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Abstract

Introduction This review summarizes data on the fluo-

roquinolone resistance epidemiology published in the pre-

vious 5 years.

Materials and methods The data reviewed are stratified

according to the different prescription patterns by either

primary- or tertiary-care givers and by indication. Global

surveillance studies demonstrate that fluoroquinolone-

resistance rates increased in the past several years in almost

all bacterial species except Staphylococcus pneumoniae

and Haemophilus influenzae causing community-acquired

respiratory tract infections (CARTIs), as well as Entero-

bacteriaceae causing community-acquired urinary tract

infections. Geographically and quantitatively varying

fluoroquinolone resistance rates were recorded among

Gram-positive and Gram-negative pathogens causing

healthcare-associated respiratory tract infections. One- to

two-thirds of Enterobacteriaceae producing extended-

spectrum b-lactamases (ESBLs) were fluoroquinolone

resistant too, thus, limiting the fluoroquinolone use in the

treatment of community- as well as healthcare-acquired

urinary tract and intra-abdominal infections. The remaining

ESBL-producing or plasmid-mediated quinolone resistance

mechanisms harboring Enterobacteriaceae were low-level

quinolone resistant. Furthermore, 10–30 % of H. influenzae

and S. pneumoniae causing CARTIs harbored first-step

quinolone resistance determining region (QRDR) muta-

tions. These mutants pass susceptibility testing unnoticed

and are primed to acquire high-level fluoroquinolone

resistance rapidly, thus, putting the patient at risk. The

continued increase in fluoroquinolone resistance affects

patient management and necessitates changes in some

current guidelines for the treatment of intra-abdominal

infections or even precludes the use of fluoroquinolones in

certain indications like gonorrhea and pelvic inflammatory

diseases in those geographic areas in which fluoroquino-

lone resistance rates and/or ESBL production is high.

Fluoroquinolone resistance has been selected among the

commensal flora colonizing the gut, nose, oropharynx, and

skin, so that horizontal gene transfer between the

commensal flora and the offending pathogen as well as

inter- and intraspecies recombinations contribute to the

emergence and spread of fluoroquinolone resistance among

pathogenic streptococci. Although interspecies recombi-

nations are not yet the major cause for the emergence of

fluoroquinolone resistance, its existence indicates that a

large reservoir of fluoroquinolone resistance exists. Thus, a

scenario resembling that of a worldwide spread of b-lactam

resistance in pneumococci is conceivable. However, many

resistance surveillance studies suffer from inaccuracies like

the sampling of a selected patient population, restricted

geographical sampling, and undefined requirements of the

user, so that the results are biased. The number of national

centers is most often limited with one to two participating

laboratories, so that such studies are point prevalence but

not surveillance studies. Selected samples are analyzed

predominantly as either hospitalized patients or patients at

risk or those in whom therapy failed are sampled; however,

fluoroquinolones are most frequently prescribed by the

general practitioner. Selected sampling results in a signif-

icant over-estimation of fluoroquinolone resistance in out-

patients. Furthermore, the requirements of the users are

often not met; the prescribing physician, the microbiolo-

gist, the infection control specialist, public health and
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regulatory authorities, and the pharmaceutical industry

have diverse interests, which, however, are not addressed

by different designs of a surveillance study. Tools should

be developed to provide customer-specific datasets.

Conclusion Consequently, most surveillance studies suf-

fer from well recognized but uncorrected biases or inac-

curacies. Nevertheless, they provide important information

that allows the identification of trends in pathogen inci-

dence and antimicrobial resistance.

Keywords Fluoroquinolones � Resistance epidemiology �
Global pool of primed bacteria � Inter- and intra-species

recombinations � Biased surveillance studies

Introduction

Fluoroquinolones have become established for the treatment

of infections in outpatients and hospitalized patients. Despite

millions of prescriptions in the first two decades of their use,

the emergence of quinolone resistance during treatment was

uncommon except in Staphylococcus aureus, particularly in

methicillin-resistant S. aureus (MRSA) and Pseudomonas

aeruginosa. Resistance to fluoroquinolones emerged rapidly

in these two species, predominantly due to clonal spread

among nursing home residents and immunocompromised

patients [1]. However, since the mid-1990s, quinolone

resistance started to increase in almost all Gram-positive and

Gram-negative species. The continued increase in resistance

rates is concerning [2–4]. Since the approval of norfloxacin in

the US in 1986, ciprofloxacin in 1987, levofloxacin in 1996,

and moxifloxacin in 1999, there have been numerous updates

to the warning sections of the package inserts because of

severe adverse reactions. Restrictions have been placed upon

the use of fluoroquinolones too; for example, the use of oral

formulations of norfloxacin has been restricted by the Euro-

pean Agency for the Evaluation of Medicinal Products

(EMEA) on July 4, 2008, as there was ‘‘not enough clinical

data to demonstrate efficacy of the oral treatment with nor-

floxacin-containing medicines in complicated pyelonephri-

tis’’ [5]. But changing susceptibility patterns of the causative

pathogens have not yet resulted in modifications of the

approvals once granted. Therefore, the first aim of this review

is to demonstrate that a continued increase in fluoroquinolone

resistance rates affects patient management and necessitates a

change in some current treatment guidelines [6, 7], or even

precludes the use of fluoroquinolones in certain indications,

as will be discussed later in this paper [8, 9].

Surveillance studies provide important information that

allows for the identification of trends in pathogen incidence

and antimicrobial resistance at local, regional, national, or

global levels. The traditional approach has been, and still

is, to monitor pathogen antimicrobial susceptibility.

However, many surveillance studies suffer from well rec-

ognized, but uncorrected, biases or inaccuracies like

restricted focus, selected patient population to be sampled,

selected geographical (global, national, or local) sampling,

undefined requirements of the users like interest of the

microbiologists and infection control specialists in data on

prevalence or incidence of resistance, etc. [10]. Thus,

surveillance studies are essential in order to detect and

monitor the development and spread of resistance; how-

ever, the diversity of techniques and study designs used

yields diverse results.

In general, several longitudinal surveillance studies

[10, 11] seem to indicate that fluoroquinolone resistance is

continuously increasing in Gram-positive as well as Gram-

negative bacterial species. However, there were some dis-

crepancies in the datasets; ciprofloxacin resistance was

increasing in Belgium based on the SENTRY data, whereas

it was decreasing in Belgium based on the MYSTIC dataset

[12]. Most surveillance studies are hospital based, so that

the agents studied like carbapenems, aminoglycosides, and

piperacillin/tazobactam are primarily administered as sec-

ond-line therapy, whereas fluoroquinolones are not and are

most frequently prescribed by general practitioners.

Therefore, the second aim of this review is to stratify data

according to the different prescription patterns of fluoro-

quinolones by either general practitioners or tertiary-care

physicians, patient population, and bacterial species. As

surveillance data only are reviewed, the emergence or

selection of fluoroquinolone resistance in species like

Salmonella spp., Clostridium difficile, etc., which are not

routinely surveyed by the major surveillance initiatives,

will not be discussed.

Fluoroquinolone resistance epidemiology

Urinary tract infections

Fluoroquinolone-resistance in uropathogens

As reviewed in detail recently [13], fluoroquinolone-resis-

tant Enterobacteriaceae isolated from female outpatients

and male inpatients with urinary tract infections (UTIs) were

almost non-existent (\1 %) until the mid-1990s; resistance

to ciprofloxacin increased slowly from 1.2 % in 1998 to

2.5 % in 2001 and [20 % in 2009, with a trend towards

higher resistance rates among elderly patients and nursing

home residents. Actually, fluoroquinolone resistance in

uropathogens is highly variable and different, first in patients

with community-acquired UTIs (CA-UTIs) as compared

to patients with healthcare-acquired UTIs (HA-UTIs),

and second in pathogens producing or not producing exten-

ded-spectrum b-lactamases (ESBLs). Fluoroquinolone
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resistance ranges on the one hand from B10 % in ESBL-

negative strains to[70 % in ESBL-positive strains isolated

from patients with uncomplicated CA-UTI and even up to

[90 % for strains from patients with complicated CA-UTIs.

Likewise, ESBL production ranged from 2.6 to 100 % [13].

Fluoroquinolone resistance and ESBL production were

closely linked [14]. Both fluoroquinolone resistance and

ESBL production were highest in the Asia–Pacific region

and moderate to low in Europe and North America. Although

the clonality of the isolates has not always been examined,

clonal spread has been reported frequently [15–24]. The

percentages of isolates with simultaneous resistance to cip-

rofloxacin, trimethoprim–sulfamethoxazole, and gentamicin

were found to be 4.6 % in the ESBL-negative group and

39.2 % in the ESBL-positive group (p \ 0.001) [25–27].

