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Abstract In this paper, we study the problem of distributed
RDFS reasoning over structured overlay networks. Distrib-
uted RDFS reasoning is essential for providing the func-
tionality that Semantic Web and Linked Data applications
require. Our goal is to present various inference tech-
niques for RDFS reasoning in a distributed environment,
and analyze them both theoretically and experimentally. The
reasoning methods we present are based on bottom-up and
top-down techniques and have been implemented on top of
the distributed hash table Bamboo. Our algorithms range
from forward and backward chaining ones to rewriting algo-
rithms based on magic sets. We formally prove the correct-
ness of the algorithms and study the time-space trade-off they
exhibit analytically and experimentally in a local cluster.

Keywords RDFS reasoning - DHT - Forward chaining -
Backward chaining - Magic sets - Datalog

1 Introduction

With the interest in Semantic Web applications rising
rapidly, the Resource Description Framework (RDF) [50]
and its accompanying vocabulary description language, RDF
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Schema (RDFS) [9], have become one of the most widely
used data models for representing and integrating structured
information in the Web. The Linked Data initiative!, which
aims at connecting data sources on the Web, has already
become very popular and has exposed many datasets using
RDF and RDFS. DBpediaz, BBC music information [41],
government datasets> are only a few examples of the con-
stantly growing Linked Data cloud. Therefore, there is an
emerging need not only for dealing with a huge amount of
distributed data expressed in RDF, but also for being able to
infer new information from it.

Reasoning algorithms have been widely studied in the past
in the areas of logic and artificial intelligence. Two impor-
tantreasoning techniques are forward chaining and backward
chaining. Forward chaining works in a bottom-up fashion. It
starts from a given dataset and using the inference rules pro-
duces new data that is entailed by the given dataset. Backward
chaining works in a top-down manner. It starts from a goal
and finds a proof of this goal using the given dataset and
the inference rules. In this paper, we study similar reasoning
algorithms for RDFS.

Previous work on centralized RDF stores has considered
forward chaining, backward chaining and hybrid approaches
to implement RDFS reasoning and query processing [4,11,
24,76]. In the forward chaining approach, new RDF state-
ments are exhaustively generated from the asserted ones
until the full RDFES closure is computed. In contrast, a back-
ward chaining approach only evaluates RDFS entailments on
demand, i.e., at query processing time. Intuitively, we expect
that a forward chaining approach which materializes all infer-
ences has minimal requirements during query answering, but

! http://linkeddata.org/
2 http://dbpedia.org
3 http://www.data.gov/, http://data.gov.uk/
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needs a significant amount of storage for all the inferred data.
On the other hand, a backward chaining approach has mini-
mal storage requirements, at the cost of an increase in query
response time. However, in the case of frequent updates in the
RDFS database, computing the RDFS closure may become
very expensive and time-consuming and can be outperformed
by the backward chaining approach. There is a time-space
trade-off between these two approaches [68], and only by
knowing the query and update workload of an application,
one can determine which approach would suit it better. One
of the challenges that we undertake in this paper is studying
this trade-off in a distributed environment, and more specific
using distributed hash tables.

P2P networks and especially distributed hash tables
(DHTs) [5] have gained much attention in the past years,
given the fault-tolerance and robustness features they can
provide to Web-scale applications. DHTs have been pro-
posed for the storage and querying of RDF data at Web scale
by [1,12,27,45]. However, these works are solely concerned
with query processing for RDF data, and pay no attention
to RDFS reasoning. The first DHT-based RDF store that has
dealt with RDFS reasoning in the past is BabelPeers [7,27].
It is implemented on top of Pastry [60] and supports a sub-
set of the SPARQL query language [58]. BabelPeers uses
a forward chaining approach to provide the RDFS inference
capability required to answer the supported class of SPARQL
queries.

Apart from DHTs, other distributed and parallel com-
puting platforms have been proposed lately for the RDFS
reasoning. MARVIN [55,56] supports a forward chaining
approach for RDFS reasoning and runs on DAS-3 (Dis-
tributed ASCI Supercomputer). In [72], a different forward
chaining approach is proposed based on MapReduce [15].
The work in [75] considers the problem of producing the full
RDFS closure of a given dataset using parallel computing
techniques such as workload partitioning.

The above recent approaches demand locally deployed
high-end infrastructures whose cost can be very high in many
cases. Our work focuses on DHT-based algorithms which can
also run on commodity machines deployed all over the world,
as it is the case with many other P2P applications.

Contributions. In this paper, we design and implement
both forward and backward chaining algorithms for RDFS
reasoning and query answering on top of the Bamboo DHT
[59]. In addition, we present an algorithm which works in a
bottom-up fashion using the magic sets transformation tech-
nique [8]. Our algorithms have been integrated in the system
Atlas?, a full-blown open source P2P system for the distrib-
uted processing of SPARQL queries on top of DHTs. In this
paper, we only concentrate on the functionality offered by
Atlas for RDFS reasoning. Discussions of the architecture,

4 http://atlas.di.uoa.gr
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query optimization techniques and various applications of
Atlas can be found in [33,34,36,37].

To the best of our knowledge, our backward chaining algo-
rithm, originally presented in [35], is the first distributed
backward chaining algorithm proposed for RDFS reasoning
in a decentralized environment. Moreover, a magic sets trans-
formation technique for distributed RDFS reasoning that we
discuss in this paper has not been studied in the literature
before. We prove the correctness of our algorithms and pro-
vide a comparative performance study both analytically and
experimentally.

Preliminary results of this research have appeared in [35].
The current paper revises [35] and presents the following
extensions and additional contributions.

— We base our data model on the minimal deductive sys-
tem mrdf of [51] using a Datalog-like notation of the
rules. In [51], the authors present a small fragment of the
RDFS language which preserves the core functionalities
and avoids certain complexities. The set of inference rules
of this fragment is truly useful for modeling an applica-
tion domain, and leaves out vocabulary and inferences
that capture the internals of RDF and RDFS.

— We give formal proofs for the termination, soundness
and completeness of both forward and backward chaining
algorithms based on the semantics and inference rules of
[51].

— We propose a slightly different algorithm for the for-
ward chaining approach that deals with an important case
of redundant triple generation in the forward chaining
algorithm of [35]. Redundant triple generation is a prob-
lem in all the forward chaining approaches of distributed
RDFS reasoning that have been published in the litera-
ture [56,72,75]. In this paper we show how we can avoid
redundant triple generation for an important special case
in a distributed setting.

— We design and describe the magic sets transformation
algorithm [8] for bottom-up RDFS inference and show
how it can be implemented in a distributed fashion.

— In the experimental part of our work, we demonstrate the
effect of redundant triple generation in our system. In
addition, we compare the backward chaining algorithm
with the algorithm based on the magic sets transforma-
tion and show that the backward chaining algorithm per-
forms better in our system. The behaviour of our system
is explored in a local cluster with bigger datasets than the
ones we have used in [35].

— We provide an extensive survey of related work in the
area of RDFS reasoning.

Since proving correctness of distributed algorithms is an
important topic of theoretical distributed systems research
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[49], we consider our theoretical analysis to be one of the
most important contributions of our work and an advance-
ment in the area of distributed RDFS reasoning. Previous
related research in this area has concentrated mostly on prac-
tical issues [7,18] and ignored theoretical ones. Proof tech-
niques similar to the ones we develop here can be used to
prove the soundness and completeness of the algorithms pro-
posed by related papers, e.g., [62,72]. Thus, we hope that the
techniques of this paper will actually motivate other authors
to produce similar theoretical results.

The organization of the paper is as follows. Section 2
presents background knowledge required for the comprehen-
sion of the rest of the paper. Section 3 presents the architecture
of the system as well as some basic protocols that are used by
the algorithms presented in this paper. In Sect. 4, we present
how a forward chaining algorithm can be implemented in a
DHT and give formal proofs for the correctness of the algo-
rithm. In addition, in Sect. 4.5, we discuss the issue of redun-
dant triple generation in forward chaining algorithms for the
RDFS reasoning. Section 5 presents a backward chaining
algorithm with its correctness proofs, while Sect. 6 describes
the algorithm based on the magic sets transformation. In Sect.
7, we give an analytical cost model of our algorithms, while
in Sect. 8 we present the results of our experimental evalua-
tion. Finally, Sect. 9 presents a survey of work in the related
areas of RDFS reasoning and distributed systems. Section 10
concludes the paper and Sect. 11 discusses open issues future
directions.

2 Preliminaries

In this section, we present concepts, terminology and results
that will be used throughout the paper. We start with the basics
of RDF(S) and the SPARQL query language. Then, since we
base our data model on the minimal deductive system of [51],
we present useful results from [51].

2.1 RDF(S) and SPARQL

RDF [50] is a W3C standard and the most widely used
data model for representing and integrating structured infor-
mation in the Semantic Web. In RDF, a Web resource is
identified by a Uniform Resource Identifier (URI), and infor-
mation about resources is encoded using subject-property-
object triples. The subject of a triple identifies the resource
that the statement is about, the predicate identifies a property
or a characteristic of the subject, while the object gives the
value of the property. These values can be either URIs or
constants from primitive types called literals (such as strings
or integers). In addition, RDF allows for blank nodes which
are identifiers for unknown values. More formally, we define
an RDF triple as follows.

Definition 1 Let U, L and B denote the sets of URISs, liter-
als, and blank nodes, respectively. These sets are pairwise
disjoint. An RDF triple is a tuple (s, p, o) from (U U B) x
U x (U U L U B), where s is the subject, p is the property
and o is the object of the triple.

We will call a triple ground if it contains no blank nodes.

The vocabulary description language developed for RDF
is another W3C standard called RDF Schema (RDFS) [10].
RDFS extends RDF to allow grouping and connecting
resources by defining classes and properties. RDF data as
well as RDFS descriptions (we will further use the term
RDF(S) to refer to both) can be written as RDF triples of
the above form. We will call a set of RDF(S) triples an
RDF(S) database or an RDF(S) graph. An RDF(S) graph is
ground if the set of triples of the graph contains only ground
triples.

SPARQL [58] is the W3C standard query language used
for querying RDF data. The core construct of SPARQL is
a basic graph pattern, i.e., a conjunction of triple patterns.
A triple pattern is a subject-predicate-object tuple where the
components can be either constants or variables. More for-
mally, we define a triple pattern as follows.

Definition 2 Let U, L and V denote the pairwise disjoint sets
of URIs, literals and variables, respectively. A triple pattern
isatuple (s, p, o) from (UUBUV)x (UUBUYV) x (UU
BULUYV).

Notation The following abbreviations of some predefined
RDF(S) URIs will be used in the rest of the paper: sc for
rdfs:subClassOf, sp for rdfs:subPropertyOf,
type for rdf : type, domfor rdfs:domainand range
for rdfs: range.5

2.2 A Minimal Sound and Complete Deductive
System for RDF(S)

To support RDFS reasoning, one could use the sound
RDFS inference rules presented in RDF Semantics [26] or
their extension given in [29] which is also complete. We
choose to base our work on the minimal set of inference
rules of [51] which we briefly present here. This set of infer-
ence rules covers only the subset of the RDFS vocabulary
which is truly useful for modeling an application domain,
and leaves out vocabulary and inferences that capture the
(possibly complicated) internals of RDF and RDFS.

In [51,52], the authors start with a subset of RDF and
RDFS vocabulary which they call pdf. The only RDFS

5 Namespaces rdf and rdfs are the namespaces of the core RDF and
RDEFS vocabulary defined by the URIs http://www.w3.org/1999/02/
22-rdf-syntax-ns and http://www.w3.0rg/2000/01/rdf-schema, respec-
tively.
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Table 1 pdf inference rules

1 (simple)

2 (subproperty)

3 (subclass)

4 (typing)

5 (implicit typing)

6 (subproprerty reflexivity)

7 (subclass reflexivity)

(a) % foramapu: G — G
(a) (A,sp,B)(B,sp,C)

() & for G' € G
(b) (A,sp,B)(X,AY)

(A,sp,C) (A,B)Y)
(A,sc,B)(B,sc,C) (A,sc,B)(X,type,A)
(@) (A.5¢.C) (b) (X.type.B)
(A,dom,B)(X,A,Y) (A,range,B)(X,A.Y)
() (X,type,B) (b) (Y,type,B)
(A,dom,B)(C,sp,A)(X,C.Y) b (A,range,B)(C,sp,A)(X,C.Y)
(@) (X.type.B) (b) (V.1ype.B)
) (XLAY)
@ G ®) G forp € pdf
A,sp,B A,p.X
(c) 7(14'_5,;,14;/(’3__3[),3) (d) ((A,s[;,A)) for p € {dom, range}
A,sc,B X,p,A
(a) 7(14'_5,((;‘5?8,30'8) (b) ((A,S‘,';A)) for p € {dom, range}

predefined terms allowed in the pd f vocabulary are sp, sc,
dom, range and type. Muifioz et al. [51] and Munoz et
al. [52] give a deductive system over a minimal set of infer-
ence rules over pdf and prove that it is sound and complete.
For ease of the reader, we present below some of the def-
initions and results of [51] that we will use throughout the
paper. Table 1 shows the inference rules used for the pdf
fragment.

We now give the definition of a pd f proof. First, we define
the concept of a map. A map is a functionu : UUBUL —
U U B U L preserving URIs and literals, i.e., u(u) = u for all
u € UUL. Given an RDF(S) graph G, £ (G) is defined as the
set of all triples (u(s), u(p), n(o)) such that (s, p,0) € G.
In [51], the authors overload the meaning of a map and speak
of amap u from G| to G2 (u : G; — G»), if the map p is
such that «(G1) is a subgraph of G».

Definition 3 Let G and H be RDFS graphs. We will say that
there is a pdf proof of H from G (denoted by G (4 H)
iff there exists a sequence of graphs Py, Pi, ..., Py, with
Py =G and P, = H, and for each j (1< j < k) one of the
following cases holds:

— there exists amap u : P; — Pj_j (rule (1a)),

- P C Py (rule (1b)),

— there is an instantiation % of one of the rules (2)—(7),
suchthat R € Pj_jand Pj = Pj_j UR'.

Muiioz et al. [51] constrain the pdf subset further by dis-
allowing pd f vocabulary as subject or object of a triple. The
new subset of RDFS is called minimal RDFS and denoted
by mrdf. This is the subset of RDFS we will use in this
paper. A minimal RDFS triple (mrdf-triple) is a ground pdf
triple having no pdf vocabulary as subject or object [51].
A mrdf-graph is a set of mrdf-triples. Based on this notion
and the Definition 3 of a pdf proof, the authors of [51] define
amrdf proof as follows.

Definition 4 Let G, H be mrdf-graphs. We call a mrdf
proof of H from G, G t,,qr H, if and only if there is a
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pdf proof of H from G involving solely the rules (1b), (2),
(3) and (4).

Each pair (Pj_1, Pj), 1 < j < kis called a mrdf step
of the proof or mrdf proof step, which is labeled by the
respective instantiation of the rule applied.

Let = be the RDFS entailment relation defined in [26].
The following result presented in [51] shows that the norma-
tive semantics of RDFS are preserved by the deductive sys-
tem k,,q5 for those mrdf-graphs that do not contain triples
of the form (x, sp, x) or (x, sc,x) forx €e U U L.

Theorem 1 Let G and H be mrdf-graphs. Assume that H
does not contain triples of the form (x, sp, x) nor (x, sc, x)
forx e UUL. ThenG = H < G byrar H.

In the rest of the paper, we base our work on the minimal
RDFS fragment mrd f of [51]. Following the above theorem
and by assuming ground graphs, our algorithms focus on the
pdf inference rules 1(b) and (2)—(4) of Table 1. In addi-
tion, we do not consider reflexive triples such as (x, sc, x)
or (x, sp, x). We will use the deductive system for mrdf to
prove that our algorithms are sound and complete.

3 System Description and Data Model

The algorithms presented in this paper are based on structured
overlay networks where nodes are organized according to a
DHT protocol. DHTs are structured P2P systems which try
to solve the lookup problem; given a data item x, find the node
which holds x. Each node and each data item are assigned
a unique m-bit identifier using a hashing function such as
SHA-1. The identifier of a node can be computed by hashing
its IP address. For data items, we first have to compute a key
and then hash this key to obtain an identifier id. The lookup
problem is then solved by providing a simple interface of
two requests; PUT(id, x) and GET(id). In Pastry [60], when
anode receives a PUT request, it efficiently routes the request
to anode with identifier that is numerically closest to id using
atechnique called prefix routing. This node is responsible for
storing the data item x. In the same way, when a node receives
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a GET request, it routes it to the responsible node to fetch data
item x. Such requests can be done in O (logn) hops, where n
is the number of nodes in the network. More details about the
routing protocol of Pastry can be found in [60]. Bamboo [59]
improves on Pastry by using more incremental algorithms for
node joins and neighbour management. This allows Bamboo
to withstand very dynamic changes in network membership
i.e., it is resilient to churn.

The algorithms described in this paper have been inte-
grated in the system Atlas®, a full-blown open source P2P
system for the distributed processing of SPARQL queries on
top of DHTs. All nodes in the network are equal and can
accept either a request for storing RDF(S) data in the system
or a request for evaluating a SPARQL query. The user can
insert both RDF data and RDFS ontologies in the form of
RDF documents which can be expressed in RDF/ XML or
NTRIPLE format.

3.1 Data Model and Query Language

Our system handles both RDF and RDFS data containing
mrdf graphs as defined in Sect. 2.2.

