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Abstract The most prevalent examples of Koszul duality of operads are the self-
duality of the associative operad and the duality between the Lie and commutative oper-
ads. At the level of algebras and coalgebras, the former duality was first noticed as such
by Moore, as announced in his ICM talk at Nice (Moore in Actes du Congrès Inter-
national des Mathématiciens, Tome 1. Gauthier-Villars, Paris, pp. 335–339, 1971).
This particular duality has typically been called Moore duality, and some prefer to
call the general phenomenon Koszul–Moore duality. The second duality at the level
of algebras was realized in the seminal work of Quillen on rational homotopy theory
(Quillen in Ann Math 90(2):205–295, 1969). Our aim in these notes based on our
talk at the Luminy workshop on Operads in 2009 is to try to provide some histor-
ical, topological context for these two classical algebraic dualities. We first review
the original cobar and bar constructions used to study loop spaces and classifying
spaces, emphasizing the less-familiar geometry of the cobar construction. Then, after
some elementary topology, we state duality between bar and cobar complexes in that
setting. Before explaining Quillen’s work, we also share some other ideas—calcula-
tions of Cartan–Serre and Milnor–Moore and philosophy of Eckmann–Hilton—which
may have influenced him. After stating Quillen’s duality, we share some recent work
which relates these constructions to geometry through Hopf invariants and in particular
linking phenomena.

Keywords Koszul-Moore duality · Bar and cobar constructions · Operads ·
Hopf invariants
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2 D. P. Sinha

1 Bar and cobar constructions

1.1 �X and the cobar construction

Studying mapping spaces is one of the central tasks of topology, and loop spaces are
the simplest and most fundamental examples (unless one counts maps from finite sets,
which yield products). We require a model for loops where the loop sum is associative
exactly, not up to homotopy. For us �X denotes the Moore loop space which consists
of pairs f : R → X and a “curfew” a > 0 such that f (x) is the basepoint if x ≤ 0 or
if x ≥ a. Loop sum adds these curfews, which makes multiplication associative.

The cobar construction of Adams and Hilton [2] was informed by the almost concur-
rent work of James [10] who studied ��X , the loop space on the reduced suspension
of X , namely �X = X × I/(X × 0 ∪ ∗ × I ∪ 1 × X). There is a canonical inclusion
of J : X ↪→ ��X sending x to J (x)(t), the path which sends t to the image in �X
of (x, t). Because ��X is a topological monoid, this map extends to a map from the
free moinoid (with unit) on X to ��X which we call the James map Ĵ . For example,
the formal product y ∗ x ∗ z goes to a loop with coordinates (x, t) for t ∈ [0, 1] then
(y, t − 1) for t ∈ [1, 2], then (z, t − 2) for t ∈ [2, 3]—see Fig. 1 below.

Theorem 1.1 (James [10]) The James map Ĵ from the free monoid on X to ��X is
a homotopy equivalence.

Recall that the homology of any space with an associative multiplication, or even
a homotopy associative multiplication, is an associative algebra.

Corollary 1.2 The homology of ��X with field coefficient is isomorphic as an
algebra to the tensor (that is, free associative) algebra on the homology of X.

Fig. 1 An illustration of Ĵ of
y ∗ x ∗ z (traversing the path
through y first, etc)
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Koszul duality in algebraic topology 3

Fig. 2 One possible choice for γ2

Exercise 1 Explicitly define the free topological monoid on a (well-based) topologi-
cal space X. Show that its homology with field coefficients is isomorphic to the tensor
algebra on the homology of X. [Hint: make heavy use of the Künneth theorem.]

Interestingly, the corollary is typically proven in the course of proof of the theo-
rem. Details in a well-digested form are in Sect. 4.J in Hatcher’s textbook [9] or the
survey paper of Carlsson and Milgram [4], whose treatment of the Adams–Hilton con-
struction heavily influences our treatment below. There are however more geometric
proofs which build on the fact that the space of paths in the cone on X with endpoints
in the image of X is homotopy equivalent to X × X through the projection onto the
endpoints.