Not surprisingly, infections with these organisms have been

associated with higher rates of morbidity and mortality [28].

CA-UTIs in the elderly are frequently caused by ESBL

producers (56.2 %) and almost 80 % of all isolates were

fluoroquinolone resistant [29, 30].

In general, fluoroquinolone resistance was lower in

CA-UTI isolates than in HA-UTI isolates (reviewed in

[13]). Two comprehensive monitoring programs in

CA-UTI patients confirmed that fluoroquinolone resistance

is lower in patients with community- compared to health-

care-acquired UTIs [31–34]; ciprofloxacin resistance in

CA-UTI pathogens collected in Europe and Brazil from

1999 to 2006 ranged from 0 to[10 % and was, on average,

as low as 1.1 %; the mean fluoroquinolone resistance

increased to 3.9 % during the period 2007–2008 [34], still

ranging in Europe from 1.7 % up to 12 % [35–37]. In the

US, fluoroquinolone resistance in CA-UTI isolates

increased from 3 % in 2000 to 17.1 % in 2010 [38]. ESBL

production was not specified in these studies. On the other

hand, the fluoroquinolone resistance of uropathogens iso-

lated from patients admitted to tertiary-care hospitals ran-

ged from 6.3 to 62 % in Gram-negative strains and 20 and

100 % of the methicillin-susceptible S. aureus (MSSA) and

MRSA, respectively, as well as 59 % of the enterococci

isolated from patients with complicated HA-UTI [13,

39–42]. Even higher rates of fluoroquinolone resistance

were found in patients with HA-UTIs admitted to the

emergency department [43] and in nursing home residents

[26, 29, 30]. A retrospective analysis of 42,033 Escherichia

coli urine isolates from an 11-year period (1999–2009) in a

single Dublin teaching hospital revealed that ciprofloxacin

resistance was highest in patients with nosocomial UTIs,

approached 20 % in HA-UTI patients from the emergency

department, and was lowest in isolates from patients with

CA-UTIs [42]. A retrospective chart review (08/2008–03/

2009) in a tertiary-care hospital in Chicago revealed that

levofloxacin resistance amounted to 38 % in HA-UTIs

versus 10 % in CA-UTIs [44].

Association between fluoroquinolone-resistance

and the production of extended spectrum b-lactamases

Although the production of ESBLs was not analyzed in the

surveillance studies in the mid-1990s, it is conceivable that

the increase in both fluoroquinolone resistance and ESBL

production are closely associated [36]. ESBLs gained

prominence and started to spread among uropathogens in

North America at the time when these surveillance studies

have been performed.

Since the early 1990s, E. coli isolates that produce CTX-

M-type ESBLs have emerged as a serious cause of UTIs in

the community [36, 45]. Risk factors for the acquisition of

ESBL-producing E. coli in non-hospitalized patients with

uncomplicated urinary tract infections (uUTIs) were dia-

betes mellitus [odds ratio (OR) = 5.5], previous fluoro-

quinolone use (OR = 7.6), previous hospital admission

(OR = 18.2), and older age in male patients (OR = 1.03)

[29, 46]. ESBL production was detected in 8.1 % of all

isolates, with CTX-M-15 being the most common; about

30 % of strains belonged to the two predominant clonal

groups O25:H4-ST131 and O15:K52:H1 [46–48]. Point

source dissemination of ESBL producers is frequent in

patients with uUTIs. The intercontinental pandemic spread

of the ciprofloxacin-resistant E. coli O25:H4:ST131 clonal

group producing CTX-M-15 has been described worldwide

in hospital and community settings and contributes to

30–60 % to all fluoroquinolone-resistant E. coli [49–55].

Foreign travel to high-risk areas, such as the Indian sub-

continent, plays a partial role in the spread of this clone

across different continents [56]. This pandemic E. coli

clone ST131 was isolated from humans as well as from

companion animals. Thus, companion animals are reser-

voirs for human infections [57]. Furthermore, the isolation

of a multidrug-resistant E. coli strain of sequence type

ST131 from an 8-month-old girl with severe septic arthritis

and contagious osteomyelitis and her healthy mother

demonstrates that within-household transmission contrib-

utes to the dissemination of the ST131 clonal group as well

[58].

Risk factors for the emergence

of fluoroquinolone-resistance

The impact of the prescribing of ciprofloxacin on the

emergence of fluoroquinolone resistance in uropathogens

is well documented and has been confirmed recently; an

increase in prescriptions was paralleled by an increase in

fluoroquinolone resistance [43, 59–65]. However, there

are significant differences across species [66]. Additional

factors favoring the selection of resistant uropathogens

are poor adherence to treatment guidelines [67, 68],

inappropriate prescriptions [69], and the dispensing of
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antibacterials without prescription [70]. Irrational pre-

scribing habits of fluoroquinolones in particular for UTIs

and respiratory tract infections (RTIs) foster resistance

development [71–76].

Another aspect is worth mentioning and relevant for

prescribing policies, hygiene strategies, and resistance

statistics. A study on the evolution of quinolone resistance

in Barcelona, Spain, from 1992 to 1997 revealed that the

prevalence of fluoroquinolone resistance in the feces of

healthy people was unexpectedly high, being 24 % in

adults and 16 % in children, although it was not used in the

pediatric population [77, 78]. The carriage rate was higher

than the fluoroquinolone resistance rates among patients

with healthcare- and community-acquired infections.

Increasing fluoroquinolone resistance rates in commensal

E. coli in children were found in North as well as South

America, and Africa and Asia as well [79–85]. The fecal

carriage of CTX-M-producing E. coli was frequently found

in families as well, indicating person-to-person transmis-

sion of this clone [86]. The emergence of fluoroquinolone

resistance in children in the 1990s was not due to fluoro-

quinolone therapy given to children, as its use in pediatric

populations was approved for the post-exposure treatment

of inhalational anthrax in August 2000 and for the treat-

ment of complicated urinary tract infections (cUTIs) in

March 2004. The transmission of resistant isolates between

adults and children in families, daycare, or school settings

may be the likely cause of person-to-person transmission,

which increased the numbers of resistant isolates inde-

pendently from the selection of resistant strains in diseased

patients; this phenomenon may bias resistance statistics.

Analogous findings are reported next for RTI pathogens.

Furthermore, these findings indicate that the treatment of

fluoroquinolone-naı̈ve patients, i.e., those who should not

have been treated in previous years because of their age,

may, nevertheless, carry primed bacteria which may

develop high-level fluoroquinolone resistance quite rapidly

during treatment.

Conclusion

These data demonstrate that most of the uropathogens

causing uUTIs in outpatients are still susceptible to fluo-

roquinolones. In the US and Europe, resistance rates in

CA-UTI are 6–10 times lower than in HA-UTI. Although

fluoroquinolone resistance is still low in CA-UTI patho-

gens, fluoroquinolones should be used with caution in the

treatment of CA-UTIs because of the continuously rising

trend in fluoroquinolone resistance. Furthermore, it has to

be considered that previous fluoroquinolone use exerts an

MRSA-selective potential and exhibits negative epidemi-

ological effects, resulting in the selection of multi-resistant

pathogens. Fluoroquinolones should be ‘‘reserved for

important uses other than acute cystitis’’ [87] and are rec-

ommended as the first-line therapy in patients with

uncomplicated pyelonephritis [37, 88, 89]. Considerable

regional differences in drug susceptibility patterns exist,

with significantly increased rates of fluoroquinolone-

resistant and/or ESBL-producing uropathogens in the

Asia–Pacific region and India. Because of the very close

correlation between ESBL production and fluoroquinolone

resistance in uropathogenic Enterobacteriaceae, fluoro-

quinolone susceptibility is still high in those geographic

regions in which ESBL-producing, Gram-negative, com-

munity-acquired uropathogens are infrequent. Pathogens

causing HA-UTIs or cUTIs in nursing home patients are

less susceptible to fluoroquinolones. Thus, empiric therapy

of UTIs should be guided by reports on both ESBL-pro-

ducing and fluoroquinolone-resistant organisms.

Respiratory tract infections

Community acquired respiratory tract infections

Although a number of significant pathogens like Hae-

mophilus influenzae, Moraxella catarrhalis, and atypicals

are associated with community-acquired respiratory tract

infections (CARTIs) in all age groups, Staphylococcus

pneumoniae is the most frequent one. High-level [mini-

mum inhibitory concentration (MIC) C2 mg/L] penicillin

resistance rates in pneumococci varied from 40 to 50 % in

France, Spain, and Japan, 57 % in Hong Kong, and 71 % in

South Korea and Taiwan, whereas no penicillin resistance

was detected in Indonesia or the Netherlands [90, 91].