The query language supported by our system is a subset
of SPARQL queries and, in particular, basic graph pattern
queries. A basic graph pattern (BGP) SPARQL query is a
conjunction of triple patterns and can be expressed as follows:

M1, .0, Mg 2 (81, p1,o1) A (s2, p2,02) A= A (Su, Pns On),

where ?x1, ..., 7xx € V are variables and (s;, p;i, 0;) is a
triple pattern where at least one of the s;, p;, 0; is a con-
stant. Variables ?x1, ..., ?x; are called answer variables and
each variable ?x; appears in at least one triple pattern. In the
description of the reasoning algorithms we present below,
we focus on atomic queries to demonstrate the differences
among the various algorithms. It is easy to incorporate these
reasoning techniques to query processing algorithms for eval-
uating BGP SPARQL queries, such as the ones proposed in
[37,45,46], where the decomposition of the queries always
leads to the evaluation of atomic queries.

3.2 Architecture

A higher level view of each node’s architecture as imple-
mented in Atlas is shown in Fig. 1. On the top layer of the
architecture, the API enables a user to store RDF(S) data
in the network or pose a SPARQL query. The basic com-
ponents of Atlas are the store and query processors. Upon
receiving a store request, the storage manager of the node

6 http://atlas.di.uoa.gr
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Fig. 1 System architecture

is responsible for decomposing the document into RDF(S)
triples and initiating the protocol that distributes the triples in
the network. The triples are indexed in various nodes of the
network according to a specific indexing scheme explained
later. If forward chaining is chosen as the reasoning scheme,
the RDFS engine is responsible for making the appropriate
inferences according to the pdf inference rules. Then, the
store processor distributes the inferred triples in the network
as well. Every triple that arrives at the responsible node is
stored in the local RDF(S) database of this node.

When a node receives a query request, the SPARQL trans-
lator transforms the query to an equivalent conjunctive query
form based on the system’s internal query representation.
Then, the query evaluation engine is responsible for the dis-
tributed evaluation of the query. If backward chaining is the
chosen reasoning scheme, the RDFS engine is also in charge
of carrying out the distributed reasoning taking into account
the pdf inference rules. Both the store processor and the
query processor are able to communicate with the local data-
base of each node. We have used SQLite’ as the local data-
base of each node®. At the lower levels of the architecture
lies the Bamboo network layer which is responsible for the
communication among the nodes.

7 http://www.sqlite.org/

8 In previous versions of Atlas, the Berkeley DB database was used
which is included in the Bamboo implementation and used by Bamboo
for various database tasks. However, we found that this implementa-
tion is inefficient and have moved to SQLite, a lightweight relational
database instead.

@ Springer
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In this paper, we concentrate on the functionality offered
by Atlas for RDFS reasoning and discuss only the rele-
vant components. A complete system-level description of
Atlas can be found in [36]. As we have already mentioned,
Atlas uses the Bamboo DHT [59]. However, our algorithms
for RDFS reasoning to be presented in Sect. 4, 5, 6 are
DHT-agnostic; they can be implemented on top of any DHT
network.

3.3 Basic Storing Protocol

In the following, we describe the basic protocol used for
indexing RDF(S) triples in the network. When the backward
chaining approach is used, this protocol is used exactly as
described below, while, when forward chaining is used, it is
augmented with the computation of additional inferred triples
as described in Sect. 4.

We have adopted the triple indexing algorithm originally
presented in [12] where each triple is indexed in the DHT
three times. This algorithm is by now standard in DHT-based
systems for RDF(S) stores. The hash values of the subject,
property and object of each triple are used to compute the
identifiers that will indicate the nodes responsible for storing
the triple. Whenever a node receives a request to store a set
of triples, it sends three DHT PUT requests for each triple,
using as key the subject, property and object, respectively,
and the triple itself as the item. The key is hashed using hash
function SHA-1 [63] to create the identifier that leads to the
responsible node where the triple is stored. We call that node
the responsible node for this key or identifier. When a node
is responsible for a key which is a class name C (responsible
node for class C), it will have in its local database all triples
that contain class C either as a subject or as an object (class C
cannot be a property). Each node keeps its triples in its local
database consisting of a single relation with four columns
(triple relation). The first three columns correspond to the
three components of the triples stored, while the fourth col-
umn indicates which of the three components is the key that
led the triple to this node.

Since an RDF(S) database is actually a graph, we can
exploit the fact that many of the triples share a common key
(i.e., they have the same subject, property or object) and end
up to be stored in the same node. So, instead of sending
different PUT messages for each triple, we group them in a list
triples based on the distinguished keys that exist, hash these
keys to obtain identifiers and send a MULTIPUT(id, triples)
message for each identifier. The node responsible for the
identifier id, which receives this message, stores in its local
database all triples included in the list triples.

We should point out that we handle data and schema triples
in a uniform way. While other approaches, such as [18,72,
75], require that every node in the system keeps all the RDFS
triples, and in some cases in main memory, in our system we

@ Springer

adopt a more generic approach where no global knowledge
about the schema is required. RDFS triples are distributed in
the same way that RDF triples are and all of them are stored
on the local SQLite database of the relevant node.

3.4 Basic Querying Protocol

In this section, we describe the basic protocol used in our
system to answer an atomic SPARQL query consisting of a
single triple pattern (s, p, o) where at least one of s, p, o
is a constant.

Whenever a node receives a query request, it should decide
to which node it should route the request to evaluate the
query. The query requestor node chooses a key from the triple
pattern and hashes it to create the identifier that will lead to
the appropriate node. The key is the constant part of the triple
pattern. When there is more than one constant parts, the query
requestor node selects the keys in the order “subject, object,
property” based on the fact that we prefer keys with lower
selectivity and the assumption that subjects are more selective
than objects which are more selective than properties”. At the
destination node, all triples that contain this key will be found
in the local database due to our indexing scheme. The triple
pattern will be matched with these triples and the bindings of
the triple pattern’s variables will be returned to the requestor
node.

This protocol is used as is for the forward chaining
approach and the magic sets rewriting algorithm. For the
backward chaining approach, it is augmented with the appro-
priate actions to include the prd f inference rules as described
in Sect. 5.

Note that we do not deal with answering queries that are
triple patterns with no constant parts. The answer to such
queries is the whole database of triples stored in all the nodes
of the network. These queries can be computed by a broad-
casting algorithm but this is out of the scope of this paper.

4 Distributed Forward Chaining

In this section, we describe our forward chaining algorithm
and its implementation in a DHT. In all the algorithms of
this paper, we choose to encode the pdf inference rules as
Datalog rules and use ideas from Datalog query evaluation.
Thus, we start by introducing the relevant Datalog notation.

4.1 Datalog Rules

Following the notation of Datalog with extensional database
relation (edb) triple and the intensional database relation

9 This simple scheme was previously used in [45,66] and suffices for the
purposes of this paper. In (Kaoudi et al. 2010b) we study relevant issues
in the context of conjunctive triple pattern queries using selectivities.
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Table 2 pdf inference rules in

Datalog Rule Head Body

1 newTriple (X, P, Y) triple(X, P, Y)

2 newTriple (X, sp, Y) triple(X, sp, Z), newTriple(Z, sp, Y)

3 newTriple (X, P, Y) triple(X, P1l, Y), newTriple(Pl, sp, P)
4 newTriple (X, sc, Y) triple(X, sc, Z), newTriple(Z, sc, Y)

5 newTriple (X, type, Y) newTriple (X, type, Z), triple(z, sc, Y)
6 newTriple (X, type, Y) newTriple(X, P, Z), triple(P, dom, Y)

7 newTriple (X, type, Y) newTriple(Z, P, X), triple(P, range, Y)

Algorithm 1: FC*: Forward chaining algorithm

1 event n.STOREMSG(id, triples, k, inf)
I*inf Triples: list holding all inferred triples */
localTriples=triples U GETTRIPLESFROMDB (id);
newTriples=INFER (localTriples);
pairs = {};
forall € {newTriples \ infTriples \ localTriples} do
pairs.put(t.subject,t);
pairs.put(t.property,t);
pairs.put(t.object, t);

o X NN R W N

forall k' € pairs.keys() do

id' =HASH (k');

triples’ = pairs.get (k');

sendto id’ .STOREMSG(id’, triples’, k', true);
infTriples.add(triples’);

—
PN =S

14 INSERTTODB(triples, inf);
15 end event

(idb) newTriple, the pdf inference rules can be written as
shown in Table 2. The edb relation triple denotes triples
that are explicitly given in an RDF(S) dataset, while the idb
relation newTriple denotes triples that have been inferred
by the rules. An important aspect of the above set of rules is
that all rules are linear (with at most one recursive predicate
in their body) and safe (all variables appear as an argument
in the predicates of the rule bodies).

In our notation, arguments beginning with a capital let-
ter (such as X and Y) denote variables, and arguments start-
ing with a lowercase letter denote constants. Rule predicate
names always start with a lowercase letter. To avoid confu-
sion, we refer to the second element p of an RDF triple (s,
p, o) with the word property and to a rule predicate name
with the word predicate or relation. In comparison with the
rules of the deductive system pdf of [51], rule 1 is actually
rule (1b) (simple), rules 2 and 3 represent rules (2) (subprop-
erty), rules 4 and 5 represent rules (3) (subclass), and rules
6, 7 represent rules (4) (typing).

4.2 Algorithm Description

Let us now introduce the notation that will be used in the
algorithms description. Keyword event precedes every event

handler for handling messages, while keyword procedure
declares a procedure. In both cases, the name of the han-
dler or the procedure is prefixed by the node identifier in
which the handler or the procedure is executed. Local proce-
dure calls are not prefixed with the node identifier. Keywords
sendto and receive declare the message that we want to send
to a node with known either its identifier (thus DHT routing
will be used) or the IP address (thus the node is immedi-
ately contacted), and the message we receive from a node,
respectively.

Our forward chaining algorithm, called FC*, is activated
every time a set of RDF(S) triples is inserted in the net-
work. As explained in Sect. 3.3, whenever a node receives
a request to store a set of triples G, it sends three DHT PUT
requests for each triple, using as key the subject, property
and object respectively, and the triple itself as the item. In the
case of FC*, instead of using a PUT request, we use a vari-
ation of the MULTIPUT request, i.e., a STOREMSG message.
Algorithm 1 shows in pseudocode how FC* works. Suppose
a STOREMSG(id, triples, k, inf) request arrives at node n
which is responsible for the identifier id and a set of triples
triples should be stored in the local database of n. k is the
key that led triples to this node and inf is a boolean value
thatindicates whether triples are inferred triples or not. First,
node n retrieves from the local database all triples that contain
the key k either as a subject, property or object and puts them
inlistl/ocalTriples together with triples. Then, it computes
the inferred triples from this list according to the Datalog
rules of Table 2 using local function INFER(localTriples).
Function INFER(localTriples) assigns the triples which
have originated from the initial RDF(S) graph to the edb
relation triple and the triples which have been inferred
from an inference rule to the idb relation newTriple!?.
It outputs the idb relation newTriple by matching the
triples with the antecedent of the rules of Table 2 in a data-
driven manner. The new facts of relation newTriple gen-
erated by function INFER form a list infTriples with all
inferred triples. In this way, the node can check when it

10 Tn the local database of each node there is information of whether a
triple is inferred or not.
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Fig. 2 Example RDF(S) class
hierarchy

reaches a fixpoint where no new triples can be generated.
Node n groups the newly inferred triples based on their dis-
tinguished keys and puts them in a map pairs (lines 5-8).
For each unique key k' and newly triples triples’ in the
map pairs, a new STOREMSG request is sent to the net-
work. The initial set of triples friples is stored in node’s
n local database using local function INSERTTODB. The
algorithm terminates when all nodes have reached a fix-
point.

Invoking FC* every time new triples are stored in the net-
work allows us to compute the closure of the stored triples
under the pdf inference rules and the mrdf semantics (we
prove this formally below). After FC* has terminated, query
evaluation can be performed exactly as described in Sect.
3.4. The query request is routed to the node that is responsi-
ble for the key of the triple pattern and all triples (initial and
inferred) matching this triple pattern are found locally at its
database.

Figure 2 depicts a small RDFS class hierarchy of the cul-
tural domain [40]. In Fig. 3, we demonstrate an example
of how FC* works based on this RDFS hierarchy. Figure
3a shows the initial triples that are indexed in the nodes of
the network. The key of each triple that led to a specific
node is underlined. Nodes n| and n, infer two triples each
using rules 1 and 4 of Table 2 (Fig. 3b). Inferred triples are
shown in bold. These triples are sent to be stored to the cor-
responding nodes of the network. Then, node n, will infer
two more triples by considering the already inferred triple
(painter, sc, person) and the two initial triples
stored in its local database using rule 4 of Table 2 (Fig. 3c).
These two triples are finally sent to be stored at nodes ng4, n;s
and ng. The final state of the nodes’ databases is depicted in
Fig. 3d.

Suppose now that a user submits the query “Find all the
subclasses of class artist” to a node of the network. This query
can be expressed as the triple pattern (X, sc, artist)
and will be routed to node n, which is responsible for the
key artist. The answer will be formed at this node since
all triples will be found at its local database.

Note that in Fig. 3, we have omitted showing the triples
indexed by their property for simplicity. In this case, all triples
of the RDFS hierarchy are also indexed to the node responsi-
ble for the key sc and thus, all inferences are also generated
by this node. This leads to sending redundant messages to
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the network, an issue we further discuss in Sect. 4.5 and
demonstrate in our experimental evaluation.

4.3 Termination, Soundness and Completeness

In this section, we give formal proofs for the termination,
soundness and completeness of algorithm FC*.

Theorem 2 (Termination) Algorithm FC* terminates.

Proof Nodes in the network execute the for loop of lines
4-12 of FC* a finite number of times. The loop is executed a
finite number of times since there is a finite upper bound on
the number of triples entailed by a given finite mrdf graph
G (O(|G?|) according to [51]). The loop propagates inferred
triples in other nodes of the network hence FC* terminates.

O

In the following, we prove that algorithm FC* is sound
and complete under the assumptions that network is stable
and messages are always delivered after a finite amount of
time to have clear semantics. We discuss issues that arise at
the presence of node failures at Sect. 4.4.

By sound, we mean thatif H is the RDF(S) graph produced
by the FC* algorithm and stored in the network, then G = H
where G is the initial graph. By complete we mean that if G
is the RDF(S) graph initially stored in the network, H any
graph and G = H, then all triples of H will be stored in the
network after the completion of FC*.

In the proofs of soundness for the forward and backward
chaining algorithms, we will use the notion depth of an appro-
priate kind of finite tree that captures the relevant computa-
tion. We define this notion as usual. The depth of a node in a
tree is the length of the path from the root to this node. The
depth of a tree is the maximum depth of a node in the tree.

An execution of FC* on top of a DHT can be modeled
using the following notion of computation tree.

Definition 5 A computation tree is a finite tree with the fol-
lowing properties:

(1) Every node is of the form q; : (H(‘;ld, Hr’;ew) where g; is a
DHT node and H/ 4, Héew are non-empty sets of triples.
(2) For every node a; : (H(’)ld, HI’;eW) we have the following:

- Héld is a set of triples stored at the local database of
node a;.

— H{, is the set of triples computed at node a; during
some step of FC* by applying some mrdf rules in

parallel.

(3) For every child iyl (Héfg] , Hé;;vl) of node a;, we have
that Hl ., N Holfc'll is non-empty and is the set of new
triples produced at node a; during some step of FC* and

sent to node a;4+1 where FC* continues.
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(painter, sc, artist)
(flemish, sc, painter)
(painter, sc, artist) (cubist, sc, painter)
(flemish, sc, painter)
(cubist, sc, (sculptor, sc, artist) (flemish, sc, artist)
(cubist, sc, artist) (sculptor, sc, artist)
(painter, sc, artist) ) )
(sculptor, sc, artist) (cubist, sc, painter) (painter, sc, artist) .
(artist,sc, person) responsible (sct_JIptor, sc, artist) (cubist, sc, painter)
key node (artist,sc, person) ke responsible
artist node n1 @ ‘y node
painter node n2 artist node n1
scultptor node n3 (painter, sc, person) pallft‘t?f noge ng
: N ’ scultptor node n
ﬂceunlz::th zggg :g (flemigh, sc, painter) (sculptor, sc, person bt Rodend (flemigh, sc. painter)
do n6 flemish node n5
person node n person node n6

i (artist, sc, person)
(a) Initial triples stored

painter, sc, artist)
flemish, sc, painter)
cubist, sc, painter)
painter, sc, person)

(sculptor, sc, artist)
(sculptor, sc, person)

(flemish, sc, person)
(cubist, sc, person)

subist, sc, painter)
(cu bist, sc, artist)

(artist,sc, person) key responsible
(cubist, sc, artist) i node
(flemish, sc, artist artist node nt
painter node n2 . )
scultptor node n3 (flemisp, sc, painter)
cubist node n4 (flemigh, sc, artist)
flemish node n5
person node n6

(artist;sc, person)
(painter, sc, person)
(sculptor, sc, person)

(¢) Node ns infers some more triples

Fig. 3 FC* running example

A computation tree offers a nice pictorial representation of
the computation of FC*. Figure 4 shows the computation tree
for the example shown in Fig. 3. The root of the tree corre-
sponds to the activation of FC* when a message STOREMSG
arrives at a DHT node. The nodes of the tree at increas-
ing depths allow us to understand FC* proceeding in rounds
although no such strong assumption is used by the algorithm.

Theorem 3 (Soundness) Let G be the initial graph stored in
the network and H the set of triples in the local databases of
nodes after FC* has terminated. Then it holds that G |= H.

Proof The proof is by induction on d, the depth of the com-
putation tree representing the execution of FC*.