For the Adams–Hilton construction, we start with a simply-connected simplicial
complex X̂ and then contract the union of the 1-skeleton along with enough of the
two-skeleton so that the quotient map X̂ → X is a homotopy equivalence. Then X is
a CW-complex, and its cellular chains are a quotient of the simplicial chains on X̂ . By
abuse of notation, we denote these cellular chains by C�∗ (X).

Next, consider the cubical singular chain complex of the loop space C�∗ (�X), which
is an associative differential graded algebra. On generators, the product of σ1 : I

n →
�X and σ2 : I

m → �X is the composite I
n+m ∼= I

n × I
m σ1×σ2→ �X × �X → �X .

The Adams–Hilton construction defines a map of associative algebras from the free
associative algebra on C�∗ (X) to C�∗ (�X). The first key observation is that any choice
of map γn : I

n → �n defines a map AHγn : C�
n (X) → C�

n−1(�X). Let χσ denote the
characteristic map �n → X of a simplex σ of X . Then AHγn (σ ) is basically given by
the composite γn ◦ χσ : I

n → X . From this composite we by adjointness (choosing
say the last coordinate as the loop coordinate) produce a map I

n−1 → Map(I, X),
which then is identified with a generator of C�

n−1(�X) through viewing Map(I, X) as
Moore loops with curfew one.

The game is to define γn appropriately so that we can calculate boundaries, and more
importantly so that the Adams–Hilton map yields a quasi-isomorphism. By abuse, we
suppress γn from notation and write AHγn (σ ) as |σ |. For the first case when n = 2,
a good way to choose γ2 is to to have γ2 : I

2 → �2 send the boundary of I
2 to that

of �2. In any way this is done, we would have that d|σ2| = |dσ2| = 0, since the
one-skeleton of X is has been identified to a point. Looking forward, it is much better
to choose γ2 to be a “degree one” map I

2 → �2 which when we consider the adjoint
γ̂2 : I → Map(I,�2) interpolates between the direct path from vertex 0 to vertex 2 of
�2 along the edge between them and the “long” path from 0 to 2 which first traverses
the 0–1-edge and then the 1–2 edge. When composed with the characteristic map into
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4 D. P. Sinha

X these edge paths will yield constant loops, but the choice of the paths in between is
important See Fig. 2 for one choice of γ2.

At the next stage, building on some such choice of degree one γ2, we can define
a γ3 such that d|σ3| = |dσ3|. There are four faces of I

2 and four faces of �3, and
this equality identifies those faces. For example, one face of I

2 will be mapped by
γ̂3 : I

2 → Map(I,�3) to paths from the 0 vertex to the vertex 3 (reminder: such a
path in X̂ will project to a loop in X ) which first go to the vertex 1 directly along the
0–1 edge and then go to 3 along paths compatible with the choice made of γ2. On
another face of I

2, paths go only along the 0–2–3 face of �3, again compatibly with
γ2, and so on.

At n = 4 the construction there is a surprise. Assume γ3 has been defined, and
start defining γ̂4 : I

3 → �4 by setting its restriction to various faces as before, for
example sending one face of I

3 to paths on the 0–2–3–4 face of �4. But, there are six
faces of I

3 and only five faces of �4! What is the natural last term? When one does
the geometry carefully, one see that on the last face of I

3 should map to paths from
0 to 4 which first go along the 0–1–2 face and then along the 2–3–4 face. These two
faces appear in the standard definition of the coproduct on simplicial chains dual to
cup product. Moreover, such composites are given by the product in C�∗ (�X). That
is, we can construct γ4 such that

d|σ4| = |dσ4| + |α2| ∗ |β2|,

where the coproduct of σ4 is α2 ⊗β2 plus terms in bidegrees (1, 3), (0, 4), etc. (These
other terms in the coproduct yield trivial chains with the 1-skeleton of X collapsed.)

