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Introduction

Klebsiella pneumoniae is a common pathogen in both 
nosocomial and community settings, causing various infec-
tions in humans. In recent years, treatment of severe infec-
tions with K. pneumoniae has been complicated because of 
the emergence of antimicrobial-resistant strains [1]. Car-
bapenem remains a possible therapeutic option; however, 
carbapenem-resistant K. pneumoniae (CRKP) has emerged 
as a global threat to public health [2, 3]. The drug resist-
ance is horizontally transmitted among Enterobacteriaceae 
via plasmids, particularly posing a greater risk to hospital-
ized patients [4]. Infections with CRKP cause significantly 
higher mortality and prevention of the nosocomial infection 
is universally essential. For appropriate infection control 
strategies at healthcare facilities, it is vital to clarify their 
genetic characteristics and transmission routes. Conven-
tional molecular approaches including gene amplifications 
and pulsed-field gel electrophoresis (PFGE) are usually 
of great help, but may occasionally not be enough to elu-
cidate their virulence, resistance, and prevalence. In such 
cases, whole-genome sequencing possibly offers a further 
in-depth investigation of the bacterial characteristics and 
epidemiological relevance [5]. We herein report the utility 
of single-nucleotide variation (SNV) analysis in tracing the 
nosocomial transmission of CRKP.

Case presentation

In June 2015, an 81-year-old man was admitted to Osaka 
University Hospital for progressive heart failure symp-
toms (Case 1). Two weeks after hospitalization, the patient 
underwent a cardiac operation for mitral valve stenosis and 
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was subsequently managed at an intensive care unit (ICU) 
because of ventilator-associated pneumonia. Three weeks 
after the surgery, multidrug-resistant CRKP was isolated 
from the patient’s throat (TUM15697) (Day 1). His res-
piratory condition deteriorated, and the CRKP was subse-
quently detected in aspirated sputum and blood (Day 14). 
Since such a highly resistant CRKP had never been isolated 
from the ICU, we performed a comprehensive screening 
of all admitted patients, using ChromID CARBA selective 
media (bioMérieux, Marcy l’Etoile, France). All patients 
tested were confirmed to be negative for CRKP on Day 16. 
Although the patient received combination therapy with 
amikacin and colistin, he developed persistent bacteremia 
with CRKP (TUM15700) and eventually died. The patient 
was transferred for an autopsy on Day 20.

Thirty-three days later, another patient in his seventies, 
who had undergone mitral valve replacement surgery for 
treatment of infective endocarditis caused by Enterococcus 
faecium, died in the ICU (Case 2). The patient underwent 
an autopsy at the same pathological dissection bed on Day 
53. Although no pathological evidence of infective car-
diac vegetation was apparent, CRKP with an antimicrobial 
susceptibility pattern similar to the isolate in Case 1 was 
detected from an autopsied cardiac valve (TUM15701). 
Nosocomial transmission was initially suspected, but 
CRKP had not been isolated from the patient in Case 2 
during the clinical course, including the comprehensive 
screening. To clarify the resistance mechanism, the isolates 
were transferred to Toho University (Tokyo, Japan) for fur-
ther molecular analysis.

Microbiological investigation

The identity and antimicrobial susceptibility of the bacte-
ria were confirmed with the Phoenix 100 ID/AST system 
(Becton-Dickinson, Sparks, MD, USA). PFGE analysis 
of the isolated CRKP was conducted using a CHEF Map-
per XA chiller system (Bio-Rad, Hercules, CA, USA). 
Chromosomal DNA was prepared in agarose blocks and 
digested with XbaI. The PFGE protocol was set as fol-
lows: 20 h at 14 °C, at 6 V/cm, a pulse angle of 120o, and 
pulse times ranging from 5.3 to 49.9  s. Phylogenetic tree 
of PFGE was inferred by BioNumerics software (Applied 
Maths, St-Martens-Latem, Belgium). To determine the 
whole-genome sequence, genomic and plasmid DNA 
were extracted from all isolated bacterial colonies, using 
a phenol–chloroform-based QIAquick PCR Purification 
Kit (Qiagen, Chatsworth, CA, USA). DNA libraries were 
prepared with a Nextera XT DNA Library Preparation 
Kit and MiSeq Reagent Kit v3 (Illumina Inc., San Diego, 
CA, USA), then sequenced with a MiSeq sequencer (Illu-
mina) in 2 × 300-bp paired-end runs. The CLC Genomics 