Base case: d = 1 (the root is d = 0). In this case, FC*
runs at the network node represented by the root of the tree,

(artist, sc, person)

(b) Nodes n1, ns infer some triples

(painter, sc, artist)
(flemish, sc, painter)
(cubist, sc, painter)
(painter, sc, person)

(sculptor, sc, artist)
(sculptor, sc, person)

(cubist, sc, painter)

(painter, sc, artist) bist, sc, artist)

(sculptor, sc, artist) (cubist, sc, person)

(artist,sc, person) key responsible

(cubist, sc, artist) e ngggtren

(flemish, sc, artist painter node n2 (flemish, sc, painter)
scultptor node n3 sh, sc, artist)
cubist node n4 dh, sc, person)
flemish node n5
person node n6

(artist, sc, person)
(painter, sc, person)
(sculptor, sc, person)
(flemish, sc, person)
(cubist, sc, person)

(d) Final triples stored

produces k new sets of triples and sends them to k nodes.
FC* runs again at these k nodes, but no new triples are com-
puted. A sequence of graphs (mrdf proof according to Def-
inition 4) that shows G ;4 H can easily be constructed.
The first element of the sequence is G followed by k subse-
quences representing the k sets of triples mentioned above
(the order of the subsequences does not matter). Each of the
k sets of triples can be represented by as many proof steps
as the number of triples it contains. Each step is the result of
the application of a pd f rule to the set of triples produced in
the immediately previous proof step.

Inductive step: We assume that the theorem holds for exe-
cutions of FC* with computation trees of depth d and we
will show that the theorem holds for executions of FC* with
computation trees of depth d + 1.
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Fig. 4 Computation tree of the . responsible
DHT node nl ey node
artist node ni
ainter node n2
sculfptor node n3
cubist node n4
emis node n5
person node n6

painter, sc, artist

H'ae= | sculptor, sc, artist

artist,sc, person

painter, sc, person
[Seulptor, sc, person

artist, sc, person

sculptor, sc, artist
sculptor, sc, perso

flemish, sc, painte
H?04= cubist, sc, painter
painter, sc, person

H2 4= painter, sc, person

sculptor, sc, person
2new=

painter, sc, artist
sculptor, sc, artist

flemish, sc, painter
flemish, sc, artist

5 artist,sc, person
Ho4=| flemish, sc, artist

We take the computation tree T of depth d + 1 corre-
sponding to the execution of FC* on the stored graph G and
prune all the nodes at depth d + 1. The resulting tree 7’ has
depth d and the theorem holds for the corresponding exe-
cution of FC*. Hence, if H’ is the set of triples in the local
databases of the DHT nodes as represented by the tree T’
then G +,,,4f H'. Now we can continue the proof of H’
from G by adding the steps corresponding to the nodes we
pruned from T to arrive at a proof H. This is done as in the
base case.

Since we have proved G ¢ H, Theorem 1 of Sect. 2
givesus that G |= H. O

Theorem 4 (Completeness) Let G and H be mrdf graphs
with H not containing triples of the form (x, sp,x) nor
(x,sc,x) for x € U U L. Assume that graph G is stored
in the network. If G |= H, then the triples of graph H will be
also stored in the network when algorithm FC* terminates.

Proof Using Theorem 1 and the fact that G = H, we have
that G Fy-qr H. We will prove the result using induction
on k, the number of mrdf proof steps that show G 4
H . Using the notation of Definition 3, we assume that Py =
Gand P, = H.

Base case (k = 1): H is derived from G by the application
of a single rule r of the deductive system of Table 1.

— If r is rule (1b) then H C G and thus, all triples of H
will be stored in the network.

— Ifrisoneoftherules (2)—(4), then there is an instantiation
% of rule r such that R € G and H = GUR’.G is stored
in the network and hence we need to show that triple R’
will also be stored. The instantiation of r will happen
at the node where triples which match the antecedent
of rules (2)-(4) (i.e., R) will meet. If we check Table
2, we observe that the antecedent triples of rules 2—7
always have acommon element. Triples are indexed three
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cubist, sc, artist

HR o=

times based on three identifiers, namely the hash values
of their subject, property and object. Therefore, triples
with a common element will meet at the node responsi-
ble for the identifier of this common element where the
antecedent R will be matched. Then, the triple R’ will be
generated by FC* using local function INFER and will be
stored in the network. Thus, all triples included in H will
be stored in the network.

Inductive step We assume that the result holds for k — 1.
We will show that it holds for k.

Let us consider G and H such that G b H in k
proof steps. Using the notation of Definition 3, H can be
proved from Pj_; by the application of a single rule r of the
deductive system of Table 1. The rest of the proof is similar
to the one for the base case.

— Ifrisrule (1b),then H C Pj_; and following the hypoth-
esis of the induction all triples of P,_; have been stored
in the network. Consequently, all triples of H are stored
in the network.

— If r is one of the rules (2)—(4), there will be an instan-
tiation % such that R € P,_jand H = P,_; UR'.
According to the hypothesis of the induction all triples
of Py_1 and, therefore, all triples of R were stored in
the network according to our indexing scheme. Hence,
if the rule is one of the rules (2)—(4), the instantiation of
the rule will happen at the node where the triples of R
will meet. Again since triples in the antecedent of rules
(2)-(4) always have a common element, these triples will
meet at the node responsible for this common element.
Then, triple R’ will be generated using local procedure
INFER and will be stored in the network. Consequently,
all triples of H will be stored in the network.
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4.4 Handling Node Failures

Until now, we have assumed that the network is stable for
the duration of the reasoning process to have clear seman-
tics for the results. However, node failures may pose extra
difficulties for the forward chaining algorithm. While a com-
prehensive study of these issues is beyond the scope of this
paper, we propose some simple steps that can increase the
robustness of our method. These are based on standard tech-
niques for monitoring the liveness of nodes such as timeouts
and replication mechanisms.

In case nodes fail before or after the reasoning process
takes place, we can exploit the storage redundancy provided
by the underlying DHT network. FC* is the most vulnera-
ble algorithm to node failures. The reason behind this is that
during RDFS reasoning almost all nodes in the network con-
tribute to the generation of inferred triples. Therefore, the
failure of even a single node may cause a complex situation.
Such a situation can be handled with assigning timeouts to
the messages that are sent during FC*.

A source node ng creates a STOREMSG message and
assigns a timeout g and a unique identifier mid with it. When
ng sends a STOREMSG message to a destination node ng for
a specific key k, it waits an acknowledgement message ACK
from ng. If timeout #; has passed and ng has not received
and ACK, it resends the message. To ensure that the rea-
soning process at the destination node has been completed
successfully, d sends an ACK only after it has finished its
local reasoning process for key k. To prevent nodes process-
ing duplicate messages, each message contains the identifier
of the source node and the message unique identifier mid.
Certainly, choosing the correct value for the timeout will
affect the performance of the system; setting a small timeout
value may lead to a big number of duplicate messages while
a node is still alive, while setting a big timeout value leads
to delays in detecting node failures.

4.5 Redundant Triple Generation in Distributed
Forward Chaining algorithms

Several authors have pointed out recently the generation
of many redundant triples in forward chaining algorithms
for RDFS reasoning, and especially in distributed ones
[56,72,75]. The drawback of duplicate triple generation can
be greater and more harmful in a distributed system. Dupli-
cate triples are generated at different nodes and sent through
the network causing an enormous amount of traffic as well
as unnecessary load to the nodes. [56] treats the reasoning
process at each node as a black box and does not elabo-
rate on the rule set used. However, the authors do observe a
big rate of duplicate triples and offer an elimination process
to remove the duplicate triples that have been generated. In
[75], the authors present results showing that as the num-

ber of processes grows the number of duplicate triples also
increases and they especially refer to rule rdfs9 (i.e., rule
(3b) of Table 1) for generating duplicate triples. [72] also pro-
vides solutions in the MapReduce framework to avoid dupli-
cate triples and eliminate them if necessary. However, none
of these works elaborate on the cause of redundant triples.

An important source of redundant triples which, to the
best of our knowledge, has not been discussed in the litera-
ture before, is the recursive rules of Table 1. When the rules
of Table 1 are used as they are or, in our case, translated into
Datalog in the obvious way, they give rise to bilinear recur-
sion. Bilinear rules are rules which have two occurrences of a
recursive idb relation in their body and hence contain double
recursion. Rules with double recursion can produce a large
number of duplicate triples even in a centralized environment
[2]. Let us demonstrate this with two simple examples.

Example 1 Assume that our initial graph G contains three
triples: f1 =(a, sc, b) ,1p =(b, sc, c), 13 =(c, sc,
d). These triples form a small RDFS class hierarchy. Using
rule (3a) of Table 1, we infer the following triples:

t1,) = t4 =(a, sc, c)
h,13 = t5 =(b, sc, d)
13,14 = tg =(a, sc, d)
1,15 = tg =(a, sc, d)

Therefore, triple # is inferred twice. In the following
example, we show how the generation of duplicate triples
can be prevented if we use the linear rules we presented in
Table 2.

Example 2 Assume that we have the same initial graph G
of Example 1, but now we use rules 1 and 4 of Table 2.
From applying rule 1, we add 3 assertions with idb relation

newTriple:

t{ =newTriple(a, sc, b)
té —newTriple(b, sc, c¢)

té =newTriple(c, sc, d)
Using rule 4 of Table 2, we infer the following triples:

t, lé = ti —=newTriple(a, sc, c)
1,15 = t{ =newTriple (b, sc, d)
11, t§ = t; =newTriple(a, sc, d)

Notice that the pair of triples #3 and 7, cannot satisfy any
of the bodies of rules of Table 2 and hence triple #; is inferred
only once.

In our previous implementation of forward chaining,
called FC in [35], we used bilinear rules and made no distinc-
tion between explicit and inferred triples in the algorithm.
Every time a new triple #+ was generated, it was sent to be
stored at the responsible nodes without specifying that ¢ is
an inferred triple. The nodes that received ¢ were producing
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Fig. 5 Redundancy in RDF(S)
graphs

new triples from all triples stored locally without taking into
consideration whether they were previously inferred or not.
For instance, in the example of Fig. 3, if we had used the
rules of our previous algorithm FC [35], node n in Fig. 3(c)
would have also inferred the same triples that node n; pro-
duced causing unnecessary traffic and more processing load
to nodes ng4, ns and ng.

Another source of triple generation redundancy is when
RDF data is derived using different entailment rules. In this
case, techniques such as the above cannot prevent the gen-
eration of redundant triples. For example, dom and range
statements can interact with other statements in many ways to
produce redundant triples. The following example shows one
such case where a triple generation redundancy may occur.

Example 3 In graph G of Fig. 5, triple (a, type, ci)can
be inferred from triples (a, p, b), (p, dom, ci) using
rules 1 and 6 of Table 2. The same triple can also be derived
fromtriples (a, type, c2),(ca,sc, cyp)usingrules ] and
5.

In our setting, such a triple generation occurs at different
nodes which leads to flooding the network with redundant
information and decreasing the system’s performance. Iden-
tifying all such cases and dealing with them in our system is
part of our future work.

5 Distributed Backward Chaining

In this section, we describe how a backward chaining algo-
rithm can be implemented in the distributed environment of
a DHT. In contrast to the data driven nature of forward chain-
ing, backward chaining (BC) starts from the given query and
to finds rules that are used to derive answers to the query.

5.1 Adorned Datalog Rules

Given that we are using a Datalog version of the pdf infer-
ence rules, the challenge here is to construct an algorithm that
can process recursive Datalog rules in a distributed environ-
ment such as DHTs. To achieve this, t is helpful to transform
the Datalog rules into a set of adorned rules that indicate
which variables are bound and which are free. This is use-
ful for finding a good order in which the predicates of the
rule bodies should be evaluated. First, we rewrite the Dat-
alog rules of Table 2 as shown in Table 3. This will allow
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us to compare BC with the entailment algorithm presented
in [51] (see Sect. 5.2 below). In addition, we use this set of
rules for the magic sets transformation technique described
later since it satisfies the unique binding property [71] which
is an essential prerequisite for the magic sets technique (see
Sect. 6 for details). Using the rules of Table 2 would also be
possible in BC without changing the algorithm.

In Table 3, we use the edb relation triple and the
idb relations subClass, subProperty, type and new-
Triple. Edb relation triple denotes all triples that are
locally stored, while the idb relations denote the various kinds
of triples that can be inferred. The difference with Table 2
is that now newTriple is not the only idb relation used to
store inferred triples. When the property of a triple or triple
pattern is equal to sp then relation subProperty is used,
when the property is equal to sc then relation subClass is
used, and when the property is equal to type then relation
type is used. In any other case, the relation newTriple is
used. Rules 1, 3, 5 and 7 assign the triples found locally to the
idb relations subProperty, newTriple, subClass
and type, respectively, depending on the property of the
triple. These rules together are equivalent to rule 1 of Table
2. Rules 2, 4 ,6, 8, 9, and 10 of Table 3 are equivalent with
rules 2, 3,4, 5, 6 and 7 of Table 2, respectively.

We extend the concept of rule adornment from Datalog
query processing [71] to exploit the distributed philosophy
of DHTs. As already mentioned, to evaluate a triple pattern,
a key has to be computed and then hashed to create the iden-
tifier that will lead to the responsible node. We compute this
key by choosing a constant part of the triple pattern in the
order subject, object, property. Therefore, the corresponding
predicate of the triple pattern has an argument that is not only
bound, but also the key that led to the responsible node.

Definition 6 An adornment of a predicate p with n argu-
ments is an ordered string a of k’s, b’s and f’s of length n,
where k indicates a bound argument which is also a key, b
indicates a bound argument which is not the key, and f a
free argument.

Following this definition, an adorned predicate p indi-
cates which argument of p is the key, which ones are bound
and which are free. Table 4 shows all possible adornments of
the rules presented in Table 3 based on the indexing scheme
of a triple pattern explained before.

Each adorned rule of Table 4 covers one possibility of
using the corresponding rule of Table 3 in our backward
chaining algorithm by additionally encoding run-time infor-
mation about key, bound and free arguments. All possibili-
ties that can actually take place are covered in Table 4. Since
we do not allow queries where the triple pattern does not
contain any constant values, note that there is no adorned
predicate newTriple///. In addition, based on the order
of the triple pattern’s terms which we choose to use as an
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Algorithm 2: BC: Backward chaining algorithm

1 event n.QUERYREQ (key, tp, rid) from m
2 Let p? be the adorned predicate of ¢p;
3 R=BCRDFS(p?, rid);

4 sendto m.GetResp (R);

5 end event

33 event n.BCRDFSReq (p%) from m
34 R=BCRDFS(p%);

35 sendto m.BCRDFSResp(R)
36 end event

6 procedure n.BCRDFS (p“, rid)

7 if rid| p® € processed Requests then
8 | return {};
9 processed Requests.add(rid|| p%);
10 adorned Rules =APPLYRULE(p?);
11 R={}
12 forall rules in adorned Rules do
13 r < REMOVEFIRST(adorned Rules);
14 if r.body has one predicate then R=MATCHPREDICATE (p?);
15 else
16 Let g1 be the adorned predicate of r.body with a k element in its
adornment and ¢ the other predicate of r.body;
17 if g1 is the edb triple then R” =MATCHPREDICATE (q1);
18 else
19 | R'=BCRDFS(qy. rid);
20 end
21 if R’ = {} then return R;
22 if R’ = ¢ then return R;
23 foreach value v; of the common variable Z in R’ do
24 id; =HASH (v;);
25 rewrite py to pj;
26 sendto id; BCRDFSReq(p})
27 receive BCRDFSResp(R;) from id;
28 R=RUR;;
29 end
30 end
31 end
32 return R;

33 end procedure

identifier (i.e., subject, object, property), not all combinations
of the adornments are required. For example, the adorned
predicate subProperty?® (X, Y) will never appear in
our algorithm, since such a request would require to use as
a key the object of the corresponding triple pattern although
the subject is also bound.

5.2 Algorithm Description

Let us now describe our backward chaining algorithm BC
which is shown in pseudocode in Algorithm 2. The node that
wants to pose a query composes a QUERYREQ message and
sends it to the network as described in Sect. 3.4. Suppose
that a QUERYREQ request with unique identifier rid arrives
at node n which is responsible for a constant key included

in the triple pattern #p. Node n firstly transforms the triple
pattern 7p to an adorned predicate p“. property is a variable,
then four

Then, n calls local procedure BCRDFS which takes as
an input the adorned predicate p® and the request identifier
rid and outputs a relation R which contains the tuples of
the bindings of the free arguments (i.e., the variables) of the
predicate. These tuples of bindings form the answer to the
query.