In general, let us denote products of Adams–Hilton chains by |σ | ∗ |τ | = |σ |τ |. Let
Cobar(C�∗ (X)) denote the sub-algebra of C�∗ (�X) generated by the Adams–Hilton
chains (in positive degrees).

Theorem 1.3 (Adams–Hilton) There are degree-one choices for the maps γn such
that the boundary on Cobar(C�∗ (X)) is the cofree extension of the map with

d|σ | = ±|dσ | +
∑

�̄σ=∑
αi ⊗βi

±|αi |βi |.

Here �̄ denotes the reduced cup coproduct including terms of only positive bidgrees.
The inclusion of any such Cobar

(
C�∗ (X)

)
in C�∗ (�X) is a quasi-ismorphism of

differential graded associative algebras.

Exercise 2 Try to write down γn for n ≤ 4 as an explicit piecewise-linear map.

Exercise 3 The cobar construction is defined for any differential graded coalgebra.
Compute it for the coalgebra given by the homology of C P∞.

Exercise 4 Deduce the James theorem from the Adams–Hilton theorem.

The algebraic cobar construction (often denoted � but not at the moment because of
potential confusion) has become part of the standard toolkit for algebraic topologists,

123



Koszul duality in algebraic topology 5

and there are more algebraic approaches which can yield similar theorems. A more
geometric approach to the topology of iterated loop spaces was extended by Milgram
who studied �n�n X in [11] (see also [4]). But the geometry and formalism of PROPs
and operads, in particular the elegance of the little disks construction of Boardman
and Vogt [3], became more popular than this intricate geometry. Perhaps there could
be something gained by revisiting these ideas.

1.2 Classifying spaces and the bar construction

We will be more brief about the bar construction, whose topology is better known.
The topological bar construction provides a model for the classifying space BG, which
when G is discrete is just an Eilenberg–MacClane space K (G, 1).

Topologists are often ambiguous and refer to any quotient of a contractible space
EG with free G-action as the classifying space BG. We resolve this issue by only
saying that such a space is homotopy equivalent (rather than equal to) BG, which we
choose unambiguously to be the realization of the bar construction, which we partially
define below.

Example 1.4 • BZ � S1.
• BZ/2 � RP∞.
• BZ/n � S∞/(Z/n), called an infinite Lens space.
• If G = π1(S) where S is a surface of positive genus, then BG � S.

For simplicity, we present the “unreduced” bar construction, which lacks identifi-
cations coming from the identity element of G.

Theorem 1.5 If G is discrete, then BG is homotopy equivalent to a simplicial complex
whose n-simplices are in one-to-one correspondence with n-tuples of elements of G,
which we denote |g1|g2| · · · |gn|. The (n + 1) faces of an n-simplex are given by

di (|g1| · · · |gn|) =
⎧
⎨

⎩

|g2| · · · |gn| i = 0
|g1| · · · |gi gi+1| · · · |gn| 0 < i < n
|g1| · · · |gn−1| i = n.

To prove this, one constructs EG in a similar fashion.

Corollary 1.6 The homology of BG is given by the homology of the algebraic bar
construction applied to the group ring k[G], an associative algebra.

Exercise 5 Do the simple unraveling of definitions to check that this corollary follows.

We obtain a better model if we quotient by identifying each n-simplex of the form
|g1| · · · |e|gi+1| · · · |gn| with the (n − 1)-simplex |g1| · · · |gi−1|gi+1| · · · |gn| through
the appropriate standard projection of �n → �n−1. The following exercise is a must
for any topology student.

Exercise 6 Show that this reduced construction for Z/2 is homeomorphic to RP∞.
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6 D. P. Sinha

Thus RP∞ has Z/2 as its DNA, so to speak. Theorem 1.5 is true in greater gen-
erality in particular when G has a topology (with some mild assumptions) which
gets incorporated in the topology on BG, or when G is just a monoid. Indeed, this
construction is a special case of the nerve of a category.

