
ORIGINAL RESEARCH

Efficient operating system switching using mode bit
and hibernation mechanism

Abhijeet Kumar • Saurabh Srivastava •

R. H. Goudar

Received: 11 May 2012 / Accepted: 11 October 2012 / Published online: 30 October 2012

� CSI Publications 2012

Abstract With the recent developments, Technology is

making one independent and providing various options and

varieties. As multiple options are provided, there arises a

need of working in different computing environments.

Though Virtualization is available but the efficient way for

the process execution is not achieved as there is a limit to

number of OS. In this paper, we are designing a mechanism

to improve the existing multi-OS system for switching to

different computing environments. To accomplish this

task, we are using a register (R/W) that uses mode bit

(binary values) for mapping (in boot configuration file) of

different OS environments. The user is providing a choice

for OS selection in GUI of the running environment via

some specific software which in turn sets the mode bit

value. Then it hibernates the current system and context

data that is necessary to resume is saved preferably to non-

volatile storage. Further, it restarts (RESET mechanism)

and corresponding to mode bit value; other environment is

loaded from its previous state. Data integrity is maintained

between computing environments such that data from

current mode cannot contaminate data in the next com-

puting mode. Overall, these improvements will reduce time

required for swapping of OS in multi-environment systems

and also retains data by saving the current state. In addi-

tion, this mechanism frees user from waiting for graphical

interaction for OS selection.

Keywords Virtualization � Booting � Hibernation �
ACPI Specifications � Operating System Switching �
Mode Bit Register � Stage-2 Booting

1 Introduction

Every business organization is taking concrete measures to

provide its customers with the quality of services and tries

to gain maximum customer satisfaction. The need of fast

switching among operating systems is indispensible in

context to present IT sector. Basically, we are following the

usual concept of Booting and Hibernation technique. In

fact on the ground of these two concepts, we are intro-

ducing our proposed system.

Structurally speaking, there are several steps that lead to

OS Log-On services which are provided to user collec-

tively called as Booting process. Booting phase [1] can be

described as:

Figure 1 shows several steps of booting process for

running multiple operating systems. Once the mother board

is powered up, it initializes its own firmware-the chipset

and other tidbits. The only directly executable code is a tiny

boot stub in chipset. If all is well, one CPU from multi-core

system is dynamically chosen to be the bootstrap processor

(BSP) and registers in CPU have well defined values

including instruction pointer (EIP) which holds the address

of instruction being executed by BSP. This standard

address is called Reset Vector for modern Intel CPU’s. The

instruction at the reset vector is a jump to memory location

mapped to BIOS entry point. This memory mapping is kept

in chipset (Fig. 1).

Now, CPU starts executing BIOS code which initializes

some of the hardware in the machine. Afterwards, it starts

power on self test (POST) which tests various components

A. Kumar (&) � S. Srivastava � R. H. Goudar

Graphic Era University, Computer Science and Engineering,

Dehradun, India

e-mail: abhijeetchar@gmail.com

S. Srivastava

e-mail: saurabhsrivastavacs@gmail.com

R. H. Goudar

e-mail: rhgoudar@gmail.com

123

CSIT (March 2013) 1(1):67–74

DOI 10.1007/s40012-012-0005-x



and peripherals attached with the system. The actual order

in which BIOS seeks a boot device is user configurable

(boot device priority). Once it selects the boot device

(generally HDD), it now reads first 512 Bytes (Sector 0) of

HDD. This sector is called Master Boot Record (MBR).

The MBR sector of HDD is represented diagrammatically

in Fig. 2.

It contains two vital components: A small OS-specific

program (Primary Bootstrap loader) at the start of MBR

followed by partition table of the disk. Partition table is

standardized: it is a 64 Byte area with four 16 Byte entries

describing the division of disk (for running multiple OS

Systems). However, without caring this, BIOS simply loads

the content of MBR in main memory and jumps to that

location (in RAM) to start executing whatever code is

in MBR. This specific code is a primary boot loader

(Figs. 3, 4, 5).