When BCRDFS is called, first the node ensures that the
algorithm will not process the same request and hence avoid
going into a infinite loop. Symbol || denotes string concate-
nation. Then, the input predicate p“ is checked against the
head of the rules of Table 4 using local function APPLYRULE.
Rules that can be applied to the predicate are added to the list

Table 3 pdf inference rules in

Datalog (2nd version) Rule Head Body
1 subProperty (X, Y) triple(X, sp, Y)
2 subProperty (X, Y) triple(z, sp, Y), subProperty(X, Z)
3 newTriple(X, P, Y) triple(X, P, Y)
4 newTriple(X, P, Y) triple(X, P1l, Y), subProperty(Pl, P)
5 subClass (X, Y) triple (X, sc, Y)
6 subClass (X, Y) triple(Z, sc, Y), subClass(X, Z)
7 type (X, Y) triple (X, type, Y)
8 type (X, Y) type (X, Z), triple(Z, sc, Y)
9 type (X, ¥) newTriple(X, P, Z), triple(P, dom, Y)
10 type (X, Y) newTriple(Z, P, X), triple(P, range, Y)
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Table 4 Adorned pdf

inference rules Rule  Head Body
la subProperty* (X, Y) triplef (X, sp, Y)
1b subProperty/* (x, v) triple/P* (X, sp, Y)
1c subPropertykb (X, Y) triplekbb (X, sp, Y)
1d subProperty// (X, Y) triple/?f (x, sp, Y)
2a subPropertykf (X, Y) triplek"f (X, sp, 2), subPropertyff (Z, Y)
2b subProperty/* (X, Y) subProperty/f (X, z),triple/® (z, sp, Y)
2c subProperty*” (X, Y) triplef?’ (X, sp, Z),subProperty? (z, Y)
2d subPropertyff (X, Y) subPropertyff(X, z), triplef”f(z, sp, Y)
3a newTriplekff (X, P, Y) triplekff (X, P, Y)
3b newTriplef”/ (x, p, Y) tripleft’ (x, P, v)
3¢ newTriplef?” (x, p, v) triplefb? (x, P, Y)
3d newTripleffk (X, P, Y) triple-ffk (X, P, Y)
3e newTriple/® (x, P, Y) triple/®f(x, P, V)
3f newTriple/* (x, P, v) triple/* (x, P, Y)
4a newTriplekff (X, P, Y) triplekff (X, P1, Y), subPropertyff (P1, P)
4b newTriplekbf(X, P, Y) triplekff(X, P1, Y),subPropertyfb(Pl P)
4c newTriple]‘h” (X, P, Y) triplekfh (X, P1, Y), subPropertyfb (P1, P)
4d newTripleffk (X, P, Y) triplefﬂ‘ (X, P1, Y), subPropertyff (P1, P)
4e newTriplefbk (X, P, Y) tripleffk (X, P1, Y), subPropertyfb (P1, P)
4f newTriple/* (x, p, Y) newTriple//f (x, P1, v),triple/® (P1, sp, P)
Sa subClassh (x, v) triple® (X, sc, Y)
5b subClass/* (x, v) triple/®* (X, sc, Y)
5c subClass® (x, ¥) triplef? (x, sc, Y)
5d subClass/f (x, Y) triple/?f (x, sc, v)
6a subClasskf(X, Y) triplekbf (X, sc, Z),subClassff(Z, Y)
6b subClass/* (X, V) subClass// (X, z),triple/®(z, sc, ¥)
6¢c subclasskb(X, Y) triplekbf (X, sc, Z),subClassbf(Z, Y)
6d subClass// (X, V) subClass// (X, z),triple/® (z, sc, Y)
Ta typekf(X, Y) triplekbf(x, type, Y)
7b typefk(x, Y) triplefbk(x, type, Y)
Tc typekb(X, Y) triplekbb(x, type, Y)
7d typelf (X, v) triplef?f (x, type, Y)
8a typekf(X, Y) triplek"f (X, rdf:type, Z),subClassff(Z, Y)
8b typefk(x, Y) typeff(X, Z),triplefbk(Z, subClassOf, Y)
8c typekb(X, Y) triplekbf(X, rdf:type, Z),subClassfb(Z, Y)
8d typeff(x, Y) typeff(x, Z),triplefhf(Z, sc, Y)
9a typet (X, Y) newTripleff (x, P, 2),triple/® (P, dom, Y)
9b type/* (X, V) newTriple/f (X, P, 2),triple/® (P, dom, Y)
9¢ type“’(x, Y) newTriplekff(X, P, Z),tripleﬂ”’(P, dom, Y)
9d typel (X, Y) newTriple/ff (x, P, Z),triplefbf (P, dom, Y)
10a typekf(X, Y) newTripleffk(Z, P, X),triplefbf(P, range, Y)
10b typef]‘(x, Y) newTriplefff(Z, P, X),triplefhk(P, range, Y)
10c typet? (X, Y) newtriple/f*(z, P, X),triple/® (P, range, Y)
10d typelf (X, v) newTriple/f (z, P, X),triple/® (P, range, Y)
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Fig. 6 Distributed evaluation of rules for backward chaining

adorned Rules. Each rule can have one or two predicates in
its body. Rules that have one predicate in their body (i.e., rules
1, 3, 5, 7) can always be evaluated locally since this predi-
cate is always the edb relation triple and one of its bound
arguments is the key that led to this node. In this case, node
n calls local procedure MATCHPREDICATE(p®) and assigns
to relation R the bindings of the predicate’s variables that
match the triples locally stored in its database.

For rules with two predicates in their body, we have to
decide which predicate should be evaluated first. We select
to evaluate first the predicate that can be processed locally.
There is one such predicate always since one of the arguments
of the head predicate is the key that led to the specific node.
Therefore, there will be a body predicate (let us call it g1)
which has an adornment containing the letter k (this is always
possible as seen in Table 4) and can be processed locally. If
predicate ¢ is the edb relation triple, itis checked against
the local database to find matching triples using local func-
tion MATCHPREDICATE. The variable bindings are returned
in relation R’. In case predicate g; is an idb relation, then
procedure BCRDF'S is called recursively with input the new
adorned predicate. By evaluating one predicate locally, we
have values that can be passed to the other predicate which
is sent to be evaluated remotely at different nodes. Notice in
Table 4 that all rule bodies with two predicates have a single
common variable, let it be Z. Therefore, each tuple in rela-
tion R’ will include a binding for this common variable Z.
For each of these bindings (Z /v;), node n rewrites the second
predicate g5 to a new predicate g5 where it has substituted the
variable Z with its value v; and made the corresponding letter
of the adornment equal to k. Then, it sends a BCRDFSReq

_Zlgulptor

subClass™(X, sculptor)

X, sc sculptor)
Z, sc, éculptor
)

subClass™(X, flemish)

bk

triple™(Z, sc, flemish)

responsible node
node nf
node n2
node n3
node n4
node n5

| artist
painter

| sculiptor

cubist

| flemish

-
node n5

message to the node responsible for the hashed value of key
v;. This part of the procedure is executed in parallel for each
value v; since the messages are sent to different nodes. Node
n sends |R’| number of messages (equal to the number of
bindings found) and receives the responses asynchronously.
When node 7 has collected all responses BCRDFSResp(R;),
it adds the tuples of each R; to relation R and returns R. In
case of a Boolean query, i.e., a query without any variables,
relation R actually holds a true or false answer. In this case,
the union operator of line 2 is actually an OR operator mean-
ing that procedure BCRDF'S requires at least one answer to
be true in order to return true. Otherwise, it returns false.

This procedure is recursive in two ways. Recursion
appears locally at anode when predicate g is an idb predicate
and among the nodes participating in the query evaluation
when a new BCRDFSReq message is sent. The procedure
terminates when the node that received the initial query has
collected a response message for each request it has sent.
A recursion path ends when the predicate which is evaluated
first returns no bindings and, therefore, there are no values to
pass to the second predicate. Cyclic hierarchies are handled
by keeping a list of all processed requests (lines 6-7) so that
an infinite loop is avoided.

Let us now show how BC works using the example
RDF(S) hierarchy of Fig. 2. Suppose that all triples of the
RDF(S) hierarchy are stored in the network and a user poses
the query “Find all the subclasses of class artist” to a node
in the network. Figure 6 shows how the rules will be dis-
tributed in the various nodes of the network. The query is
expressed as the triple pattern (X, sc, artist) andis
routed to node 71, which is responsible for key artist.

@ Springer



204

Z. Kaoudi, M. Koubarakis

Node n; transforms the triple pattern to the adorned predi-
cate subClass/* (X, artist) which matches the head
of rules 5b and 6b of Table 4. Using rule 5b, node n
finds the local matches of the query, i.e., it retrieves all
the immediate subclasses of class artist (painter and
sculptor). Using rule 6b, it finds matches locally for
the predicate triple and rewrites the second predicate
subClass to other adorned predicates that are sent to other
nodes to be evaluated. More specifically, node n; sends
messages to nodes n, and n3 to retrieve the subclasses of
classes painter and sculptor, respectively. Node n3
finds no matches for class sculptor and returns an empty
result to node n1. Node n, finds locally classes cubist
and £lemish using rule 5b and sends two other requests to
nodes n4 and ns using rule 6b. Nodes n4, ns find no matches
and return an empty result to node n,. Node n, that collects
the answers of nodes n4 and ns adds to them the answers
found locally and returns the answer to node 7. Finally, as
soon as node 7 has the answers of both nodes n;, n3, it com-
poses the final answer by adding its local answers with the
answers of these nodes and returns the result set to the node
that posed the query.

Comparison with the entailment algorithm of [51]. It is
interesting to examine how our backward chaining algorithm
is related with the entailment algorithm proposed in [51].
The entailment algorithm of [51] checks whether a triple
t=(a,p,b) isentailed froma graph G. Comparing our algo-
rithm with the entailment algorithm of [51], we observe cer-
tain similarities. The algorithm of [51] takes certain actions
depending on the property p of the triple. Similarly, we trig-
ger a rule depending on the property of the triple. The first
point of the algorithm deals with the case where p is equal
to dom or range. In this case, it just checks if ¢ exists in
G. Similarly, BC would trigger rules 3c and 4c from Table
4 and since no triple will be found to satisfy the first pred-
icate of rule 4c, rule 3c will actually retrieve triples locally
stored and, therefore, triples that are in G. The second step of
the algorithm deals with triples that have as property the sp
value. In this case, the algorithm checks if there exists a path
from a to b in the graph through sp links. Similarly, BC trig-
gers rules 1c and 2¢ which traverse the transitive closure of
the graph consisting of subProperty relations. The same
holds if p equals to sc. The 4th step of the algorithm, where
property p does not belong to the pd f vocabulary, is actually
covered in our case with rules 3c and 4c. The difference is
that the algorithm of [51] builds a graph to check if there is
a path from a vertex marked with (a,b) thatreaches pina
bottom-up fashion. On the contrary, BC works in a top-down
fashion which searches if there is another property p’ in a
triple (a,p’,b) and checks if there is a path from p’ to p
in the transitive closure of the subproperty relation. Finally,
the algorithm deals with the case where the property of 7 is
equal to type. The difference here is that the algorithm of
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[51] needs to preprocess the whole graph G to mark certain
nodes that are relevant to the triple in question. This case is
covered in BC by rules 7c, 8c, 9¢c, 10c, 11c, 12¢ of Table
4 and traverses only the part of graph that is relevant to the
query in a top-down manner.

5.3 Termination, Soundness and Completeness

In this section, we formally prove that BC terminates and is
sound and complete.

Theorem 5 (Termination) Algorithm BC terminates.

Proof BC is a recursive algorithm in two ways. First, recur-
sion occurs for a query ¢ when one of the predicates of
the body of a rule is an idb relation. If the predicate eval-
uated first is the edb relation triple, the second predicate
to be evaluated is an idb relation and recursion occurs by
sending a BCRDFSREQ message to another node (line 24
of BC). A recursion path starts from the query ¢ and tra-
verses the RDF(S) graph in a top-down fashion until there
is no other node to follow. In this case, the recursion path
terminates since no tuples of bindings are found at a node
for the first predicate and, therefore, there are no values to
pass to the second predicate. In case, the RDF(S) graph con-
tains cycles an infinite loop can occur. To avoid infinite loops
caused by graphs with cycles, the unique query request iden-
tifier together with the adorned predicate is inserted in a
list processed Requests. Each time procedure BCRDFS is
called, the list of all processed requests is checked; if arequest
has been processed already, BC terminates by returning an
empty set of tuples (lines 7-8 of BC).

Second, if the predicate that should be evaluated first
(predicate with k in its adornment) is an idb relation, then
we have local recursion at one node (line 18 of BC). This
recursion can happen only once since the only rules which
contain an adorned predicate with k in its adornment which
is not the edb relation triple are rules 9a, 9¢c, 10a, and 10c
of Table 4. In this case, local procedure BCRDEFS is called
again, but this time the first predicate to be evaluated is the
edb relation triple which results in a recursion of the pre-
vious case. O

In the following, we prove that algorithm BC is sound and
complete. By sound we mean the following. Let G be a graph
stored in the network and g be a query answered by BC. Let
R be the relation-answer to ¢ which has as attributes the
variables of ¢ and as tuples the tuples of bindings for these
variables. If H is a set of triples obtained from ¢ by replacing
the variables of ¢ by all the corresponding values in R, then
G = H. By complete we mean that if G is the graph stored
in the network, H any graph and G = H, then for each triple
t in H, BC will return true for the query ¢ = t. We make
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the same assumptions as in FC* regarding the stability of the
network.

We define the concept of a proof tree for BC, which models
the execution of BC on top of a DHT, as follows.

Definition 7 A proof tree is a finite tree with the following
properties:

(1) Every node is of the form a; : (g;, R;, LR;, RR;), where
a; isaDHT node, g; is the query that the node should eval-
uate, R;, L R; are relations with tuples of bindings for the
variables of query ¢; and RR; = (RR!, RR?, ..., RR)
is a set of relations with tuples of bindings for the vari-
ables of query g;. Relations R; and L R; as well as the set
RR; can be empty.

(2) Foreverynode a; : (gi, R;, LR;, RR;), we have the fol-
lowing:

— g; is the query (triple pattern) with a key for which
the node is responsible.

— LR; is arelation that contains the tuples of bindings
for g; found from the local database of the node by
applying one of the rules 1, 3, 5 or 7 depending on
the property of ¢;.

— RR; = {RRI.I, RRl.z, e, RRf"} is a set of relations
that node a; received from its k; children. If node g;
does not have any children, then the set R R; is empty.

— If RR; is non-empty then R; = LR; U Ul;zl RR!.
Otherwise, R; = LR;.

(3) If node a; has k; children, then for each child a;
k,
(4j, Rj, LRj, RRj = (RR}, RR,..., RR}'}), we
have that R; = RR! (1 < j < k).

Such a proof tree offers us a nice representation of the com-
putation of BC. Figure 7 shows the proof tree as defined above
for the example shown in Fig. 6. The root of the tree corre-
sponds to the activation of BC when a message QUERYREQ
arrives at a DHT node. The nodes of the tree at increasing
depths also show the communication between the nodes as
BC proceeds. Each edge in the proof tree shows that a mes-
sage BCRDFSREQ was sent from the parent node to the child
and one BCRDFSRESP message was sent from the child to
its parent node.

Theorem 6 (Soundness) Let g be a query and R the relation
produced by BC which has as attributes the variables of q. If
G is the set of triples stored in the network and H is the set
of triples obtained from q by replacing its variables by all
their values in the relation R, then G \y,qr H and G |= H.

Proof The proof is by induction on the depth d of the proof
tree of BC.

Base case: d = 1 (the root is d = 0). In this case, BC
starts at the DHT node n; represented by the root of the

q1= (X, sc, artist)

Ri= {X/painter, X/sculptor, X/cubist, X/flemish}
LR;= {X/painter, X/sculptor}

RR1= {{ X/cubist, X/flemish}, { }}

g2= (X, sc, painter)

Re= {X/cubist, X/flemish} 9= (X.sc, sculptor)

LRe= {X/cubist, X/flemish} Re={}
RRe={{}. {}} LRe={}
RR.={}
responsible
qs= (X, sc, cubist) qs= (X, sc, flemish) key 'r)\ode
Rs={} Re={} artist noge n21
ainter node n.
LRs={} LRs={} scultptor nogE n3
= cubist node n:
RRs={} RRa={} [ flemish node n5

Fig. 7 Proof tree for backward chaining

tree and transforms the query ¢ to an idb relation. If the
predicate of ¢ is equal to sp, then the corresponding predicate
is subProperty, and rules 1 and 2 of Table 4 are applied,
depending on which arguments of the query are bound or not.
Node n1 finds locally [ tuples of bindings for the variables of
q by applying rule 1, which has a single predicate in its body
i.e., the edb predicate triple, and assigns them to relation
LR. Then, the node applies rule 2, which has two predicates
in its body. The predicate that is evaluated first is the one that
has k in its adornment (predicate t riple in this case). Since
the first predicate is the edb predicate triple, k values are
found locally and are passed to the second predicate (idb
predicate subProperty) forming k new queries that will
be evaluated at k different nodes. Therefore, node n; sends
k BCRDFSREQ messages to its k nodes (children nodes in
the proof tree) for evaluating a query with predicate sp. BC
runs again at these k nodes and finds local results from rule
1. Since the depth of the tree is 1, rule 2 is not satisfied and no
other messages are sent. Node n1 receives k BCRDFSRESP
response messages from the k nodes, each one containing
a relation R/ (for 1 < j < k) with the data the k nodes
found locally. Then, n; composes the answer to query g by
assigning to relation R the union of the tuples of all relations
(e, R=LRUUS_ R)).

The sequence of graphs (mrdf proof according to Defi-
nition 4) that shows G ¢y H can easily be constructed.
The first element of the sequence is G followed by k subse-
quences representing the sets of triples obtained from replac-
ing the variables of ¢ by their values in relations R/ for
1 < j < k (the order of the subsequences does not matter).
Each of the k sets of triples can be represented by as many
proof steps as the number of tuples of bindings contained
in R/. Each step is the result of the application of rule (2a)
of the pdf rules of Table 1 to the set of triples produced in
the immediately previous proof step. Then, the sequence of
graphs continues with / subsequences representing the triples
obtained from replacing the variables of ¢ by their values
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in relation LR. This can be done by applying rule (1b) of
Table 1.