1.3 Relating the bar and cobar constructions

Because BG = EG/G its homotopy type essentially defined through the fiber sequence

G ⊂ EG → BG.

Let P X denote the path space on X , which is contractible, and let ev denote the map
which sends a path γ to γ (1) ∈ X . Then the sequence

�X → P X
ev→ X

is a fibration. Consider as well the map PEG → BG defined by evaluation composed
with the quotient. This map is equivalent to both the projection EG → BG and the
evaluation PBG → BG, which are thus equivalent to each other. We deduce that their
fibers are equivalent, so that �BG � G. Similarly, if X is connected then B�X � X
(the content of this statement depends on the definition of classifying space for �X ;
some say its classifying space is X by definition).

These homotopy equivalences are reflected in the following algebra, which is now
viewed as a consequence of Koszul duality of the associative operad. Recall that the
cobar construction on the chains of X—a differential graded coalgebra—was defined
in terms of a free associative algebra (and indeed computed the homology of �X as an
algebra) with a differential comprised of both the internal differential and one defined
using comultiplication. We can view the bar construction as based on the (co)free co-
associative coalgebra generated by k[G], with the coproduct defined by breaking bar
expressions in two and differential defined using the product of G. More generally, we
may start with a differential graded associative algebra and define the bar construction
as the total complex of the cofree coassociative coalgebra as a bicomplex, using both
the internal differential and a differential defined by “removing bars and multiplying.”

Theorem 1.7 The bar construction B and the cobar construction � define an adjoint
pair of functors between differential graded associative algebras dgaa and differen-
tial graded associative coalgebras dgac.

dgac
�

�
B

dgaa

Moreover, there are natural transformations �B A → A and B�C → C which
are quasi-isomorphisms if A is positively graded and if C is 1-connected respectively.

This theorem was announced by Moore [13], so it has historically been referred to
as Moore duality. In topology, this equivalence reflects the bijection between homoto-
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Koszul duality in algebraic topology 7

py classes of monoid maps from some M to �X and homotopy classes of maps from
B M to X .

Not only is it the first example of adjoint functors giving equivalences between
categories of algebras and coalgebras over an operad and its Koszul dual, but it played
a central role in Priddy’s definition of Koszul quadratic algebras [14]. A graded aug-
mented algebra A can be given a zero differential. Over a field k and with finiteness
degree-wise, the homology of the bar complex of A is the linear dual of ExtA(k, k),
compatible with their coalgebra and algebra structures. (In the case of A = k[G], this
is reflected by Corollary 1.6 and the fact that the cohomology of BG is coincides with
Extk[G](k, k).) If A is a Koszul algebra (given zero differential), then we can replace
the bar complex with a much smaller resolution, which leads to an explicit presen-
tation of this Ext-algebra. Moreover, the theory applies to this Ext-algebra as well
and replaces the cumbersome quasi-isomophism of A � �B A with an isomorphism
A ∼= ExtExtA(k,k)(k, k). In general, there is a spectral sequence relating the two.

2 Other ideas in the air

Following up on his thesis, Serre along with Cartan considered the rational homotopy
groups of a simply connected space. When shifted down, as best done by considering
the homotopy groups of �X , those groups form a graded Lie algebra. Typically the
Hurewicz homomorphism from homotopy to homology captures little information.
But rationally for loop spaces, this map gives a clear picture. Building on calculations
of Cartan and Serre [5], Milnor and Moore in [12] prove the following.

Theorem 2.1 If X is simply connected, the Hurewicz map π∗(�X) ⊗ Q →
H∗(�X; Q) is an injection, mapping the rational homotopy Lie algebra of X to the
primitives in the Hopf algebra H∗(�X; Q).

Another influential idea at that time was Eckmann–Hilton “Duality,” which draws
attention to parallel structures in cohomology and homotopy. See the table below.

