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Abstract The work describes an application of a recently
developed machine-learning technique called Mondrian pre-
dictors to risk assessment of ovarian and breast cancers. The
analysis is based on mass spectrometry profiling of human
serum samples that were collected in the United Kingdom
Collaborative Trial of Ovarian Cancer Screening. The work
describes the technique and presents the results of clas-
sification (diagnosis) and the corresponding measures of
confidence of the diagnostics. The main advantage of this
approach is a proven validity of prediction. The work also
describes an approach to improve early diagnosis of ovar-
ian and breast cancers since the data in the United Kingdom
Collaborative Trial of Ovarian Cancer Screening were col-
lected over a period of 7 years and do allow to make obser-
vations of changes in human serum over that period of time.
Significance of improvement is confirmed statistically (for
up to 11 months for ovarian cancer and 9 months for breast
cancer). In addition, the methodology allowed us to pinpoint
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1 Introduction

Recent advances in the analysis of the human serum proteome
aim to establish novel disease biomarkers that would allow
early detection of diseases. The current techniques include
analysis of serum using mass spectrometry (MS). The output
of MS is a large volume of high-dimensional data (Fig. 1),
and it requires modern methods of data analysis.

Most known techniques are usually good in accuracy of
classification (diagnosis) but suffer from a lack of a mea-
sure of confidence in the diagnosis; therefore, it is difficult
to estimate risk of incorrect diagnosis of a patient. This work
describes a novel machine-learning technique called Mon-
drian predictors [1], also known as category-based confi-
dence machines, that addresses this problem by introducing
measures of confidence that would allow us to estimate a risk
of misclassification. The Mondrian predictors were applied to
a subset of the United Kingdom Collaborative Trial of Ovar-
ian Cancer Screening (UKCTOCS) biobank which contains
serum samples and data on cancers in a cohort of 202,638
women participating in this trial. Women were recruited
between 2001 and 2005, and those in the cancer antigen 125
(CA125) screening (multimodal) group underwent annual
screening with repeat samples collected if an abnormality
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Fig. 1 Example of a spectrum with identified peaks

was detected [2]. Women were followed up through cancer
registry and postal questionnaires. The unique feature of this
trial was that the women were screened annually for up to
5 years. Two case–control sets of samples from women diag-
nosed to have ovarian and breast cancer, respectively, and
healthy (no cancer at follow up) controls were undertaken.
Control samples were matched for trial centres and date when
the cancer sample was taken to minimise differences in sam-
ple processing. The serum samples underwent pre-fraction-
ation using a reversed-phase batch extraction protocol prior
to MALDI-TOF MS data acquisition [3,4]. In this work, we
analysed ovarian cancer and breast cancer data sets.

This work is based on the theory of hedged (confident)
algorithmic learning [1]. One of the major advantages of
hedged algorithms is that they can be used for solving
high-dimensional problems without requiring any paramet-
ric statistical assumptions about the source of data (unlike
traditional statistical techniques); the only assumption made
is independent identically distributed (i.i.d.): the examples
are generated from the same probability distribution inde-
pendently of each other. Another advantage of conformal
predictor is that it also allows to make estimation of confi-
dence in the classification of individual examples.

The algorithm itself is based on testing each classification
hypothesis about a new example whether it is conforming
to the i.i.d. assumption. This requires application of a test
for randomness based on a non-conformity measure (NCM)
which is a way of ranking objects within a set by their relative
strangeness. The defining property of NCM is its indepen-
dence of the order of examples, so any computable functions
with this property can be used. Conformal predictor is valid
under any choice of NCM, however, it can be more effi-
cient if NCM is appropriate. Concrete meaning of efficiency

(performance measure) depends on the problem type and
interpretation of output.

NCM for classification is also usually based on an under-
lying learning algorithm. For example, it can be k-Nearest-
Neighbours (kNN) algorithm. Although is usually applied
to clean data, where all attributes are informative (such as
USPS handwritten digits [5]), with an additional step of fea-
ture selection it may be used in less-clean cases, for example,
in the work on machine-learning in functional clustering [6],
where only few attributes (gene expressions) are useful for
separation between diseases, we embedded a step of feature
selection (based on a T test) into a version of kNN NCM.

Another useful underlying algorithm is Support Vector
Machine (SVM) [7,8]. In the work on diagnostic using micro-
arrays [9], an SVM-based NCM with a feature-selection step
was used together with another NCM based on Nearest Cen-
troid that is in some sense a ’limit’ version of Nearest Neigh-
bours. In various medical applications, good performance
was also shown by NCM based on genetic algorithms [10],
and neural networks [11,12].

However, NCM for some special data are not directly
based on standard underlying algorithms: in the work [13]
they apply algorithm with ’conformity’ between a set and a
new example represented by a number of attributes (voxels)
showing good separability, e.g., by two-sample T test.

We are now working with mass spectrometry that has
its own specific characteristics as well. Although it is high-
dimensional (many peaks are identified), we know from prac-
tice that normally only few of them (called biomarkers) react
to the disease. Thus, we developed a version of conformal
predictor with a special NCM that is based on a search within
high-dimensional data for a simple decision rule that involves
only few biomarkers.

This work first outlines the background and introduces the
main ideas of conformal predictors and its extension to Mon-
drian predictors. We then describe the data and classification
rules and present the results.

2 Methods

The framework we are going to deploy in the analysis of MS
data is the one of conformal predictors [1,14]. It represents
a new generation of algorithms with reliability measures.

2.1 Conformal predictors

Let us assume that we are given a training set of patients with
diagnoses

(x1, y1), . . . , (xn−1, yn−1)

where xi ∈ X is a vector of features which describe a patient
and yi ∈ Y is a diagnosis out of a finite set of possible
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diagnoses (classes). Our goal is to predict the diagnosis yn

for a new patient xn . We will denote a combination of a patient
and a diagnosis as zi = (xi , yi ) ∈ Z = X × Y .

The general idea of conformal predictors is the follow-
ing: when we have a new patient, xn , we try every pos-
sible diagnosis y as a candidate for patient’s diagnosis
and see how well the resulting pair (xn, y) conforms with
(x1, y1), . . . , (xn−1, yn−1). The ideal case is when exactly
one diagnosis conforms with the rest of the sequence and all
others do not. We can then be confident in predicting this
diagnosis.

