S3 × S5 × S9 × S15 × S33) ≥ 20 (see Example 2.8). When Y
is c-symplectic and X is pre-c-symplectic, Y × X is pre-c-symplectic and there is an
inclusion C-Symp(X) ⊂ C-Symp(Y × X) as sets. For example, C-Symp(S3) = {S2

Q
}

(one point) and C-Symp(S2 × S3) is

{(Q[t] ⊗�(v1, v2, v3), Da) ; Dav1=0, Dav2= tv1, Dav3=v2
1 + at2, a ∈ Q

∗}/ �
∼= Q

∗/Q
∗2 for Q

∗ := Q − 0, |v1| = 2 and |v2| = |v3| = 3 as a set [24], which is
infinite. Also we can give an equivalence relation in the rational homotopy types of
simply connected c-symplectic spaces, that is, put Y ∼ Y ′ for two c-symplectic spaces
Y and Y ′ when there are certain finite maps

Y ← X1 → Y1 ← X2 → · · · → Yn−1 ← Xn → Y ′

which are fibre inclusions of (1) (Yi are c-symplectic). It satisfies the laws of
reflectance, symmetry and transitivity. For example, the models (1),. . .,(20) in
Example 2.8 are all equivalent.

Remark 2.10 Recall the rational LS category cat0(Y ) of a simply connected space Y
[8,27]. It is equal to the Toomer’s invariant of Y (the biggest s for which there is a non
trivial class in H∗(Y ;Q) = H∗(�W ) represented by a cycle in �≥s W ) when Y is
a rationally Poincaré duality space(r.P.d.s.) [7]. For a simply connected space X with
dim H∗(X;Q) <∞, put

c(X) = sup

{
2cat0(Y )

f d(X)− 1
| fibrations X → Y → K (Z, 2) where Y are r.P.d.s.

}

,

where c(X) := 0 if no such space Y exists for X. Then c(X) is a rational number with
0 ≤ c(X) ≤ 1. In particular, (i) c(X) = 0 if X is c-symplectic, (ii) c(X) = 1 if and
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only if X is pre-c-symplectic and (iii) c(X) ≤ c(X × Y ) for any c-symplectic space
Y. For example, when Xn = S7 × S7 × S2n+1, c(Xn) is given as

n 1 2 3 4 5 6 7 8 9 · · ·
c(Xn) 5

8
5
9

1
2

6
11

7
12

8
13 1 1 1 · · ·

When Xn = S3 × S2n, c(Xn) = 2/(n + 1) and limn c(Xn) = 0. When Xn =
S3 × S2n+1, c(Xn) = (2n + 2)/(2n + 3). Though Xn is not pre-c-symplectic for any
n, we have limn c(Xn) = 1.

Example 2.11 For any product of odd-spheres X = Sk1 × · · · × Skn with n odd
and k1 ≤ · · · ≤ kn, the product X × CP N is pre-c-symplectic if k1 + kn−1 ≤
2N , k2 + kn−2 ≤ 2N , · · · , k(n−1)/2 + k(n+1)/2 ≤ 2N and kn ≤ 2N + 1. Indeed, we
can put Dx = Dv1 = · · · = Dvn−1 = 0, Dvn = x (kn−1)/2t and

Dy = x N+1 + v1vn−1t∗ + · · · + v(n−1)/2v(n+1)/2t∗ + t N+1

for M(CP N ) = (�(x, y), d) with |x | = 2, dx = 0 and dy = x N+1. Then [ta] �= 0
for a = (k1 + · · · + kn − 1)/2+ N .

Remark 2.12 What additional properties of a c-symplectic space Y (or model M(Y ))
can be deduced from the pre-c-symplectic space X in (1)? A c-symplectic space Y of
f d(Y ) = 2m is said that it satisfies the hard Lefschetz condition with respect to the
c-symplectic class t when the maps

∪tk : Hm−k(Y ;Q)→ Hm+k(Y ;Q) 1 ≤ k ≤ m

are isomorphisms [29]. For example, a compact Kähler manifold satisfies the hard
Lefschetz condition [29] [9, Theorem 4.35]. As well as when (Q[t] ⊗�V, D) of (2)
is c-symplectic, whether or not it satisfies the hard Lefschetz condition depends on D.

