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Introduction

Searching for new methods of used tires recycling is a 
widespread topic of research conducted by industries and 
scientific centers all over the world [1–3]. Ground tire rub-
ber (GTR) and reclaimed rubber are commonly used in 
rubber industry as substitutes of fillers and elastomers in 
rubber compounds. Ongoing research aims at optimization 
of rubber compounds containing GTR/reclaimed rubber 
with simultaneous maintenance of properties of resulting 
products. One of the simplest and economically beneficial 
methods of the enhancement of rubber properties is proper 
selection of curing system and conditions of vulcanization. 
These conditions significantly affect the cross-link den-
sity of vulcanizates, which to a large degree controls their 
mechanical and thermal properties [4, 5].

Rattanasom et  al. [6] investigated the effect of vulcan-
izing systems on mechanical properties of natural rubber 
(NR) vulcanizates containing 10–50 phr of reclaimed rub-
ber. At this research two types of curing systems were used: 
conventional (CV) and effective (EV). Authors attained 
better mechanical properties for products obtained from 
compounds with conventional vulcanizing system.

Kim et  al. [7, 8] characterized the influence of curing 
system on morphology and properties of rubber compounds 
containing GTR particles. Obtained results confirmed that 
type of vulcanizing system has strong impact on curing 
characteristics and mechanical properties of vulcanizates 
filled with GTR. Low mechanical properties of vulcani-
zates containing GTR was the result of two main factors: 
weak interfacial elastomer-filler interactions and change in 
cross-link density of vulcanizates filled with GTR.

Ismail et al. [9–11] investigated the influence of the vul-
canizing system on the properties of rubber blends based on 
natural rubber/recycled EPDM (ethylene-propylene-diene 
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K. Formela (*) · D. Wąsowicz · M. Formela · A. Hejna · 
J. Haponiuk 
Department of Polymer Technology, Faculty of Chemistry, 
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monomer). Presented results confirmed the significant 
influence of vulcanizing system (especially type of vulcani-
zation accelerator) on curing characteristics, mechanical 
and thermal properties of the obtained vulcanizates.

Gibala et  al. [12–14] demonstrated that vulcanization 
accelerator’s residues present in ground rubber may affect 
on curing characteristics and mechanical properties of rub-
ber compounds filled with ground rubber. Obtained results 
suggest that accelerator’s residue migration occurred from 
ground rubber to elastomer matrix; on the other hand, the 
migration of sulfur occurred in opposite direction.

Guzmán et al. [15] discussed the possibility of the use of 
GTR as vulcanization activator in order to reduce the con-
tent of zinc oxide in rubber compounds. Authors recom-
mended further research on interactions between additives 
present in the GTR particles and in the rubber compounds.

Vulcanization accelerators are applied as reclaiming/
devulcanization agents, as they have effect on the process of 
breakdown of cross-links and on secondary vulcanization of 
resulting reclaimed rubber [16, 17]. Widely promoted in the 
90s of last century product from STI-K Polymers American 
with trade name deLink® [18, 19] was a mixture of zinc 
dithiophosphate with suitable vulcanization accelerators.

Correlation between vulcanizing system type and prop-
erties of reclaimed rubber is crucial, especially in case of 
low-cost products based on waste rubber. Therefore, devel-
opment of research projects focused on new methods of 
reclamation of GTR [20–22] requires better understanding 
of the impact of vulcanizing systems on the properties of 
the obtained products.

Mechanical properties of vulcanized reclaimed rubber 
prepared in different conditions are shown in Table 1. Pre-
sented data suggested that method and parameters of recla-
mation of rubber, in particular the composition and particle 
size of GTR, influenced the quality of the products. Other 
important factors are: curing conditions (temperature, pres-
sure, time) and the character of vulcanizing system. Consid-
eration of parameters presented above is necessary for com-
parison of results published by different research groups.

The present state of knowledge shows the effect of vul-
canization accelerators on properties of rubber compounds 
containing ground rubber/reclaimed rubber. However, it is 
hard to find any published data about influence of curing 
system, particularly accelerator type and accelerator/sulfur 
ratio on properties of reclaimed rubber. Optimization of 
curing system improved processing and mechanical proper-
ties of revulcanized rubber (vulcanized reclaimed rubber) 
which affected on quality and price of the final product.