Since our approach only deals with multi-OS systems

(i.e. different environments) so, the primary boot loader

will always load the additional bootstrap code (process

known as ‘‘Stage-2 Booting’’) in case of multi-booting.

Linux boot loaders like LILO and GRUB has gotten more

flexible and can handle variety of operating systems, file

systems and boot configurations. The functionality of

multi-booting goes like this:

• Primary boot loader loads additional bootstrap code as

mentioned earlier (secondary bootstrap loader).

• The MBR code plus the code loaded in first step then

reads a file containing second stage of boot loader. The

stage-2 code then reads a boot configuration file. It then

presents boot choices to the user.

• At this point, boot loader needs to load the kernel of

operating system as choice selected by the user. For

this, it uses the information from boot sector (first

sector of partition) of partition table and reads the file

containing the kernel and then loads the file into main

memory and jumps to the kernel bootstrap code. This is

the time where kernel starts to unfold and sets services

for the user [1], [9].

Again, Hibernation is a technology that is used in the

system which provides user a choice to save system’s state

Fig. 1 Steps in booting process

(Supporting multi-boot system)

Fig. 2 Master boot record

(MBR)

68 CSIT (March 2013) 1(1):67–74

123



and then restore all running programs after powering back

on without any electrical power loss. Though nowadays

ATX [2] motherboards and ATX power supply requires

some power (standby power i.e. ‘‘5VSB’’) which is always

on and is used to allow components of the computer (BIOS

and networks adapter) to keep running some very simple

software even when system is turned off.

According to the ACPI specifications [3], the standby

modes have five states and hibernation state (S4 sleeping

state) is one of them. The specification quotes this as fol-

lows [3], [4].

System S4 sleeping state is logically lower than the S3

state (Sleep mode) and is assumed to conserve more power.

The behavior of this state is defined as follows:

• The processors are not executing instructions. The

processor-complex context is not maintained.

• DRAM context is not maintained.

• Power Resources are in a state compatible with the

system S4 state. All Power Resources that supply a

System-Level reference of S0, S1, S2, or S3 (other

states of G1 sleeping state) are in the OFF state.

• Devices that are enabled to wake the system and that

can do so from their device state in S4 can initiate a

hardware event that transitions the system state to S0

(Working state). This transition causes the processor to

begin execution at its boot location.

There are two ways that OSPM (Operating System-

Directed Configuration and Power Management) may

handle the next phase of the S4 state transition; saving and

restoring main memory. The first way is to use the oper-

ating system’s drivers to access the disks and file system

structures to save a copy of memory to disk and then

initiate the hardware S4 sequence by setting the SLP_EN

register bit. When the system wakes, the firmware per-

forms a normal boot process and transfers control to the OS

via the firmware_waking_vector loader. The OS then

restores the system’s memory and resumes execution. The

alternate method for entering the S4 state is to utilize the

BIOS via the S4BIOS transition. The BIOS uses firmware

to save a copy of memory to disk and then initiates the

hardware S4 sequence. When the system wakes, the firm-

ware restores memory from disk and wakes OSPM by

transferring control to the FACS waking vector. The

alternate S4BIOS transition provides a way to achieve S4

support on operating systems that do not have support for

the direct method.