Cohomology Homotopy
L.E.S of a cofibration A ↪→ X → X/A L.E.S of a fibration F → E → B
Spheres and Moore spaces Eilenberg–MacClane spaces
Suspension/desuspension Loop space/classifying space
CW structures Postnikov tower
Graded commutative ring structure Graded Lie algebra structure
Co-H -space (comonoid) H -space (monoid)
Pushout square/homotopy colimit Pull-back square/homotopy limit
Steenrod algebra Stable homotopy groups of spheres
Leray–Serre spectral sequence Blakers–Massey theorems

This duality is more of a philosophy than a theory. There are no theorems of the
form “Given a true statement about homotopy groups, there is a true statement about
cohomology groups obtained by…” or “Given a space X there is a dual space X̂
whose cohomology groups are the homotopy groups of X and…” Nonetheless, the
duality can point to interesting directions of study. For example, looking at our table

123



8 D. P. Sinha

one notices a significant difference between CW structures, which are not canonical
in any sense, and the Postnikov tower, which is. This leads to finding the homology
decomposition of a space (see Chapter 4.H of [9] for a basic treatment).

3 Quillen functors and rational homotopy theory

Quillen, influenced by Kan, took the step in [15] of proving theorems not about ho-
motopy groups but about all of homotopy theory. He must have taken Theorems
2.1 and 1.3 as an important starting point. Indeed, if the rational homology of the
cobar construction computes the homology of the loop space, and one is to then take
primitives to get rational homotopy groups, why not take primitives first at the level
of the cobar complex itself (see exercise below)? The great advantage is that in the
cobar construction one is considering the free associative algebra, whose primitives
are known to be the free Lie algebra, so one can just use the free Lie algebra functor
as a starting point. Quillen was also aware of Chevalley–Eilenberg cohomology of
Lie algebras [6], and probably knew of some cases in which applying this functor to
the rational homotopy Lie algebra of a space recovered its cohomology (an easy case
being wedges of spheres, whose rational homotopy Lie algebra is free). Once again, a
refinement is needed, going from applying a functor at the level of algebras (in the pre-
vious case primitives, in the current case Lie algebra cohomology) to applying it at the
level of chain complexes. Quillen’s adaption of the Chevalley–Eilenberg construction
now bears his name as well.

Quillen put these two constructions together in the following theorem.

Theorem 3.1 The Lie algebraic cobar construction �Lie and a commutative coalge-
braic bar construction BComm, which generalizes the Chevalley–Eilenberg construc-
tion, form an adjoint pair of functors

dgcc
�Lie
�

BComm

dgla

Here dgcc are 1-connected differential graded cocommutative coalgebras and dgla
are connected differential graded Lie algebras. These functors preserve all notions
relevant to homotopy theory (fibrations, cofibrations, weak equivalences).

Any simply-connected space X has functorial models CX and L X in dgcc and
dgla, respectively, such that the homology of CX is the rational homology coalgebra
of X and the homology of L X is the rational homotopy Lie algebra of X.

In current language, we would say that �Lie and BComm form a Quillen adjoint pair
of functors on the model categories dgcc and dgla, reflecting the Koszul duality of
the operads Lie and Comm. This theorem gives a precise manifestation of Eckmann–
Hilton duality, through the fact that these functors preserve model structures along
with the symmetries of the model structure axioms. What complicates [15] signifi-
cantly is that there is, to this day, no simple way to construct a commutative cochain
algebra of a space and thus easily land in this picture. Quillen has to walk for 40 days
through the desert, producing a long chain of functors in order to produce L X and
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Koszul duality in algebraic topology 9

CX . That difficulty led Sullivan to find a simple way to produce commutativity, not
on chains but on cochains. Additionally, instead of using bar or cobar constructions
Sullivan studied cofibrant replacements with some additional smallness property, the
famous minimal models of [18].

Exercise 7 Check directly in some cases that the primitives of differential graded
Hopf algebra form a split sub-complex, so that the primitives of the homology of C•
is isomorphic to the homology of the complex obtained by taking the primitives of C•.