Interestingly, even in these ‘‘hot spots’’ of penicillin and/or

macrolide and/or trimethoprim/sulfamethoxazole resis-

tance like Asia or Spain, where fluoroquinolone use is high

and low doses are administered frequently, rates of fluo-

roquinolone resistance remain low, ranging from 0.5 to

7 % (reviewed in detail in [13]) .

Surveillance studies in the US from 1987 to 2009

demonstrated low rates of resistance (0.1–1.3 %) to levo-

floxacin and to moxifloxacin (0.1 %), although ciproflox-

acin has been used in the US since 1987 and has, thus,

exerted a selective pressure on S. pneumoniae. Three major

surveillance programs demonstrated that [96 % of the

pneumococci were moxifloxacin and levofloxacin suscep-

tible [13]. In 1.2 % of the isolates, a first-step mutation was

detected and 6.7 % exhibited an efflux phenotype, despite

high fluoroquinolone usage [92].

However, a trend for rising levofloxacin resistance from

\0.5 to [3 % was noted in some regions of North

America. High fluoroquinolone resistance rates ([10 %)

were recorded in patients who acquired pneumococcal

infections in nursing homes or hospitals, as well as in

adults C65 years of age (reviewed in detail in [13]).
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Occasionally, fluoroquinolone resistance resulted in clini-

cal failures in patients with pneumococcal pneumonia

having been previously treated empirically with oral fluo-

roquinolones. In total, there were 20 ciprofloxacin and

levofloxacin treatment failures reported from 1995 to Jan-

uary 2005 and were reviewed by Fuller and Low [93]. A

pre-therapy isolate was available in five cases only, with

MICs ranging from 1 to 16 mg/L; MICs for the during-

therapy isolates ranged from 4 to[32 mg/L [93]. Thus, the

question cannot be answered as to whether resistance may

have developed during therapy, resulting in clinical failure.

This question was recently addressed by Orr et al. [94],

who investigated in a tertiary referral hospital in England

the incidence and epidemiology of levofloxacin-resistant

pneumococci among 865 patients. In six patients, a shift

towards reduced levofloxacin susceptibility or resistance

was recorded. Five patients had acquired a new distinct

strain and one patient only harbored the same clone [94]. A

limitation of this study is that all isolates of S. pneumoniae

from any body site were eligible for inclusion in the study,

irrespective of whether the patient has been treated with a

fluoroquinolone or not. Furthermore, hospital guidelines

recommend to treat severe community-acquired pneumo-

nia (CAP) with levofloxacin plus intravenous benzylpeni-

cillin [94]. High-level levofloxacin resistance (MIC

[8 mg/L) developed under levofloxacin treatment in eight

out of 164 patients with chronic obstructive pulmonary

disease (COPD) whose pre-therapy isolates were suscep-

tible [95] and one fatal outcome was described [96].

A P. aeruginosa infection was treated successfully with

oral ciprofloxacin in another COPD patient in whom a

ciprofloxacin-resistant but moxifloxacin-susceptible (MIC

0.125 mg/L) S. pneumoniae strain with a parC mutation

was isolated subsequently [97].

The prevalence of first-step fluoroquinolone-resistant

S. pneumoniae mutants is increasing [98–100]. Although

the subtle changes in the MICs of third-generation fluoro-

quinolones for primed bacteria remained within the

susceptible range in most CARTI isolates, many isolates

contained a single gyrA or parC mutation, which prime

the bacteria to acquire additional mutations within the

quinolone resistance determining region (QRDR), confer-

ring high-grade fluoroquinolone resistance [101, 102].

Approximately up to 30 % of clinical pneumococcal

isolates contain mutations in the gyrA and/or parC loci

[102–107]. Many pneumococcal isolates with first-step

fluoroquinolone resistance pass unnoticed in routine

susceptibility testing because of the high resistance

breakpoints [108, 109].

Previously, the resistant breakpoints for ciprofloxacin

and levofloxacin were C4 and C8 mg/L, respectively.

Actually, the resistant breakpoints of ciprofloxacin and

levofloxacin for S. pneumoniae defined by the European

Committee on Antimicrobial Susceptibility Testing (EU-

CAST) are both C2 mg/L. The EUCAST provides two

comments in this context: first, wild-type S. pneumoniae are

not considered to be susceptible to ciprofloxacin, and sec-

ond, the breakpoints for levofloxacin relate to high-dose

therapy. However, high levofloxacin doses, i.e., 750 mg

once daily or 500 mg twice daily, are rarely administered,

so that an extrapolation from the categorization ‘‘suscepti-

ble’’ due to in vitro breakpoint-based susceptibility testing

to advice on therapy for the patient is limited. Two case

reports describing levofloxacin treatment failures confirm

the limited predictability of routine in vitro susceptibility

testing. The pre-therapy pathogens isolated from two

elderly patients suffering from pneumococcal pneumonia

were characterized as levofloxacin susceptible; the isolates

had MICs of 1 and 2 mg/L and harbored pre-existing point

mutations in parC and gyrA, respectively. Therapy with

500 mg levofloxacin i.v. failed in both cases. The post-

therapy isolates had acquired additional mutations in gyrA

and parC, respectively, resulting in MICs of C16 mg/L

[110, 111]. Both patients had, apart from advanced age,

additional risk factors like COPD and others. These clinical

examples confirm that first-step mutants of S. pneumoniae

are phenotypically considered to be susceptible and are

primed to acquire additional QRDR mutations conferring

high-grade fluoroquinolone resistance, resulting in clinical

failure. As most first-step mutants pass routine suscepti-

bility testing unnoticed, they are not effectively detected in

surveillance studies. Consequently, the routine susceptibil-

ity testing of suspicious cases should at least be modified,

e.g., by using a second fluoroquinolone like ciprofloxacin as

an indicator for the acquisition of a first mutation [99, 109].

Furthermore, it should be considered to use a more potent

anti-pneumococcal fluoroquinolone than levofloxacin, e.g.,

a C-8-methoxyquinolone, which exerts more pronounced

anti-pneumococcal activities than levofloxacin [4].

Recently, fluoroquinolone-resistant streptococci were

isolated from children. Ciprofloxacin resistance rates in the

US increased significantly between 1997 and 2006 from 0

to 4.5 % in children aged 0–15 years [112]. Fluor-

oquinolone-resistant streptococci were also isolated from

children in Spain [113]. Ciprofloxacin-resistant S. pneu-

moniae was detected in 28 % of children aged

6–60 months living in rural Vietnam, about half of whom

were treated previously with antibacterial agents except

fluoroquinolones [114]. These findings could be due to the

transmission of fluoroquinolone-resistant strains within

daycare centers or the household from adults to children.

The emergence of levofloxacin-resistant S. pneumoniae

strains was noted in South Africa, where fluoroquinolones

are used to treat multidrug-resistant tuberculosis. A survey

of 21,521 invasive pneumococcal isolates identified between

2000 and 2006 in South Africa detected levofloxacin
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resistance (MIC C4 lg/mL) in only 12 cases (\0.1 %)

[115]. All were HIV-infected children, nine were on therapy

for tuberculosis, and 10 isolates (83 %) were serotype

19F, suggesting clonal spread. Furthermore, levofloxacin-

resistant pneumococci were detected in [50 % of asymp-

tomatic carriers (irrespective of prior exposure to

fluoroquinolones). These data suggest that the use of fluo-

roquinolones to treat multidrug-resistant tuberculosis is a

risk factor for the endemic and clonal spread of fluor-

oquinolone-resistant pneumococci. Furthermore, horizontal

gene transfer may have transformed low-level into high-

level levofloxacin-resistant strains [116].

Several factors may have contributed to the low resis-

tance rates in S. pneumoniae: more potent ‘‘respiratory

fluoroquinolones’’ like the C-8-methoxyquinolones moxi-

floxacin and gatifloxacin, or gemifloxacin may have

replaced the previous fluoroquinolones in the treatment of

CARTIs; treatment guidelines may have been adapted

recommending the use of a second agent like benzylpeni-

cillin in, e.g., the elderly or patients with other risk factors;

information about patient history and previous antibiotic

use is crucial for determining appropriate empirical therapy

[117, 118]; the acquisition of some parC and gyrA muta-

tions may impose a fitness cost to the first-step fluor-

oquinolone-resistant strains, although equivocal data have

been generated [119–121].

H. influenzae is generally highly susceptible to fluoro-

quinolones; global surveillance studies demonstrated that

susceptibility to fluoroquinolones remained at or near

100 %; resistant isolates have been recovered occasionally

(reviewed in [13]). Clonal outbreaks of fluoroquinolone-

resistant H. influenzae were observed in long-term care

facilities [122–124] and in the elderly in Japan [125].