Similarly, if the property of the query is equal to sc, then
rules 5 and 6 of Table 4 will be fired. To compose a sequence
of graphs, pdf rules (3a) and (1b) of Table 1 will be used. If
the property of the query is anything but sp, sc and type,
rules 2, 3 and 4 of Table 4 will be fired and pd f rules (2a), (2b)
and (1b) would be used to construct a sequence of graphs.
Finally, if the property of the query is equal to type, then
rules 7, 8, 9 and 10 of Table 4 will be fired at the DHT nodes.
In case of rules 9 and 10, the idb predicate newTriple is
the first predicate that will be evaluated. In this case, rules 2,
3 and 4 will also be fired at node n;. Messages are now sent
to other nodes for the evaluation of the first predicate, while
the values returned are passed to the second predicate which
is the edb relation triple and will be evaluated locally.
A mrdf proof for a query with property equal to type
would then be constructed by rules (3b), (4), (2b) and (1b)
of Table 1 together with rules (3a) and (2a) for the latter
case.

Inductive step We assume the theorem holds for the exe-
cution of BC with a proof tree of depth d. We will show the
result for a proof tree 7' of depth d + 1.

We take the proof tree 7 of depth d + 1 and prune the
root node. The resulting k subtrees 7; (1 < j < k) have
depth d and the theorem holds for the queries ¢ ; of their root
nodes. Hence, if H' is the union of the sets of triples obtained
by replacing the variables of queries g; by their value in the
relations Rj, then G by0r H . Now we can continue the
proof of H' from G by adding the steps corresponding to
the root node of tree T to arrive at graph H. This is done as
in the base case.

Since we have proved G ,,4r H, Theorem 1 of Sect. 2
gives us that G = H as well. O

Theorem 7 (Completeness) Let G, H be mrdf graphs with
H not containing triples of the form (x, sp, x) nor (x, sc, x)
for x € U U L. Let G be the graph stored in the network. If
G = H, then for each triple t € H, BC will return true to
the query q = t.

Proof Using Theorem 1 and the fact that G = H, we have
that G &gy H.If G byqr H, we will show that for each
triple + € H, BC will return true to query ¢ = t. We will
prove this using induction on k, the number of mrdf proof
steps required for H to be derived from G.

For a Boolean query ¢, letitbe ¢ =t =(a,p, c), the
subject a is used as the identifier of the triple pattern and
algorithm BC is instantiated at node n| which is responsi-
ble for key a. As soon as node n| receives a QUERYREQ
message, it transforms the triple pattern (¢ in this case) to an
adorned predicate p® depending on the property of the triple
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pattern ¢ (i.e., ¢ is transformed to one of the adorned pred-
icates subPropertykb, new Triplekbb, subClas skh,
typek?).

Base case (k = 1): All triples of H are derived from G
in 1 proof step by the application of a single rule » of the
minimal deductive system of Table 1.

— If r is rule (1b) then H C G. In this case, all triples of
H are stored in the network according to our indexing
scheme. At node ny, BC will fire one of the rules lc,
3c, Sc, 7c of Table 4 depending on the property of q.
These rules have one predicate in their body which is the
edb predicate triple. Local function MATCHPREDI-
CATE will retrieve matching triples from the node’s local
database. According to the indexing scheme, the triple
(a,p,c) will be located at node’s n; local database
and the answer for query g will be true.

— If r is rule (2a), then there is an instantiation % of r
suchthat RC Gand H=GUR andt = R =(a,
sp, c).Lett € H. R consists of two triples, 11 = (a,
sp, b) andh =(b, sp, c). Since this is the first
mrdf proof step, 11, € G. The property of the triple
t is equal to sp and hence the adorned predicate p“ at
node nj is equal to subPropertykb (a, c) and will
be matched with the head of rules 1c and 2c of Table 4.
If t € G, then rule 1c will match with ¢ and BC will
return true. Otherwise, rule 2¢ will match locally predi-
cate triple(a, sp, Z).Since all triples of G have
been stored using the triple indexing scheme and triple
t1 shares the same subject with ¢, triple #; (which has
subject a) will be located at node n;. Variable Z will be
bound to the object of triple ¢, i.e., Z will be bound to
value b. According to the algorithm, for each value v; of
the bindings, the second predicate of rule 2c is rewritten
into a new one with a subProperty predicate without
any variable. For the value b found from triple 71, a new
rewritten predicate will be subPropertyt? (b, c)
and a BCRDFSREQ message is sent to node ny which is
responsible for key b. Node n, that receives this message
matches the predicate with rule 1c. Triple 7, has as subject
the same value with triple’s #; object (i.e., b). Therefore,
node nj retrieves locally triple t» = (b, sp, c¢) and
returns true to node n;. Then, node n returns true for
query q.

— If r is one of the rules (2b),(3) or (4) then there is an
instantiation % of r suchthat RC Gand H =G UR'.
The proof is similar with the one for rule (2a).

Inductive step We assume that the result holds for H that
can be proved from G with number of proof steps less than
k. We will prove that it holds for H that can be proved from
G with number of proof steps equal to k.
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So let us assume that G &4 H in k proof steps. Using
the notation of Definition 3, P, = H. Let r be the rule of
Table 1 that was used in the proof to go from Py_1 to FPx.

— Ifrisrule (1b),then H C P, andforeachtripler € H,
G bFprap tink—1 or less steps. Then, from the induction
hypothesis, BC returns true to query g = t.

— If r is rule (2a), there will be an instantiation % of r
suchthat R € Pr_jand H = P,_i UR'. Lett € H.
If t € Pr—1, then G Fprqp t in less than k proof steps
and, therefore, BC returns true for the query ¢ = ¢ by
the induction step. If 7 € R/, then it is equal to (a,
sp, c¢).InBC, node n; matches the adorned predicate
subProperty*? (a, c) with the head of rules 1c and
2c of Table 4.

— If r is one of the rules (2b),(3) or (4) then there is an
instantiation % of rsuchthat R C P,_jand H = P,_1U
R’. The proof is similar with the one for rule (2a). ]

5.4 Handling Node Failures

BC is more robust to node failures compared to FC*. The
intuition behind this is that given a query only part of the
network nodes are involved in the query proof tree. Thus,
the probability that a node involved in the RDFS reasoning
process will fail if lower than in FC*.

If the query requestor node fails, the query can be aborted
anyway and the user can pose the query to another node. If a
node fails that was involved in message routing (e.g., an inter-
mediate node in a lookup message routing) but is not involved
in the query execution proof tree, we employ whatever rout-
ing redundancy the underlying network provides. For exam-
ple, Bamboo DHT employs a periodic recovery method and
proposes a method for effective lookup timeout calculations
which reduces lookup latency [59].

The case where one of the nodes involved in the query
proof tree fails requires more attention. We distinguish the
following cases based on the distributed proof tree:

— A child node fails before returning the results to its
parent node. In this case, the parent node resends the
BCRDFSReq message after a certain timeout has passed
and no results were returned. Again, the timeout has to be
carefully selected and should be dependent on the depth
of the proof tree and the level the node belongs to.

— Aparentnode fails before its child node has sent its results
to it. In this case, the child node does not receive an
ACK and hence returns the results directly to the query
requestor node or to a known ancestor node in the proof
tree. Note that the IP addresses of the query requestor
node and/or the ancestor nodes are piggybacked in the
messages that are exchanged during the algorithm.

6 Forward Chaining for Magic Rules

Comparing a backward chaining algorithm with a forward
chaining one is not always a fair comparison since forward
chaining always computes all possible inferences while back-
ward chaining focuses on a specific goal. In this section,
we present a bottom-up method that benefits from the top-
down technique of backward chaining. This method is well
known from the database literature as magic sets transforma-
tion technique [8]. Such a technique is suitable for application
scenarios where the query workload is known a priori and,
therefore, only necessary triples related to the query work-
load are precomputed and stored to the network. In this way,
storage is not overloaded by useless information, while query
processing is done without any overhead.

The basic idea is that, given a specific type of query,
rules are rewritten using information from the query so that
a bottom-up evaluation is able to generate only the appro-
priate inferences. The benefit of using the new ruleset in the
bottom-up evaluation is that it focuses only on data which is
associated with the query and hence no unnecessary infor-
mation is generated. In our case, we use the same ideas and
rewrite the Datalog version of the pdf inference rules using
the magic sets transformation. When the rewritten rules are
executed in a forward chaining fashion, only triples that are
related to the query are involved.

6.1 Magic Rules

Imagine that we need to answer the query “Find all instances
of class a”. This query is very often used and requires the
most complicated RDFS inference as it involves all rules. In
this section, we show how the magic sets algorithm can be
implemented on top of a DHT for queries of the form (X,
type, a) and we compare the bottom-up approach of this
algorithm with the top-down approach of backward chaining.
Note that because the query of the form (X, type, a)
requires all rules to be answered, the set of rules we present
in Table 5 is a superset of the rules required for queries of
the form (*, p, *) where the subject and object of the
triple pattern can be either a variable or a constant, (X, sc,
a) and query (X, sp, a).Although we rewrite the pdf
inference rules using the magic sets transformation technique
based on this type of query, the algorithm we present in the
following can be applied for any type of query with the rules
rewritten accordingly.

To transform a set of rules using the magic sets technique,
we require the unique binding property [71]. This require-
ment means that each idb relation should appear with aunique
adornment when a backward chaining algorithm is used. The
rules of Table 2 do not satisfy the unique binding property for
this type of query [71]. The idb relation newTriple appears
with different adornments if we apply the rules using the
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Table 5 Magic rules

Rule Head Body

1 m_newTriple (P) supeg; (P, Y)

2 m_newTriple (P) sup7; (P, Y)

3 m_subProperty (Z) sup2; (Z,Y)

4 m_subProperty (P) m_newTriple (P)

5 m_subClass (Z) sup41 (Z,Y)

6 m_type(Z) sups; (Z,Y)

7 supz1 (Z, Y) m_subProperty (YY), triple(Zz, sp, Y)
8 sup3; (P1, P) m_newTriple(P), subProperty(P1l, P)
9 sup4) (2, Y) m_subClass (Y), triple(Z, sc, Y)
10 supsi (Z, Y) m_type(Y), triple(Z, sc, Y)

11 supe (P, Y) m_type(Y), triple(P, dom, Y)

12 sup71 (P, Y) m_type(Y), triple(P, range, Y)

13 newTriple(X, P ,Y) m_newTriple(P), triple(X, P, Y)
14 subProperty (X, Y) m_subProperty (Y), triple(X, sp, Y)
15 subProperty (X, Y) supy| (Z,Y), subProperty (X, Z)

16 newTriple (X, P, Y) sup3) (P1,P), triple(X,P1l,Y)

17 subClass (X, Y) m_subClass(Y), triple(X, sc, Y)

18 subClass (X, Y) sup4] (Z,Y), subClass (X, Z)

19 type (X, Y) m_type(Y), triple(X, type, Y)

20 type (X, Y) sups; (Z, Y), type(X, Z)

21 type (X, Y) supe] (P, Y), newTriple(X, P, Z)

22 type (X, Y) sup7; (P, Y), newTriple(z, P, X)

23 m_type (a)

backward chaining algorithm. For example, consider the exe-
cution of query newTriple (X, type, a). Using rule
5, the idb relation newTriple appears with bound the sec-
ond and third argument, while using rules 6 or 7 and after
passing values from the edb relation triple, it appears with
bound only the second argument. Hence, the rules cannot be
transformed into a set of magic rules, unless the predicate
newTriple is split into two different predicates. However,
this would introduce twice the number of rules imposing
unnecessary overhead. For this reason, we prefer to use the
pdf inference rules as we presented them in Table 3. We
transform the above rules into a set of magic rules for query
q using the techniques of [8]. The rules are shown in Table 5.

For each idb predicate p, we create a magic predicate m_p
which has as arguments the bound arguments of the unique
binding appearing in p (i.e., the unique adornment). For each
rule, we introduce a number of magic supplementary pred-
icates associated with this rule. A supplementary predicate
sup;; denotes that it is the supplementary predicate for rule
i and the predicate j of the body of rule i with j =0, ..., n.
For example, sup;; denotes the supplementary predicate for
predicate subProperty of the body of rule 2 in Table 3.
Rules 1-6 define the magic predicates, rules 7—12 show the
supplementary predicates and rules 13-22 show the initial
rules modified to include the supplementary predicates. All
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these rules together with the fact m_type (a) (rule 23),
which is used as the initialization rule, form the complete
rule set after the magic set transformation. Note that the
same set of rules depicted in Table 5 together with the fact
m_newTriple (p) enables answering queries of the form
newTriple(*, p, *).

This set of rules ensures that only inferences related with
class a will be generated. The role of magic predicates is that
m_p (v) should be true if and only if in the top-down evalu-
ation value v is passed as a binding to predicate p. Similarly,
supplementary predicates represent the bound variables that
have either been bound by the rule’s head or by predicates
evaluated at a previous step. Note here that we present an opti-
mized version of the magic set transformation where zeroth
supplementary predicates have been replaced by the magic
predicates so that extra computations are avoided. For more
information on the magic sets transformation, the interested
reader might refer to [71].

6.2 Algorithm Description
Let us now describe how our new algorithm, which we

call MS, works. Generally, MS works as the forward chain-
ing algorithm presented in Sect. 4 with the only difference
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Algorithm 3: MS: Magic sets algorithm

1 event n.MSREQ (id, pred) from m
2 ‘ Magic(id, pred);
3 end event

1 procedure n.Magic (id, pred)

2 localTriples = GETTRIPLESFROMDB (pred.argument1);
3 INFER (localTriples, pred),

4 pairs = {};

5 forall € {newTriples \ infTriples \ localTriples} do
6 if t.property € pdf then

7 ‘ pairs.put(t.object,t);

8

9

else
pairs.put(t.subject,t);

10 pairs.put(t.property,t);
11 pairs.put(t.object,t);
12 | forall k' € pairs.keys() do
13 id’ =HASH (k');
14 triples’ = pairs.get (k');
15 sendto id’ .STOREMSG(id’, triples’, k', true);
16 infTriples.add(triples’);
17 | forall pred’ € {supPredicates \ inf Preds} do
18 id’ =HASH (pred’.argument1);
19 sendto id MSREQ(id’, pred');
20 inf Preds.add(pred’);

21 end procedure

1 event n.STOREMSG (id, t, k, inf) from m

2 if inf == true then Magic(id, pred);
3 INSERTTODB (, inf);

4 end event

that more predicates are inferred from the rules. In MS,
apart from the edb relation triple and the idb relations
subProperty, newTriple, subClass and type, we
also have the idb relations of the magic and the supplementary
predicates. The relations of the supplementary predicates are
also indexed in the network based on the values of their argu-
ments so that appropriate values can be found locally at the
corresponding nodes. Note that it is not necessary to index
magic predicates since they can be reproduced by the sup-
plementary predicates and rules 1-6 of Table 5.

Assume that a node needs to find the instances of
class a. It sends a message containing the magic predicate
m_type (a) to the node responsible for value a using the
hash value of a as an identifier. The node that receives the
magic predicate m_type (a) starts a bottom-up evaluation
of the rules of Table 5 and sends the new inferred predicates
to the network. Each time a node receives a new predicate, it
computes the closure locally according to the rules of Table
5 and distributes the newly inferred facts in the network.

The pseudocode of the algorithm is presented in Algo-
rithm 3. The node that receives the query transforms it to
the corresponding magic predicate pred. Then, it creates
an identifier id from the only argument of the magic pred-

icate pred by hashing the value of the argument and sends
a MSREQ(id, pred) message to the network. When a node
n receives such a message, it calls local procedure Magic.
This procedure works as FC* with two differences.

First, newly inferred triples may be indexed once in the
network. For the idb predicates subProperty, subClass
and type, only the object of the corresponding triple is used
for indexing the triple. This indexing scheme ensures that
triples will be sent to the appropriate nodes so that the reason-
ing process is complete. For the idb predicate newTriple,
all three arguments are used as an identifier ensuring that
all triple patterns of the form (*, p, *) canbe answered
after MS has taken place. The inferred triples are stored in
the local database of the nodes they are indexed.

Second, inferred supplementary predicates are also sent
in the network to the corresponding nodes. For each newly
inferred supplementary predicate pred’, an identifier id’ is
created by hashing the value of the first argument of pred’.
Then, a message MSREQ(id’, pred’) is sent to the respon-
sible node in the network. We only use the first argument
of pred’ since we are already at the node responsible for
the value of the second argument and the required reason-
ing has been already completed. Procedure Magic is called
when a node receives either a newly inferred triple or a
new supplementary predicate value. The algorithm termi-
nates when all nodes have reached a fixpoint and neither new
triples nor new supplementary predicate values are gener-
ated.

The soundness and completeness of this algorithm follow
from the equivalence of the original rules to the rewritten
ones given the query [71] and the soundness and complete-
ness results from FC*.