In the presented work the effects of vulcanizing system 
efficiency on the curing process, thermal, static mechanical 
properties (tensile strength, elongation-at-break, hardness, 
resilience, and abrasion resistance) and dynamic mechani-
cal properties of reclaimed GTR were determined. For this 
study five types of commonly used vulcanization accel-
erators were used. Furthermore, for better understanding 
of correlation between vulcanizing system efficiency and 
properties of reclaimed rubber, two ratios of vulcanization 
accelerator/sulfur were used: conventional vulcanizing sys-
tem (CV) with accelerator/sulfur ratio 1:2 and efficient vul-
canizing system (EV) with accelerator/sulfur ratio 2:1.

Table 1   Characteristics of reclaimed rubber obtained by different methods [23–28]

GTR particle  
size (mm)

Reclaiming method Curing conditions Vulcanizing sys-
tem (phr)

Tensile strength 
(MPa)

Elongation-at-
break (%)

Reference no.

0.50 Grinding, ultrasonically 
treated, ozone/ultra-
sonically treated

T = 150 °C,
p = –
t = 15 min

– 3.2–5.1 135–160 [23]

0.05 Microbial desulfurization T = 150 °C,
p = 15 MPa
t = –

– 3.3 191 [24]

0.25 Shearing in pan mill  
mechanochemical  
reactor.

T = 150 °C,
p = 10 MPa
t = 15 min

ZnO/stearic acid/
CBS/sulfur: 
2.0/1.0/0.5/1.5

4.2–8.4 109–202 [25]

0.60 Thermomechanical 
co-rotating twin screw 
extruder

T = 150 °C,
p = 10 MPa
t = 10 min

ZnO/stearic acid/
TBBS/sulfur: 
2.5/0.4/0.8/1.2

5.6–12.5 337–353 [26]

0.19 Thermomechanical in 
counter-rotating twin 
screw extruder

T = 150 °C,
p = –
t = according  

Monsanto Rheometer

ZnO/stearic acid/
MBT/sulfur: 
5.0/2.5/1.0/1.5

2.6–4.7 164–230 [27]

1.50 Thermomechanical in 
counter and co-rotating 
twin screw extruder

T = 150 °C,
p = 4.9 MPa
t = according to  

Monsanto Rheometer

ZnO/stearic acid/
TBBS/sulfur: 
2.5/1.0/0.35/1.5

3.3–6.5 114–180 [28]
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Experimental

Materials

Ground tire rubber obtained by ambient grinding of used 
tires (combination of passenger car and truck tires in mass 
ratio 50:50) with particles size below 0.8 mm, produced by 
Orzeł S.A. (Poland) was used for the research. Particle size 
distribution of GTR particles is shown in the Fig. 1.

Ground tire rubber was thermo-mechanically reclaimed 
using a co-rotating twin screw extruder EHP 2 × 20 from 
Zamak (Poland) furnished with eleven heating/cooling 
zones. Screw diameter of the extruder was 20  mm and 
an L/d ratio was 40. Barrel of the extruder was heated 
to 120  °C in all zones, while rotating speed of screws 
was 600  rpm. Throughput of GTR during reclaiming 
was 1.5  kg/h. Lower temperature during reclaiming pre-
vented secondary cross-linking of the reclaimed GTR and 
increased the shearing efficiency of the GTR. Moreover, 
reclaiming of GTR conducted at lower temperature reduced 
cost of energy and significantly decreases the amount of 
gases and low molecular degradation products (i.e., accel-
erators and plasticizers) generated during the process [29].

The appearance of GTR before and after reclaiming is 
shown in Fig. 2. Sol fraction content (extraction with tolu-
ene conducted at room temperature for 72 h) of GTR was 
4.1 % and for reclaimed GTR was 10.7 %. Changes of sol 
fraction content confirmed the reclaiming of GTR. Vulcani-
zation agents with technical purity were supplied by Stand-
ard Sp. z o.o. (Poland).

Sample preparation

Obtained reclaimed rubber was mixed with particular vul-
canizing system using two roll mills from Buzuluk (Czech 
Republic). Formulation of investigated rubber compounds 
is shown in Table 2. Samples were vulcanized at 150  °C, 
under the pressure of 4.9 MPa, according to estimated opti-
mum vulcanization time.