Because of the occurrence of fluoroquinolone-resistant

strains, Hirakata et al. [126] screened a total of 400

H. influenzae strains isolated in 138 hospitals throughout

Japan. The strains were consistently very susceptible to

ciprofloxacin, with MICs ranging from B0.03 to 0.25 mg/L;

the majority of strains was inhibited by ciprofloxacin

concentrations B0.03 mg/L. Therefore, the authors exam-

ined the strains (n = 37 out of 400) with MICs 0.06 mg/L

and higher for QRDR mutations. From these, one cipro-

floxacin-resistant isolate (MIC 16 mg/L) and 31 cipro-

floxacin-susceptible isolates (MICs 0.06–0.5 mg/L) had

amino acid changes in their QRDRs. Moreover, 9.8 % of

the 363 highly ciprofloxacin-susceptible isolates (MICs

B0.03 mg/L) had mutations in their QRDRs, particularly in

the case of b-lactamase-positive amoxicillin–clavulanate-

resistant isolates [126]. Primed strains could be isolated

from kindergarten children in Hong-Kong [127] and caused

treatment failures in the elderly [128].

These data clearly demonstrate that—in analogy

to S. pneumoniae—many fluoroquinolone-susceptible

H. influenzae have acquired QRDR mutations; these strains

pass routine susceptibility testing unnoticed, but are primed

to mutate further. Routine susceptibility testing of suspi-

cious cases should at least be modified, e.g., by using

nalidixic acid as an indicator for the acquisition of a first

mutation [129].

M. catarrhalis remains fluoroquinolone susceptible to

almost 100 %, although resistant strains have been detected

in a very few single cases (reviewed in detail in [13]); a

fluoroquinolone resistance rate of 15.9 % has been reported

from India [130]. Two treatment failures with clonally

unrelated resistant strains have been reported in patients at

risk [131].

Healthcare acquired respiratory tract infections

Nosocomial pneumonia is further differentiated into

healthcare-associated pneumonia (HCAP), hospital-

acquired pneumonia (HAP), and ventilator-associated

pneumonia (VAP). Bacterial pathogens most frequently

associated with HCAP, HAP, and VAP are MSSA and

MRSA, P. aeruginosa, H. influenzae, K. pneumoniae,

E. coli, and, occasionally, (2–5 %) S. pneumoniae and

Acinetobacter spp. Resistance surveillance studies differ-

entiating the origin of isolates tested according to pneu-

monia categories are almost non-existent; resistance rates

are quoted in very general terms, even in some of the

guidelines quoted above. Therefore, the information com-

piled below summarizes the susceptibility data for invasive

pneumococci or pathogens isolated from sputa obtained

preferably from intensive care unit (ICU) patients.

Fluoroquinolone resistance in S. pneumoniae isolated

from patients with invasive as well as non-invasive dis-

eases in eight European countries and Latin America ran-

ged from 0 % in Austria, Switzerland, and Belgium to

0.9 % in Germany and 1.2–1.3 % in Italy and Portugal

[132]. From the bacteremic pneumococci isolated from

1999 to 2007 in the UK and Ireland, 14.3 % were resistant

to ciprofloxacin [133]. In Canada, all bacteremic isolates

were ciprofloxacin susceptible [134, 135]. Rates of levo-

floxacin resistance in invasive S. pneumoniae collected by

the Centers for Disease Control and Prevention (CDC)

Active Bacterial Core Surveillance (ABCS) program

remained stable throughout the years at about 0.3–0.43 %

[136–138]. This finding contradicts reports of an expansion

of fluoroquinolone-resistant seven-valent pneumococcal

conjugate vaccine serotypes [113, 139–141]; others have

hypothesized that a decrease in fluoroquinolone resistance

among invasive pneumococci may be due to the reduction

of absolute numbers of isolates within the vaccine sero-

types [142]. Nevertheless, the potential for the clonal

expansion and dissemination of fluoroquinolone-resistant

strains obtained from the ABCS program has been
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demonstrated [140]. A random sample of ABCS isolates

collected between 1998 and 2003 revealed that 16.2 % of

first-step mutants were recovered from nursing home

patients and 6.4 % from non-nursing home patients [143].

Pathogens isolated from ICU patients showed variable

fluoroquinolone resistance [144]. Pneumococci collected in

the USA, Canada, France, Germany, and Italy from January

2000 to December 2002 were highly susceptible in all geo-

graphic regions. All H. influenzae blood isolates were cip-

rofloxacin susceptible as well [134]. In MSSA and MRSA,

fluoroquinolone resistance varied from 4.8 % in Canada to

8 % in Germany, and from 90.6 % in France to 9.6 % in

Germany, respectively. In E. coli, fluoroquinolone resistance

ranged from 6.5 % in France to 12.7 % in Italy; resistance in

K. pneumoniae ranged from 7.2 % in Canada to 9.9 %

in Italy; resistance in P. aeruginosa ranged from 22.9 % in

Germany to 76.7 % in Italy [144]. Ciprofloxacin resistance

among MSSA and MRSA blood and respiratory isolates

collected in 2008 amounted to 8–11 % and 81.6–95.6 %,

respectively [135]. Ciprofloxacin resistance rates in E. coli,

P. aeruginosa, and K. pneumoniae isolated from blood or the

respiratory tract were 21.6 or 31.7 %, 16 or 18.4 %, and 4.3

or 4.5 %, respectively. Eight percent of these E. coli isolates

were ESBL producers [135]. In ten Asian countries, cipro-

floxacin resistance rates in P. aeruginosa, E. coli, and

K. pneumoniae isolated from HAP and VAP patients ranged

from 4 to 44 %, 26 to 80 %, and 13 to 68 %, respectively

[145]. Similar rates were reported for Gram-negative species

isolated from Indian VAP patients [146].

Fluoroquinolones have, in the past, shown good activity

against A. baumannii [147]; however, over the past decade,

there has been a constant rise in fluoroquinolone and

multidrug resistance [148, 149]. Fluoroquinolone resis-

tance in Acinetobacter spp. isolated from HAP and VAP

patients in ten Asian countries varied from 23.2 to 92 %

[145]. Fluoroquinolone resistance in Acinetobacter spp.

isolates from North American and European ICU patients

with/without nosocomial RTIs ranged from 25.9 % in

Canada to 76.7 % in Italy [144]. Fluoroquinolone resis-

tance in A. baumannii isolates sampled from sputa and

tracheal aspirates of ICU patients in a tertiary-care hospital

in Ankara amounted to 86 % [150].

Conclusion

Three major pathogens causing CARTI are fluoroquinolone

susceptible to almost 100 %. However, first-step mutants

have been detected frequently not only in treated patients,

but also in healthy individuals and even children. Such

isolates are primed to mutate to high-level fluoroquinolone

resistance during subsequent fluoroquinolone treatment.

Pneumococci and haemophili isolated from HCAP, HAP,

and VAP patients are almost all fluoroquinolone

susceptible. MSSA and, in particular, MRSA are frequently

fluoroquinolone resistant. Enterobacteriaceae and non-

fermenters are variably fluoroquinolone resistant, so that

the regional resistance pattern has to be considered prior to

the use of a fluoroquinolone in the treatment of nosocomial

pneumonias.

Skin and skin structure infections

Acute bacterial skin and skin structure infections (ABSS-

SIs) are typically monomicrobial and caused by S. aureus

and S. pyogenes, which are also the most common patho-

gens in complicated skin and skin structure infections

(cSSSIs), which are frequently polymicrobial. The most

common Gram-negative organisms in cSSSIs include

P. aeruginosa, E. coli, K. pneumoniae, and E. cloacae. The

most common anaerobes isolated are typically Prevotella,

Bacteroides, and Peptostreptococcus species.

Although S. pyogenes was and still is highly susceptible

to fluoroquinolones, low incidences (B8 %) of ciprofloxa-

cin resistance have been found in the US, Canada, and

Europe. Fluoroquinolone resistance in Japan is almost

non-existent [151–157]. It is important to note that, in

Belgium, approximately 55 % of the fluoroquinolone-

resistant S. pyogenes isolates were recovered from children

aged \16 years [158]. Although fluoroquinolones are con-

traindicated in children, ciprofloxacin is often used off-label

for select life-threatening conditions. Furthermore, older

and, thus, cheap second-generation fluoroquinolones are

used topically for the treatment of otitis media with otorrhea

through tympanostomy tubes in pediatric patients [158].