For example, when H∗(X;Q) = �(v1, v2, v3, v4, v5) with |v1| = |v2| = 3, |v3| =
|v4| = 5 and |v5| = 11, put Dv1 = · · · = Dv4 = 0 and

(a) Dv5 = v1v2t3 + v3v4t + t6

(b) Dv5 = v1v4t2 + v2v3t2 + t6,

which are both c-symplectic with m = 13. Then (a) satisfies the hard Lefschetz con-
dition but (b) does not. Indeed,

Case of (a) When k = 10, K er(∪t10 : H3(Y ;Q)→ H23(Y ;Q)) = 0 since [v1t10] =
−[v1(v1v2t3+v3v4t)t4] = −[v1v3v4t5] �= 0. When k = 8, K er(∪t8 : H5(Y ;Q)→
H21(Y ;Q)) = 0 since [v3t8] = −[v3(v1v2t3+ v3v4t)t2] = −[v1v2v3t5] �= 0. When
k �= 8, 10, we can easily check K er(∪tk) = 0.

Case of (b) When k = 10, K er(∪t10 : H3(Y ;Q) → H23(Y ;Q)) �= 0. Indeed,
[v1] ∈ K er(∪t10) since
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[v1t10] = −[v1(v1v4t2 + v2v3t2)t4] = −[v1v2v3t6]
= [v1v2v3(v1v4t2 + v2v3t2)] = 0.

Remark 2.13 When a map g : (Y1, w1) → (Y2, w2) between simply connected c-
symplectic spaces induces H∗(g)(w2) = w1; i.e., a c-symplectic map, there is a map
between fibrations:

X1 ��

f
��

Y1 ��

g

��

K (Z, 2)

X2 �� Y2 �� K (Z, 2)

where f : X1 → X2 is the induced map between pre-c-symplectic spaces. Con-
versely, when is a map f : X1 → X2 between pre-c-symplectic spaces extended to a
c-symplectic map; i.e., a pre-c-symplectic map? Refer [27] in the case of self
homotopy equivalences.

3 Rational toral ranks

If an r -torus T r acts on a simply connected space X by μ : T r × X → X, there is the
Borel fibration

X → ET r ×T r X → BT r ,

where ET r ×T r X is the orbit space of the action g(e, x) = (e · g−1, g · x) on the
product ET r × X for g ∈ T r . Note that ET r ×T r X is rational homotopy equivalent
to the T r -orbit space of X when μ is an almost free toral action [9]. The above Borel
fibration is rationally given by the KS model

(Q[t1, . . . , tr ], 0)→ (Q[t1, . . . , tr ] ⊗�V, D)→ (�V, d) (4)

where with |ti | = 2 for i = 1, . . . , r, Dti = 0 and Dv ≡ dv modulo the ideal
(t1, . . . , tr ) for v ∈ V . It is a generalization of (2). Recall Halperin’s

Proposition 3.1 [10, Proposition 4.2] Suppose that X is a simply connected CW-
complex with dim H∗(X;Q) < ∞. Put M(X) = (�V, d). Then r0(X) ≥ r if and
only if there is a KS model (4) satisfying dim H∗(Q[t1, . . . , tr ] ⊗ �V, D) < ∞.

Moreover, if r0(X) ≥ r, then T r acts freely on a finite complex X ′ that has the same
rational homotopy type as X and M(ET r ×T r X ′) ∼= (Q[t1, . . . , tr ] ⊗�V, D).

Proof of Proposition 1.6 Put the formal dimension of Y as 2n. Then there is an element
[ω] ∈ H2(Y ;Q) with [ω]n �= 0. Suppose r0(Y ) > 0. From Proposition 3.1, there
is a finite complex Y ′ with Y ′

Q
� YQ and there is a free S1-action on Y ′. Thus we

have the Borel fibration Y ′ i→ E S1 ×S1 Y ′ → BS1, where [ω] is a restriction of an
element [u] of H2(E S1 ×S1 Y ′;Q); i.e., i∗([u]) = [w]. Since the formal dimension
of E S1 ×S1 Y ′ is 2n − 1, we have [u]n = 0. This is a contradiction. ��

Recall the following proposition induced by [13, Lemma 2.12].
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Proposition 3.2 [33, Lemma 2.1] When X is the product of n odd-spheres, the
second row of H(X) is empty, that is, there is no point P = (1, ∗) in H(X) for
∗ = 1, 2, . . . , n − 1.