Firstly, we need to define the notion of a nonconfor-
mity measure, which is the core of conformal predictors.
A specific nonconformity measure depends on a particular
algorithm and can be based on many well-known machine-
learning algorithms. This nonconformity measure will assign
some value αi ( nonconformity score) to every patient in the
sequence z1, . . . , zn including a new patient with diagnosis
and will evaluate ‘nonconformity’ between a set and its ele-
ment:

αi := An(�z1,. . ., zi−1, zi+1, . . . , zn�, zi ), i =1,. . ., n, (1)

where �. . .� denotes a multiset.
When we consider a diagnosis hypothesis yn = y and

after we calculated the corresponding nonconformity scores
α1, . . . , αn for a full sequence with diagnosis y for the last
patient, a natural way to compare αn with the other αi s is
to look at the ratio of patients which conform with the other
patients at most as much as the new one, that is, to calculate

pn(y) = |{i = 1, . . . , n − 1 : αi ≥ αn}| + 1

n
. (2)

This ratio is called the p value associated with the possible
diagnosis y for xn . Thus, we can complement each candi-
date diagnosis with a p value, which shows how well a new
patient with this possible diagnosis conforms with the rest
of the sequence in comparison with other patients. The last
thing which needs to be set is a significance level 0 < ε < 1,
which is an error rate we are willing to tolerate.

Finally, the p values calculated above can produce a region
predictor: the conformal predictor determined by the noncon-
formity measure An, n = 1, 2, . . . , and a significance level
ε is defined as the function � : Z∗ × X × (0, 1) → 2Y

(2Y is the set of all subsets of Y ) such that the predic-
tion set �(ε)(x1, y1, . . . , xn−1, yn−1, xn) is defined as the set
of all candidate diagnoses y ∈ Y such that pn(y) > ε.
Thus, for any finite sequence of diagnosed patients, (x1,

y1, . . . , xn−1, yn−1), a new undiagnosed patient xn and a sig-
nificance level ε, the conformal predictor outputs a region
prediction �(ε)—a set of possible diagnoses for the new
patient.

The main advantage of conformal predictors is their valid-
ity: in the long run the frequency of errors made by a confor-

mal predictor (i.e., cases when prediction set �ε does not con-
tain the real diagnosis) does not exceed ε (this is subject to the
assumption that all examples are drawn independently from
the same distribution, which is called the i.i.d. assumption).
This point is different from the methods (such as logistic
regression) which produce probabilistic estimates that rely
on assumptions that are stronger than i.i.d. (see Appendix
for the discussion of logistic regression).

While validity is guaranteed, we have to optimize effi-
ciency—the ability of conformal predictors to produce as
small region predictions as possible.

2.1.1 Alternative way of presenting the results

However, prediction sets are dependent on selected signifi-
cance level ε. If there are several such levels, prediction sets
form a nested sequence: prediction set for a smaller ε always
covers a prediction set for a larger ε. If Y is finite, we can
summarise all these outputs in one. It is enough to order all
possible labels by their p values and to set thresholds for ε at
which the cardinality of prediction set changes. If Y is binary,
this is the same as to output a prediction for each example
by choosing the highest p value and to complement each
such prediction with two indicators: confidence and credi-
bility. Confidence is equal to 1 less the second maximum p
value, it is the complement to 1 of the smallest ε at which
the prediction set is certain (contains at most one element).
Credibility is the maximum value of all possible p values, or
the smallest ε at which the prediction set is empty.

High confidence means that the alternative diagnoses are
excluded by having a low p value, high credibility checks
whether the prediction itself does not have a very small p
value. Thus, a prediction is considered to be reliable if its
confidence is close to 1 and its credibility is not close to 0.
If its credibility is low, this means that the new patient is not
typical for any class presented in the training set.

2.2 Mondrian predictors

Conformal predictors allow us to obtain a guaranteed error
rate which does not exceed the significance level ε. How-
ever, we may encounter problems in medical diagnosis, when
we know that certain patients are easier to correctly classify
than others (for example, men are more easily diagnosed than
women, or it is more likely to misclassify a healthy patient
than a diseased one). In this case, conformal predictors will
guarantee the overall error rate; they may result in higher
actual error rate on harder groups of patients and lower on
easier groups of patients. However, it would be good to guar-
antee the error rate within these groups.

In the current work, we have two classes: healthy and dis-
eased patients. There are two types of errors in this case. It
is not always clear in advance what type of error is more
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important: to misclassify a healthy patient or to misclassify
a diseased one. If we keep both error rates on a guaranteed
level, then the same guarantee will be true for any weighted
mixture of them.

Mondrian predictors [1,14], which are the development of
conformal predictors, allow us to tackle this problem. They
split all possible patients into categories and set significance
levels εk , one for each category k. Mondrian predictors can
guarantee that in the long-run patients of each category k are
misclassified with frequency at most εk .

One of the simplest examples could be a taxonomy con-
ditioned on diagnoses, when each category corresponds to a
certain diagnosis and comprises only patients with this diag-
nosis. Another possibility is division in categories based on
features and their combinations, e.g., patients can be grouped
by age. Finally, taxonomies can get even more complex: they
can be based on combinations of features, diagnoses and even
ordinal numbers of patients in the sequence.

In comparison with conformal predictors, the difference
in constructing Mondrian predictors is that we compare the
nonconformity score of (xn, y) not with all patients in the
sequence but only with patients of the same category:

pn(y)= |{i = 1, . . . , n − 1 : κi =κn & αi ≥ αn}| + 1

|{i = 1, . . . , n − 1 : κi =κn}| + 1
, (3)

where κi , i = 1, . . . , n − 1 is the category of (xi , yi ); κn is a
category of (xn, y).

Finally, any Mondrian predictor is conditionally valid: in
the long run, the frequency of errors made by the machine
(i.e., cases when prediction set does not contain a real diag-
nosis) on patients in category k does not exceed εk for each k.

Thus, Mondrian predictors allow us to solve two main
problems.

– We can guarantee not only an overall accuracy but also a
certain level of accuracy within each category of patients.
In particular, we can preset the level of accuracy within
groups of healthy and diseased samples, which is simi-
lar to specificity and sensitivity. This will allow avoiding
classifications when small number of errors on healthy
samples is compensated by high number of errors on dis-
eased ones or the other way around. Therefore we use
Mondrian predictors.

– If we preset different significance levels for categories,
we can treat them in a different way, e.g., put analogue
of sensitivity first and consider a misclassification of a
diseased sample more serious than misclassification of a
healthy sample.

3 Data

The methodology based on a Mondrian predictor was applied
to the data sets from the UKCTOCS study, which was
designed to provide data on the effect of ovarian-cancer
screening on mortality. It is the world’s largest ovarian-cancer
screening research programme and involves sample collec-
tion of 200,000 women aged 50–74 years. In this research, we
have analysed the available ovarian-cancer and breast-cancer
data sets.

The data pertain to serum samples collected from patients
diagnosed with the disease (we will call them cases) and
healthy patients (they will be referred to as controls). Origi-
nally, each case was accompanied by two controls matched
on patient age, sample collection location and sample col-
lection date/time, among other factors. For this reason, in
each data set, the number of controls is twice as large as the
number of cases:

– 104 cases and 208 controls in the ovarian-cancer data set
(312 samples in total);

– 54 cases and 108 controls in the breast-cancer data set
(162 samples in total).