Exercise 8 Compute the Chevalley–Eilenberg cohomology of the graded Lie algebra
with three generators x, y, z in degree three with the only relation being [x, y] = [y, z].

4 Koszul duality and Hopf invariants

We have recently found [17] that Koszul duality and Quillen functors allow one to
give a definitive treatment of rational homotopy functionals through Hopf invariants.
The basic idea can be seen as using the bar complex to understand a map f : Sn → X
by first passing to � f : �Sn → �X and then evaluating cohomology classes of �X
on the image of the fundamental class of �Sn . By Theorem 2.1, such invariants of
rational homotopy classes of maps are complete.

We must pause to make a choice in notation. If one is studying the cohomology of
�X using the cochains on X , one could either denote the construction you use by �

to reflect topology or B to denote a bar construction which is applied to an algebra
(rather than a cobar construction applied to a coalgebra). Despite the fact that the bar
construction here is really an algebraic dual to the cobar construction, lacking the first
and last terms in the differential, we follow convention and let BC∗(X) denote this
“modified” bar construction. We let H∗

B(X) denote the homology of BC∗(X). Define
the weight of a generator of a bar complex to be the number of elements appearing.

Lemma 4.1 Hn−1
B (Sn) is rank one, generated by an element of weight one, namely

|ι| where ι is a cocycle which represents the generator of Hn(Sn).

Exercise 9 Prove this. Hint: you’ll need the Künneth theorem to put yourself in a
position to do some “weight reduction,” as we use below.

Definition 4.2 Let γ ∈ Bn−1(C∗Sn) be a cocycle. Define τ(γ ) � γ to be a choice
of weight one cocycle to which γ is cohomologous.

Define
∫

B(Sn)
to be the map from cocyles in Bn−1(C∗Sn) to Z given by

∫
B(Sn)

γ =∫
Sn τ(γ ), where

∫
Sn denotes evaluation on the fundamental class of Sn .

Define η(γ ), the Hopf invariant associated to γ by η(γ )( f ) = ∫
B(Sn)

f ∗γ .

The choice of Hopf cochain is not unique, but the corresponding Hopf invariants
are. It is immediate that the Hopf invariants are functorial. Moreover, note that the
definitions hold with any ring cofficients. Topologically we have the following inter-
pretation.

Proposition 4.3 η(γ )( f ) coincides with the evaluation of the cohomology class given
by γ in Hn−1(�X) on the image under � f of the fundamental class in Hn−1(�Sn).
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10 D. P. Sinha

Fig. 3 Whitehead’s integral, viewed through intersections of supports of cochains

4.1 Examples

Example 4.4 A cocycle of weight one in B(C∗ X) is just a closed cochain on X , which
may be pulled back and immediately evaluated. Decomposable elements of weight one
in B(X) are null-homologous, consistent with the fact that products evaluate trivially
on the Hurewicz homomorphism.

Example 4.5 Let ω1 and ω2 be generating 2-cocycles on S2 and f : S3 → S2. Then
γ = −|ω1|ω2| is a cocycle in B(C∗S2) which f pulls back to −| f ∗ω1| f ∗ω2|, a
weight two cocycle of total degree two on S3. Because f ∗ω1 is closed and of degree
two on S3, it is exact. Let d−1 f ∗ω1 be a choice of a cobounding cochain. Then

d
(
|d−1 f ∗ω1| f ∗ω2|

)
= | f ∗ω1| f ∗ω2| + |d−1 f ∗ω1 ∪ f ∗ω2|.

Thus f ∗γ is homologous to |d−1 f ∗ω1 ∪ f ∗ω2|, and the corresponding Hopf invariant
is

∫
S3 d−1 f ∗ω1 ∪ f ∗ω2, which when choosing ω1 = ω2 is the classical formula for

Hopf invariant given by Whitehead [19]. It is a direct translation of the linking number
definition of Hopf invariant into the language of cochains see Fig. 3. Understanding
this formula from the point of view of the bar construction has, to our knowledge, only
come over 50 years since all of these concepts were introduced.