Corollary 3.3 For a fibration Sk1 × · · · × Skn → X → CP∞ × · · · × CP∞
(n − 1-factors) with k1, . . . , kn odd, X is pre-c-symplectic if dim H∗(X;Q) <∞.

Proof Put M(Sk1×· · ·×Skn ) = (�(v1, . . . , vn), 0). We show that the model M(X) =
(Q[t1, . . . , tn−1] ⊗ �(v1, . . . , vn), D) is pre-c-symplectic. From Proposition 3.2
[13, Lemma 2.12], there is a KS model (2)

(Q[tn], 0)→ (Q[t1, . . . , tn] ⊗�(v1, . . . , vn), D′)→ (Q[t1, . . . , tn−1] ⊗�(v1, . . . , vn), D)

such that the formal dimension of B := (Q[t1, . . . , tn] ⊗�(v1, . . . , vn), D′) is N :=
|v1| + · · · + |vn| − n. It is formal and the cohomology algebra is

Q[t1, . . . , tn]/(D′v1, . . . , D′vn)

where D′v1, . . . , D′vn is a regular sequence in Q[t1, . . . , tn]. Then (λ1t1 + · · · +
λntn)N/2 is the fundamental class of H∗(B) for an element λ1t1+· · ·+λntn ∈ H2(B)

with λi ∈ Q. ��
Thus, when X is a product of n odd-spheres, the point (0, n− 1) in H(X) is surely

presented by pre-c-symplectic models and the point (0, n) is by c-symplectic models.
In the following examples, P0 = (0, 0) = [X ].
Example 3.4 For a pre-c-symplectic space X with r0(X) = 1, the Hasse diagram
H(X) is (uniquely) given as

P1

P0

where the point P1 is presented by a c-symplectic model. For example, when X =
S2n+1, P1 = (0, 1) = [CPn].

When M(X) = (�(v1, . . . , v2n+1), d) with

dvi = 0 (i < 2n + 1), dv2n+1 = v1 . . . v2 j1 + · · · + v2 jk−1+1 . . . v2 jk (2 jk = 2n),

we can put Dvi = 0 for i �= 2n + 1 and

Dv2n+1 = v1 . . . v2 j1 + · · · + v2 jk−1+1 . . . v2 jk + t |v2n+1|+1/2.

Then it is formal and c-symplectic from Proposition 2.5.
When M(X) = (�(v1, . . . , vn), d) with |v1| = |v2| = 3, |v3| = 5, . . . , |vn| =

2n − 1 and
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dv1 = dv2 = 0, dv3 = v1v2, dv4 = v1v3, . . . , dvn = v1vn−1

for an odd integer n > 2, we can put Dvi = dvi for i �= n and

Dvn = v1vn−1 + v2vn−2t − v3vn−3t + · · · + (−1)avava+1t + tn

for a = (n − 1)/2. Then D ◦ D = 0 and it is c-symplectic from Proposition 2.5.

Example 3.5 For a pre-c-symplectic space X with r0(X) = 2, the Hasse diagram
H(X) is uniquely given as

P2

P1 P3

P0

�������

which has the point P3 = (1, 1) from Theorem 1.7. For example, it is given when
M(X) = (�(v1, v2, v3, v4, v5), d) where dv1 = dv2 = dv3 = 0, dv4 = v1v2 and
dv5 = v1v3 with |v1| = |v2| = 3, |v3| = 7, |v4| = 5, |v5| = 9. Then P2 = (0, 2) =
[(Q[t1, t2] ⊗ �(v1, v2, v3, v4, v5), D)] where Dv1 = Dv2 = Dv3 = 0, Dv4 =
v1v2+ t3

1 and Dv5 = v1v3+ t5
2 . Also P3 = [(Q[t]⊗�(v1, v2, v3, v4, v5), D)] where

Dv1 = Dv2 = Dv3 = 0, Dv4 = v1v2 and Dv5 = v1v3 + v2v4t + t5, which is
c-symplectic from Proposition 2.5. Indeed, [t13] = [v1v2v3v4t4] �= 0.