The samples were analysed by MS and its output by the
use of a Mondrian predictor. The MS data of ovarian and
breast cancers were provided by the University of Reading
and University College London, respectively.

MS is an attractive analytical tool, because it enables
researchers to simultaneously analyse hundreds of biomol-
ecules. Matrix assisted laser desorption/ionisation-time of
flight (MALDI-TOF) MS, one of several possible techniques,
has revealed the complexity of the low-molecular weight pro-
teomes of serum and plasma.

The MS data we have submitted to our methodology are
represented as intensities at m/z (mass to charge ratio) values.
Preprocessing steps, including peak identification, applied in
this work can be found in a separate work [15]. The identified
peaks are sorted by their frequency: the greater the number
of mass spectra containing a peak, the higher is the rank of
that peak. We consider a certain number of the most frequent
peaks only. Throughout the article, peak numbers are used;
the lower the peak number, the more common the peak is.
Please note that sets of peaks vary for different data sets,
therefore, peaks with the same number from various data
sets have different m/z values.

Several biomarkers for ovarian cancer have been identi-
fied, but none so far have been adopted for screening. The
most extensively assessed biomarker is CA125 that is typi-
cally elevated in the blood of some ovarian-cancer patients.
However, the potential role of this protein for the early detec-
tion of ovarian cancer is unproven and still subject to clinical
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trials. One of the main problems related to the use of CA125
is its low predictive ability at early-stages of the disease.
Another problem is that CA125 can be produced by other
mesothelium-derived tissues [15], and therefore, may also be
elevated in women with benign gynaecological conditions
and other types of cancer (such as breast, bladder, pancre-
atic, liver, lung) [16]. Therefore, CA125 deployment lacks
sensitivity: if the level of CA125 is elevated, an operation is
needed to confirm the disease. Thus, it is thought that CA125
alone may not be accurate enough for detection of early-stage
ovarian cancer.

In this study, we aim to verify whether it is possible to
improve the ability of CA125 to discriminate between ovar-
ian cancer and healthy patients in early stages of the disease.
In addition, we attempt to identify certain mass spectral peaks
which could, in combination with CA125, result in accurate
ovarian-cancer diagnosis well in advance of the moment of
clinical diagnosis.

Thus, each mass spectrum of the ovarian-cancer data set
is also assigned a level of CA125, and we will make predic-
tions of the diagnosis based not only on MALDI-TOF MS
data but also on CA125 levels.

Finally, each sample is assigned a non-negative value
T (τ )—time to diagnosis confirmed by histology/cytology.
Controls are assigned the same value T (τ ) as the case they
match. We will refer to this value as time to diagnosis and
the moment of diagnosis confirmed by histology/cytology
as the moment of diagnosis. Since we have the information
regarding when each sample was taken, we can consider sets
of samples taken in different time slots before the moment
of diagnosis.

4 Algorithms

Practically, any known machine-learning algorithm can be
plugged into a Mondrian predictor, and thus, result in a new
algorithm of prediction with confidence. In our research,
we used a set of linear discriminant functions. This section
describes the application of linear rules within the framework
of Mondrian predictors used for discrimination between MS
samples taken from healthy and diseased patients.

Every patient description, xi , comprises M features
xi (q), q = 1, . . . , M . In the case of the breast-cancer data,
these features are intensities of the M most frequent peaks
xi (q) = I (q), q = 1, . . . , M . For the ovarian-cancer data,
the features are the (M − 1) most frequent peaks and bio-
marker CA125 xi (M) = Ci . Diagnoses, yi , are equal to 0
for controls and 1 for cases.

When designing a new Mondrian predictor we will use
simple linear rules of the following type (see Algorithm 1):

m∑

k=1

vk log I (qk) > θ, (4)

Algorithm 1 Mondrian predictor based on linear rules
Require:

(x1, y1), . . . , (xn−1, yn−1) — sequence of patients with diagnoses,
xi = {xi (1), . . . , xi (M)}, yi ∈ {0, 1}
xn — patient without a diagnosis
xi ( j) — intensity of the peak j for the patient i
m — number of peaks in a linear rule
Vk ⊆ R, k = 1, . . . , m — set of possible weights in linear rules
Qk ⊆ {1, . . . , M}, k = 1, . . . , m — set of possible peak numbers in
linear rules
for all y ∈ {0, 1} do

yn := y
zn := (xn, y)

for i := 1, . . . , n such that yi = y do
for v1 ∈ V1 do

for q1 ∈ Q1 do
…
for vm ∈ Vm do

for qm ∈ Qm do
� = {−∞} ∪ {∑m

k=1 vk log x j (qk), j = 1, . . . , m}
for θ ∈ � do

Compute predictions ŷ j , j = 1, . . . , n,

provided by a linear rule with parameters
(v1, . . . , vm , θ, q1, . . . , qm):
for j := 1, …, n do

if
∑m

k=1 vk log x j (qk) > θ then
ŷ j := 1

else
ŷ j := 0

end if
end for
TPR(v1, . . . , vm , θ, q1, . . . , qm)

:= | j=1,...,n: y j =1 & ŷ j =y j |
| j=1,...,n: y j =1|

TNR(v1, . . . , vm , θ, q1, . . . , qm)

:= | j=1,...,n: y j =0 & ŷ j =y j |
| j=1,...,n: y j =0|

end for
end for

end for
end for
…

end for
{ṽ1, . . . , ṽm , θ̃ , q̃1, . . . , q̃m} :=
arg maxv1∈V1,...,vm∈Vm ,

q1∈Q1,...,qm∈Qm
θ∈R

(min(TPR(v1, . . . , vm , θ, q1, . . . , qm),

TNR(v1, . . . , vm , θ, q1, . . . , qm)))

if y = 0 then
αi := ∑m

k=1 ṽk log xn(q̃k)

else
αi := − ∑m

k=1 ṽk log xn(q̃k)

end if
end for
pn(y) := |{i=1,...,n−1: yi =y & αi ≥αn }|+1

|{i=1,...,n−1: yi =y}|+1
end for
Compute a diagnosis for xn : ypred := arg maxy∈{0,1} pn(y)

Compute its confidence as 1 − miny∈{0,1} pn(y)

Compute its credibility as maxy∈{0,1} pn(y)

where m is a fixed (usually small) number of peaks in a lin-
ear combination, I (qk) is the intensity of peak qk ; vk ∈ R;
k = 1, . . . , m are weights; θ ∈ R is a threshold. A rule clas-
sifies a patient as diseased if it returns the value true, healthy
otherwise.
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To design a nonconformity measure, we first need to define
the taxonomy of a Mondrian predictor. We will consider the
taxonomy κ(n, (xn, yn)) = yn , i.e., the taxonomy which con-
sists of two categories that correspond to two different diag-
noses: the category of healthy patients and the category of
diseased patients. Such taxonomy will allow us to guarantee
the error rate within classes of healthy patients and diseased
patients, which is analogous to controlling sensitivity and
specificity. Hence, p values are calculated as in equation 3
with ki = yi , i.e., the p-value is calculated as the ratio of
healthy (diseased) patients which conform with the the other
patients at most as much as the new one to the total number
of healthy (diseased) patients.