In Fig. 8, we demonstrate an example of the algorithm
MS using the computation tree as defined in Sect. 4, where
we have the edb and idb relations instead of triples. We use
the RDFS example of Fig. 2 plus the triples (picasso,
type, cubist), (vangogh, type, painter) and
(rodin, type, sculptor). For readability reasons,
in Fig. 8, we abbreviate the resources picasso, vangogh
and rodin with &rl, &r2 and &r3, respectively. We want
to compute all instances of class artist. Node n| receives
a MSREQ message with the predicate m_type (artist).
Using the magic set rules of Table 5, the supplementary
predicates shown in HJ,, of node n; are generated and
sent to nodes n, and n3 which are responsible for keys
painter and sculptor, respectively. These nodes apply
the magic sets rules using as input data the data appear-
ing in H02ld and generate new values for the idb rela-
tions. The procedure continues until all nodes have reached
a fixpoint (i.e., Hl,, is empty). In this case, node n
has received all three instances of class artist. Then,
the answer to the query can be found locally at node
ni.
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Fig. 8 Example for MS
algorithm

ni m_type(artist)

triple(painter, sc, artist)
H'gu= triple(sculptor, sc, artist)

H! _ _|supsi(painter, artist)
new= .
sups+(sculptor, artist)

triple(painter, sc, artist)
triple(flemish, sc, painter)

triple(sculptor, sc, artist)

n3 H2oig= -
sups;(sculptor, artist)

triple(&r3, type, sculptor)

triple(cubist, sc, painter)
triple(&r2, type, painter)
sups;(painter, artist)

type(&r3, artist)

type (&r2, artist)
=| sups1(flemish, painter)

type(&r3, artist)
type(&r2, artist)

triple(painter, sc, artist)
triple(sculptor, sc, artist)
supsi(painter, artist)

_| supsi(sculptor, artist)

51(cubist, painter)

5 triple(cubist, sc, M
H 1= triple(&r1, type, cubist)

supsi(cubist, painter)

triple(flemish, sc, painter)
sups;(flemish, painter)

n4

Hoow=

E: Hsold=
Hanew=

Hanew: type(&r1, painter)

triple(painter, sc, artist)  supss(flemish, painter)

triple(flemish, sc, painter) supsi(cubist, painter)

(
2) Hiag= | TP
n °9= ! triple(cubist, sc, painter) sups;(painter, artist)
triple(&r2, type, painter) type (&r1, painter)
s &r1. artist &r1: picasso
H'new= | type(&rt, artist) &r2: vangogh
&r3: rodin
ni triple(painter, sc, artist) type(&r2, artist) .
o triple(sculptor, sc, artist) type(&r1, artist) ke!t responsible node
old= i artis node ni
type(&r3, artist) a"t“?r hodeTD
scultptor node n3
Honew= cuélst node n4
emis| node n5

6.3 Handling Node Failures

MS works similarly with FC*. However, less nodes are
involved in the reasoning process since the generated triples
concern only part of the total data stored in the network.
Triples generated by MS are sent and stored in the system
as the initial triples and thus, the redundancy mechanisms of
the underlying DHT take over. We note that at any moment,
only one node in the network is responsible for a specific
key and thus, for computing the inferences that concern this
key.

If a node that is part of the computation tree of MS fails
then the nodes can take the following actions. If it is the
root node that failed, the requestor node resends its request
after a certain timeout has passed and it received no acknowl-
edgment. For the rest cases and to ensure complete results,
supplementary and magic predicates are replicated together
with the stored triples. This means that whenever a node n
produces a magic or a supplementary predicate for a specific
key k, then the node sends these predicates also to a neigh-
bour node of n which will be responsible for the key & in case
n fails. In this way, if a node fails and its parent node does
not receive an ACK after a certain timeout, the parent node
resends the message and the new node that is now responsible
for the specific key is able to continue the reasoning process.
The local lists used in the algorithm (e.g., inf Triples) are
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only used for preventing the computation of information that
has been already computed. If they are not replicated, it does
not affect the completeness of the algorithm but may lead to
computing the same information more than once.

7 An Analytical Cost Model

In this section, we present an analytical cost model for
algorithms FC*, BC and MS presented earlier. We will
show in the experimental evaluation that our implementa-
tion follows the predictions of this cost model. The results
of our cost model could be used by users to determine
which of the reasoning algorithms would be suitable for
their application and available resources, as well as it
could be used in the optimization phase of a distributed
query processing algorithm for choosing an optimal query
plan.

We focus on the frequently used query types (X, type,
a), which asks for all the instances of class a in an RDFS
hierarchy, and (X, p, Y) which asks all subjects and
objects of property p. As we have already seen, the algo-
rithms are able to answer any type of queries considered in
the paper.

We assume mrdf graphs. Triples containing pdf vocab-
ulary except from type form our RDF Schema S and we
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Table 6 Notations used in the
cost model Symbol Explanation

|S] Number of schema triples

|D| Number of data triples

d depth of a class (property) hierarchy

b branching factor of a class (property) hierachy

|H |g"i’ Number of schema triples concerning a hierarchy H before any inference has taken place

|H |il’)1i’ Number of data triples concerning a hierarchy H before any inference has taken place

n Number of nodes in a class (property) hierarchy

nt Number of descendant nodes of a node at level £ in a hierarchy H, including itself

ch Number of class hierarchies in §

ph Number of property hierarchies in S

r rank of a class (property) in a hierarchy with a Zipfian distribution

A Number of instances of a certain class (property) in a hierarchy (with uniform distribution)

A Number of instances of a certain class (property) with rank r in a hierarchy (with Zipfian distribution)

|H |°51°S“reNumber of schema triples concerning a hierarchy H after the transitive closure computation of H

| H [SlosureNumber of data triples concerning a hierarchy H after the transitive closure computation of H

call them schema triples, while the rest of the triples (includ-
ing type triples) form our RDF data D and we call them
data triples. The RDFS S consists of class and property
hierarchies. For simplicity, we assume tree-shaped hierar-
chies including degenerated trees (i.e., trees that resemble a
linked list). Table 6 summarizes the notation used in our cost
model.

Let d be the depth of a hierarchy H and b its branching
factor. The number of classes (properties) of the hierarchy is
n= Zfzo b’ with b > 1 in the worst case scenario, where
the tree is complete. If b > 1, we have n = bd;_lf
b=1,wehaven =d + 1.

If H is a class hierarchy, we call instances of H or data
triples concerning H, the triples of the form (r, type,
c) where c belongs to the class hierarchy H. If H is a
property hierarchy, we call instances of H or data triples
concerning H, the triples of the form (s, p, o) where
property p belongs to the property hierarchy H. For a uni-
form distribution, given the total number of initial instances
|H |iD"i !, the number of instances under each class (property)
. |H | (b—1) . |H|ii
is |1,] = bd+—l_11fb > land |I,| = —/—ifb =1
Considering a Zipfian distribution of instances with a skew

. H init
parameter of 1, a tree node with rank r has |I,| = ‘rlx[;l
n 1

j=1 7 forn tree nodes. Leaf nodes

, while if

instances where h = >
are given a lower rank.
In the following, we constantly use the result that the total
number of subclasses (subproperties) of a class (property) at
level £ of a hierarchy H, including itself, is at most n* =
%ifb > landequal ton’ =d — ¢ +1ifb = 1.
The proof is straightforward and is omitted. Furthermore,
we utilize the fact that the reasoning and query answering

algorithms for the type of queries and rules we consider are
essentially transitive closure computations [32].

In the analytical calculations presented below, we start
with an RDF(S) database. Then, we apply the FC*, MS and
BC algorithms to be able to answer a query of the type men-
tioned above, and estimate its cost.

7.1 Storage Cost Model

We first estimate analytically the costs associated with the
storage of triples (given and inferred triples) in all algorithms.
These costs are captured by two parameters that we define
below: database storage load and number of store messages.
Both parameters are measured using a uniform as well as a
Zipfian distribution of instances under the hierarchies.

7.1.1 Storage Load

We define as database storage load the total number of triples
that are stored in the network. In BC, the storage load (SL;)
is three times the number of RDF(S) triples that were inserted
in the network based on our indexing scheme. In FC*, triples
initially inserted in the network, as well as inferred triples, are
stored three times. Therefore, it is sufficient to compute the
total number of triples that results from the transitive closure
computations of the hierarchy (triples initially in the database
plus inferred ones). Then, the database storage load incurred
in FC* (SL ) is three times this total number of triples.

Lemma 1 The total number of schema triples of a class
(property) hierarchy H after the computation of the tran-
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sitive closure of H (given triples plus inferred triples) is at
most |H|$o% = >4 bl x i withb > 1.

Proof For each level i of the tree, we have at most b classes
(properties), and for each class (property) a we have one
triple of the form (a, sc, b) ((a, sp, b)) thatlinks
this class (property) with its superclass (superproperty) and
we infer i — 1 triples of the form (a, sc, z) ((a, sp,
z) ) for the upper levels of the tree. O

Lemma 2 The total number of data triples concerning a
class (property) hierarchy H after the generation of the
inferred instances of H (given triples plus inferred triples)
is at most |H |5 = S0 bl |1,] x (i + 1) with b > 1.

Proof Each class (property) has I, direct instances. For each
level i of the tree, we have at most b’ classes, and for each
class (property) we have I, triples and we infer I, x i triples
of the form (r, type, ci) ((s, p;, o)) forits i super-
classes (superproperties). O

Apart from the class or property hierarchies that lead to
inferred triples, dom and range triples may also lead to the
inference of new data triples. More specifically, this kind of
triples contributes to the generation of type triples (e.g.,
see rules 6, 7 of Table 2). However, type triples may have
already been computed from the sc relations as discussed in
Sect. 4.5. Therefore, we have to account for the triples that
are not already generated from the transitive closure of the
data triples.

Lemma 3 Assume a triple t = (p, dom, a) (or (p,

range, a))where pis at the level £, of a property hier-
archy and a is at the level . of a class hierarchy H. If |1,
is the total number of instances under each property p; of
the property hierarchy (i.e., triples of the form (s, pj, 0)),
assume that |I,|~ is the number of instances of p; which have
subjects (or objects) which are instances of a class b which
is at a higher level £, of the same hierarchy H (£, < £.).

The total number of new data triples inferred because of t is
|H |05 = |1, | x nP x (€. + 1) — |I,|~ x n'r x (£, + 1).

Proof The triples inferred because of the data triples con-
cerning the hierarchy under property p is equal to |[,| %
nfr x (L. + 1), since class a has £, ancestor classes and
property p has n‘r descendant properties including itself.
However, the set of these inferred triples include triples that
are computed from the transitive closure of the data triples
of class b. Therefore, we subtract the number of triples that
have been already inferred for the ancestor classes of class b
which has €/, ancestor classes. O

Based on the above lemmas, the total number of triples
stored in the nodes of the network after FC* has terminated
depends (i) on the number of class and property hierarchies
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the RDFS ontology contains as well as the dom and range
triples that connect a property hierarchy with a class hier-
archy. Therefore, the total number of triples stored and the
storage load will be at most three times the sum of the above
formulas.

So far we assumed a uniform distribution of instances.
However, depending on the distribution of instances, the
storage load of FC* changes based on the number of
instances per class (property) (i.e., |I,| and |I.|). For the
Zipfian distribution, we also made use of the following
proposition.

Proposition 1 Given a class (property) with rank r in a Zip-
fian distribution of instances of a hierarchy with depth d, the
level of the class in the hierarchy is £, = [log,((b — 1) x
[T =D/ =1 —r+1]).

For a query of type type (a, X) (or newTriple(*,
p, *)), the database storage load for the MS algorithm
(SL,,) depends on the level of the class (property) that is
queried and the number of inferred instances for this class

(property).

Lemma 4 The total number of inferred instances of a class
(property) at level £ of a hierarchy H is at most |H* |chosure =
| x Y0 b i

Proof We can think of a hierarchy under a class at level £ as
a hierarchy with depth d — €. Therefore, the result follows
directly from Lemma 2. O

Based on the above Lemma, the database storage load
for MS for a uniform distribution is at most 3 x (|S| +
ID| + >9=' b’ x i). For a Zipfian distribution, we would
have Zﬁvil |I.| x £, inferred instances, where (N, = b4~ t+1
~1)/(b —1).

Table 7 summarizes the database storage load of FC*, BC
and MS for both kinds of instance distributions.

7.1.2 Store Messages

We define as store messages the number of DHT messages
sent for storing triples. In BC, the number of store messages
sent (SMp) is three times the number of triples stored and,
therefore, it is equal to the database storage load incurred,
ie., SMp = 3 x (|S] 4+ |D|). It is also independent of the
instance distribution.

FC* may generate duplicate triples and, therefore, sends
more messages than the storage load. For example, redun-
dant messages may be sent in the case where we have dom
and range statements which connect a property with a
class hierarchy. The number of messages sent because of the
transitive closure computation of schema and data triples of
either class or property hierarchies is the same as the storage
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Table 7 Storage cost summary

Storage cost Uniform Zipfian
SL, 3x (S| + D)) 3 x (S| + D)
ch+ph dj . . . . ch+ph dj . . Nj
SL; 3x[zj:0 (Zi:l(b’j><t+b’j><|lu|j><(z+1))+ 3X[Zj:0 (Zi:lb’j><I+Zr:l(|1,|j><€,))+
dr i _ dr N; _
D ) Ul (e D = 11y < e+ )] DTNl x Uy x ey + 1) = 11T x e+ 1) ]
T 3% (IS|+|D TR,
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load. However, in the presence of dom and range state-
ments, the number of store messages sent by FC* will be as
follows.

Lemma 5 Assumeatriplet=(p, dom, a)((p, range,
a)) where p is at the level £, of a property hierarchy and
a is at the level €. of a class hierarchy H. The total num-
ber of messages sent because of t is at most |H |°D10Sure =
|1,| x ntr x (£, + 1).

Proof We have |I,,| x ntr instances of property p, i.e., |I|
instances for each subproperty of p including itself. Class
a has €. ancestor classes. For each instance of p, one triple
is generated that declares an instance of class a and one for
each ancestor of a. O

The number of messages sent by MS (SM,,) is equal to
the database load incurred and depends on the level of the
class whose the instances are asked.

The number of messages sent is depicted in Table 7 for
both kinds of instance distribution.

7.2 Querying Cost Model

In this section, we estimate the cost of answering the query
(X, type, c)ornewTriple(*, p, *) whereclass
c or property p is at level £ of a class (property) hierarchy.

7.2.1 Query Messages

We define as query messages the messages sent while answer-
ing a query. The cases of FC/FC* and MS is straightforward
since just one message is sent to the node responsible for class
¢ (property p). In BC, the number of messages sent (Q M}) is
as many as the number of the subclasses of class ¢ (subprop-
erties of property p). Therefore, we have QM = n’ — 1.
The distribution of the instances does not affect the number
of messages sent for the query answering.

For the type queries of the form (X, type, a), if
we also have dom, range triples more messages may be
sent. In this case, let dr be the number of such triples that
connect a property p with a class in the hierarchy of a. Then,
the number of messages sent by BC is OM), = n* — 1 +
dr x n®? . This is because it sends one message for each such
triple found and then as many messages as the number of
descendant nodes of property p.

8 Experiments

In [35], we showed that a forward chaining algorithm is con-
strained by a small number of triples in a DHT environment.
In this section, we present an experimental evaluation of the
backward chaining and magic sets algorithms described in
this paper. All algorithms have been implemented in our sys-
tem Atlas, which is built on top of the Bamboo DHT!! [59].In
our algorithms, we have also utilized the dictionary encoding
implemented in Atlas, where URIs and literals are mapped to
integer identifiers. We do not elaborate on this method since
this is out of the scope of this paper. More details can be
found in [37].

8.1 Experimental Setup and Datasets

We tested our system in a local shared cluster'? consisting of
41 commodity machines with two processors at 2.6GHz and
4GB memory each. We used 39 of these machines where we
run multiple instances of Atlas on each machine (i.e., up to 4
Atlas nodes per machine). This allowed us to build networks
of up to 156 Atlas nodes in total.

The datasets we use are taken from two different bench-
marks as well as from real datasets. The first benchmark

T http://bamboo-dht.org/
12 http://www.grid.tuc.gr/
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Table 8 LUBM atomic queries

Table 9 DBpedia queries

Query notation Query Query notation Query
LQ1 X: (X, type, Student) DQI1 X: (X, type, Band)
LQ2 X: (X, type, Faculty) DQ2 X: (X, type, Organisation)
LQ3 X: (X, type, Organization) DQ3 X: (X, type, Politician)
LQ4 X: (X, type, Publication) DQ4 X: (X, type, Work)
LQ5 X, Y: (X, degreeFrom, Y) DQ5 X: (X, type, Politician) A
LQ6 X, Y: (X, memberOf, Y) (X, birthPlace, Y)

DQ6 X, Y: (X, type, Work) A (X,

genre, Y)
DQ7 X: (X, type, Work) A (X,
. . genre, Pop)
we used is the RBench genelrator13 [70] which produces DO8 X, ¥: (%, t GrandPrix) A
1 . ' H ’ ype, ran rix

RDF(S) data synthetlcally: The generator pro@uces binary- (X, location, Y)
tree-shaped RDFS class hierarchies parameterized on three DQY X: (X, type, Event)

different aspects: the depth of the tree, the total number of
instances under the tree, and the distribution of the instances
under the nodes of the tree. The generated datasets con-
tain only type and sc triples. The queries we measure are
queries that ask for all the transitive instances of the root
class of the RDFS hierarchy. We used class hierarchies of
depth 2-6 (corresponding to 7-127 RDFS classes). We used
both uniform and Zipfian distribution of instances under the
RDFS class hierarchy. In the Zipfian distribution, we used a
skew parameter of value 1. Leaf classes were given a lower
rank and, therefore, more instances of the lower level classes
were generated.

The second benchmark we use the Lehigh Univer-
sity benchmark (LUBM) [22] that provides synthetic RDF
datasets of arbitrary sizes'*. LUBM consists of a university
domain ontology modeling an academic setting and is widely
used for testing RDF stores. Each dataset can be defined
by the number of universities generated and is expressed in
RDF. For example, the dataset LUBM-1 involves one uni-
versity, while the dataset LUBM-10 involves 10 universities.
The more universities are involved in the data generation the
more triples are produced. In all datasets generation, we set
the seed to O which is used for random number generation.
Since our intention in this paper is to compare the reasoning
algorithm, apart from the queries provided by the bench-
mark, we also use atomic queries. These queries are shown
in Table 8. Namespaces are omitted. Therefore, we use as
a query workload queries that ask for instances of certain
classes included in the LUBM ontology or queries that ask
for triples with a specific property. For completeness, we also
present some results of the benchmark queries. However, the
algorithms that can process conjunctive queries can be found
in [37,36].