Example 3.6 (see [31, Examples 3.5, 3.6]) Suppose that X with r0(X) = 3 is pre-c-
symplectic. When X = Sk1 × Sk2 × Sk3 , from Theorem 1.7 and Proposition 3.2, the
Hasse diagram H(X) is uniquely given as

P3

P2

P1 P4

P0

�������������

which has the point P4 = (2, 1). For example, when (k1, k2, k3) = (3, 3, 7), P1 =
[S2×S3×S7], P2 = [S2×S2×S7] and P3 = [S2×S2×CP3].Here P4 = (2, 1) = [Y ]
is given by the model M(Y ) = (Q[t] ⊗�(v1, v2, v3), D) with Dv1 = Dv2 = 0 and
Dv3 = v1v2t + t4, which is c-symplectic.
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Next put M(X) = (�V, d) = (�(v1, v2, v3, v4, v5), d) with dv1 = dv2 = dv4 =
dv5 = 0 and dv3 = v1v2. If |v1| = |v2| = 3, |v3| = 5, |v4| = 9 and |v5| = 13, then
H(X) is given as

P3

P2 P5

P1

�������
P4 P6

P0

��������

���������������

where P3 = [(Q[t1, t2, t3] ⊗ �V, D)] with Dv3 = v1v2 + t3
2 , Dv4 = t5

1 , Dv5 =
t7
3 , P4 = [(Q[t1] ⊗�V, D)] with Dv3 = v1v2, Dv4 = v1v3t1 + t5

1 , Dv5 = 0, P5 =
[(Q[t1, t2] ⊗ �V, D)] with Dv3 = v1v2, Dv4 = v1v3t1 + t5

1 , Dv5 = t7
2 and

P6 = [(Q[t] ⊗ �V, D)] with Dv4 = 0, Dv3 = v1v2, Dv5 = v2v4t + v1v3t3 + t7.

Here Dv1 = Dv2 = 0 for all. This model presenting P6 = (2, 1) makes X to
be pre-c-symplectic from Proposition 2.5. Indeed, [t16] = [v1v2v3v4t6] �= 0 for
f d(Q[t] ⊗�V, D) = 32.

If |v1| = |v2| = 3, |v3| = 5, |v4| = 9 and |v5| = 11, it satisfies the necessary
condition of Theorem 2.6 that 3 + 9 ≤ 11 + 1 and 3 + 5 ≤ 11 + 1. But we can
easily check that there is no point P6 = (2, 1) since Dv5 ∈ (t, v1, v2, v3) in any dga
(Q[t] ⊗ �V, D) from degree reason. Indeed, then r0(Q[t] ⊗ �V, D) > 0 since we
can put D2(v4) = t5

2 and D2(vi ) = D(vi ) for i �= 4 as a relative model of (4)

(Q[t2], 0)→ (Q[t2, t] ⊗�V, D2)→ (Q[t] ⊗�V, D)

with dim H∗(Q[t2, t] ⊗�V, D2) <∞. Thus H(X) is given as

P3

P2 P5

P1

�������
P4

P0

��������

and X is not pre-c-symplectic from Theorem 1.7.
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Example 3.7 Put M(X) = (�(v1, v2, v3, v4, v5, v6, v7), d) with dv1 = dv2 =
dv3 = dv4 = dv7 = 0, dv5 = v1v2, dv6 = v1v3 and |v1| = |v2| = |v3| = 3, |v4| =
|v5| = |v6| = 5, |v7| = 9. Then r0(X) = 4 and H(X) is given as

P4

P3 P7

P2

�������
P6 P9

P1

�������

���������������
P5

�������
P8 P10

P0

�������

���������������

�����������������������

where the edge P5 P9 (P5 < P9) is given by Dvi = dvi for i �= 4, 7,

Dv7 = v1v6t1 + v2v5t2 + t5
1 , Dv4 = t3

2

and P10 = (3, 1) is presented by Dvi = dvi for i �= 7,

Dv7 = v1v6t + v2v5t + v3v4t + t5,

which is c-symplectic from Proposition 2.5. Also P7 is presented by a c-symplectic
model with Dvi = dvi for i = 1, 2, 3,

Dv7 = v1v6ti + t5
i , Dv5 = v1v2 + t3

j , Dv4 = t3
k ,

which gives the sequence of orders P0 < P5 < P6 < P7 when (i, j, k) = (1, 2, 3)

or (1, 3, 2). Also P0 < P1 < P6 < P7 when (i, j, k) = (2, 1, 3) or (3, 1, 2) and
P0 < P1 < P2 < P7 when (i, j, k) = (2, 3, 1) or (3, 2, 1).