It also appears to be more natural to deploy a Mondrian
predictor rather than conformal predictor with this taxonomy.
This will be easily seen from the nonconformity measure.

The nonconformity measure is calculated as follows. We
fix the number m of peaks used in a rule, so a rule can include
any m of M most frequent peaks. We then consider a set of
possible linear rules of type (4) where parameters of the rules
can possess the following values: θ ∈ R, vk ∈ Vk ⊆ R, qk ∈
Qk ⊆ {1, . . . , M}, k = 1, . . . , m.

We compare quality of rules by maximum of sensitivity
and specificity, in order not to improve one of them at the
expense of another. In terms of a ROC curve, we approach a
point where the sensitivity is equal to the specificity.

Out of these rules, we select the following one:

{ṽ1, . . . , ṽm, θ̃ , q̃1, . . . , q̃m}
=arg max

v1∈V1,...,vm∈Vm ,
q1∈Q1,...,qm∈Qm

θ∈R

(min(TPR(v1,. . ., vm, θ, q1,. . ., qm),

TNR(v1, . . . , vm, θ, q1, . . . , qm))),

where
T P R(v1, . . . , vm, θ, q1, . . . , qm)

and
T N R(v1, . . . , vm, θ, q1, . . . , qm)

are sensitivity (true positive rate) and specificity (true nega-
tive rate) of rule (4) with parameters

(v1, . . . , vm, θ, q1, . . . , qm),

respectively, on the set of patients including a new patient
with a new hypothetical diagnosis. If there is more than one
set of parameters which provide maximum of the arg max
expression, we choose the one with the smallest absolute
values of parameters giving priorities in the following order:
v1, . . . , vm, q1, . . . , qm, θ .

We can then define the nonconformity score of a new
patient with a candidate diagnosis on the basis of the
chosen rule. The value of the chosen linear combination∑m

k=1 ṽk log I (q̃k) is used as a nonconformity score for

healthy patients or as a value negative to a nonconformity
score for diseased patients. Thus, when calculating a p value,
we compare the value of the chosen linear combination for
the new patient with the value of the same combination for
patients with the same diagnosis. If a new patient was healthy,
the larger the value of the linear combination, the more non-
conformal the patient is, and the other way around if a patient
is diseased.

Note that a rule itself reflects a hypothesis about biomark-
ers relevant for diagnosis and their relative weight. There-
fore, the algorithm includes a kind of embedded feature (bio-
marker) selection.

In our experiments, the significance level is the same for
the classes of healthy and diseased patients. Leave-one-out
cross-validation is performed: each patient (xi , yi ) is con-
sidered as if it was a new test sample, and all the remaining
patients in the data are treated as the training set.

5 Results

5.1 Early detection

It is shown [17] that for the analysed diseases there are certain
time slots when MS profile peaks carry statistically signif-
icant information for discrimination between controls and
cases, i.e., we can reject the null hypothesis that the diag-
nosis is independent of the information contained in peak
intensities at significance level of 5 % well in advance of the
moment of diagnosis.

To investigate how long in advance of the moment of
diagnosis accurate predictions can be provided, we consider
different time slots of fixed length (6 months for ovarian
cancer and 12 months for breast cancer) shifting away from
the moment of diagnosis. These time slots finish 1, 2, 3,
…months in advance of the moment of diagnosis.

After fixing the time slot, we pick all the patients whose
measurements were taken in this time slot together with
matched controls. For the ovarian-cancer data, if several mea-
surements of the same patients fall in this time slot, we con-
sider only the one closest to the moment of the diagnosis,
eliminating the others together with corresponding controls.

We then apply designed Mondrian predictors to patient
measurements in time-slots moving away from the moment
of the diagnosis. We expect prediction accuracy to deterio-
rate as the time slot is moving away since we assume that,
further from the moment of diagnosis, mass spectra contain
less information useful for discrimination between cases and
controls.

5.2 Ovarian-cancer results

For the ovarian-cancer data, we consider the simplest pos-
sible combinations (4) of CA125 and one peak (m = 2);
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q1 corresponds to CA125 level (Q1 = {M}), Q2 =
{1, . . . , M}, v1 ∈ V1 = {0, 0.5, 1, 2} is a CA125 weight,
v2 ∈ V2 = {−1, 0, 1} is a peak weight.

V1 and V2 were selected in the same way as analo-
gous parameters in our experiments related to our previous
works [17,15]. Our experience had shown that because of the
small number of samples, any additional terms in the rules (4)
are either useless or would bring overfitting.

At first, we will demonstrate how prediction with con-
fidence works. For each patient, Mondrian predictor pro-
vides two p values, corresponding to ’healthy’ and ’diseased’
hypotheses. On the basis of these p values, we calculate
confidence and credibility for each patient as described in
Sect. 2.1. After assigning every patient with two p values,
we predict the diagnosis with the highest p value.

Table 1 represents several examples of p values, confi-
dence and credibility for ovarian-cancer measurements taken
not earlier than 6 months in advance of the moment of diag-
nosis. If confidence is close enough to 1 and credibility is not
close to 0, the prediction is considered to be reliable.

We will demonstrate this in detail in several examples from
Table 1. The columns represent a measurement ID, true diag-
nosis, predicted diagnosis, p values for ‘healthy’ and ‘dis-
eased’ diagnoses, confidence and credibility. For instance,
patient with measurement ID 141100 in Table 1 has two p
values, one of which is close to 1 (0.99) and another close to 0
(0.01). This results in high confidence of 0.99 and high cred-
ibility of 0.99 and identifies the prediction as reliable: only
one diagnosis conforms well the rest of the set. If this patient
was classified as a case (diagnosis value of 1), this would
mean that an event of probability ≤ 1 % occurred. For this
reason, we expect the patient to be healthy, which is correct.
In contrast, patient with measurement ID 146384 has low p
values close to each other (0.12 and 0.13), which means nei-
ther of the diagnoses is likely to be correct and, hence, there
is not enough information to confidently classify the patient.
Thus, these p values do not produce confidence close enough
to 1 (0.88) or high credibility (0.13). As a result, the output
prediction for the patient with measurement ID 146384 is
indeed incorrect.