2 Overview of the proposed research

2.1 Proposed idea

We are proposing a mechanism for multi-OS systems

which is using Mode Bit (R/W Register) that is attached to

the motherboard and hibernation technology for OS

switching. Functionally, we are designing a system where

the user while working in current OS sets value in the mode

bit register via some GUI specific software system for

switching to different OS. As soon as this value is set in

register, the system goes to hibernation state (all the run-

ning instances of the current OS are saved to hibernation

file in non-volatile storage area or it can be saved in vol-

atile storage area where power to the computer is not

interrupted during computing mode switching) and then as

a final step, instead of sending the machine to power state

Fig. 3 OS Switching from GUI

by using mode-bit register

(Proposed approach)

CSIT (March 2013) 1(1):67–74 69

123



G2 (computer’s ‘‘off’’ state), it sets the ACPI Reset Command

[3]. It is generally referred to as ‘‘Reset Register’’. According

to ACPI 2.0 specification, the reset mechanism must reset the

entire system when implemented. This is logically equivalent

to power cycling the machine, upon gaining control after reset;

OSPM (Operating System-Directed Configuration and Power

Management) will perform actions in like manner to a cold

booting as if power supply has just being given. Now, when

the system boots, Primary boot loader in turns load secondary

boot loader and then it loads the boot configuration file

(menu.lst in case of GRUB) where mapping of register value

(mode-bit) with the partition table is done. Instead of showing

GRUB graphical interface (in stage-2 booting by secondary

boot loader), it reads the mode bit value which was set by the

user in register before shutting down. Further, according to

mapping provided in configuration file, it checks for hiber-

nation state of the switched OS that whether it was previously

hibernated or it is started for the first time by reading the sleep

enable register and accordingly the further execution is done.

In case of former, it resumes the previous state of OS via

waking vector (mentioned in Introduction section). For the

latter case, it loads the boot sector of partition table and reads

the file containing the kernel. Afterwards, kernel reads ACPI

configuration, starts kernel processes [1], loads drivers and set

services for user. The sketch of our proposed approach is

shown in Fig. 3.

Apart from this, if the user shuts down or hibernates or

reboots then it follows the existing usual behaviour. Here,

the synchronization or say balance with our mechanism is

maintained during stage-2 booting, by checking mode-bit

register; the mechanism is discussed in later section (Pro-

posed mechanism).

Fig. 4 Flow-diagram of proposed mechanism. YES Mode bit value of

register is mapped with specific OS from the list in the boot

configuration file which in turns loads corresponding OS partition. NO
The usual behaviour for booting in existing systems is followed

Fig. 5 Snapshot of boot configuration file

70 CSIT (March 2013) 1(1):67–74

123



2.2 Comparisons of proposed approach with existing

system

Here we are discussing the benefits of our mechanism with

the existing multi-OS system. As of now, we have dis-

cussed detailed description of existing system (Introduction

section).

It can be inferred that:

• No state retention of previous OS is there as the current

OS has to be completely shut down before selecting

other environment. In our proposed mechanism, the

current state of OS will be saved in a system file (e.g.

swsusp in LINUX, hiberfil.sys in WINDOWS) using

hibernation and then switch to different OS. Therefore,

we are retaining system state.

• Time required for completely shutting down and

restarting the other OS is reduced as in our proposed

method, the current OS is hibernated and the other OS

(to be switched) is resumed from its hibernation state

except the case when it is started for the first time.

Though time required for hibernation takes more time

than shutting down but resuming time is comparatively

very less than start of system. Overall, Time is reduced

(see Observation section). Resuming time of OS from

hibernation can even reduce by 10 % by a run-time

page selection methodology through some approxima-

tion algorithms [5] [4].

• In existing systems, it’s responsibility of the user to

ensure the interaction with graphical interface at the

time of restart in order to make appropriate choice for

OS selection. By our method, the user is free from the

responsibility of interaction with the graphical interface

as the user is already making choice in current

operating system. Therefore, user does not have to

wait for the boot manager graphical interaction.

2.3 Comparisons of proposed mechanism

with virtualization (Type 2)

2.3.1 Virtualization

It’s a technology that creates a platform that emulates a

hardware platform and allows multiple instances of an OS

to use that platform, as though they have full and exclusive

access to the underlying hardware. The guest OS uses

Hypervisor technology [6] (also called a virtual machine

manager (VMM)) for execution of its processes via host

OS. A hypervisor is a program that allows multiple OS to

share a single hardware host. Each OS appears to have the

host’s processor, memory, and other resources all to itself.