Chemical structures and physical properties of used 
vulcanization accelerators are shown in the Scheme 1 and 
Table 3, respectively.

Measurements

Vulcanization process was characterized according to 
PN-ISO 3417 at 150 °C, using a Monsanto R100S (USA) 
rheometer with oscillating rotor. Oscillation angle was 3° 
and torque range 0–100 dNm. Cure rate index (CRI) values 
were calculated in accordance with the Eq. (1) [30]:

where, t90 is optimum vulcanization time (min) and t2 is 
scorch time (min).

To determine the aging resistance of vulcanizates at ele-
vated temperatures, R300 parameter was determined [31]. R300 
is the percentage reversion degree after a period of 300 s cal-
culated from the time of reaching maximum value of torque 
MH. R300 was calculated in accordance with the Eq. (2):

(1)CRI =

100

t90 − t2

Fig. 1   Ground tire rubber (GTR) particles size distribution

Fig. 2   Appearance of ground 
tire rubber (sol fraction: 4.1 %) 
before (a) and after (b) reclaim-
ing (sol fraction: 10.7 %)
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where, MH is maximum torque and M300s is torque esti-
mated at 300 s after occurring of maximum torque.

The tensile strength, elongation-at-break, moduli M50 
and M100 (stresses at 50 and 100 % of elongation, respec-
tively) were estimated in accordance with PN-ISO 37. 
Tensile tests were performed on the a Zwick Z020 (Ger-
many) machine at a constant speed of 500 mm/min. Shore 
hardness type A was estimated using a Zwick 3130 (Ger-
many) durometer in accordance with ISO 7619-1. Rebound 
resilience was measured with a Schob Pendulum Rebound 
tester (Gibitre Instruments, Italy) in accordance with ISO 
4662. Abrasion resistance was measured according to ISO 
4649 using a Gibitre (Italy) abrasion tester. Abrasion resist-
ance was calculated in accordance with the Eq. (3):

where, A is abrasion resistance (mm3), m1 is initial mass of 
sample (g), m2 is mass of sample after abrasion test (g), ρ 

(2)R300 =

MH − M300s

MH

× 100

(3)A =

m1 − m2

ρ
×

1

η
× 1000

is density of tested sample (g/cm3) and η is coefficient of 
abrasion intensity determined for reference vulcanizate.

Dynamic mechanical analysis was performed using a 
DMA Q800 TA Instruments (USA) apparatus. Samples cut 
into the dimensions of 40 × 10 × 2 mm were loaded with 
a variable sinusoidal deformation force in the single can-
tilever bending mode at the frequency of 1  Hz under the 
temperature rising rate of 4 °C/min within the temperature 
range between −80 and 40 °C.

Swelling degree of resulting vulcanizate (0.2 g samples) 
was determined by equilibrium swelling in toluene (room 
temperature, 72  h). Swelling degree was calculated in 
accordance with the Eq. (4):

where, Q is swelling degree; mt is mass of the sample swol-
len after time t (g) and mo is the initial mass of sample (g).

Thermogravimetric analysis (TGA) was performed on 
the NETZSCH TG 209 (Germany) apparatus using 5-mg 
samples in the temperature range 25–600  °C and under 
nitrogen atmosphere, at a heating rate of 20 °C/min.

Results and discussion

Curing characteristics

The influence of vulcanizing system type on the vulcani-
zation process parameters of reclaimed rubber is shown 
in Table  4. The type of used accelerator and the ratio of 
accelerator to sulfur had no real effect on the changes of 

(4)Q =

mt − mo

mo

× 100

Table 2   Formulation of compounds based on reclaimed rubber

Component Content (phr)

Reclaimed rubber 100

ZnO 3

Stearic acid 1

Accelerator Variable

Sulfur Variable

Scheme 1   Chemical structure 
of used vulcanization accelera-
tors

Table 3   Properties of used vulcanization accelerators

Accelerator Chemical name Molar mass (g/mol) Density (g/cm3) Melting temperature (°C)