Table 2 shows the accuracy of Mondrian predictors in
different time slots. The table demonstrates that Mondrian
predictors are reasonably accurate well in advance of the
moment of diagnosis. For example, the accuracy in the time

slot of 10–16 months (the latest time slot when CA125 on its
own does not carry statistically significant information for
disease discrimination [15]) is 70.2 %. This is quite good
given that diagnosis is made not later than 10 months in
advance before the diagnosis is confirmed by histology/cytol-
ogy. For comparison, when we make predictions with the
same method of measurements just before the moment of
diagnosis (in a 0–6 time slot), the accuracy is equal to 92.2 %.

When we combine results for different time slots, we can
estimate how Mondrian predictors perform in early ovar-
ian-cancer diagnosis. In general, Mondrian predictors pro-
duce predictions with accuracy higher than 66 % up to
11 months in advance of the moment of diagnosis. As we
move away from the moment of diagnosis, accuracy of pre-
dictions decreases. Low accuracy 6, 7 and 8 months in
advance may be explained by a small number of samples
in this period (below 70 samples for any time slot).

To estimate statistical significance of achieved accuracy,
we calculated p values that reject the null hypothesis that
the assignment of labels is independent of MS peak inten-
sities and CA125 levels. The p values we calculated by the
use of the Monte-Carlo method: we estimate how possible
it is to make the prediction of same quality by chance. Sup-
pose there is no real dependence between true diagnosis and
peak intensities. Such a situation can be simulated by reshuf-
fle of the labels without changing the feature information.
Monte-Carlo method answers the questions: what will be the
accuracy in this case? In what percentage of cases it will be
as good as the current one or even better?

For each time slot, we consider Mondrian predictor’s accu-
racy. For a large number N = 500 of times, we calculate the
statistics, the accuracy of the Mondrian predictor applied to
the data in the same time slot but with randomly permuted
labels. Accuracy here is just amount of true diagnoses. We
count a number of times n when the statistics is at least as
high as the accuracy calculated on true labels. The p value
is then defined as (n + 1)/(N + 1).

These p values are presented in the last column of Table 2,
which shows that the accuracy achieved in the time slots fin-
ishing 0–6 and 9–11 months in advance is significant at the
level of 5 %. Analogous p values were calculated for linear
combinations of CA125 and MS peaks without the frame-
work of Mondrian predictors. We obtained values similar to
the ones calculated for Mondrian predictors. In particular, p

Table 1 Examples of the output
of Mondrian predictors applied
to the ovarian-cancer data in a
0–6 month time slot: true and
predicted diagnoses, p values
for both diagnoses, confidence
and credibility for several
patients

Measurement True diagnosis Predicted p value p value Confidence Credibility
ID diagnosis for 0 for 1

141100 0 0 0.99 0.01 0.99 0.99

146384 0 1 0.12 0.13 0.88 0.13

232604 1 0 0.51 0.28 0.72 0.51

245401 1 1 0.01 0.97 0.99 0.97

123



252 Prog Artif Intell (2012) 1:245–257

Table 2 Accuracy of Mondrian
predictors applied to the
ovarian-cancer data set (CA125
and 5 most frequent peaks) in
the leave-one-out mode in
different time slots

Timeslot Samples Accuracy (%) Sensitivity (%) Specificity (%) p value

0–6 204 92.2 91.2 92.7 0.002

1–7 168 89.9 89.3 90.2 0.002

2–8 141 83.7 83.0 84.0 0.002

3–9 108 78.7 80.6 77.8 0.002

4–10 81 79.0 74.1 81.5 0.002

5–11 69 73.9 73.9 73.9 0.002

6–12 60 66.7 65.0 67.5 0.050

7–13 51 68.6 64.7 70.6 0.060

8–14 51 66.7 70.6 64.7 0.102

9–15 60 73.3 75.0 72.5 0.020

10–16 84 70.2 71.4 69.6 0.004

11–17 84 66.7 67.9 66.1 0.050

values were below 5 % in the same time slots, which dem-
onstrates that CA125 and MS peaks carry information which
allows statistically significant discrimination between ovar-
ian-cancer patients and controls.

As mentioned before, the feature of the ovarian-cancer
data set is that ovarian-cancer cases can have several mea-
surements taken at different moments. For this reason, we can
observe the change in the output of Mondrian predictors for
this data set. As an illustration, we will consider several ovar-
ian-cancer cases that have measurements taken over a long
period of time and will show how confidence and credibility
are changing when the patient is approaching the moment of
diagnosis.

We select patients with at least three measurements. For
each measurement, we train the Mondrian predictor on the
samples in the earliest 6-month time slot containing the mea-
surement leaving out the measurement itself. For example, if
a measurement was taken 6.5 months in advance, we consider
the time slot from month 12 to month 6. We then apply the
Mondrian predictor to the left-out measurement and output a
prediction, its confidence and credibility. Dynamics of con-
fidence and credibility for measurements of several patients
is shown in Table 3.

Table 3 Dynamics of confidence and credibility for measurements
taken for two ovarian-cancer cases

Case ID Months Prediction Confidence Credibility
ID in advance (%) (%)

39 10 1 89.5 67.9

4 1 90.9 44.4

2 1 99.0 66.0

1 1 99.1 76.8

42 24 1 69.0 71.4

15 0 45.0 78.1

3 1 98.6 100.0

We can trust the prediction if its confidence is close to 1
(i.e., all p values for alternative diagnoses are close to 0) and
its credibility is not close to 0 (i.e., the maximum p value
is not close to 0). This implies that if a Mondrian predictor
makes correct predictions about the case, we expect con-
fidence to be approaching 100 % when measurements are
getting closer to the moment of diagnosis. Meanwhile, cred-
ibility is expected not to be getting close to 0 %. Table 3
demonstrates that patient 39 confirms our expectations.

Patient 42 represents a more interesting example: we make
an erroneous prediction 15 months in advance. However, its
confidence is not close to 100 %, which reflects that we cannot
be sure in this prediction. When we make a final prediction
for this patient 3 months in advance, both confidence and
credibility are close to 100 %.

Overall statistic of conformal predictor output in terms of
prediction sets is presented in Table 7. It shows that the num-
ber of certain non-empty predictions (for which prediction
set consists of exactly one label) increases for ovarian cancer
as time becomes closer to diagnosis.

5.3 Breast-cancer results

The same approach was applied to the set of breast-cancer
patients and matched controls, which was taken from the
UKCTOCS trial. We consider cut-off rules (4) with one peak
involved (m = 1) with Q1 = {1, . . . , M} and v1 ∈ V1 =
{−1, 1}, a weight that determines whether the peak has higher
or lower intensities for cases.