In the early days of fluoroquinolone development and

clinical use, the fluoroquinolones were regarded as potential

alternatives to MRSA therapy with a b-lactam, vancomycin

or imipenem [1, 159, 160]. Unfortunately, staphylococci

acquire resistance to antibacterials rapidly, as they are

genetically highly variable [161]. The determinant for

methicillin resistance (SCCmec) contains additional genes

for antibiotic resistance elements encoding for aminogly-

coside, tetracycline, and macrolide–lincosamide–strep-

togramin resistance [162, 163]. Furthermore, HA-MRSA

tended to develop fluoroquinolone resistance [164, 165] and

increased pathogenicity [166, 167]. Thus, almost any anti-

bacterial drug class has a methicillin resistance selective

potential [168–171], so that strains of HA-MRSA are

almost always multidrug resistant. Therefore, fluoroquino-

lone resistance developed rapidly in the early days of

fluoroquinolone therapy in HA-MRSA. In addition, fluor-

oquinolone-resistant HA-MRSA were spread horizontally

as were HA-MRSA as such, so that, nowadays, neither the

second- nor third-generation fluoroquinolones represent

alternatives for the treatment of HA-MRSA infections

[4, 172, 173].
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In recent years, the emergence of CA-MRSA has com-

plicated the treatment of even ABSSSI [174]. In contrast to

multidrug resistance usually seen in HA-MRSA strains,

antibiotic resistance in CA-MRSA was most often limited

to macrolides [163, 174–178], so that it has previously

been proposed that some third-generation fluoroquinolones

could be useful in the treatment of CA-MRSA, since the

causative pathogens were usually susceptible to even cip-

rofloxacin [179–184]. But, recently, mupirocin, tetracy-

cline, clindamycin, and moxifloxacin (and, thus, to any

commercially available fluoroquinolone) resistance devel-

opment has been reported [185, 186]. The clone USA300

became the predominant strain type in the USA and has

spread to Europe, South America, and Australia [185, 187,

188]. The lineage USA100 is frequent as well [189].

Fluoroquinolone resistance in isolates recovered from a

phase IV study in patients with cSSSI in the USA and

Europe from 2004 to 2007 was high; 100 % of USA100

isolates and 42.6 % of USA300 isolates were resistant to

gatifloxacin [189]. cSSSI pathogens collected in USA and

Europe in 2009 were variably susceptible to fluoroquino-

lones: levofloxacin resistance in the USA/Europe amounted

to 70.3/84.1 % in MRSA, 11.1/5.4 % in MSSA, 54.2/

52.3 % in coagulase-negative staphylococci, 0.9/0.0 % in

b-hemolytic streptococci, 13.6/1.1 % in viridans strepto-

cocci, 37/29.2 % in E. faecalis, 24.7/21.8 % in E. coli,

11/13.3 % in Klebsiella spp., and 20.8/8.0 % in P. mira-

bilis [190]. These resistance rates are within the same range

as those reported in the late 1990s and 2001–2004 for

Gram-negative and Gram-positive aerobic pathogens iso-

lated in North America, Latin America, and Europe from

skin and soft tissues [191–194], thus, indicating that

resistance rates did not change substantially over time.

Overall, 24–27 % of anaerobic bacteria isolated in the

late 1990s from skin and soft tissue infections and mod-

erate to severe diabetic foot infections were fluoroquino-

lone resistant [190, 191, 195]. All Peptostreptococcus

species isolated from hospitalized patients with diabetic

foot wound infection were susceptible to levofloxacin and

moxifloxacin; moderate resistance (5–7 %) was found in

isolates of B. fragilis, B. ovatus, and Prevotella species

[196, 197]. Moxifloxacin resistance was highest (43 %) in

the B. fragilis group [277]. As levofloxacin is less active

against anaerobes, resistance rates were correspondingly

higher. Of all infection sites, decubitus ulcer isolates had

the highest resistance rates [198].

Conclusion

Fluoroquinolone resistance rates among pathogens causing

skin and soft tissue infections is low in MSSA and strep-

tococci, moderate in Gram-negative aerobes as well

as Gram-positive anaerobes, and high in CA-MRSA,

HA-MRSA, and Gram-negative anaerobes. This heteroge-

nous susceptibility pattern may limit the use of fluoro-

quinolones in the treatment of ABSSSIs and cSSSIs. In

principle, a third-generation fluoroquinolone is well suited

for the treatment of polymicrobial SSSIs because of its

broad antibacterial spectrum.

Intra-abdominal infections

Intra-abdominal infections (IAIs) are commonly due to

mixed aerobic and anaerobic populations, so that a clini-

cally effective regimen has to cover both the aerobic

Enterobacteriaceae and enterococci, as well the anaerobic

bacteria. Several surveillance studies have demonstrated

that there is, since two decades, a global trend towards

decreasing susceptibilities of anaerobes to antibacterial

agents in general. Although the rates of resistances show

clinically important variations between continents, coun-

tries, and counties, all drug classes except metronidazole

lose activity against anaerobes. As reviewed in detail

recently [13], fluoroquinolone resistance in both aerobes

and anaerobes causing IAIs is high in the Asian–Pacific

region, the USA, and Europe; 9 to [50 % of the Europe

and US B. fragilis group isolates were moxifloxacin

resistant. In analogy to UTI isolates, fluoroquinolone

resistance in Enterobacteriaceae causing IAIs is closely

linked to ESBL production [13].

The situation in Asia is concerning, as resistance rates

surpass 60 % of the isolates being resistant to ampicillin–

sulbactam or a quinolone and producing ESBLs [13]. In

Europe, ESBL production ranged from 0 to 30 %. From

these, 70–78 % and 50–70 % of the community- or hos-

pital-acquired Enterobacteriaceae, respectively, were cip-

rofloxacin resistant. Consequently, fluoroquinolone

susceptibility in IAI pathogens is still high in all those

geographic regions in which ESBL-producing Gram-neg-

ative bacilli are infrequent. Furthermore, fluoroquinolone

resistance was much lower in strains isolated from patients

with community-acquired IAIs than in those from hospital-

acquired infections.

Conclusion

Fluoroquinolone resistance is high amongst aerobic and

anaerobic intra-abdominal pathogens. Therefore, the

Infectious Diseases Society of America (IDSA) and the

Surgical Infection Society published a guideline in late

2009 recommending that antibacterials to be used in the

empiric treatment of even community-acquired IAIs

including mild to moderate infections should be active

against both aerobic and anaerobic pathogens [199]. Con-

sequently, the use of quinolones should be restricted unless

resistance rates are \10 % [7, 282].
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Sexually transmitted diseases

Infections caused by Neisseria gonorrhoeae and Chla-

mydia trachomatis are the most frequent ones among

reportable bacterial sexually transmitted diseases (STDs)

gonorrhea, syphilis, and chancroid.

Pelvic inflammatory disease (PID) is a common and

serious complication of some STDs. Two-thirds of cases

are considered to be due to sexually transmitted infections

caused by N. gonorrhoeae and C. trachomatis. Other

pathogens such as Mycoplasma genitalium and, rarely,

bacterial vaginosis pathogens may cause PID too. There-

fore, the management of PID must take into account in

particular the three major pathogens N. gonorrhoeae,

C. trachomatis, and M. genitalium.

Neisseria gonorrhoeae

Initially, Neisseria spp. was extremely susceptible to flu-

oroquinolones with ciprofloxacin MICs B0.008 mg/L.

However, low-level resistance (0.06–0.5 mg/L) was

reported shortly after its launch, followed soon after by

high-level resistance (MICs of ciprofloxacin [1.0 mg/L)

associated with treatment failures. High-level fluoroquin-

olone resistance is more likely to emerge in areas with a

high prevalence of low-level resistance and is spread in-

tercontinentally or within and between cities by travelers.

Both low- and high-level fluoroquinolone resistance has

been reported from all parts of the world (reviewed in

[13, 200]), ranging in Asia from 40 to 100 % and from 15

to 30 % in Europe and North America. Consequently,

quinolones are no longer recommended as the first-line

therapy for N. gonorrhoeae infections [201–203].

Typically, several different strain types can be identi-

fied, but only a few of these were considered to be outbreak

types and comprised 66 % of all the isolates [204]. Fur-

thermore, importation (often repeated importation) of one

or a few clone(s) and ultimate introduction into established

sexual networks have caused the emergence and spread of

resistant gonococci rather than de novo emergence as a

result of selection by quinolone use or misuse [205].