MBT 2-mercaptobenzothiazole 167.25 1.42 169–171

TBBS N-tert-butyl-2-benzothiazol sulfenamide 238.37 1.29 104–111

TMTD tetramethylthiuram disulfide 240.43 1.38 146–148

DPG 1,3-diphenylguanidine 211.29 1.19 144–146

CBS N-cyclohexyl-2-benzothiazol sulfenamide 264.42 1.28 97–105
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torque minimal value (ML), what indicates similar process-
ing properties of investigated rubber compounds but some 
dependencies were observed for maximal torque (MH) val-
ues, which correspond with stiffness and shear modulus 
of vulcanized samples. Independently from the accelera-
tor/sulfur ratio, the highest value of MH was observed for 
compounds vulcanized with TMTD accelerator. Their high 
stiffness was caused by the decreased mobility of polymer 
chains, what was also confirmed by the values of hardness 
and elongation-at-break (Table  5). Similar observations 
were recently presented in research work published by 
Ismail et  al. [11] where application of conventional cur-
ing system (accelerator/sulfur ratio was 1:2) increased the 
values of ΔM that was corresponded with the cross-link 
density of vulcanizates [7]. In the case of incorporation of 
MBT and DPG accelerators into effective curing systems 
(EV) significant decrease of ΔM (cross-link density) value 
was observed.

The type of used accelerator evidently influenced the 
scorch time (t2), but, on the contrary, accelerator/sulfur 
ratio had no essential impact on this parameter. The high-
est values of t2 were observed for compounds cross-linked 
with system based on benzothiazole sulfonamide deriva-
tives (TBBS and CBS). Increase of the scorch time enabled 
safer processing of rubber compounds.

Optimum vulcanization time (t90) and cure rate index 
(CRI) of investigated materials significantly depended on 
the type of accelerator and the ratio of accelerator to sul-
fur. The lowest t90 value (2.9  min) and the highest CRI 
value (58.8  min−1) were observed for rubber compound 
cured with conventional curing system (accelerator/sul-
fur 1:2) based on TMTD accelerator, while the highest t90 
(16.1  min) and the lowest CRI values (7.1  min−1) were 
observed for compound containing DPG accelerator.

This phenomenon was due to the chemical nature of 
used accelerators. DPG accelerator (guanidine derivatives) 

Table 4   Curing characteristics of reclaimed rubber

Accelerator type Accelerator/sulfur ratio Curing characteristics

Torque (dNm) ΔM (dNm) t2 (min) t90 (min) CRI (min−1) R300 (%)

ML (dNm) MH (dNm)

MBT 1:2 3.5 33.5 30.0 1.3 7.0 17.5 4.8

2:1 3.9 20.0 16.1 1.5 4.3 35.7 0.6

TBBS 1:2 3.8 41.3 37.5 3.1 7.6 22.2 1.7

2:1 4.0 36.0 32.0 3.2 8.2 20.0 0.2

TMTD 1:2 4.0 51.9 47.9 1.2 2.9 58.8 0.4

2:1 4.8 53.3 48.5 1.7 6.8 19.6 0.0

DPG 1:2 4.7 34.2 29.5 2.1 16.1 7.1 0.7

2:1 4.6 19.4 14.8 2.1 7.7 17.9 0.6

CBS 1:2 3.9 40.3 36.4 3.2 7.8 21.7 0.9

2:1 3.2 28.8 25.6 2.8 5.5 37.0 0.2

Table 5   Mechanical properties of revulcanized reclaimed rubber

Accelerator type Accelerator/sulfur ratio Mechanical properties

TS (MPa) Eb (%) M50 (MPa) M100 (MPa) H (°Sh A) R (%) A (mm3)