Firstly, this approach allows us to complement each
diagnosis of prediction with measures of confidence and
credibility. This is demonstrated in Table 4, which contains p
values, confidence and credibility for some breast cancer and
healthy patients whose measurements were taken no earlier
than 12 months in advance of the moment of diagnosis.
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Table 4 The output of
Mondrian predictors applied to
the breast-cancer data in the
time slot of 0–12 months in
advance: true and predicted
diagnoses, p values for both
diagnoses, confidence and
credibility form some patients

Measurement True Predicted p value p value Confidence Credibility
ID diagnosis diagnosis for 0 for 1

1832 0 1 0.29 0.30 0.71 0.30

77217 0 0 1.00 0.05 0.95 1.00

195604 1 1 0.08 0.95 0.92 0.95

Secondly, Mondrian predictors result in accurate predic-
tions well in advance of the moment of diagnosis (detailed
results are presented in Table 5). Mondrian predictors achieve
an accuracy higher than 70 % up to 9 months in advance of
the moment of breast-cancer diagnosis. However, there is
no apparent decreasing trend in accuracy; it fluctuates in the
range of 70.4–77.8 %. It falls to 71.9 % in the latest time slot
(0–12 months), because the number of examples available for
the experiments falls down to 57. This is also the reason why
the certainty rate Table 7 decreases as the time of diagnosis
is approaches. At slot (10–22 months) it falls to 48.2%, this
is because selection if best rule becomes unstable: according
to Table 6, top peak 19 is selected only in 87 %, so selection
is not robust even to change of one example. Monte-Carlo
p values shown in the last column of Table 5 demonstrate
statistical significance of achieved accuracy up to 8 months
in advance of the moment of diagnosis.

However, we see that BC data is, in general, less-informa-
tive than OC possibly, because OC has a strong biomarker
CA125 in addition to MS data. This reflects both in lower
accuracy (Table 5 compared to Table 2) and lower certainty
rate (Table 7).

5.4 Informative peaks and comparison to related research

In parallel, another approach was applied to the UKC-
TOCS data sets in another work [15], which is written

from the medical point of view and utilises the already
developed methods of early diagnosis and peak identifica-
tion. The research is devoted to statistical analysis, whereas
this work describes machine-learning approach that com-
plements each prediction with its confidence. In addition,
statistical analysis was carried out in a different experimen-
tal setting: the data were normalized against such factors
as age, sample collection time and location, storage and
transportation conditions. All measurements were grouped
in triplets comprising one diseases patient and two healthy
controls matched by these factors. Thus, when making pre-
dictions, we had additional information about diagnosis dis-
tribution: we knew that exactly one patient was diseased in
a triplet. We will refer to this research and the correspond-
ing work as triplet analysis. Triplet analysis pinpointed MS
profile peaks that allowed statistically significant (contain-
ing essential information in addition to CA125) discrimi-
nation at the 5 % level between cases and controls long
in advance of the moment of diagnosis of ovarian cancer.
We demonstrated that mass spectra from the low molecular
weight serum proteome carry information useful for early
detection.

The triplet analysis [15] of the ovarian and breast cancers
allowed us to determine statistically significant peaks which
could be potential candidates for biomarkers. We identified
certain MS profile peaks that carry statistically significant
information for the diagnosis of the diseases. In the cur-
rent research, we do not analyse statistical significance of

Table 5 Accuracy of Mondrian
predictors applied to the
breast-cancer data set (20 most
frequent peaks) in the
leave-one-out mode in different
time slots

Time slot Number of samples Accuracy (%) Sensitivity (%) Specificity (%) p value

0–12 57 71.9 73.7 71.1 0.028

1–13 72 77.8 79.2 77.1 0.002

2–14 78 76.9 76.9 76.9 0.002

3–15 78 76.9 76.9 76.9 0.002

4–16 72 77.8 79.2 77.1 0.002

5–17 72 75.0 75.0 75.0 0.002

6–18 60 73.3 75.0 72.5 0.012

7–19 57 71.9 73.7 71.1 0.040

8–20 51 70.6 70.6 70.6 0.026

9–21 54 70.4 72.2 69.4 0.066

10–22 54 48.2 55.6 44.4 0.535

11–23 54 70.4 72.2 69.4 0.058
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Table 6 Top peaks pinpointed
by Mondrian predictors in
different time slots for the
ovarian and breast-cancer
data sets

Month Ovarian cancer Breast cancer

Top peak Peak frequency(%) Top peak Peak frequency(%)

0 1 96.1 19 100.0

1 1 83.0 19 100.0

2 1 72.7 19 100.0

3 2 56.0 19 100.0

4 2 98.2 19 100.0

5 1 95.7 19 100.0

6 1 69.2 19 100.0

7 4 94.1 19 100.0

8 3 73.5 19 100.0

9 3 100.0 19 100.0

10 3 100.0 19 87.0

11 3 100.0 19 100.0

12 2 85.7 19 100.0

13 3 95.0 6 78.4

14 3 85.3 15 100.0

15 2 89.2 14 67.5

16 5 63.3 14 67.5

Table 7 The percentage of non-empty certain predictions output by category-based confidence machines at significance levels ε = 5, 10, 20 % in
different time slots for the ovarian-cancer and breast-cancer data sets

Time slot Ovarian cancer Breast cancer

ε = 5 (%) ε = 10 (%) ε = 20 (%) ε = 5 (%) ε = 10 (%) ε = 20 (%)

0–6 91.7 94.1 81.4 5.3 15.8 50.9

1–7 78.6 94.6 84.5 8.3 23.6 62.5

2–8 58.2 80.1 90.1 7.7 24.4 76.9

3–9 25.9 48.2 88.9 7.7 24.4 76.9

4–10 27.2 56.8 91.4 8.3 19.4 93.1

5–11 21.7 44.9 71.0 8.3 29.2 88.9

6–12 18.3 41.7 58.3 10.0 36.7 90.0

7–13 9.8 21.6 62.8 5.3 14.0 59.7

8–14 2.0 29.4 60.8 3.9 17.7 62.8

9–15 18.3 33.3 73.3 1.9 14.8 64.8

10–16 11.9 29.8 67.9 1.9 14.8 35.2

11–17 9.5 22.6 58.3 1.9 16.7 50.0

particular peaks. However, Mondrian predictors indirectly
pinpointed informative peaks. Despite the different nature of
these methods, observed mostly the same peaks as the ones
that carry statistically significant information for discrimi-
nation between controls and cases according to the triplet
analysis.

We will consider the time slots when Mondrian predic-
tors produced high accuracy on the data sets. In addition,
for ovarian cancer, we are especially interested in time slots

starting from month 10, because this is the first time-slot
when CA125, on its own, does not provide statistically sig-
nificant discrimination between cases and controls.

