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The overall purpose of the ‘Statistical Points and
Pitfalls’ series is to help readers and researchers
alike increase awareness of how to use statistics and
why/how we fall into inappropriate choices or in-
terpretations. We hope to help readers understand
common misconceptions and give clear guidance on
how to avoid common pitfalls by offering simple tips
to improve your reporting of quantitative research
findings. Each entry discusses a commonly encoun-
tered inappropriate practice and alternatives from
a pragmatic perspective with minimal mathematics
involved. We encourage readers to share comments
on or suggestions for this section on Twitter, using
the hashtag: #mededstats.

There is a widespread habit in educational research of inter-
preting statistically non-significant findings, also called null
findings, as evidence in favour of a null hypothesis (i. e., ‘no
difference’, ‘no relation’ or ‘no effect’). Null findings are
frequently interpreted as ‘informing’ theory or as ‘confirm-
ing’ theoretical expectations. In this entry, we explain two
arguments against the habit of interpreting a null finding
as evidence in favour of a null hypothesis. Based on these
arguments, we explain that statistical power and required
sample size calculations along with replication research and
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meta-analysis can help us counter the habit of interpreting
non-significant findings as evidence in favour of the null
hypothesis, and that Bayesian hypothesis testing can help
researchers to evaluate the strength of evidence in favour of
the null hypothesis or against it.

Example study

One area of study in educational research compares learn-
ing from examples with learning by solving problems [1,
2]. Suppose that a group of researchers randomly assigns
40 bachelor students in medicine to a problem-problem (n =
20) and an example-problem (n = 20) condition. Students in
the problem-problem condition solve two problems – prob-
lem A and problem B – that follow the same structure and
are of similar difficulty. In the example-problem condition,
students first study a worked example of problem A and
then solve problem B. Subsequently, students in both con-
ditions complete the same post-test, which comprises ten
problems of the same structure as problem A and B and are
of similar difficulty. Each post-test problem is scored ‘0’
whenever a student provides an incorrect solution and ‘1’
when that student provides a correct solution. Hence, the
total score on the post-test can range from 0 to 10.

The researchers compute post-test scores accordingly for
each student and find that the two conditions do not dif-
fer much in post-test score: the problem-problem condition
yields an average score of 5.775 with a standard deviation
(SD) of 1.16, while the example-problem condition yields
an average score of 6.05 with an SD of 0.89. The 95% con-
fidence interval of the difference between average scores
(6.05–5.75 = 0.30) [3] extends from –0.36 to 0.96 and thus
includes ‘0’, meaning the null hypothesis of ‘no difference’
cannot be rejected [4]. Researchers who tend to compute

http://crossmark.crossref.org/dialog/?doi=10.1007/s40037-017-0332-6&domain=pdf


116 J. Leppink et al.

a p-value instead of a confidence interval do a t-test on the
difference between the average scores of the two conditions
with the null hypothesis of ‘no difference’ against the al-
ternative hypothesis of ‘there is a difference’ [5] and find:
p = 0.36.

In many cases, the researchers use the p-value of 0.36
– or the 95% confidence interval that includes ‘0’ for that
matter – to conclude that there is ‘no difference’ between
the two conditions and hence it does not matter whether
in a practical situation we let students solve problems by
themselves right away or we first provide them with an
example. Two main arguments against this ‘confirming the
null’ approach are discussed in the following.

Study has limited statistical power rather than
evidence in favour of the null hypothesis

A first argument against interpreting non-significant p-val-
ues as evidence in favour of the null hypothesis comes from
scholars who note that studies with sample sizes that are
common practice in psychology and education (e. g. our
example study) often lack statistical power and may there-
fore frequently fail to reject the null hypothesis even if it is
not true (i. e. Type II error) [3–7]. Statistical power is the
probability of being able to reject the null hypothesis if the
null hypothesis is not true. Research in psychology and ed-
ucation should strive for a statistical power of around 0.80
[8, 9] ; with that statistical power, a statistical significance
test on an untrue null hypothesis would result in a rejection
of that null hypothesis in 80% of the cases [7]. Some read-
ers might wonder why not strive for a power that lies closer
to 100%; the reason for this is that many phenomena of
interest in the field of education are of such a size that we
would often need samples of hundreds of participants and
more to achieve such a statistical power and that is ethically
and logistically not always feasible.

Had the researchers of our example study, prior to con-
ducting the study, calculated the statistical power (e. g.
using G*Power [10]) for a study with two groups of n =
20, taking as a starting assumption for their calculation half
a standard deviation difference in the population of interest
and testing at the conventional α = 0.05 significance level,
they would have learned that their study has a statistical
power of only 0.34. In other words, even if there is such
a difference in the population they sampled their students
from, only about one of every three studies of this size (two
groups of n = 20) would reject the null hypothesis of ‘no
difference’ (i. e. find p smaller than 0.05). This is the same
as saying that we would fail to reject the null hypothesis in
about two of every three studies of this size.

Had the researchers calculated in advance what sample
size they would need for a statistical power of 0.80, assum-

ing half a standard deviation difference in the population
of interest and testing at the conventional α = 0.05 sig-
nificance level (i. e. required sample size calculation), they
would have learned that they need two groups of n = 64
each [7].