However, the hypervisor is actually controlling the host

processor and resources and making sure that the guest

operating systems (called virtual machines) cannot disrupt

each other. This can be seen in Fig. 6 [6] below.

Here, we are comparing hosted virtualization (type-2)

with our proposed mechanism.

It can be observed that

• As it is layered approach (Fig. 6), it reads in code,

looking for basic blocks, then inspect basic block to

find sensitive instructions (system call). If found,

replace with VM call (process called binary transla-

tion). This binary translation lowers the efficiency of

process execution, but since our system is based on

existing multi-OS systems where the OS is running on

hardware directly. So, process execution is fast, making

the system efficient.

Though basic blocks are cached and then executed in

virtualization and eventually all basic blocks will be

modified and cached, and will run at near native speed but

then we require cache for that (cost factor).

• The process running in the guest OS cannot make use

of all hardware available but only uses resources

provided to guest OS as these virtual machines share

hardware resources. For e.g. at the time of creating

virtual machine, user has to allocate main memory

(RAM) for guest OS say 512 MB then this virtualized

OS can only use 512 MB of RAM. In our proposed

technique, as at a particular instant of time, only one

OS is running so the process being executed will use all

the resource of system as in case of multi-OS systems.

• In order to make program execution efficient in

virtualization, System requires a good amount of main

memory (RAM) and more cache than usual. In our

system, it requires storage space on secondary memory

(HDD) for saving the state of OS (for Hibernation). The

cost of our mechanism is balanced in comparison to

virtualization.

• As a whole, Virtualization (Type-1 server virtualiza-

tion) has big advantage in server consolidation (server

farm), reducing space and power consumption which

cannot be overlooked. At the same time, flexibility

(running application in different environment simultaneously)

Fig. 6 Type 2 virtualization

CSIT (March 2013) 1(1):67–74 71

123



is achieved by Type-2 virtualization, but as we are

reducing switching time among different OS to a

certain extent (Table 1. in Observation section), keep-

ing existing system in mind this is certainly an edge

over hosted virtualization (Type-2).

• In our proposed system, the computer context data is

stored in a storage area and these data are prevented

from being accessed by any computing mode other than

one from which context data was saved. This limitation

of accessing the contextual data from other computing

environments minimizes the chance of data contami-

nation and computer security and integrity is main-

tained. This is not the case with hosted virtualization as

security is an issue.

• There are several use cases where virtualization is not

appropriate to use. There are situations in research and

development field where researchers need to run a

program or software directly on hardware resources in

order to analyze the efficiency of the software. Even for

educational purposes where students need to work on

various environments, system memory (RAM) and

other hardware resources like processor etc. are a

bottleneck as it is not affordable in educational field.

3 Observations

Here, the proposed system executing the current environ-

ment is hibernated and then it resumes the other environ-

ment. In sum, there are two points to ponder upon:

• The time required for the hibernation is more than

shutting down the OS as hibernation takes some

overhead for writing the content of RAM in a file on

HDD.

• The time required for the resuming is very less than

starting the system as in latter case kernel along with its

services and several drivers has to be loaded where as

former simply reads the content of file to RAM.

Taking above points to consideration, we observed this

time in several systems, we found that:

Time taken for hibernation was more than shut down but

on the contrary, resuming takes very less time compared to

start of the system. The time differences in latter is con-

siderably higher than former. On the whole we are getting

time difference which can be seen in the table given below.

Here by calculating the reduction, we concluded that the

reduction in time is nearly 20–30 % (from Restart to

Hibernate and resume).

4 The proposed mechanism

The flow diagram of our proposed system is shown in the

following diagram given in Fig. 4.