Workbench software (CLC bio) was applied for assembly 
of the short reads. Based on the whole-genome sequencing 
data, multilocus sequence typing (MLST), capsular geno-
typing, and determination of antimicrobial resistance genes 
were performed using MLST 1.8, a wzc genotyping sys-
tem, and the ResFinder web services (http://www.genomi-
cepidemiology.org/: Center for Genomic Epidemiology, 
Lyngby, Denmark), respectively.

For a detailed investigation of the clonal relationship 
among all three isolates, SNV analysis was additionally 
performed using the whole-genome sequence (WGS) data. 
The core genome-based phylogenetic analysis was per-
formed with RAxML (bootstrapping with 1000 repetitions), 
using short reads of the three CRKP isolates and nine avail-
able genomic sequences of K. pneumoniae. To extract 
SNVs, the short reads were aligned to K. pneumoniae strain 
MGH78578 (GenBank Accession No. NC_009648.1) as a 
reference sequence, using the bwa software (v.0.7.10) with 
the bwasw command [6]. All mutation sites were identified 
using the SAMtools (v.1.3) [7] and VarScan (v.2.3.7) [8] 
software with the default parameters.

All isolates were confirmed to be K. pneumoniae exhib-
iting a lack of susceptibility to beta-lactam antibiotics, 
including carbapenems, gentamicin, minocycline, levo-
floxacin, trimethoprim/sulfamethoxazole, and fosfomycin 
(Table 1). PFGE profiling of the three CRKP isolates pre-
sented a similar pattern, and the phylogenetic tree indicated 
all three isolates were originated from same clone (Fig. 1a). 
All three isolates were identified as clone ST225, which 
was not grouped with any of the clonal complexes exam-
ined. The capsular genotype of the isolates was identified 
as K3. Carbapenemase-encoding genes were not detected, 
but all the isolates possessed blaSHV-27 and blaCTX-M-14. 
TUM15700 and TUM15701 harbored blaCTX-M-8 as well. 
The isolates also possessed aac(3)-IId, sul1, dfrA1, tet(A 
and D), oqx(A and B), and qnrS1, which confer resist-
ance to aminoglycosides, sulfonamide, trimethoprim, tet-
racycline, and fluoroquinolones, respectively. A nonsense 
mutation was detected in ompK36, C510A nucleotide 
substitution resulting in Q170X amino acid substitution 
in TUM15697, and C360A resulting Y120X in the other 
two. These nonsense mutations in ompK36 were expected 
to contribute to reduced susceptibility to carbapenems with 
the production of ESBLs. All the isolates were found to 
carry the IncI1 and IncFIB(K) plasmids.

A whole-genome-based phylogenetic tree demon-
strated that the three CRKP isolates formed a clonal clus-
ter (Fig. 2). Of the 5,315,120 bp in the reference sequence, 
4,967,706  bp (93.46%) were subjected to SNV analysis. 
Compared to that in the index isolate of TUM15697, four 
SNVs in TUM15701 and five SNVs in TUM15700 were 
identified. All the four SNVs (SNV positions 1–4) identi-
fied in TUM15701 were identical to those identified in 
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TUM15700, in both the positions and nucleotide types 
(Fig.  1b). The 5th SNV position of TUM15701 remained 
the same as that of TUM15697.

Discussion

In the present case, we performed a WGS analysis to iden-
tify genes responsible for antimicrobial resistance. We 
additionally compared SNVs among the isolates to eluci-
date the possibility of nosocomial transmission.