Example 3.8 When the product of five odd-spheres X = Sk1 × Sk2 × Sk3 × Sk4 × Sk5

is pre-c-symplectic, there are (at least) the following two Hasse diagrams (a) and (b)

that have the point P9 = (4, 1).
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P5 (a)

P4

P3 P8

P2

�������������
P7

P1

�������������
P6 P9

P0

�������������

���������������������������

P5 (b)

P4

P3 P8

P2

�������������
P7 Q

P1

�������������

��������������������� P6

��������
R P9

P0

���������������������

�������������

����������������������������

For example, (a) is given when X = S3 × S3 × S3 × S3 × S9 and (b) is given
when X = S3 × S3 × S7 × S11 × S15. They satisfy the condition of Theorem 1.2.
The point R of (b) is presented by the model, for example, with Dv1 = Dv2 =
Dv5 = 0, Dv3 = v1v2t1 and Dv4 = v1v3t1 + t6

1 . The point Q of (b) is presented by
the model, for example, with Dv1 = Dv2 = 0, Dv3 = v1v2t1, Dv4 = v1v3t1 + t6

1
and Dv5 = t8

2 . The points P6 of (a), (b) are presented by the model, for example,
with Dv1 = Dv2 = Dv3 = Dv4 = 0 and Dv5 = v1v4t (k5−k1−k4+1)/2 + t (k5−1)/2.

Finally, the points P9 of (a), (b) are presented by the model, for example, Dv1 =
Dv2 = Dv3 = Dv4 = 0, (a) : Dv5 = v1v4t2 + v2v3t2 + t5 and (b) : Dv5 =
v1v4t + v2v3t3 + t8, which are c-symplectic models. In these examples of X, three
points P5, P8 and P9 are presented by c-symplectic models, in (a) and (b). In particular,
for M(S3 × S3 × S3 × S3 × S9) = (�V, 0) giving (a), the c-symplectic model
(Q[t1, t2, t3] ⊗�V, D) with (∗):

Dv1 = Dv2 = 0, Dv3 = t2
i , Dv4 = t2

j , Dv5 = v1v2t2
k + t5

k ,

where {i, j, k} = {1, 2, 3}, presents P8 and its process of fibrations gives the sequence
of orders P0 < P1 < P2 < P8, P0 < P1 < P7 < P8 or P0 < P6 < P7 < P8.

On the other hands, the c-symplectic model (Q[t1, t2, t3]⊗�V, D) of Lupton–Oprea
[20, Example 2.12] with (∗∗):

Dv1= t2
i , Dv2 = ti t j , Dv3 = t2

j , Dv4 = t j tk, Dv5= t5
k + (v1t j − tiv2)(v3tk − t jv4)

presents P8 but can not give P0 < P6 < P7 < P8, especially since v1t2
1 v4 =

D(−v1v3v4) in (Q[t1] ⊗�V, D) when j = 1. Notice that the model of (∗) is formal
but (∗∗) is not.
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Remark 3.9 Simply connected c-symplectic spaces Y are schematically classified by
the following diagrams P(Y ) with respect to rational toral ranks. When dim π2(Y )⊗
Q = n with M(Y ) = (�U, dU ), there is the relative model

(Q[t1, . . . , tn], 0)→ (�U, dU )→ (�V, d); V 2 = 0

with |ti | = 2 and U = V ⊕Q(t1, . . . , tn). Then Y presents a point (leaf) in H(�V, d)

with certain sequences [(�V, d)] < · · · < [Y ] of orders which are given by com-
positions of fibrations. Glue all such paths [(�V, d)] − · · · − [Y ] from [(�V, d)] to
[Y ] in H(�V, d) and denote it as P(Y ). For example, in the case of n = 3, we can
concretely find the following four types of P(Y ) in this paper:

•

•

•

•

•

•

							 •

•

							 •

•

							

•

•

������������� •

•

������������� •

•

�������������

•

•

������������� •

•

�������������

•
which are in Examples 3.6, 3.7, 3.8(a)(∗) and 3.8(a)(∗∗), respectively. If a
c-symplectic space is a homogeneous space, it is the first type from r0(X) ≤
−χπ(X) := dim πodd(X) ⊗ Q − dim πeven(X) ⊗ Q for an elliptic space X [2] and
[20, Corollary 2.3].

Acknowledgments The authors would like to express their gratitude to the referee for his many valuable
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