Chlamydia trachomatis

High-level resistance to ofloxacin, sparfloxacin, and cip-

rofloxacin occurred in C. trachomatis upon serial exposure

to subinhibitory quinolone concentrations, whereas spon-

taneous mutation frequencies resulting in moxifloxacin

resistance were very low or even non-existent. Neverthe-

less, fluoroquinolone-resistant strains of C. trachomatis

have been isolated occasionally. However, no mutations

could be detected in these clinical isolates. Fluoroquino-

lone resistance elicited in vitro in C. trachomatis serovar L2

was due to a single nucleotide point mutation in gyrA,

while no mutations were found in the gyrB, parC, or parE

genes (reviewed in [13]).

Mycoplasma genitalium

Surveillance studies for antimicrobial resistance in general

and fluoroquinolone resistance in particular are non-exis-

tent, as the culturing of this species from clinical specimens

is extremely difficult. Acquired resistance to fluoroquino-

lones has been described in single cases. QRDR mutations

have been described rarely (reviewed in [13]).

Conclusion

The resistance of N. gonorrhoeae to antimicrobials con-

tinues to increase worldwide, although considerable geo-

graphical variations in resistance exist. Therefore,

fluoroquinolones are no longer recommended as the first-

line therapy for N. gonorrhoeae infections [201–203].

However, local quinolone treatment options based on local

surveillance data may be reasonable, due to the geo-

graphical variations in resistance. All regimens used to

treat PID should cover both N. gonorrhoeae and C. tra-

chomatis, so that the use of fluoroquinolones in this indi-

cation is limited as well [206]. In case parenteral b-lactam

therapy is not feasible, oral use of fluoroquinolones with or

without metronidazole is recommended, provided treat-

ment is based on the results of antimicrobial susceptibility

testing [206].

Effect of fluoroquinolones on commensals

and colonizers

The impact of fluoroquinolone administration on the fecal

and oropharyngeal flora has been summarized compre-

hensively [207–211]. Fluoroquinolones affect quantita-

tively (total numbers of aerobic and anaerobic species) and

qualitatively (selection of resistance) the resident flora.

Such studies are routinely performed in healthy and young

volunteers who may not have been treated with antibacte-

rials since quite a while prior to the administration of the

study drug.

Studies in patients are scarce, although it could be

anticipated that fluoroquinolone resistance would emerge

in pharyngeal streptococci, thus, generating a scenario

resembling that of a worldwide spread of b-lactam resis-

tance in pneumococci [212]. In particular, the selection of

fluoroquinolone-resistant viridans group streptococci in

neutropenic patients during therapy or prophylaxis with

second-generation fluoroquinolones with weak anti-pneu-

mococcal activity is of concern [213–216]. Gatifloxacin

and also moxifloxacin (most of the patients received
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concomitantly penicillin) selected for resistance [217]. On

average, fluoroquinolone resistance in viridans streptococci

emerged after 8 days of exposure to either fluoroquinolone.

The hypothesis that fluoroquinolones with weak anti-

pneumococcal activity may select for fluoroquinolone

resistance among viridans streptococci has been studied

recently [218]. Six different 14-day dosages of oral cipro-

floxacin were administered to 48 healthy volunteers. Indi-

vidual pharmacokinetic and pharmacodynamic parameters

combining antibiotic exposure in plasma, saliva, and feces,

and MICs of ciprofloxacin for viridans group streptococci

in the pharyngeal flora were estimated. Their links with the

emergence of resistance to levofloxacin 7, 14, or 42 days

after ciprofloxacin initiation were investigated. Resistance

emerged in the pharyngeal flora in 33 % of the subjects,

mainly when local concentrations of ciprofloxacin were

less than the MIC. Probabilities of the emergence of

resistance were not significantly different across the dif-

ferent antibiotic dosages. This analysis confirms that

resistant commensals are selected frequently during cip-

rofloxacin therapy and is not preventable by dosage opti-

mization. Analogous results were obtained for E. coli

isolated from the feces of the volunteers [218].

Having established the important role of commensal

flora as a natural reservoir of bacterial resistance to fluo-

roquinolones, investigators analyzed prospectively the

colonization with fluoroquinolone-resistant bacteria in the

three main commensal floras from 555 hospitalized

patients at admission, targeting E. coli in the fecal flora,

coagulase-negative staphylococci in the nasal flora, and

a-hemolytic streptococci in the pharyngeal flora [219].

Fluoroquinolone resistance carriage rates were 8.0 % in

E. coli, 30.3 % in coagulase-negative staphylococci, and

27.2 % in streptococci; 56 % of the patients carried resis-

tance in at least one flora, but only 0.9 % carried resistance

simultaneously in all floras, which is no more than random.

Risk factors associated with the carriage of fluor-

oquinolone-resistant strains differed between fecal E. coli

(i.e., colonization by multidrug-resistant bacteria) and nasal

coagulase-negative staphylococci (i.e., age, healthcare

facility residents, and previous antibiotic treatment with a

fluoroquinolone), while no risk factors were identified for

pharyngeal streptococci [219].

Horizontal gene transfer between viridans streptococci

and pneumococci has been proven [220–225]. Such events

could contribute significantly to the spread of resistance in

infectious foci with high population density [226]. How-

ever, the contribution of horizontal gene transfer and inter-

as well as intraspecies recombination to the emergence of

fluoroquinolone resistance in S. pneumoniae seems to be

minimal [221, 222]. However, penicillin resistance

emerged about 50 years after the commercialization of

penicillin G.

Furthermore, gene transfers between S. pyogenes and

group C/G streptococci has been demonstrated [223, 227–

229], so that the acquisition of fluoroquinolone resistance

by S. pyogenes may put the patient at risk. Group A strep-

tococci frequently colonize the throats of asymptomatic

persons. Pharyngeal carriage rates vary geographically,

seasonally, and with the age of the patient [230]. Carriage of

N. meningitidis in the nasopharynx has been known for a

long while; 18 % of the population are carriers [231].

Household members and other close contacts of persons

with meningococcal disease have a higher risk for carriage

and, therefore, invasive disease. These persons should

receive an antibiotic prophylaxis; previously, ciprofloxacin

has been considered as an effective single-dose oral pro-

phylactic agent. However, isolates of N. meningitidis with

decreased fluoroquinolone susceptibility or even resistance

are becoming globally more frequent [232–247], so that

contact persons should no longer be prophylaxed with a

fluoroquinolone [233]. Nalidixic acid should serve as a

surrogate marker in order to detect fluoroquinolone-resis-

tant N. meningitidis [248]. Similarities in the mechanisms of

fluoroquinolone resistance in N. gonorrhoeae and N. men-

ingitidis have prompted concerns that resistance preva-

lences will be similar in both species in due course [244].

Fluoroquinolone-resistant S. pyogenes strains have been

isolated worldwide in children and adults [151–157, 249–

255]. Furthermore, interspecies recombinations between

S. pyogenes and group C/G streptococci colonizing the skin

have been demonstrated [226, 228]; group C/G streptococci

may have acquired fluoroquinolone resistance from the

environment. Although marketing authorizations for the

treatment of infections caused by S. pyogenes (except SSSIs)

have not been granted, fluoroquinolones may, in principle,

offer a therapeutic alternative in penicillin-allergic cases.

However, the emergence of fluoroquinolone-resistant

S. pyogenes strains limits the use of quinolones in such cases.

In general, QRDR-mediated fluoroquinolone resistance

was found to be stable in clinical isolates and laboratory-

derived mutants of Gram-positive cocci and Gram-negative

bacteria [246, 256–259], so that fluoroquinolone resistance

is irreversible and affects the long-term use of these agents.

Conclusion

Fluoroquinolone resistance has been selected among the

commensal flora colonizing the gut, nose, oropharynx, and

skin, so that horizontal gene transfer between the

commensal flora and the offending pathogen, as well as

inter- and intraspecies recombinations, contribute to the

emergence and spread of fluoroquinolone resistance among

pathogenic streptococci. Although interspecies recombi-

nations are not yet the major cause for the emergence of

fluoroquinolone resistance, its existence indicates that a
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large reservoir of fluoroquinolone resistance exists. Thus, a

scenario resembling that of a worldwide spread of b-lactam

resistance in pneumococci is conceivable.

Discussion

Fluoroquinolone resistance rates increased in the past

several years in almost all bacterial species. Furthermore,

high numbers of first-step QRDR mutants or otherwise

primed bacteria were recorded, which pass susceptibility

testing unnoticed but may put the patient at risk. The

continued increase in fluoroquinolone resistance affects

patient management and necessitates changes in some

current guidelines for the treatment of UTIs [5, 37, 87–89]

or typhoid fever [6], and even precludes the use of fluo-

roquinolones in certain indications like complicated IAIs

[7] and gonorrhea and PID [201–203]. Two extremes have

caused the CDC to advise physicians not to treat patients

with N. gonorrhoeae infections and not to prophylax close

contacts of N. meningitidis cases. On the one hand, fluo-

roquinolone resistance in N. gonorrhoeae approaches

100 % in many regions, and on the other hand, fluoro-

quinolone resistance in N. meningitidis is certainly rare, but

meningococcal disease causes substantial morbidity and

mortality; those who survive suffer from long-term

sequelae. Therefore, the advice of the CDC to no longer

use fluoroquinolones in these two indications is more than

justified, despite the two extremes of fluoroquinolone

resistance rates in these two species. However, once

granted, marketing authorizations are still valid, although

the CDC advised and the infectious diseases societies

strongly recommended not to use fluoroquinolones in the

above mentioned indications.