The basic concept that constitutes our system is Reset

mechanism (ACPI routine) with hibernation mode and

inclusion of R/W register for OS switching. The default

value is there in register in case when user does not go for

OS switching otherwise user sets the mode-bit value in

register via some specific software system. The specific

software will detect the installed operating systems in the

system and provides an interface through which user can

select option for switching to different OS. The menu.lst

file (in case of GRUB) or BCD file (boot configuration data

in case of windows, earlier known as boot.ini) is respon-

sible for keeping information about all installed computing

environments and are used for OS selection at the time of

booting. This file is also used to point to the locations of

each of the operating systems. These configuration files are

located in primary disks and can be used by our software

for providing various choices to user for switching. After

this, the system state is saved by hibernation mechanism as

discussed in Introduction section. Every OS supports

hibernation if hardware is ACPI complaint, which nowa-

days every system is. For example: Windows has hiber-

fil.sys, Linux has swsusp and uswsusp, Mac Os uses Safe

Sleep Feature. After saving state, instead of going to power

off state (power state G2) as in case of hibernation, reset

mechanism starts. This is an ACPI command which sets

Reset Register and following steps are happened in

sequence:

All logic is reset. This means sending the respective

reset commands to various bits of hardware including the

CPU, memory controller, peripheral controllers, etc. The

computer is then bootstrapped. This is the ‘‘perform actions

in like manner to a cold boot’’ part. The motherboard

performs the same steps as it would if the power supply had

just become ready after the power button being pressed.

Our mode-bit register attached to the motherboard is not

being reset in the first step of above sequence. It retains its

value as power source for this register is small button sized

cell. Further, following second step booting starts. At

stage-2 booting, the boot manager will check the mode-bit

Table 1 Observed time in different systems

S. no. Various system Time taken to shutting

down and restart

Time taken for

hibernation and

resume (s)

1. Sony-VAIO 1 min and 15 s 55

2. Lenovo 1 min and 10 s 54

3. Acer 1 min and 12 s 44

Note these observations vary from one system to another. Here,

observations are performed practically for windows; these are not

precise figure but approx. figures

72 CSIT (March 2013) 1(1):67–74

123



value of register that whether it’s set or not. If it is not set

(default value) then it loads OS in existing fashion and

takes user’s input for OS selection from graphical interface

interaction of boot manager (GRUB). At the same time,

user’s input is mapped with specific OS in boot configu-

ration file which in turns mapped with boot sector of par-

tition table. Then following the further booting sequence,

selected OS is loaded and user can work with it.

If the value is set in register, then mapping of bit value

with specific OS is done in boot configuration file instead

of showing graphical interface for user’s input. Here, it

checks the specific OS was previously hibernated or not by

checking (SLP_EN register) sleep enable register (as it

would be set at time of hibernation). If it was earlier

hibernated then it resumes saved state via waking_vec-

tor_loader [3] otherwise it loads boot sector of partition

table to load the specified OS and finally user can work

with it.

Now we are taking the GRUB as an example (case

study) to illustrate the mapping of user’s input for selecting

OS with partition table. The purpose of showing this

mapping is to tell how precisely the mapping is done in

existing system and what our proposed idea is. Actually

GRUB configuration is based on four files that are dis-

cussed below in brief [7]:

/boot/grub/menu.lst: This file contains all information

about operating systems that can be booted with GRUB.

/boot/grub/device.map: This file is used for translating

device names from GRUB and BIOS to Linux devices.

/etc./grub.conf: This file contains commands for

installing the boot loader correctly.

/etc./sysconfig/bootloader: This file is used for config-

uring the boot loader every time the new kernel is installed

and updating it to bootloader configuration file (menu.lst).

NOTE GRUB defines any storage device as hdX, Device

and partition numbering begin at zero. For e.g. first boot

priority (hard disk) recognized will be hd0, second device

will be hd1. This also applies to partition of particular device

for e.g. (hd0,0): first partition of primary hard disk, (hd0,3):

fourth partition of primary hard disk (usually an extended

partition), (hd0,4): first logical partition of primary hard disk,

(hd1,0): first partition of secondary hard disk [8].