Mondrian predictors help us identify informative peaks in
the following way. When we run leave-one-out procedure, for
each possible diagnosis we choose the best rule w log(C) +
v log I (p) > θ (for ovarian cancer) or v log I (p) > θ (for
breast cancer), which contains a peak. The selected peak
may not be the same for every possible diagnosis and every
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possible left out patient, but in the time slots we are exam-
ining, the same peak was selected as a part of the best rule,
that is, we choose the same weights and peak number when
leaving out a patient: these are peak 19 for breast cancer in
time slots finishing with months 0–9, 11, 12 and peak 3 for
ovarian cancer in time slots finishing with months 9–11. The
detailed results for ovarian and breast-cancer measurements
taken in different time slots are represented in Table 6. The
table shows the peak which was selected most often (‘top
peak’) and how often it was selected (‘peak frequency’).

Table 8 summarises all peaks selected by two different
approaches: triplet analysis and Mondrian predictors. Those
peaks are shown that were selected in time slots of high inter-
est: slots finishing with months 0–9 for breast cancer and
10–11 for ovarian cancer. Table 8 demonstrates that Mon-
drian predictors pinpoint the same peaks as identified as car-
rying statistically significant information in the triplet setting.

For the ovarian-cancer data, both methods select peak 3 in
time slots finishing with month 10 or 11. These are the time
slots when CA125 on its own does not carry statistically
significant information as shown in the triplet analysis [15].
Ovarian-cancer peak 3 was also observed in research on other
data sets [18]. In addition, peak 3 coincides with peak 7 pre-
viously found in the analysis of similar serial ovarian-cancer
samples and controls in the pilot [17,19] trial which preceded
UKCTOCS. Peak 3 is identified as CTAP III [20] and peak
2 is is potentially platelet factor 4 (PF4).

The predictive ability of CA125 on its own and in com-
bination with peak 3 is demonstrated in Fig. 2. The figure
illustrates that the combination of CA125 with peak 3 starts
growing earlier than log C ; CA125 growth at the moments
close to diagnosis is quicker due to the exponential growth
of CA125. Graphs with similar behaviour for a combination
of CA125 with another peak were presented in the pilot [17]
trial.

For the breast-cancer data, we observe the dynamics of
selected peak 19, whose intensities are supposed to be lower
for cases rather than for controls according to our research.
In Fig. 3, the solid line represents the median dynamics of
peak 19 for breast-cancer cases, the dashed line shows the
peak 19 median calculated for all breast-cancer controls. The
values in the figure were calculated for measurements within
a 9-month window ending with the month shown on the hor-
izontal axis. One can see from Fig. 3 that peak 19 median
intensity drops about 15 months in advance of the moment of

Table 8 Numbers of the most important peaks selected with different
methods for the ovarian and breast-cancer data sets

Method Ovarian cancer Breast cancer

Triplet analysis 2, 3 19

Mondrian predictors 3 19

Fig. 2 Median dynamics of intensity for rules log CA125 and
log CA125 − log(Peak 3) (for ovarian-cancer cases only)

Fig. 3 Median dynamics of intensity for peak 19 in the breast-cancer
data for cases and the median of peak 19 for controls

the diagnosis, which confirms our hypothesis about predic-
tive ability of peak 19 and explains the results we obtained
using this peak when discriminating between breast-cancer
cases and controls. Peak 19 is preliminarily identified as
either ApoCI or ApoCII (or their combination).

6 Discussion

This work introduced the methodology of providing predic-
tions with confidence for MS-based proteomics. First, the
framework of Mondrian predictors allowed us to complement
each prediction with certain information reflecting our con-
fidence in each prediction. Second, application of Mondrian
predictors to the ovarian and breast-cancer experimental data
demonstrated that Mondrian predictors result in high accu-
racy well in advance of the moment of the disease diagnosis.
The accuracy of the proposed methods on the ovarian-can-
cer data rises from 66.7 % at 11 months in advance of the
moment of diagnosis to up to 92.2 % just before the moment
of diagnosis. When applied to the breast-cancer data, the
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methods allowed us to achieve accuracy of 70.4–77.8 % for
up to 9 months in advance of diagnosis.

We constructed a special NCM to take into account data
specific nature (mass spectrometry) and additional aim (bio-
marker identification). However, it might be very straightfor-
ward in the part of search: we used overall scanning within
the set of possible rules. It was done to make general idea
more clear, but it may be one of future tasks to replace it with
a more practical way of search. In addition, we assumed that
only few biomarkers might be informative for the prediction.
Alternative to this is a possible influence of the disease on
many peaks in larger or smaller degree; search methods as
SVM are more relevant here as there are less restrictions on
the rule set. But in this case, a clear interpretation of results
(list of found biomarkers) becomes a more complex task.
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Appendix: logistic regression

Here, we illustrate why methods outputting probabilities
(logistic regression) are less-applicable than conformal pre-
dictors. We applied a well-known method of logistic regres-
sion in leave-one-out to some parts of OC and BC data sets
used in this work. The data sample are sorted by probabilites
predicted by the logistic regression method and then cumu-
lative prediction (dashed lines) are compared to cumulative
true values (solid lines) are presented in the Fig. 4. Gaps
between dashed and solid lines shows that probabilities are
not close to real one in average. Hence, the logistic regression
model is less-suitable for the data than the i.i.d. assumption
made for the conformal predictor.

Conflict of interest IJ has consultancy arrangements with Becton
Dickinson, who have an interest in tumour markers and ovarian cancer.

Fig. 4 Cumulative logistic regression predictions for the OC data (all
samples); for the BC data (samples in the 5–17 month time slot)

They have provided consulting fees, funds for research, and staff but
not directly related to this study. No other financial disclosures.

Ethical approval UKCTOCS is registered as an International Stan-
dard Randomized Controlled Trial, number ISRCTN22488978. The
study was approved by the Joint UCL/UCLH Committees on the Ethics
of Human Research (MREC reference 05/Q0505/57). All trial partici-
pants gave informed written consent for secondary studies.

References

1. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a
Random World. Springer, New York (2005)

2. Menon, U., Gentry-Maharaj, A., Hallett, R., Ryan, A., Burnell,
M., Sharma, A., Lewis, S., Davies, S., Philpott, S., Lopes, A., God-
frey, K., Oram, D., Herod, J., Williamson, K., Seif, M.W., Scott,
I., Mould, T., Woolas, R., Murdoch, J., Dobbs, S., Amso, N.N.,
Leeson, S., Cruickshank, D., McGuire, A., Campbell, S., Fallow-
field, L., Singh, N., Dawnay, A., Skates, S.J., Parmar, M., Jacobs,
I.: Sensitivity and specificity of multimodal and ultrasound screen-
ing for ovarian cancer, and stage distribution of detected cancers:
results of the prevalence screen of the UK Collaborative Trial of
Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 10, 327–
340 (2009)

3. Timms, J.F., Cramer, R., Camuzeaux, S., Tiss, A., Smith, C.,
Burford, B., Nouretdinov, I., Devetyarov, D., Gentry-Maharaj, A.,
Ford, J., Luo, Z., Gammerman, A., Menon, U., Jacobs, I.: Peptides
generated ex vivo from abundant serum proteins by tumour-specific