MBT 1:2 6.20 ± 0.09 182 ± 2 1.38 2.99 58 28 309

2:1 4.83 ± 0.11 250 ± 10 0.90 1.80 51 22 397

TBBS 1:2 7.41 ± 0.32 152 ± 7 1.95 4.39 62 30 317

2:1 7.30 ± 0.06 178 ± 6 1.53 3.34 61 29 311

TMTD 1:2 6.20 ± 0.07 98 ± 5 2.75 – 72 37 338

2:1 6.38 ± 0.22 104 ± 6 2.51 5.78 71 35 316

DPG 1:2 6.41 ± 0.32 184 ± 5 1.42 2.97 57 27 330

2:1 4.85 ± 0.10 263 ± 8 0.83 1.62 48 22 444

CBS 1:2 6.96 ± 0.40 158 ± 6 1.82 3.81 61 33 317

2:1 6.51 ± 0.34 203 ± 14 1.22 2.58 54 29 318
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is characterized by medium activity and it is usually used 
with other accelerators. TBBS, CBS and MBT accelerated 
systems provide two functions during vulcanization of rub-
ber compounds. Firstly, they retard the vulcanization that 
increases the scorch time and has positive influence on safe 
processing of rubber compounds. Secondly, they react with 
zinc oxide to form sulfuric complex that accelerates poly-
sulfidic cross-links formation [32, 33]. On the other hand, 
cross-linking of rubber compounds with using of TMTD 
containing systems strongly promotes formation of poly-
sulfidic cross-links, which can evolve into disulfide and 
monosulfide cross-links.

Aging resistance of vulcanizates at elevated temperature 
was determined based on R300 parameter. Irrespective of the 
type of used accelerator, in case of conventional curing sys-
tem reversion was observed which had negative impact on 
the vulcanizated rubber properties. The highest reversion 
was noticed for MBT accelerator (R300 =  4.8 %) and the 
lowest was in case of TMTD (R300 = 0.4 %). This phenom-
enon may be related with thermal stability of poly-, di- and 
monosulfide bonds formed during curing of reclaimed rub-
ber. For better presentation of the differences in vulcaniza-
tion process, curing curves for analyzed vulcanizates are 
shown in Fig. 3.

Static mechanical properties

In Table 5 the influence of the type of vulcanizing system 
on the static mechanical properties of resulting materials 
is shown. Samples cured with effective system based on 
MBT and DPG showed the lowest values of tensile strength 
(~4.8 MPa) and the highest elongation-at-break (~250 %). 
Presented results indicated weak cross-linking of these 
samples which was confirmed by the lowest values of M50 
and M100 and by characteristics of vulcanization curves (the 
lowest values of ΔM).

In case of TBBS, CBS and TMTD accelerators, the 
accelerator/sulfur ratio did not have significant impact on 
the tensile strength of resulting materials, but type of the 
accelerator had noticeable influence on the elongation-at-
break, which is shown in Fig. 4.

Mechanical properties values of samples cured with 
TMTD accelerator significantly exceeded results obtained 
for other accelerators. Incorporation of TMTD increased 
the M50 and M100 values, decreased the values of elonga-
tion-at-break (about ca. 50 %), increased hardness (about 
ca. 10° Sh A) and resilience (about ca. 10  % increase). 
Presented results confirmed the decrease of elastomer 
chains mobility during cross-linking with TMTD which is 
consistent with characteristics of vulcanization (Table 4). 
Abrasion resistance values correspond with the results of 
tensile tests of obtained vulcanizates. Presented results 
confirm that reclaimed rubber prepared via low tempera-
ture extrusion possessed properties comparable to proper-
ties of commercial reclaimed rubbers [34, 35] prepared via 
batch methods.

Fig. 3   Vulcametric curves of reclaimed rubber: accelerator/sulfur ratio was 1:2 (CV curing system) (a) and accelerator/sulfur ratio was 2:1 (EV 
curing system) (b)

Fig. 4   Stress-stain curves for revulcanized reclaimed rubber samples 
(cured with MBT, TBBS and TMTD)
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Dynamic mechanical properties

Further research was performed for the samples which 
showed the best mechanical properties and were vulcanized 
with conventional (CV) and effective (EV) curing systems 
containing MBT, TBBS and TMTD accelerators. In Fig. 5 
the influence of the type of curing system on the storage 
modulus (E′) as a function of temperature is shown. The 
lowest values of E′ in the glassy region were observed in 
case of sample vulcanized with EV system MBT/S 2:1. 
The highest values E′ in the glassy region were measured 
for reclaimed rubber cured with conventional system based 
on TMTD accelerator. The values of E′ modulus corre-
spond with the stiffness and cross-link density of obtained 
vulcanizates.

