
ORIGINAL ARTICLE

Data simulation and regulatory network reconstruction
from time-series microarray data using stepwise multiple linear
regression

Yiqian Zhou • Rehman Qureshi • Ahmet Sacan

Received: 8 January 2012 / Revised: 9 April 2012 / Accepted: 12 April 2012 / Published online: 3 May 2012

� Springer-Verlag 2012

Abstract Time-series microarray data can capture

dynamic genomic behavior not available in steady-state

expression data, which has made time-series analysis

especially useful in the study of dynamic cellular processes

such as the circadian rhythm, disease progression, drug

response, and the cell cycle. Using the information avail-

able in the time-series data, we address three related

computational problems: the prediction of gene expression

levels from previous time steps, the simulation of an entire

time-series microarray dataset, and the reconstruction of

gene regulatory networks. We model the gene expression

levels using a linear model, due to its simplicity and the

ability to interpret the coefficients as interactions in the

underlying regulatory network. A stepwise multiple linear

regression method is applied to fit the parameters of the

linear model to a given training dataset. The learned model

is utilized in predicting and replicating the time course of

the expression levels and in identifying the regulatory

interactions. Each predicted interaction is also associated

with a statistical significance to provide a confidence

measure that can guide prioritization in further costly

manual or experimental verification. We demonstrate the

performance of our approach on several yeast cell-cycle

datasets and show that it provides comparable or greater

accuracy than existing methods and provides additional

quantitative information about the interactions not avail-

able from the other methods.

1 Introduction

The advent of microarray technologies has enabled a high-

throughput evaluation of gene expression, providing a

large-scale snapshot of the cellular activity at the molecular

level. The availability of these tools has allowed

researchers to explore the behavior of entire genomes

under different experimental conditions, in a search for

mechanistic basis to various cellular behaviors. The anal-

ysis of these microarray experimental results has led to new

breakthroughs in the understanding, diagnosis, prognosis,

and treatment of disease, as well as insights into the

functioning of the basic biology of various organisms

(Golub and Slonim 1999; van de Vijver et al. 2002; Fan

et al. 2010; Wong and Chang 2005).

Gene expression can often be quantified by determining

the relative amounts of mRNA transcripts. In this type of

microarray experiment, mRNA is harvested from a sample

which is then reverse-transcribed into cDNA. This cDNA

is labeled with a fluorescent molecule and then allowed to

bind to DNA probes attached to the surface of the micro-

array chip. The process of complementary binding between

the cDNA and the DNA probes on the chip is known as

hybridization. The fluorescence values that are measured

from the chip enable the quantification of the relative

amounts of cDNA present in each sample, which deter-

mines the relative gene expression (Zhu et al. 2000).

The techniques for analyzing steady-state microarray

data are well-characterized (Quackenbush 2002; Mutch

et al. 2002; Tusher et al. 2001; Jeffery et al. 2006). How-

ever, these techniques are ill-suited to the analysis of
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time-series microarray data. Time-series microarray experi-

ments involve harvesting mRNA from an experiment at

regular time intervals. This experimental design leads to

multiple data points for each gene that can be used to evaluate

gene expression over time in a high-throughput manner.

Time-series expression data have the potential to provide

more comprehensive information about the underlying

behavior and inter-relationships of genes than the traditional

time-invariant experiments. Furthermore, it can allow for the

interpretation of dynamic behaviors in complex biological

systems (Aach and Church 2001). Time-series microarray

data have many applications including the analysis of circa-

dian rhythms, disease progression, drug response, and the

study of the cell cycle (Aach and Church 2001; Spellman et al.

1998; Cho et al. 1998).

Knowledge of the relationships between genes can facili-

tate the reconstruction of the underlying gene regulatory

networks. Each gene’s expression can be modified or con-

trolled by various biochemical processes. Transcription fac-

tors can directly regulate the synthesis of mRNA, but the

expression of genes can indirectly affect the expression of

other genes. A gene can inhibit the expression of another gene

or it can stimulate the expression of another gene. These

activation and inhibition relationships can be represented as a

directed graph with nodes representing genes and edges rep-

resenting the effect of one gene on another. There are several

methods of reverse-engineering or modeling gene regulatory

networks from two-condition differential expression experi-

ments and time-series experiments. These methods include

Boolean networks (Kauffman 1969; Hecker et al. 2009;

Gardner and Faith 2005; Abul et al. 2006), correlation net-

works (Margolin et al. 2006a; Basso et al. 2005; Faith et al.