The utility of SNV analysis in clarifying the epidemiol-
ogy of antimicrobial-resistant bacteria has been well inves-
tigated for Staphylococcus aureus. In a methicillin-resistant 
S. aureus outbreak in a neonatal intensive care unit, the 
WGS method provided a better explanation of transmission 
pathways by separating a distinct cluster of outbreak iso-
lates from others [9]. Additionally, the molecular approach 
demonstrated that patient-to-patient nosocomial trans-
mission of S. aureus may be a rarer event than has been 
expected [10]. Mutation rates of S. aureus are estimated to 
range from 2.0 to 3.4 × 10−6 mutations per site per year, 
equating to 1 SNV difference every 5–10 weeks [10]. An 
SNV difference of >40 is considered roughly equivalent to 
5-year evolution for S. aureus, on the basis of a population 

genetics approach [11, 12]. Similarly, the usefulness of the 
WGS technique in tracking nosocomial transmission of 
CRKP was recently reported [5]. The mutation rate of the 
K. pneumoniae pandemic clone ST258 has been reported 
to be approximately 1.0 ×  10−6 substitutions per site per 
year [13]. However, the general mutation rates of clinical 
K. pneumoniae strains have yet to be clearly determined, 
and no outbreak investigation has applied the molecular 
approach to demonstrate the epidemiology of the pathogen.

There was only one SNV between the isolate from Case 
1 (TUM15700) and that from Case 2 (TUM15701). Moreo-
ver, comparing the 5th SNV position, TUM15701 was pre-
sumed to be an ancestor of TUM15700; that is, TUM15697 
chronologically changed to TUM15700 through the clinical 
course in Case 1, and an isolate with 4 SNVs transmitted to 
the patient from Case 2 along the way. A previous in vitro 
study corroborated that the mutation rate of the Escherichia 
coli genome is approximately one SNV per 17 days when 
subcultured each day under experimental conditions [14]. 
The time interval between the death of the two cases was 
33 days. Provided that TUM15701 had transmitted to Case 
2 during admission in the ICU and continued to prolifer-
ate in the patient’s body, the isolate should have had several 
SNVs at different positions. The lower number of SNVs 
in TUM15701 implied that the organism remained stable 

Table 1   Minimum inhibitory 
concentration of the three 
clinical CRKP isolates

Antibiotic agents Minimum inhibitory concentration (μg/mL)

Case 1 (clinical isolates) Case 2 (autopsy isolate)

TUM15697 (throat) TUM15700 (blood) TUM15701 (cardiac valve)

Ampicillin >16 >16 >16

Ampicillin/Sulbactum >16/8 >16/8 >16/8

Piperacillin >64 >64 >64

Piperacillin/Tazobactum >64/4 >64/4 >64/4

Cefazolin >8 >8 >8

Cefixime >16 >16 >16

Cefotaxime >4 >4 >4

Ceftazidime 8 >8 >8

Cefepime >16 >16 >16

Cefmetazole >32 >32 >32

Moxalactam 32 16 16

Imipenem ≤1 >4 >4

Meropenem 2 >4 >4

Aztreonam >4 >4 >4

Gentamicin >8 >8 >8

Amikacin ≤8 ≤8 ≤8

Minocycline >8 >8 >8

Levofloxacin >4 >4 >4

Trimethoprim/sulfamethoxazole >4/76 >4/76 >4/76

Fosfomycin >16 >16 >16

Colistin <2 <2 <2
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and did not generate additional mutations after more than 
5 weeks. Human-to-human infection and indirect transmis-
sion via the environment may differ concerning bacterial 
proliferation rate. Since bacteria generally cannot grow 
well in the environment, we assume that this case could 

represent a pseudo-outbreak involving the pathological 
dissection room. The origin of the index isolate is unclear; 
however, the pathogen could have been carried in latently 
by the patient from Case 1, because we had never isolated 
such a multidrug-resistant K. pneumoniae in our facility.

In conclusion, SNV analysis can be a useful tool in trac-
ing the nosocomial transmission of antimicrobial-resistant 
organisms, although it is not available routinely. The PFGE 
profiles alone indicated this case to be a nosocomial infec-
tion of CRKP; however, the WGS data finally corroborated 
it as a pseudo-outbreak involving the pathological dissec-
tion room.
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