13 http://athena.ics.forth.gr:9090/RDF/RBench/
14 http://swat.cse.lehigh.edu/projects/lubm/
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Finally, we use real data extracted from DBpedia'® an ini-
tiative which provides structured information in RDF from
Wikipedia. We randomly picked data from the infobox types
and properties of DBpedia, while we used the whole DBpe-
dia ontology as our RDFS. The dataset we use consists of
2,372,539 triples and 5,633 RDEFS triples (3,899,020 inferred
triples). We have hand-picked a set of 9 queries which require
reasoning. The queries are shown in Table 9 in their conjunc-
tive form. In the following experiments, all query results are
averaged over 10 runs using the geometric mean which is
more resilient to outliers.

8.2 Storing RDF(S) Data

First, we compare the performance of the forward chaining
algorithm (FC*) with the backward chaining algorithm (BC)
when storing RDF(S) data in the network. Apart from the
forward chaining algorithm described in Sect. 4 (FC*), we
present results from the forward chaining algorithm we have
presented in [35] (called FC in the graphs) for demonstrating
the redundancy phenomenon. For this set of experiments, we
have generated 10,000 instances uniformly distributed under
an RDFS class hierarchy of varying depth using the RBench
generator. We inserted the data in the network together with
the corresponding RDFS class hierarchy and measured the
following metrics: network traffic, the load incurred at the
nodes and the time required for all triples to be stored in
the network (i.e., for backward chaining just the given triples
and for forward chaining the given and the inferred triples).

Figure 9a shows the total load incurred at all nodes of the
network when storing RDF(S) data. We define as database
storage load of a node n the number of triples that n stores
locally in its database. We also define as store message load

15 http://dbpedia.org
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of a node n the number of triples that n receives to store in
its local database. If the triples that are sent to node n to be
stored are not already stored in its local database, then the
database storage load is equal to the store message load. If at
least one triple is already stored at 7, then the store message
load is greater than the database storage load. The difference
of these two metrics allow us to estimate the redundant triples
that are sent to node n. The total database storage load (DB-
SL) is the total number of triples stored in the network and
the total store message load (MSG-SL) is the sum of the store
message load incurred at all nodes of the network. Figure 9a
shows DB-SL and MSG-SL for algorithms FC, FC*, and BC.
DB-SL and MSG-SL of BC are equal and we only depict
them by the single bar BC. The bars FC model and BC
model depict the total database storage load as computed
by the analytical model of Sect. 7.1.1 and demonstrate its
accuracy.

BC’s storage load is significantly lower than FC and
is independent of the tree-depth. Both FC and FC* cause
the same database storage load and, therefore, we depict
it with bar FC DB-SL. However, the store message load
of FC and FC* has a significant difference. While MSG-
SL of FC grows very abruptly with the tree depth, MSG-
SL of FC* increases more gently and is very close to
the database storage load incurred in the network. This
means that FC* does not produce the amount of redun-
dant triples generated by FC. The only redundant triples
that are generated by FC* in this experiment are sc triples
which are generated by two different nodes because of our
triple indexing scheme. These triples, however, are much
fewer than the total number of triples stored and gener-
ated and thus the redundancy shown by the graph is very
low.

In Fig. 9b, we show the time needed by each approach
to complete the insertion of RDF(S) data. In BC, this time
represents the time needed until all given triples are stored
at the respective nodes. In FC and FC*, this time repre-

|——FCc -m-FC* -a-BC

Depth
(b) storage time

sents the time required for the algorithm to terminate, i.e.,
to reach a fixpoint. Certainly, the time required by BC to
store RDF(S) data is independent of the tree depth. The
time is negligible and thus the line is very close to the
x axis. On the contrary, FC and FC* require a time pro-
portional to the tree depth. FC requires a larger amount
of time to reach a fixpoint than FC*, a phenomenon that
is magnified as the tree depth grows. Generally, both for-
ward chaining algorithms require an enormous amount of
time to complete which made the measurement of insert-
ing more than 10,000 triples of the RBench dataset infeasi-
ble. This is mainly due to the number of messages sent in
the network which causes bandwidth congestion as well as
overload to the nodes that have to process this amount of
messages.

8.3 Comparing Backward Chaining with Magic Sets

In this section, we compare the backward chaining algorithm
(BC) with the algorithm using the magic sets transforma-
tion (MS). In the following set of experiments, we stored
1,000,000 instances of the RBench dataset for RDFS class
hierarchies of varying depth using a uniform distribution.
Then, we send a request with the predicate m_type and
argument the root class for MS, while we run the query that
asks for all instances of the root class for BC.

Figure 10a shows the network traffic in terms of the num-
ber of triples transferred in the network for MS and in terms of
the number of bindings transferred for BC. Both of these met-
rics depict the number of generated inferences from the two
algorithms. We observe that the total number of triples gen-
erated from MS and the total number of bindings generated
from BC are equal. This shows that the magic sets rewriting
algorithm is equivalent with a backward chaining algorithm
where we materialize the produced inferences, with the dif-
ference that the former one works bottom-up while the latter
one top-down. In fact, in the literature, the magic sets rewrit-
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Fig. 10 MS vs. BC for RBench dataset

ing algorithm is often considered as an efficient algorithm
for creating materialized views and for propagating changes
to the views through incremental maintenance [65].

Although the two algorithms are equivalent in terms of
the number of inferences, in our experiments, the amount of
time required from MS to terminate is greater than the time
required from BC to answer the corresponding query. Figure
10b depicts the time difference. Note that y axis shows the
time in seconds on a logarithmic scale. We observe that BC
outperforms MS by two orders of magnitude. The reasons
for this are explained below.

Firstly, the messages sent during MS contain whole triples,
while the messages sent during BC contain only bindings,
i.e., only the object of the matching triples. This fact is
depicted in Fig. 10c by the bandwidth consumption of the two
algorithms. We observe that the total bandwidth consumed
by MS is about three times greater than the total bandwidth
spent by BC.

Secondly and most notably, the load incurred at each node
for processing its local triples is greater for MS resulting in a
considerable time difference. We define as local processing
load of a node the number of triples that the node retrieves
from its local database and should process to determine if
new triples can be generated (for the case of MS) or new
queries should be sent (for the case of BC). Figure 10d shows
the total local processing load incurred in all the nodes of
the network for both algorithms, and thus, demonstrates the
total work required by the two algorithms. While BC incurs a
constant load regardless of the depth of the RDFS hierarchy,
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(d) Local processing load

(e) Messages sent

the total load in MS is increasing significantly with the depth
of the RDFS class hierarchy and is much greater than in BC.

The reason behind this is that MS sends many small mes-
sages, while BC sends only a few large messages and thus,
MS requires more local processing effort from the nodes
of the network. Although Fig. 10a demonstrates that the
total number of values (i.e., triples or bindings) sent by
both algorithms is equal, Fig. 10e shows that the number
of store messages (STOREMSG) sent by MS containing the
inferred triples is greater than the number of response mes-
sages (BCRDFSRESP) sent by BC containing the bindings
of matching triples. In BC, a node sends a response back to
its parent node only after it has collected all answers from its
children. On the contrary, in MS whenever a node receives
a MSREQ, it sends a STOREMSG message if any new triples
are generated. As a consequence, the local load incurred at
each node is affected, as in both algorithms, each time a node
receives a message, it retrieves from its local database match-
ing triples to process them. Figure 10e also shows the pre-
dicted numbers of messages of both algorithms computed by
the analytical model. BC sends exactly the number of mes-
sages computed by the analytical model and thus, the two
lines in the graph overlap, while MS sends less messages
compared to the number of messages computed by the ana-
lytical model due to the MULTIPUT functionality.

The RBench dataset involves only one RDFS class hier-
archy and the potentials of MS are not fully exploited. In the
next experiment, we use the LUBM dataset whose schema
contains several independent class and property hierarchies
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which are linked through dom and range statements. We
create a network of 156 nodes in the cluster and store the
complete LUBM-20 dataset consisting of 2,782,435 triples.
The queries we use for evaluation are shown in Table 8.
For MS, we sent a request with the predicate m_type or
m_newTriple and argument the class name or the prop-
erty name, while for BC we run the respective query. Figure
11 shows the bandwidth consumption, the total number of
messages sent, the total local processing load and the time
required for each algorithm to terminate. In this experiment
as well, we observe that BC outperforms MS. Since we deal
with a bigger dataset, the advantage of using BC is more
evident, as shown in Fig. 11d. As a conclusion, BC outper-
forms MS for two reasons: (1) due to the increased local load
incurred at each node and (2) due to the bandwidth consumed
during MS.

8.4 Query Performance

In this section, we explore the query performance of the back-
ward chaining compared to the case where inferred triples
have been materialized and stored in the network. This can
be done either by precomputing the full RDFS closure or by
precomputing only the triples that concern a specific query
using the magic sets algorithm.

In this set of experiments, we use both the LUBM-50 and
the DBpedia dataset. In the first case, we store all inferred
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triples of the datasets and then run the query without any rea-
soning involved. In the second case, we store only the initial
dataset and use backward chaining during query evaluation
to return a complete answer to the query. The queries we used
are shown in Tables 8 and 9. Figure 12 depicts the results of
different metrics for these queries.

In Fig. 12a, ¢, we depict the time required to answer each
query, i.e., the time from the moment a node receives the
query request until the moment it receives all the answers.
Depending on the RDFS schema, BC sends a different
number of messages to retrieve the required inferences.
On the contrary, one message is sent during query evalu-
ation of a pre-materialized dataset to a single node which
retrieves all results from its local database. Table 10 shows
the total number of messages sent at each case for the dif-
ferent queries. For example, the LUBM schema does not
contain many inferences for class Student and thus for
query LQ1 that asks for the instances of class Student
the number of messages sent by BC is only 1. On the other
hand, for query LQ2 that asks for the instances of class
Faculty, BC sends 13 messages to retrieve all inferences.
Certainly, this leads to a greater query response time dif-
ference between the algorithm that uses backward chain-
ing and pre-materialization. We also observe from Table
10 that because the DBpedia ontology is richer and more
expressive than the one of LUBM, more messages are
sent.
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Fig. 12 Query performance of BC for LUBM (7op) and DBpedia (bottom)

Table 10 Messages sent for various queries

LUBM query Pre-materialization BC
LQ1 1 1
LQ2 1 13
LQ3 1 22
LQ4 1 16
LQ5 1 4
LQ6 1 20
LQ7 1 41
DBpedia query Pre-materialization BC
DQ1 1 2
DQ2 1 258
DQ3 1 12
DQ4 1 110
DQ5 2 13
DQ6 2 111
DQ7 2 114
DQ8 2 46
DQ9 1 124

As a result of the number of messages sent, bandwidth
consumption is also greater when backward chaining is used.
Figure 12b, d shows the bandwidth consumed because of the
partial answers that are transferred through the network. Note
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that these graphs do not contain the bandwidth consumed for
returning the final results to the query requestor node since
it is the same for both approaches. Another parameter that
affects query response time is the selectivity of the query, i.e.,
the number of results that each query returns. We see that the
query response time for class Student is greater than the
query response time for class Faculty. This is because
the number of results for query Student is 430,114 while
it is 35,973 for Faculty.

We have also experimented with different dataset sizes.
In a network of 156 nodes, we store datasets from LUBM-1
to LUBM-50. Every time we measure the query response
time of queries LQ1 and LQ2 that ask for the instances
of Student and Faculty, respectively. Figure 13 shows
the behavior of our system with and without the reasoning
process as the dataset stored in the network grows. Table 11
shows the sizes of all the datasets used together with the num-
ber of results that each query returns. In the graphs of Fig. 13,
we show that query response time scales in a linear fashion
with the number of triples stored in the network. This is a
result of two factors. First, the local database of each node
grows and as a result local query processing becomes more
time-consuming. Second, the size of the answer set of the
queries grows as the number of triples is increasing result-
ing in a greater bandwidth consumption. As we mentioned
before, BC performs close to the query evaluation without
any reasoning for the query that asks for the instances of
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Dataset Triples Inferred triples Answers of query Answers of query
ub:Student ub:Faculty
LUBM-1 103,413 144,819 6,463 540
LUBM-5 646,144 887,461 40,087 3,373
LUBM-10 1,317,009 1,806,023 82,507 6,843
LUBM-20 2,782,435 3,812,865 174,750 14,457
LUBM-30 4,109,311 5,629,144 256,919 21,440
LUBM-50 6,890,949 9,437,221 430,114 35,973

Student, while the difference becomes more evident for
the query that asks for the instances of class Faculty. In
all cases, the increase of query response time of backward
chaining remains linear with respect to the triples stored.

Finally, in Fig. 14, we show the query response time for all
queries provided in the LUBM benchmark using the LUBM-
50 dataset. These queries consist from one to six triple pat-
terns. For the conjunctive queries we utilize the QC algorithm
of Atlas described in [37] which splits a conjunctive query to
its atomic parts and evaluates them in a sequential way. For
each triple pattern, the BC algorithm takes place. The over-
head of BC is now more evident as the more triple patterns
in a query require reasoning the more overhead is added to
the final response time. Studying algorithms for a parallel
evaluation of conjunctive queries like in [46] is part of our
future work and is not the focus of this paper.

8.5 Data Skewness

In this section, we study how the data skewness affects our
algorithms. DHTSs can suffer from load imbalances [69].
Load imbalances can appear at the level of the key dis-
tribution, i.e., keys are not evenly distributed among the
nodes of the network, and at the level of the item distri-
bution, i.e., items are not evenly shared among the nodes.
The first phenomenon can be easily solved with a consistent
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Fig. 14 BC performance for all LUBM queries

hash function and using virtual nodes [38,67]. The second
problem occurs mainly due to data skewness. RDF data is
highly skewed since various values, and mostly properties
such as rdf : type, rdfs: label, appear very frequently
in a dataset. Therefore, most DHT systems which use the
triple indexing scheme of [12] suffer from load imbalances
concerning storage load.

In this set of experiments, we conduct some measurements
concerning the distribution of the database storage load for
both algorithms to investigate how each reasoning algorithm
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is affected by the skewness of the data. Figure 15 shows the
storage load distribution among network nodes using Lorenz
curves as proposed in [57]. Lorenz curves are functions map-
ping the cumulative percentage of ordered objects to their
corresponding cumulative percentage of their size. In our
case, the objects are the network nodes and the size is their
storage load. We order network nodes from the one that has
the least storage load to the one that has the biggest storage
load and for each set of nodes we calculate the cumulative
storage load (the first set contains only one node, while the
last one all nodes). We show in the x axis the cumulative
percentage of the nodes, while in the y axis the cumulative
percentage of the storage load. The purpose of Lorenz curves
is to show which percentage of the nodes holds which per-
centage of the total load. In the ideal case where all nodes
share the same load, the curve is a straight diagonal line (e.g.,
40% of the nodes share 40% of the load). The closer a Lorenz
curve is to this diagonal, the better the load distribution is.
In this Fig. 15a, we show the database storage load of BC
and FC* for the RBench dataset with tree-depths 2 and 5. As
the magic sets algorithm in this experiment generates all the
instances of the root class, its storage load distribution is the
same with FC* and thus we do not depict it in the graph. For
readability reasons, we do not show the intermediate tree-
depths, but as the depth of the tree increases the load distrib-
ution becomes better for both approaches. For example, for
a hierarchy with depth 2, we see that, in BC, around 72%
nodes share less than 50% storage load and the other 28%
nodes have to deal with the other 50% load. In this graph,
we observe that the deeper the hierarchy tree, the better the
load distribution is for both backward and forward chain-
ing. This can be explained by the fact that the range of the
object value of the triples stored is limited to the number of
classes of the hierarchy for this dataset. For a class hierarchy
with depth 2, the number of distinct classes is 7 and nodes
responsible for these classes are overloaded. As the depth
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increases, the number of classes increases exponentially and
more nodes share the load resulting in a more balanced dis-
tribution. Furthermore, while both algorithms have almost
the same load distribution for a tree with depth 2, BC dis-
tributes the load slightly better than forward chaining when
the depth increases to 6. This is a result of a characteristic
property of FC*, namely that classes of higher levels of the
hierarchy have more instances than classes from lower levels
(since each class keeps all the instances of its subclasses).
Therefore, nodes that are responsible for classes of higher
levels are more loaded with triples than nodes responsible
for classes of lower levels.

Figure 15b shows the Lorenz curve for the DBpedia
dataset. We observe that for both approaches storage load is
not equally shared among the nodes. For example, half of the
nodes share less than 20% of the load. The most overloaded
nodes become even more loaded with the FC* approach as
inferred triples are indexed in these nodes.

Load imbalance in a distributed RDF system can have
several implications. First, it may lead to the deterioration of
the overall system performance. Overloaded nodes need to
keep a bigger local database and hence they may become a
bottleneck as they will require more time for inserting new
data as well as for finding matches to a given triple pattern.
Second, if the data is very skewed, some of the nodes may
reach their storage capacity limits and thus will not be able
to hold any more data.

There are solutions proposed in the literature for load bal-
ancing [6,38,69] and both reasoning approaches could ben-
efit from them. In general, load balancing methods can be
categorized to data replication and data relocation. Applying
data replication to a problem of data skewness does not usu-
ally comprise a solution, rather it magnifies the problem by
overloading more nodes than necessary. A relocation tech-
nique is more suitable for the RDF storage load balancing.
In [6], the authors propose a method based on relocation and
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utilize overlay trees among nodes to keep track of the relo-
cated triples. The set of triples of an overloaded node 7 is split
into two or more equal parts which are then sent to the net-
work nodes n; that appear to be the least busy. These nodes
become children of the original network node in the overlay
tree. When a triple pattern should be evaluated at node n, it is
also broadcasted to all network nodes n; that are the children
of n in the overlay tree. Then, the union of the results from all
n; nodes constitutes the result to the triple pattern submitted
to n. Another issue that arises in this scenario is the detec-
tion of the overloaded nodes. In [6], a sampling technique
is proposed where each node sends its statistics to a sample
number of nodes and compares its load with the one from
the other nodes. If it exceeds a certain percentage threshold,
then the node is considered overloaded. Such solutions can
be applied to our algorithms as well but we consider this
research area out of the scope of this paper.