2007; Stuart et al. 2003), differential equation models (van

Someren et al. 2000; Gardner et al. 2003; di Bernardo et al.

2005; Bansal et al. 2006; Chen et al. 1999; Sakamoto and Iba

2001), Bayesian network models (Gardner and Faith 2005;

Margolin et al. 2006a), and dynamic Bayesian network

models (Margolin et al. 2006b).

Boolean networks represent the earliest attempts at gene

regulatory network modeling (Kauffman 1969). Boolean

network models describe the expressions of individual

genes as binary variables. The state of a gene is determined

as a Boolean function of the state of the other gene

expressions. Once the data have been discretized, a Bool-

ean network that explains the data must be created. The

Reverse Engineering Algorithm (REVEAL) is one algo-

rithm that accomplishes this task (Hecker et al. 2009).

REVEAL works by computing the mutual information

between sets of two or more genes and trying to find the

smallest set of input genes that completely explain the state

of an output gene (Gardner and Faith 2005). Boolean net-

work modeling is easy to implement and interpret as a

large-scale system. However, since microarray expression

data are rather noisy, discretization of the data presents a

challenge and may fail to accurately describe the system.

Many studies on Boolean networks examine only simulated

datasets (Hecker et al. 2009; Margolin et al. 2006b), thus

their practical performance is also debatable.

Association networks are among the simplest models, as

they ignore directionality and strength of the regulations and

model the interaction among a set of genes by an undirected

graph with edges weighted by correlation or another measure

of similarity or statistical dependence (Hecker et al. 2009;

Gardner and Faith 2005; Stuart et al. 2003). Two genes are

predicted to interact with one another if their expression pat-

terns are similar, which is often determined by whether or not

they meet a predetermined threshold value of the association

measure of choice (Margolin et al. 2006a; Basso et al. 2005;

Faith et al. 2007). Other methods such as Euclidean distance or

mutual information can be used as alternatives to correlation

(Hecker et al. 2009). The main advantages of correlation

networks are their simplicity and low computational cost.

However, correlation networks are ill-equipped to extract

more complex information out of microarray datasets. They

can only be used to construct undirected graphs, although this

is a general limitation for models that do not use time-series

data. Furthermore, they are static, cannot accurately distin-

guish between co-regulation and causality, and have difficulty

identifying nonlinear many-to-one interactions (Opgen-Rhein

and Strimmer 2007).

Differential equation models provide a more powerful and

descriptive formalism for capturing interactions in biological

networks (van Someren et al. 2000; Gardner et al. 2003; di

Bernardo et al. 2005; Bansal et al. 2006; Chen et al. 1999)

(Sakamoto and Iba 2001; Weaver et al. 1999). Differential

equation models utilize a system of differential equations that

describe gene expression changes as functions of other gene

expressions and possibly external environmental factors

(Hecker et al. 2009). Differential equation models represent

the networks in a more quantitative manner. However, they

can be difficult to analyze and generally have a high compu-

tational cost. Another problem is that there can be multiple

solutions, meaning that multiple ODE systems can be iden-

tified from a single dataset. A priori knowledge is often

required to provide enough constraints to identify a single

solution (Hecker et al. 2009). This problem is compounded by

the lack of experimental data to identify the parameters of the

interaction kinetics. Consequently, unlike metabolic networks

that have well-known reaction kinetics, functional forms that

can accurately model complex regulatory interactions have

not been available yet.

Bayesian network (BN) models are directed acyclic

graphs and represent the expression of each gene as a

random variable determined by a probability distribution

function that is expressed as a product of conditional

probabilities (Gardner and Faith 2005; Margolin et al.
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2006a, b). A BN model must find the directed acyclic graph

that best represents the data, as determined by means of a

scoring function. Popular scoring functions include the

Bayesian Information Criteria (BIC) and the Bayesian

Dirichlet equivalence (BDe) (Margolin et al. 2006b). Both of

these measures impose a penalty for complexity to prevent

over-fitting the data. One challenge facing the implementation

of BN models is the sheer number of possible directed acyclic

graphs that can be constructed from a set of genes. Deter-

mining all possible graphs for the set of genes and finding the

graph with the maximum score is an NP-hard problem. This

issue is addressed by the use of heuristic search such as the

greedy-hill climbing approach, the Markov Chain Monte

Carlo Method, or simulated annealing. Often several high-

scoring networks are found using this approach. This problem

is typically addressed by using either model averaging or

bootstrapping to determine the most likely network and

determine confidence intervals for the interactions (Margolin

et al. 2006b).