Because of the highly variable fluoroquinolone resis-

tance rates, the following questions have to be raised:

1. At which threshold of resistance should an agent no

longer be used empirically?

2. Does local variability allow a generalizing nationwide

recommendation to refrain from using a given drug in

specific drug/bug associations?

3. Is the key denominator for result interpretation the

clinical source of the isolate and patient condition or

just the bacterial species as such?

4. Are datasets biased, as isolates from hospitalized and/

or difficult to treat patients may be over-represented?

5. Who is the user of the data?

1. Resistance treatment threshold

Recently published guidelines suggest different threshold

levels for different infectious diseases. The IDSA and the

Surgical Infection Society published a guideline in late

2009 recommending that the use of quinolones in the

empiric treatment of community-acquired IAIs including

mild to moderate infections should be restricted unless

resistance rates are lower than 10 % [7]. The IDSA and

American Thoracic Society released guidelines suggesting

a 25 % rate of high-level macrolide resistance as a

threshold at which macrolides should no longer be used as

empirical therapy for the treatment of CAP [260]. This

definition has been debated controversially [261–263].

Other guidelines on the use of antibacterial agents in

patients with CA-UTI suggest thresholds of 10, 20, or 30 %

[87, 264–266]. The previous EMEA note for guidance

states that all species for which the prevalence of resistance

has reached 10 % or more should be categorized as ‘‘spe-

cies for which acquired resistance may be a problem’’

[267].

These examples demonstrate that the question remains

unanswered regarding at which resistance rates should a

given drug no longer be used as empirical therapy. The

problem is that, on the one hand, thresholds are defined by

expert consensus, but, on the other hand, such threshold

levels are not linked to clinical outcomes or patient pop-

ulations. By linking the prevalence of macrolide resistance

to patient outcome, it was demonstrated that the previously

defined threshold was inadequate and underestimated the

risk of failure [262]. It was shown that low-level macrolide

resistance contributes significantly to treatment failures and

deaths [261–263], so that the threshold should be modified.

The same may hold true for fluoroquinolones as well.

Breakpoint-defined fluoroquinolone resistance rates in

S. pneumoniae and H. influenzae are low; however, it has

been demonstrated that approximately 30 % of the isolates

have already acquired first-step QRDR mutations [98–109,

126]. Such isolates pass routine susceptibility tests unno-

ticed and are categorized as susceptible; however, they are

primed to mutate rapidly to high-level fluoroquinolone

resistance, so that inadequate therapy with a second-gen-

eration fluoroquinolone may fail as demonstrated clinically

[110, 111, 128]. Therefore, routine susceptibility testing of

suspicious cases should be modified by using a second-

generation fluoroquinolone or nalidixic acid as an indicator

for the acquisition of a first-step mutation in S. pneumoniae

or H. influenzae. The most recent IDSA and European

Society of Clinical Microbiology and Infectious Diseases

(ESCMID) practice guidelines for the treatment of acute

uncomplicated cystitis and pyelonephritis make another

problem evident. Concern was raised that an association

exists between fluoroquinolone use and increased rates of

MRSA [265]. Therefore, fluoroquinolones should ‘‘be

reserved as an alternative only when other UTI agents

cannot be used’’. As discussed in the section titled ‘‘Sex-

ually transmitted diseases’’, almost any antibacterial drug
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class including fluoroquinolones has a methicillin resis-

tance selective potential [168–171]. But not all fluoro-

quinolones are alike. Ciprofloxacin and levofloxacin are

good selectors, and moxifloxacin is a poor selector of

methicillin resistance [164, 165]. Poor hygiene is another

factor contributing to the selection and spread of MRSA.

The implementation of a hand hygiene program combined

with restricted fluoroquinolone use resulted in a ten-fold

greater reduction of MRSA infections as compared to just

restricted fluoroquinolone use [268]. Another association

between fluoroquinolone resistance and b-lactam resistance

exists in particular among UTI and IAI isolates, as sum-

marized in the sections titled ‘‘Urinary tract infections’’ and

‘‘Intra-abdominal infections’’. Plasmid-coded ESBL pro-

duction is often linked to the co-synthesis of pentapeptide

repeat (Qnr) proteins [269]. These proteins reduce sus-

ceptibility to quinolones by protecting the complex of

DNA and DNA gyrase or topoisomerase IV enzymes from

the inhibitory effect of quinolones. Again, most of such

isolates co-expressing ESBLs and Qnr proteins are fluo-

roquinolone susceptible and pass routine susceptibility

testing unnoticed. Of concern, ESBL production and

reduced fluoroquinolone susceptibility are associated with

additional resistance elements and emerge and expand

simultaneously with increasing ubiquity [269]. Thus, two

pools of primed bacteria exist which are prone to acquiring

additional mutations under fluoroquinolone treatment, i.e.,

low-level resistant first-step QRDR mutants and isolates

harboring plasmid-encoded fluoroquinolone resistance. In

addition, fluoroquinolones exhibit an MRSA-selective

potential, so that a considerable potential for adverse eco-

logical effects exists. The so called ‘‘collateral damage’’

from the use of fluoroquinolones may put patients at risk

[270]. Therefore, definitions of resistance thresholds should

not only consider resistance statistics, but, in addition, the

implications for patient outcome, the collateral damage, the

risks of clinical failure that are associated with low-level

resistance, and the development and costs of future resis-

tance should be taken into account.

2. Resistance surveillance: a global or de facto regional

approach?

A major drawback of many surveillance studies is that the

number of national centers participating is often limited.

For example, 198 laboratories from 22 European countries

participated in the European Antimicrobial Resistance

Surveillance Network (EARS-Net, formerly EARSS)

study, 2002 to 2009; the numbers of laboratories per

country ranged from one to 33, with the consequence that

the mean numbers of E. coli and S. aureus isolates reported

yearly per country ranged from 96 to 1,973 and from 56 to

1,290, respectively [271]. Consequently, the size as well as

the patient characteristics (i.e., age, co-morbidities, hospi-

talized vs. outpatient, etc.) of the catchment population is

highly variable. Many studies on the resistance epidemi-

ology describe changes in resistance trends in one hospital

or even one ward only. The epidemiology of resistance

varies locally, regionally, nationally, and internationally, so

that strains may have been included originating from

pockets with unusual resistance patterns. Resistance clus-

ters exist prohibiting the use of an affected agent in such

areas; vice versa, the drug can be used in low-risk areas or

conditions [272]. Overall resistance rates aggregating drug/

bug data have little relevance and are often misleading.

Consequently, most surveillance studies reporting resis-

tance rates for a given drug/bug association are basically

point prevalence studies representing a local resistance

frequency but do not provide information about the resis-

tance epidemiology, prevalence, or incidence.

3. Key denominator for results interpretation

The choice of sampling methods and organisms as well as

the selection of the host population to be sampled has a

fundamental impact on the outcome of surveillance studies.

For example, 53.8, 9, and 3.3 % of P. aeruginosa isolated

from patients with cystic fibrosis, moderate to severe dia-

betic foot ulcers, and keratitis, respectively, were resistant

to ciprofloxacin [273–276]. Furthermore, chronically

infected patients will be sampled repeatedly. As these

patients receive long-term therapy, the causative pathogen

will likely have acquired resistance; in addition, hospital-

ization or residence in a nursing home favors the acquisi-

tion and selection of fluoroquinolone-resistant populations

[1, 26, 29, 30]. Such isolates have a significant impact on

the susceptibility pattern of strain collections studied and,

consequently, on resistance statistics, as resistant subpop-

ulations or clones will be over-represented [1, 9].

In hospital-based studies, isolates predominate which

have been sampled from hospitalized patients and a small

percentage originates from outpatient treatment. This is

problematic in so far as the patient population within and

between hospitals is diverse (e.g., age, risk factors, tertiary-

or primary-care hospital, etc.), so that significant differ-

ences in drug susceptibilities were recorded across different

hospital departments, between different hospitals, and

between in- and outpatients, respectively [277]. Hospital-

wide reports can mask differences large enough to affect the

appropriate choice of an adequate antibacterial. Therefore,

arguments reviewed previously [4] or published recently

[278–283] confirm that there is a systematic bias in sur-

veillance based on routinely collected data, leading to an

overestimation of true resistance rates.