A snapshot of/boot/grub/menu.lst is given in Fig. 5 [7];

actually this is loaded when system is booted, so that

GRUB does not need to be reinstalled after every change to

the file. In the figure, we can see the menu entries for

several OS that are installed in the system (shown by cir-

cle). Similarly, we can also see Device Name Conversions

in device.map file (shown in the figure by square), here

logical root of specific OS is translated to actual device

name. In case of windows, it maps with device name where

chainloader is present which in turns loads another boot-

loader (rather than kernel image).

Moreover, we can see the general configuration of GRUB

like timeout: 5 and default. This shows that after 5 s without

user input, GRUB automatically boots the default entry.

Further, with the specific menu entry shown below, it shows

that kernel is located in/dev/sda7 and in case of resume (from

Hibernation), it loads/dev/sda9 from device file.

So, in our proposed mechanism similar type of transla-

tion is done, instead of taking user’s input it will take the

bit value from register to map with specified ‘title’ of OS.

The above description of translation will be followed when

switching is not done and system starts normally.

5 Conclusion

With our proposed mechanism, we are improving the

trends of existing multi-OS system by achieving the

retention of previous system state using hibernation tech-

nique and reducing time required while switching among

different operating system environments. Moreover, by this

approach, it eliminates the waiting time for the user to

interact with the GRUB interface. Though, here we are not

achieving simultaneous execution of programs running in

multiple operating environments as in case of virtualization

but efficient execution of processes are carried along with

the full utilization of hardware resources. The hardware

device containing mode bit (binary value) which contains

simple register and a small button sized cell which is cost

effective and durable.

Acknowledgments We acknowledge the efforts of our Professor

Rayan Goudar of Graphic Era University, Dehradun, India whose

encouragement, guidance and support from the initial to the final

level. The Computer science department of University is gratefully

acknowledged for its laboratory facilities. Our well-wishers are

appreciated for their various contributions to the success of this work.

References

1. 6 Stages of Linux Boot Process, Retrieved April 05, 2012 from

http://www.thegeekstuff.com/2011/02/linux-boot-process/.

2. Intel Corporation (2004) ‘‘ATX Specification Version 2.2’’.

3. Hewlett-Packard, Intel, Microsoft, Phoenix and Toshiba (2011)

‘‘Advance configuration and power interface specification, Revi-

sion 5.0,’’ Retrieved March 28, 2012 from http://www.acpi.info/.

4. Jiong Z (2006) Linux kernel complete analysis [M]. China

Machine Press, Beijing.

5. A run-time page selection methodology for efficient quality based

resuming. 17th International IEEE conference on embedded and

real time computing systems and applications (2011) IEEE.

CSIT (March 2013) 1(1):67–74 73

123

http://www.thegeekstuff.com/2011/02/linux-boot-process/
http://www.acpi.info/


6. King ST, Dunlap GW, Chen PM Operating system support for

virtual machines, Department of Electrical Engineering and

Computer Science, University of Michigan.

7. GRUB Configuration file Retrieved March 02, 2012 from

http://archlinux.org/GRUB.

8. Getting to know LILO and GRUB Retrieved March 02, 2012 from

www.ibm.com/developerworks/linux/library/.

9. Bai YW, Hsu HT (2007) Design and implementation of an

instantaneous turning-on mechanism for PCs, Revised manuscript

received 18 Sep 2007 IEEE.

74 CSIT (March 2013) 1(1):67–74

123

http://archlinux.org/GRUB
http://www.ibm.com/developerworks/linux/library/

	Efficient operating system switching using mode bit and hibernation mechanism
	Abstract
	Introduction
	Overview of the proposed research
	Proposed idea
	Comparisons of proposed approach with existing system
	Comparisons of proposed mechanism with virtualization (Type 2)
	Virtualization


	Observations
	The proposed mechanism
	Conclusion
	Acknowledgments
	References