8.6 Lessons Learned

As a conclusion, a forward chaining approach improves the
time for answering a query but increases the storage load
significantly by generating statements that might never be
required by a query. One might prefer to pay this storage
cost if enough space is available and fast answering is para-
mount. Naturally, this method is the preferred one if one
wants to compute the complete closure of a given dataset
under RDFS entailment. Results from our experimentation
show that a simple forward chaining implementation in the
DHT as the one we presented in [35] and in Sect. 4 and also
presented in BabelPeers [ 7] suffers from message congestion.
While the FC* algorithm we presented in this paper improves
on the number of messages sent, we still could not scale to
larger datasets mainly due to a straightforward implemen-
tation. An appropriate optimization of our implementation
would involve optimizing the local database storage at each
node (for instance, using an off-the-self RDF store like RDF-
3X [54]), and compressing the triples exchanged among the
nodes (for instance using a compact representation of RDF
such as the ones recently proposed in [19,44]). However, this
was not the focus of our work and our implementation served
as the targeted proof of concept.

An alternative solution, if materializing the full RDFS clo-
sure is paramount, would be to keep all RDFS schema triples
at each node locally, and precompute the closure of the data
before inserting them into the DHT system. This is possible
in the mrdf fragment we consider since schema triples are
always generated by two other schema triples and data triples
are generated by one schema and one data triple. However,
still this solution causes a big storage overhead to the system
and is more expensive to maintain in the presence of frequent
updates as the whole RDFS closure should be materialized
and maintained.

In contrast, a backward chaining approach improves stor-
age load and can scale to bigger datasets in our system. Cer-
tainly, this comes at the cost of an increase in query response
time. Yet, the query response time of backward chaining
increases linearly with the number of triples stored in the
network.

The magic sets algorithm constitutes a good compromise
between the two algorithms as it exploits the advantages of
both approaches and scores between the two. Although in our
system, it performs worse than BC, such an algorithm can
be proved extremely helpful in application scenarios where
the query workload is known a-priori and a pre-computation
can be done offline. In such cases, only triples concerning
the queries in the workload are inferred and stored in the
network which leads to storage savings and a speedup of
query performance.

9 Related Work

In this section, we survey related work. We cover works on
RDFS reasoning in both centralized systems as well as dis-
tributed ones of various architectures.

9.1 Centralized Systems

A representative centralized RDF store that supports a for-
ward chaining approach is Sesame [11]. Each time an RDF
Schema is uploaded in Sesame, an inference module com-
putes the closure of a given dataset under the RDFS entail-
ment and asserts the inferred RDF statements. So, every RDF
statement, explicit or implicit, is stored in Sesame’s data-
base. Jena [76] has a generic reasoning module designed to
allow the usage of any kind of reasoner. Therefore, Jena can
eventually support different approaches depending on the
underlying reasoner. RDFSuite!® and specifically RSSDB
[4] follows a totally different approach in which the tax-
onomies are stored using the underlying DBMS inheritance
capabilities so that retrieval is more efficient. For example,
if a class ¢ is represented as a table (relation) R, a subclass
of ¢ would be a subtable of R in the underlying DBMS.
Nevertheless, this approach is still an on demand approach
and resembles the backward chaining evaluation algorithm.
3store [24] follows a hybrid approach to gain from the advan-
tages of both approaches and avoid their disadvantages. In
[24], the authors have chosen which inference rules will be
evaluated a priori using forward chaining when new facts
are asserted, and rules which have greater storage load and
lower query processing cost will be evaluated on demand
with backward chaining and query rewriting. In the Oracle
RDBMS [14], RDFS inference is done at query execution

16 hitp://139.91.183.30:9090/RDF/
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time using appropriate SQL queries to the underlying rela-
tions. However, if a rule is used frequently, then the system
can determine that inferencing can be done using forward
chaining to pre-compute the inferred triples and store them
in a separate relation. Virtuoso!” also provides support for
RDF(S) reasoning [17]. Virtuoso’s SPARQL implementation
supports inference at run time by rewriting the query appro-
priately to retrieve all inferred answers. Finally, GiaBATA
[30] is a prototype system which uses logic programming
approaches coupled with a persistent relational database for
implementing SPARQL with dynamic rule-based inference.
In [31], the authors of GiaBATA employ different optimiza-
tion techniques like magic set rewriting in an effort to stay
competitive as they extend SPARQL to be able to use a cus-
tom ruleset for specifying inferences.

9.2 Peer-To-Peer Networks

A DHT-based RDF store that is closely related with our work
is BabelPeers [7] which was the first system to support RDFS
reasoning using DHTs. It is implemented on top of Pas-
try [60] and only a forward chaining approach is supported.
RDF(S) triples are distributed in the network using the DHT
protocol. The reasoning process runs in regular intervals on
each node and checks for new triples that have arrived to the
node. Then, it exhaustively generates new inferred triples
based on the RDFS inference rules and sends them to be
stored in the network. [7] presents no experimental evalu-
ation of the forward chaining algorithm. The results of our
experiments show how expensive a forward chaining algo-
rithm is in terms of storage load, time and bandwidth.

In [18], the authors present a DHT system called DORS
for distributed ontology reasoning. All nodes share the same
TBox, while the instances of ABox are distributed in the
network using a DHT partitioning scheme. Each node uses a
DL reasoner to infer the complete subsumption relationships
among classes and properties of the TBox. Although TBox
reasoning is taking place at each node independently, ABox
reasoning is performed in a distributed manner iteratively
until no new inferences are produced, similarly with our FC
approach. A prefetch procedure retrieves the required data
before the rule engine starts the reasoning process. Then,
the inferred assertions are distributed according to the DHT
partitioning scheme until no new assertions are generated.
The experiments presented in [ 18] are performed in a network
of up to only 32 nodes and for a small dataset.

In [3], a peer data management system is presented, called
SomeRDEFS, where peers are connected through semantic
mappings using as a data model RDF. These mappings
specify the relationships between RDFS classes. Then,
queries are rewritten using these mappings to find the com-

17 http://virtuoso.openlinksw.com/
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plete answer and evaluated at the appropriate peers. However,
the architecture is different from ours, since the mappings are
used to locate the peers that should evaluate a query, and the
class of queries they support does not allow RDFS classes or
properties to be variables.

In addition to the above works that concentrate only on
RDFS reasoning, DHTs have also been used as the under-
lying infrastructure for distributed SPARQL query process-
ing. RDFPeers [12,13] is the first system which focused on
distributed RDF query processing but there is no support
for RDFS reasoning. In [45], the authors extend the work
of RDFPeers and present two algorithms for the distributed
evaluation of conjunctions of triple patterns in a simulated
environment. [39,46] focus on the efficient evaluation of
SPARQL queries using various kinds of optimization tech-
niques such as parallelization. It is interesting to investigate
how such optimization techniques and sophisticated query
evaluation algorithms can be combined with the RDFS rea-
soning algorithms we describe in this paper.

Another category of P2P systems which provide an
infrastructure for answering RDF queries is semantic over-
lay networks. GridVine [1] is a semantic overlay network
which provides semantic interoperability through schema
mappings and supports conjunctive and disjunctive triple
pattern queries without supporting RDFS inference. Schema
mappings are also used in [23] to provide semantic mediation
between disparate data sources. SQPeer [42] is a middleware
for efficient routing and planning of complex queries in a P2P
database system, exploiting the schemas of peers. However,
such works do not focus on RDFS reasoning.

Finally, a different research area that is related with our
work is declarative networking. In [48,47], a variation of Dat-
alog is used for expressing routing protocols in a simple and
compact way based on the observation that recursive query
languages are very suitable for expressing routing protocols.
The implementation of the routing protocols in [48,47] can
then be done by evaluating recursive queries in a distributed
manner.

9.3 Other Distributed and Parallel Architectures

Apart from DHTs which were the first infrastructures pro-
posed for distributed RDF(S) query processing and reason-
ing, other distributed and parallel computing platforms have
been proposed lately. As it has been proven, approaches
that are based on distributed computing platforms consisting
of powerful clusters and cloud computing platforms using
MapReduce can be very scalable for computing the closure
of RDF(S) graphs.

MARVIN [55,56] is a parallel and distributed platform
for RDFS reasoning over large amount of RDF(S) data.
MARVIN supports a forward chaining approach for RDFS
reasoning and runs on DAS-3 (Distributed ASCI Supercom-
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puter'®). The creators of MARVIN point out that a distribution
of RDF(S) triples based on a DHT can suffer from load imbal-
ances due to the skewness of RDF data [43]. Therefore, they
propose an approach of divide-conquer-swap where triples
are fairly partitioned to all peers, each peer performs the
reasoning, repartitions its triples and swaps it with another
peer. Although this method produces sound results, it is not
complete. In [56], the authors present an analytical model to
prove that their system will eventually reach completeness
over time. The swapping phase can be either random or using
another algorithm called SPEEDDATE in [56] which enables
data clustering and thus improves the chances of getting
completeness earlier. However, the amount of time required
to reach completeness remains questionable. In addition,
the system uses an in-memory implementation at each peer
which speeds up inferencing significantly but if a node fails
and re-joins the network all triples are lost. Datasets used in
the experiments of [56] contain up to 14.9 million triples.

In [72], a different forward chaining approach is proposed
based on MapReduce [15]. The system is implemented on
top of Hadoop!® and runs on the DAS-3 distributed super-
computer managing to scale to 865 millions of triples. The
authors of [72] show that a naive implementation is inef-
ficient due to load-balancing problems and the generation
of many duplicate triples and propose three optimizations
to achieve an RDFS closure computation more efficiently.
Firstly, the RDFS triples are kept in memory since they are
fewer than the RDF data triples. Secondly, data are grouped in
a way which prevents the generation of duplicate triples and
avoids load balancing problems. This is performed using as
keys more than one part of the triples in some cases. Finally,
the rules are executed in a specific order so that the num-
ber of iterations required is limited. Load-balancing issues
are also handled by the Hadoop framework which dynami-
cally assigns tasks to optimize the workload of each node. In
[72], the authors also utilize a distributed dictionary encoding
in MapReduce. More recently in [74], the authors propose
QueryPIE, a hybrid rule-based reasoning distributed proto-
type, which combines forward and backward chaining. The
idea behind this method is to precompute the closure of the
RDFS schema only, and using this information they perform
backward chaining for the OWL Horst fragment. Experimen-
tal results are encouraging; however, no formal proofs for the
correctness of the methods are given.

Weaver and Hendler [75] considers the problem of
producing the full RDFS closure using parallel comput-
ing techniques. The authors show that RDFS rules have
certain properties that allow for an embarrassingly parallel
algorithm. This means that the RDFS reasoning task can be
divided into a number of completely independent tasks that

18 http://www.cs.vu.nl/das3/
19 http://hadoop.apache.org/

can be executed in parallel by separate processes. Similar to
[18], adistinction is made between triples that describe RDFS
information (referred as ontological triples) and triples that
encode RDF data information (referred as assertional triples).
The partitioning scheme requires each process to have all
ontological triples, while assertional triples are split equally
to the processes. Each process iterates over the RDFS rules in
the appropriate order until no more inferences are found. The
inferred triples produced from a processor are added to the
set of triples of the same processor. The authors show that this
algorithm is sound and complete with respect to the RDFS
rules supported. A disadvantage of this approach is that each
process outputs the set of triples to a separate file. This intro-
duces the problem of having different processes producing
the same triples and thus the resulting data set contains many
duplicate triples. As one would expect, removing duplicates
would require much time and would sacrifice the scalability
of the algorithm. Experiments were conducted in an Opteron
blade cluster using machines with 16GB memory each and
the datasets used contained up to ~ 346 million triples from
the LUBM benchmark. In [77], the authors show how one
can efficiently extract relevant information from the com-
puted RDFS closure of the data.

In [61,62], the authors present the reasoning engine of
4store [25] which runs in a backward chaining fashion using
the mrdf fragment of RDFS. 4store is a clustered RDF store
which uses the subject of each triple to decide to which clus-
ter node the triple should be stored. Then, a query processing
node is responsible for retrieving the required data and com-
pute the answer to a query. The reasoning engine of 4store
works in a backward chaining fashion but keeps all RDFS
information at one cluster node. The experiments presented
in [62] were conducted in 5 Dell PowerEdge R410 machines,
each of them with 4 dual core processors at 2.27 GHz, 48GB
memory and 15k rpm disks scaling to 138 million triples.

In [20,21], the authors demonstrate how Cray XMT, a
shared-memory supercomputer with multithreaded proces-
sors, can be used for managing billions of triples. They study
the computation of the RDFS closure, dictionary encoding
and query processing. All these operations are completely
performed in-memory and are specific to this infrastructure.

Other related approaches consider OWL reasoning in par-
allel platforms. One such approach is presented in [64], where
two partitioning approaches are studied. The first one parti-
tions the data which are then processed independently. The
second one partitions the rules and each process applies its
rules to the complete data set. The authors of [72] go one step
further using MapReduce to compute the closure of RDF
graphs under the OWL Horst semantics in [73]. In [53],
a MapReduce algorithm is presented for classifying EL™
ontologies, following the paradigm of [72,73] for RDFS
ontologies. Finally, SAOR is an OWL reasoner using for-
ward chaining with best-effort semantics [28]. In [28], the
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authors generalize to arbitrary rule sets for distributed rea-
soning and show when the system maintains completeness.

10 Conclusions

We presented and evaluated both forward and backward
chaining algorithms for RDFS reasoning and query answer-
ing on top of the Bamboo DHT [59]. We proved the correct-
ness of our algorithm utilizing the minimal deductive system
mrdf presented in [51]. We revised the backward chaining
algorithm of [35] to take into account the inference rules pre-
sented in the minimal RDFS fragment of [51]. In addition,
we designed and implemented an algorithm which works in a
bottom-up fashion using the magic sets transformation tech-
nique [8]. We provided a comparative study of our algorithms
both analytically and experimentally. The analytical cost
model could be used by users to determine which of the rea-
soning algorithms would be suitable for their application and
available resources. Also it can be used in the optimization
phase of a distributed query processing algorithm where, for
instance, the number of messages sent is essential for choos-
ing optimal query plans. In the experimental evaluation, we
deployed our system in a local shared cluster, compared the
performance of the algorithms from various perspectives and
verified the accuracy of our analytical cost model.

As a conclusion, the forward chaining approach improves
the time for answering a query but increases the storage load
significantly by generating statements that might never be
required in a query and is difficult to update. In contrast,
the backward chaining approach improves storage load and
can scale to millions of triples. Certainly, this comes at the
cost of an increase in query response time. Yet, the query
response time of backward chaining increases linearly with
the number of triples stored in the network. A magic sets
algorithm tries to exploit the advantages of both approaches
and scores between the two.

As it has been proven recently, approaches that are based
on parallel computing platforms consisting of powerful clus-
ters based on MPI [75] and cloud computing platforms
using MapReduce [72] can be very scalable for comput-
ing the closure of RDF(S) graphs and for backward rea-
soning [74], hence they should be preferred to DHT-based
approaches if enormous datasets are to be used and appro-
priate cluster/cloud infrastructures are available. However,
none of these approaches has dealt in depth with the theoret-
ical aspects (soundness and completeness of algorithms) we
have examined in this paper, thus, they also stand to benefit
from the techniques discussed in this paper.

Interestingly, many of the existing cloud-based key-value
stores also adopt the hash-based partitioning and replication

@ Springer

mechanisms provided by DHTS, such as DynamoDB?’ and
Apache Cassandra®!. They can be viewed as one-hop DHTs,
where each node routes a request to the appropriate node
directly by maintaining enough routing information [16]. Our
RDFS reasoning algorithms can be easily adopted in such
key-value stores and scale to a large amount of data.

11 Future Directions and Open Issues

One direction to improve our methods is to incorporate load
balancing methods so that storage load can be evenly shared
among the network nodes. Load balancing methods can be
distinguished to data replication and data relocation. Apply-
ing data replication to a problem of data skewness does not
usually comprise a solution, rather it magnifies the prob-
lem by overloading more nodes than necessary. A relocation
method might be more suitable for the storage load balancing
in a DHT setting such as the one proposed in [6]. Investigat-
ing similar techniques for load balancing in combination with
node failures for a DHT-based RDF stores remains an open
issue.

In addition, an interesting future direction is the adoption
of hybrid inference techniques in a DHT, similar to [74],
where the schema is shared to all nodes. In such a case, the
node that receives a query could directly rewrite it based on
the schema and then send the subqueries of the rewritten
query to be evaluated in the network. However, we believe
that in some simple cases (as in the case of queries of the form
(X, type, a)),the number of nodes that will have to be
visited to evaluate the subqueries is the same as the number
of nodes visited in our backward chaining algorithm and,
therefore, the gain of such an approach will not be noticeable.
However, we believe that there are queries that can benefit
from having the schema locally at each node. We plan to
investigate the gain of following such an approach as part of
our future work.

Finally, in this work, we have assumed a simple query
processing algorithm for conjunctive queries which splits the
query into its atomic parts and then operate on its atomic part
separately. However, more elegant algorithms such as [39,42,
46] are interesting to be investigated and explored towards
the direction of incorporating the reasoning approaches we
propose in this paper.
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