Thus, while the researchers in our example study inter-
pret a non-significant p-value as evidence in favour of the
null hypothesis, a study with two groups of n = 20 is un-
likely to detect a substantial difference between groups in
the first place.

The likelihood of a finding under competing
hypotheses

A second argument against interpreting non-significant p-
values as evidence in favour of the null hypothesis comes
from scholars who point at the fact that a statistical signif-
icance test uses the p-value as a probability under the null
hypothesis but disregards such a probability under the al-
ternative hypothesis [11]. Scholars who use this argument
state that for obtaining either evidence in favour or against
the null hypothesis researchers must compare the likelihood
of their finding under the null hypothesis of ‘no difference’
and the likelihood of their finding under the alternative hy-
pothesis of ‘there is a difference’ to determine under which
of these two hypotheses the finding is more likely to have
occurred. The resulting likelihood ratio or Bayes factor then
expresses under which of the two hypotheses – null or alter-
native – the observed finding is more likely to have occurred
[11]:

Bayes factor for alternative vs: the null =

likelihood of observed finding under alternative

likelihood of observed finding under the null

and

Bayes factor for the null vs:alternative =

likelihood of observed finding under the null

likelihood of observed finding under alternative

hence:

Bayes factor for the null vs:alternative =

1

Bayes factor for alternative vs: the null

A Bayes factor of 1 would indicate that the observed find-
ing is equally likely under both hypotheses (i. e. numerator
and denominator of the ratio are equal). A Bayes factor for
the alternative hypothesis (numerator) vs. the null hypothe-
sis (denominator) of 2 corresponds with a Bayes factor for
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Table 1 Bayes factors and strength of evidence for the alternative
hypothesis (numerator) vs. the null hypothesis (denominator)

Bayes factor Evidential strength

>100
32–100
10–32
3.2–10
1–3.2

Decisive
Very strong
Strong
Substantial
Not worth more than a bare mention

the null hypothesis (numerator) vs. the alternative hypoth-
esis (denominator) of 0.5 (i. e. 1/2 = 0.5) and indicates that
the finding is twice as likely to have occurred under the
alternative hypothesis. Analogously, a Bayes factor for the
alternative hypothesis vs. the null hypothesis of 0.5 is the
same as a Bayes factor for the null hypothesis vs. the alter-
native hypothesis of 2 (i. e. 1/0.5 = 2) and indicates that the
finding is twice as likely to have occurred under the null
hypothesis. Such an interpretation is impossible to achieve
with a p-value. Table 1 provides a brief overview of the
meaning of a Bayes factor in terms of evidential strength
[12].

For more details on the use and interpretation of Bayes
factors, we refer to Rouder et al. [11], who provide a worked
example of a Bayesian t-test as an alternative to the t-test
that we have been using in medical education research for
decades.

There is a free SPSS-like software program that enables
researchers to calculate both p-values and Bayes factors
[13]. Using this software program in the example study –
where researchers find a difference between average scores
of 0.30 – yields a Bayes factor of 2.32 for the null hypothe-
sis of ‘no difference’ vs. the alternative hypothesis of ‘there
is a difference’ (or 1/2.32 � 0.43 for the alternative hypoth-
esis vs. the null hypothesis). In other words, the finding of
a difference between average scores of 0.30 is more than
twice as likely to have occurred under the null hypothesis.
Note, however, that this Bayes factor of 2.32 still only pro-
vides evidence (here: in favour of the null hypothesis) that
is barely worth a mention (i. e. Table 1). In other words,
this Bayes factor indicates some but not much preference
towards the null hypothesis.

A summary of the arguments

Following the argument of limited statistical power, cal-
culations of statistical power and sample size to achieve
a high statistical power can help us reduce the likelihood of
planning a study that is too small to have a decent statisti-
cal power and can help us counter the habit of interpreting
non-significant p-values in terms of evidence in favour of
the null hypothesis. Moreover, the researchers from our ex-
ample study could have a look at other studies that have

also made problem-problem comparisons [1, 2] and would
then notice that these other studies found rather pronounced
differences.

However, in the light of the argument that we ought to
compare the likelihood of a finding under the null vs. under
the alternative hypothesis, we should not interpret a non-
significant p-value as evidence in favour of the null hypoth-
esis regardless of statistical power or sample size [11]. If
we are really interested in the question how strong the evi-
dence is in favour of a null hypothesis, we need a hypothesis
testing approach that allows for comparing the likelihood
of a finding under the null hypothesis with that under an
alternative hypothesis, and Bayes factors can assist in that
endeavour. Moreover, replication studies [14, 15] and meta-
analysis [16] can help us compare findings from similar
studies on the same phenomenon and, contrary to p-val-
ues, Bayes factors of single studies can easily be combined
in meta-analysis to provide a more accurate picture across
studies with regard to the evidence in favour of or against
the null hypothesis [11, 12].

To conclude

Absence of evidence is not the same as evidence of ab-
sence; p-values and confidence intervals may provide some
evidence against a null hypothesis, but cannot provide evi-
dence in favour of a null hypothesis. With statistical power
and required sample size calculations as well as replica-
tion research and meta-analysis, we have powerful tools
for countering the habit of interpreting non-significant p-
values as evidence in favour of a null hypothesis. Besides,
Bayesian hypothesis tests provide researchers with a tool
to address the question of evidence in favour of the null
hypothesis when that question is of interest.
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