Example 4.6 For an arbitrary X and cochains xi , yi and θ on X with dxi = dyi = 0
and dθ = ∑

(−1)|xi |xi ∪ yi , the cochain γ = ∑ |xi |yi | + |θ | ∈ B(C∗ X) is closed.
The possible formulae for the Hopf invariant are all of the form

∫

Sn

(
f ∗θ −

∑ (
(−1)|xi |ti · d−1 f ∗xi ∪ f ∗yi + (1 − ti ) · f ∗xi ∪ d−1 f ∗yi

))
,

for some real numbers ti . This generalizes formulae given in [7,8,18].
By choosing t = 1

2 we see that reversing the order to consider
∑ |yi |xi | will yield

the same Hopf invariant, up to sign. Thus
∑ |xi |yi |∓ |yi |xi | yields a zero Hopf invari-

ant. There are many Hopf invariants of the classical bar construction which are zero,
a defect remedied by using the Lie coalgebra cobar construction.
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Koszul duality in algebraic topology 11

Exercise 10 Suppose x and y are cochains supported on codimension two subman-
ifolds X and Y of W and θ satisfies dθ = x ∪ y and is supported on a codimension
three submanifold which cobounds X ∩ Y . Draw pictures of how the Hopf invariant
associated to |x |y| ∓ |θ | evaluates some map f : S3 → X. Moreover, draw pictures
of what can happen in S3 × I if one has a homotopy between f and g. [Hint: Start
with the picture in the figure, but then draw in the preimage of the support of θ ; then,
think about what can happen with the preimage of X ∩ Y through a homotopy.]

One can do similar calculations in higher weight, and interpret them all when one
chooses cochains supported on submanifolds in terms of linking behavior of the pre-
images of those submanifolds. See [17].

4.2 The cokernel and kernel of the Hopf invariant map

Our Hopf invariant construction defines a homomorphism η : H∗(B(C∗(X; Z))) →
Hom(π∗ X, Z). It follows from Proposition 4.3 and Theorem 2.1 that this map is sur-
jective when tensored with the rational numbers, and thus is full rank.

Problem 11 Compute the cokernel of η. By Adams’ celebrated result [1], this coker-
nel is trivial for X an odd sphere and for S2, S4 and S8, and it is Z/2 for other even
spheres.

The proofs in [17] show that one might be able to directly understand the relation of
this cokernel to lack of commutativity of cup product. Though this cokernel is clearly
a very subtle homotopy invariant, we do not see any applications of its calculation.

Also, η has a very large kernel, explained from the operadic viewpoint as the fact
that we are taking the wrong bar construction. The rational PL cochains on a simplicial
set are commutative, so we should be taking a bar construction over the Koszul dual
cooperad, namely the Lie cooperad, rather than associative cooperad. The homology
of such a bar construction BLie is known as Harrison homology. Using a graphical
model for the Lie cooperad developed in [16] which makes calculations possible, we
prove the following.

Theorem 4.7 [17] There is a Hopf invariant map ηLie which factors the map η such
that ηLie : H∗

BLie
(X) → Hom(π∗(X), Q) is an isomorphism of Lie coalgebras.

It is almost immediate that similar Hopf invariants can be used to concretely realize
similar isomorphisms arising for Koszul pairs in general.

To summarize, in homology theory it has been helpful to have geometry attached
not only to homology but cohomology. In particular, homology classes are often rep-
resented by compact submanifolds and cohomology classes are represented by either
forms or proper submanifolds. The geometry of homotopy groups arising from their
definition is almost too simple. Our work on Hopf invariants shows that the geometry
of homotopy functionals is given by linking invariants, as perfectly governed by the
Lie cooperad, completing the geometric understanding of these basic functors in the
rational setting. We hope these ideas can be extended to the non-simply connected
setting, and perhaps—at least in part—in characteristic p.
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