Influence of the type of curing system on the values 
of loss tangent as a function of temperature and values of 
swelling degree as a function of time is shown in Fig.  6. 
Presented results were corresponded with the values of 

E′ modulus and equilibrium swelling measurements. The 
highest cross-link density was observed for sample cured 
with conventional system based on TMTD accelerator, its 
glass transition temperature (Tg) was −26.6  °C and equi-
librium swelling degree (Qeq.) was 202 %. For comparison, 
Tg and Qeq. for material vulcanized with EV system MBT/S 
2:1 were −29.4 °C and 283 %, respectively. The results of 
dynamic mechanical analysis were correlated with results 
of ΔM (curing characteristics) and static mechanical 
properties.

TGA analysis

In Fig. 7 results of the thermogravimetric analysis of GTR, 
reclaimed ground tire rubber (dGTR) and obtained vul-
canizates are shown. Vulcanization of reclaimed rubber 
as expected enhanced the thermal stability of the result-
ing material, due to the increase of its cross-link density. 
In Fig.  7b TGA curves for the temperature range of high 
decomposition rate from 390 to 410  °C are shown, In 
comparison to GTR, lower decomposition temperature of 
reclaimed rubber confirms breaking of cross-link bonds 
during reclaiming of GTR [36, 37] which was confirmed by 
increasing of sol fraction values (see “Materials” section). 
Thermogravimetric curve profiles for reclaimed rubber 
cured with TBBS, TMTD or MTB accelerators, discussed 
in terms of cross-linking degree were correlated with the 
characteristics of vulcanization process (ΔM values), val-
ues of swelling degree and results of static and dynamic 
mechanical analysis.

Presented in Fig. 8 peaks from DTG curves are related 
to the temperatures of maximal rate of thermal degrada-
tion of natural rubber (Tmax1) and styrene-butadiene rubber 
(Tmax2). These rubbers are the main compounds used in car 
tires manufacturing. In case of GTR and reclaimed dGTR 
the second peak (Tmax2) on DTG curve was significantly 

Fig. 5   Storage modulus (E′) as a function of temperature determined 
for revulcanized reclaimed rubber samples (cured with MBT, TBBS 
and TMTD)

Fig. 6   Effect of vulcanizing system on: loss tangents as function of temperature (a) and swelling degree as function of time (b) determined for 
revulcanized reclaimed rubber (cured with MBT, TBBS and TMTD)
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smaller. After vulcanization, reclaimed GTR showed 
increase in the peak related to the thermal decomposition 
of the synthetic rubber. Changes of Tmax1 and Tmax2 values 
were corresponded to the increase of the cross-link densi-
ties of NR or SBR.

Conclusion

Ground tire rubber was thermo-mechanically reclaimed 
using a co-rotating twin screw extruder at 120  °C. 
Obtained reclaimed rubber was cured with different vul-
canizing system. The effect of various vulcanization 
accelerators (MBT, TBBS, TMTD, DPG, and CBS) and 
two ratios of vulcanization accelerator/sulfur (2:1 as con-
ventional (CV) and 1:2 as effective (EV) systems) on 
curing characteristics, mechanical properties and ther-
mal properties of reclaimed rubber were determined. 
The results from this work suggested that vulcanizing 

system type have significant influence on curing kinetics 
of reclaimed rubber. It was noticed that scorch time (t2) 
was evidently influenced by the type of the vulcanization 
accelerator, but much less by the accelerator/sulfur ratio. 
The highest values of t2 were observed at applications of 
benzothiazole sulfonamide derivatives (TBBS and CBS). 
Optimum vulcanization time (t90), cure rate index (CRI) 
and reversion degree (R300) of investigated compounds 
visibly were depended on the type of used accelerator and 
the ratio of accelerator to sulfur. It was noticed that appli-
cation of conventional curing system led to higher values 
of ΔM, which were correlated with the cross-link den-
sity, mechanical and thermal properties of revulcanized 
reclaimed rubber. Revulcanized reclaimed rubber cured 
with conventional vulcanizing system based on TBBS 
and CBS accelerators possessed the best processing and 
mechanical properties.

This study showed that reclaimed rubber obtained by 
thermo-mechanical process at relatively low temperature 
(120  °C) possessed satisfactory properties for application 
in rubber compounds provided that it was selected a suit-
able vulcanizing system.
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