Therefore, it is crucial to define the patient population to

be sampled and to stratify data collection and interpretation
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according to infection site and disease status in order not to

compromise the denominator material. It is essential not to

collect in very general terms species-specific laboratory-

based surveillance data, but, instead, to use infection-based

information stratified according to the severity of disease,

patient population, and risk profile [284]. Otherwise, initial

therapy may be inadequate, either putting the patient at risk

[285] or fostering resistance development because of an

indiscriminate use of antibacterials [286].

4. Biased datasets

Fluoroquinolones are most frequently prescribed by gen-

eral practitioners to outpatients. However, outpatients are

sampled only when initial therapy has failed and in whom

resistant subpopulations will likely have been selected

[279]. In 57 % of all contacts, and even 100 % of the

patients who consulted the general practitioner for the first

time, an antibacterial was issued for RTIs; an antibiogram

was ordered in none of the cases [280]. Similar, but varying

by physicians’ speciality, data were reported for the diag-

nosis and management of UTIs. Urine culture reports were

misleading in many cases, as cultured patients differed

from the majority of patients treated empirically; cultured

patients had higher rates of comorbidities, severity of ill-

ness, and previous antibacterial therapies than the majority

of patients treated empirically [287]. The leading reasons

given for not ordering a culture were that it was too costly

(76 %) and that species specification and susceptibility

testing rarely affect treatment (74 %) [288]. Resistance in

pathogens causing uUTIs was rarer than that predicted

from susceptibility testing [289]. The Dutch guidelines for

the diagnosis and treatment of severe gastroenteritis by

general practitioners state that stool samples should be

obtained, but this advice was followed in 22 % only [290].

Additional studies supporting the notion that routine sam-

ples are biased have been reviewed by the Specialist

Advisory Committee on Antimicrobial Resistance (SA-

CAR) and its subgroups [291]. Among the studies reviewed

by Hayward et al. [292], seven have shown significant

differences in resistance levels between routine samples

and those taken selectively; one study could not find a

correlation between antibiotic use and resistance, and

another study could not demonstrate a relationship between

the urine submission rate and resistance after controlling

for prescription and other variables. However, these two

latter studies do not falsify the theory of sampling bias in

unselected versus selected samples. A longitudinal com-

munity-based study among outpatients between September

2003 and September 2004 revealed, on the one hand, that

the prevalence of fluoroquinolone-resistant E. coli cultured

from unselected samples remained unchanged (7.7 %)

prior to, during, and after fluoroquinolone treatment [293].

On the other hand, a German surveillance study revealed

that fluoroquinolone resistance among outpatients from

whom samples were selectively withdrawn was almost

twice as high as in unselected samples (14.4 %) in 2001

and this increased to 29.2 % in 2007 [294–296]. Thus,

there is a systematic sampling bias in surveillance data

based on routinely collected specimens sampled by general

practitioners. Selective testing in difficult to treat patients

or a situation of treatment failure does not reflect the

resistance epidemiology in the majority of outpatients to be

treated effectively and successfully with the appropriate

regimen by the general practitioner. Furthermore, ignoring

intercenter variation and differences in the numbers of

samples collected per center leads to erroneous conclusions

about resistance frequencies [297]. These examples dem-

onstrate that drug susceptibilities should be reported unit-

specifically and disease-specifically rather than in species-

specific cumulative figures as actually done by the phar-

maceutical industry upon request by the regulatory

authorities.

5. Who is the addressee?

The data generated from surveillance studies are used by

microbiologists, prescribing physicians, infection control

specialists, in diagnostic and reference laboratories, by

public health authorities, regulatory authorities, industry

and academia, and by politicians. These users have dif-

ferent interests in the data. The microbiologist needs data

on the prevalence and the infection control specialist needs

data on the incidence of resistance. The prescribing phy-

sician needs local data and authorities need national or

even continental data. Industry is interested in broad-range

surveillance data on the phenotype of resistance and aca-

demia in organism-specific information on the genotype of

resistance.

The actual procedure meets the requirements of both the

pharmaceutical industry and the regulatory authorities. The

pharmaceutical industry needs the data for regulatory

purposes and marketing, and the regulatory authorities

need the data for risk assessment. The EMEA requests a

regular update of surveillance data to be reported in the

periodic safety update report; resistance development is

considered to be an adverse event putting the patient at

risk. However, while incidences of any other adverse event

are reported to the EMEA, the results of resistance sur-

veillance studies are reported without any correlation to

neither the total nor disease-specific number of patients

treated.

In contrast, the expectations of the treating physicians

are not always met. They often misinterpret susceptibility

testing, so that an inadequate antibacterial is prescribed

[298, 299]. In one institution, only one in five of all
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susceptibility tests contributed to an adequate treatment

and only 8.5 % led to a change in therapy [300]. General

practitioners reported that 83 % of susceptibility reports

were seen as beneficial and 28 % led to a change of therapy

[300].

The interests are diverse, but the datasets are most fre-

quently monotonous. Tools should be developed to provide

customer-specific datasets. Actually, the requirements of

the users are often not met, so they exploit the data

incongruously. In conclusion, surveillance studies are of

utmost importance in order to detect and monitor the

emergence and longitudinal development of resistance.

However, for the results to be of value, the samples col-

lected, the data generated, and the information published

and distributed must be unbiased. Several factors discussed

above lead to obvious but uncorrected biases. Conse-

quently, many studies are misinterpreted.
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67. Llor C, Rabanaque G, López A, Cots JM. The adherence of GPs

to guidelines for the diagnosis and treatment of lower urinary

tract infections in women is poor. Fam Pract. 2010;28:294–9.

68. Lugtenberg M, Burgers JS, Zegers-van Schaick JM, Westert GP.

Guidelines on uncomplicated urinary tract infections are diffi-

cult to follow: perceived barriers and suggested interventions.

BMC Fam Pract. 2010;11:51. http://www.biomedcentral.

com/1471-2296/11/51.

69. Vellinga A, Cormican M, Hanahoe B, Bennett K, Murphy AW.

Antimicrobial management and appropriateness of treatment of

urinary tract infection in general practice in Ireland. BMC Fam

Pract. 2011;12:108. http://www.biomedcentral.com/1471-2296/

12/108.

70. Plachouras D, Kavatha D, Antoniadou A, Giannitsioti E, Poul-

akou G, Kanellakopoulou K, Giamarellou H. Dispensing of

antibiotics without prescription in Greece, 2008: another link in

the antibiotic resistance chain. Euro Surveill. 2010;15. pii:

19488.

71. Cave W, Pandey P, Chatterjee S. Irrational prescribing in South

Asia: a case of fluoroquinolone-associated phototoxicity.

J Travel Med. 2003;10:290–2.

72. Levent T, Cabaret P; L’association Armeda. Hospital fluoro-

quinolone prescription habits in northern France. Med Mal

Infect. 2010;40:537–40.

73. Mazzaglia G, Arcoraci V, Greco S, Cucinotta G, Cazzola M,

Caputi AP. Prescribing habits of general practitioners in

choosing an empirical antibiotic regimen for lower respiratory

tract infections in adults in Sicily. Pharmacol Res. 1999;40:

47–52.

74. Balabanova Y, Fedorin I, Kuznetsov S, Graham C, Ruddy M,

Atun R, Coker R, Drobniewski F. Antimicrobial prescribing

patterns for respiratory diseases including tuberculosis in Rus-

sia: a possible role in drug resistance? J Antimicrob Chemother.

2004;54:673–9.

75. Montanaro N, Magrini N, Vaccheri A, Battilana M. Drug utili-

zation in general practice: prescribing habits of national for-

mulary drugs by GPs of Emilia Romagna (Italy) in 1988 and

1989. Eur J Clin Phramacol. 1992;42:401–8.

76. Altiner A, Wilm S, Wegscheider K, Sielk M, Brockmann S,

Fuchs A, Abholz HH, In der Schmitten J. Fluoroquinolones to

treat uncomplicated acute cough in primary care: predictors for

unjustified prescribing of antibiotics. J Antimicrob Chemother.

2010;65:1521–5.

77. Bjerrum L, Boada A, Cots JM, Llor C, Forés Garcia D, Gahrn-

Hansen B, Munck A. Respiratory tract infections in general

practice: considerable differences in prescribing habits between

general practitioners in Denmark and Spain. Eur J Clin Phar-

macol. 2004;60:23–8.

78. Garau J, Xercavins M, Rodrı́guez-Carballeira M, Gómez-Vera
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