123



Prog Artif Intell (2012) 1:245–257 257

txopeptidases are not useful biomarkers in ovarian cancer. Clin.
Chem. 56, 262–271 (2010)

4. Tiss, A., Timms, J.F., Smith, C., Devetyarov, D., Gentry-Maharaj,
A., Camuzeaux, S., Burford, B., Nouretdinov, I., Ford, J., Luo, Z.,
Jacobs, I., Menon, U., Gammerman, A., Cramer, R.: Highly accu-
rate detection of ovarian cancer using CA125 but limited improve-
ment with serum MALDI-TOF MS profiling. Int. J. Gynecol. Can-
cer 20, 1518–1524 (2010)

5. Nouretdinov, I., Vovk, V., Vyugin, M., Gammerman, A.: Pattern
recognition and density estimation under the general i.i.d. assump-
tion. Lect. Notes Artif. Intell. 2111, 337–353 (2001)

6. Nouretdinov, I., Burford, B., Gammerman, A.: Application of
inductive confidence machine to ICMLA competition data. In:
Proceedings of The Eighth International Conference on Machine
Learning and Applications, pp. 435–438 (2009)

7. Nouretdinov, I., Li, G., Gammerman, A., Luo, Z.: Application of
conformal predictors to tea classification based on electronic nose.
In: Proceedings of Artificial Intelligence Applications and Innova-
tions, pp. 303–310 (2010)

8. Gammerman, A., Nouretdinov, I., Burford, B., Chervonenkis, A.,
Vovk, V., Luo, Z.: Clinical mass spectrometry proteomic diag-
nosis by conformal predictors. Stat. Appl. Genetics Mol. Biol.
7(2-13)(2008). Available at: http://www.bepress.com/sagmb/vol7/
iss2/art13

9. Bellotti, A., Luo, Z., Gammerman, A., Van Delft, F.W.,
Saha, V.: Qualified predictions for microarray and proteomics
pattern diagnostics with confidence machines. Int. J. Neural
Syst. 15(4), 247–258 (2005)

10. Lambrou, A., Papadopoulos, H., Gammerman, A.: Reliable con-
fidence Measures for medical diagnosis with evolutionary algo-
rithms. IEEE Trans. Inf. Technol. Biomed. 15(1), 93–99 (2011)

11. Papadopoulos, H., Gammerman, A., Vovk, V.: Reliable diagnosis
of acute abdominal pain with conformal prediction. Eng. Intell.
Syst. 17(2–3), 127–137 (2009)

12. Lambrou, A., Papadopoulos, H., Kyriacou, E., Pattichis, C.S., Patti-
chis, M.S., Gammerman, A., Nicolaides, A.: Assessment of stroke
risk based on morphological ultrasound image analysis with con-
formal prediction. In: Proceedings of the 6th IFIP International
Conference on Artificial Intelligence Applications and Innovations.
IFIP AICT 339, 146–153 (2010)

13. Nouretdinov, I., Costafreda, S.G., Gammerman, A., Chervonenkis,
A., Vovk, V., Vapnik, V., Fu, C.H.Y.: Machine learning classifica-
tion with confidence: Application of transductive conformal predic-
tors to MRI-based diagnostic and prognostic markers in depression.
Neuroimage 56(2), 809–813 (2011)

14. Vovk, V., Lindsay, D., Nouretdinov, I., Gammerman, A.: Mondrian
confidence Machine (On-line Compression Modelling Project,
working paper 4): Technical Report. Computer Learning Research
Centre, Royal Holloway, University of London, UK (2003) http://
www.vovk.net/cp/04.jpg

15. Timms, J.F., Menon, U., Devetyarov, D., Tiss, A., Camuzeaux,
S., McCurry, K., Nouretdinov, I., Burford, B., Smith, C., Gentry-
Maharaj, A., Hallett, R., Ford, J., Luo, Z., Vovk, V., Gammerman,
A., Cramer, R., Jacobs, I.: Early detection of ovarian cancer in pre-
diagnosis samples using CA125 and MALDI MS peaks. Cancer
Genomics Proteomics 8(6), 289–305 (2011)

16. Brioschi, P.A., Irion, O., Bischof, P., Bader, M., Forni, M., Kra-
uer, F.: Serum CA 125 in epithelial ovarian: A longitudinal study
cancer. Br. J. Obstet. Gynaecol. 94, 196–201 (1987)

17. Gammerman, A., Vovk, V., Burford, B., Nouretdinov, I., Luo, Z.,
Chervonenkis, A., Waterfield, M., Cramer, R., Tempst, P., Villanu-
eva, J., Kabir, M., Camuzeaux, S., Timms, J., Menon, U., Jacobs,
I.: Serum proteomic abnormality predating screen detection of
ovarian cancer. Comput. J. 52, 326–333 (2008)

18. Nouretdinov, I., Burford, B., Luo, Z., Gammerman, A.:
Data Analysis of 7 Biomarkers: Technical Report. Com-
puter Learning Research Centre, Royal Holloway, Univer-
sity of London, UK (2008) http://www.clrc.rhul.ac.uk/projects/
proteomics_reports.htm

19. Menon, U., Skates, S.J., Lewis, S., Rosenthal, A.N., Rufford,
B., Sibley, K., Macdonald, N., Dawnay, A., Jeyarajah, A., Bast,
R.C. Jr., Oram, D., Jacobs, I.J.: Prospective study using the risk
of ovarian cancer algorithm to screen for ovarian cancer. J. Clin.
Oncol. 23, 7919–7926 (2005)

20. Tiss, A., Smith, C., Menon, U., Jacobs, I., Timms, J.F., Cramer,
R.: A well-characterised peak identification list of MALDI MS
profile peaks for human blood serum. Proteomics 10, 3388–
3392 (2010)

123

http://www.bepress.com/sagmb/vol7/iss2/art13
http://www.bepress.com/sagmb/vol7/iss2/art13
http://www.vovk.net/cp/04.jpg
http://www.vovk.net/cp/04.jpg
http://www.clrc.rhul.ac.uk/projects/proteomics_reports.htm
http://www.clrc.rhul.ac.uk/projects/proteomics_reports.htm

	Conformal predictors in early diagnostics of ovarian and breast cancers
	Abstract
	1 Introduction
	2 Methods
	2.1 Conformal predictors
	2.1.1 Alternative way of presenting the results

	2.2 Mondrian predictors

	3 Data
	4 Algorithms
	5 Results
	5.1 Early detection
	5.2 Ovarian-cancer results
	5.3 Breast-cancer results
	5.4 Informative peaks and comparison to related research

	6 Discussion
	Acknowledgments
	Appendix: logistic regression
	Conflict of interest
	Ethical approval
	References