The main advantages of Bayesian networks are their ability

to avoid over-fitting, handle incomplete or noisy data, and

combine heterogeneous data types. The main disadvantage is

their inability to model feedback loops since the graphs

modeling the network cannot include cycles. This issue is

addressed in dynamic Bayesian Networks (DBNs) which are

an extension of the original Bayesian Network model. DBNs

model time-series data rather than steady-state data when

performing network reconstruction and have a higher com-

putational cost compared to the traditional Bayesian Network

models (Margolin et al. 2006b). Rather than modeling the

networks as a directed acyclic graph, DBNs consist of two

layers of nodes. Every gene possesses a node in each layer and

one layer corresponds to the expression of the gene at time t,

while the next layer represents the expression of the gene at

time t ? Dt. The edges connecting the genes in the first layer

to the genes in the second layer enable the modeling of

feedback loops (Hecker et al. 2009). Bayesian and dynamic

Bayesian networks have become widely used in gene regu-

latory network reconstruction (Friedman et al. 2000; Har-

temink et al. 2001; Segal et al. 2003; Nachman et al. 2004;

Rangel et al. 2004).

While a great deal of focus has been placed on the

network reconstruction problem, the prediction and simu-

lation of gene expression values have not received as much

attention. We note that methods developed to infer the

presence or absence of regulatory interactions are not

directly applicable to the prediction problem. On the other

hand, the methods that focus on the prediction problem

may not lend themselves to the interpretation of their

model for inference of interactions. In this study, we use a

linear model to represent gene interaction networks and

simultaneously solve the network reconstruction and gene

expression prediction problems. The neural network

approach of Maraziotis et al. (Abul et al. 2006) (referred

here as FuzzyNet) is closest in its goals to the problems

being investigated in this study. In FuzzyNet, a recurrent

neural fuzzy network is trained for time-series data. While

neural networks are generally not amenable to interpreta-

tion, the rules generated by FuzzyNet allow identification

of regulatory interactions. However, unlike the approach

described herein, Fuzzynet does not predict the strength of

the predicted interactions and also does not provide a

confidence measure for its predictions.

In this study, we present a linear model for time-series

data and use stepwise multiple linear regression (SMLR) to

learn the model parameters from the training dataset(s). To

the best of our knowledge, this is the first time a linear

model of interaction has been reported to solve the pre-

diction, simulation, and reconstruction problems. The rest

of this report is organized as follows. In Sect. 2, we for-

mally define the computational problems and describe our

linear model and the process of fitting it to data by using

stepwise multiple linear regression. In Sect. 3, we describe

the datasets used in the experiments, and present empirical

justification for the choice of parameters, including the

number of interactions, the statistical significance threshold

for interactions, and the number of time points considered

in the input. We then present results for the next time step

prediction of expression values, the simulation of the entire

time-course data, and finally, the inference of the regula-

tory network. Results are compared with similar studies

where applicable. We conclude with a summary of our

contributions, contrasting with existing solutions.

2 Methods

Time-series microarray data can be described as an

N 9 T data matrix, representing the mRNA levels of

N genes over T consecutive time points. In this study, we

focus on three related computational problems, as illus-

trated in Fig. 1. In the single time point prediction problem

(Fig. 1b), one attempts to learn a function that can generate

the expression levels in time t from the expression levels at

the preceding time point(s). Each pair of time points in

Fig. 1b provides a training instance for learning such a

function. In the time-series data simulation problem

(Fig. 1c), the entire time-series data are generated from

only the initial conditions given at the first time point. In

this study, we model the simulation problem simply as

iterations of the single time point prediction problem,

leaving more complex approaches accounting deficiencies

of this straightforward extension, such as error accumula-

tion, as future work. In the network reconstruction problem

(Fig. 1d), one attempts to discover the underlying gene

regulatory network from the microarray data. While
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network reconstruction problem is often solved indepen-

dently (Faith et al. 2007; Almansoori et al. 2012), we

perform network reconstruction via post-processing of the

single time step prediction function.

We model the expression level of each gene as a linear

function of the expression levels of the genes in the pre-

ceding time step (this model is generalized to consider

multiple previous time points below):

g j
t ¼ w0 þ

X

i¼1::N

wigi
t�1

where g j
t ðj ¼ 1; 2; . . .;NÞ is the expression level of a

response gene gj at time t, gi
t�1 terms are the expression

levels of the candidate predictor genes at the preceding

time step, N is the number of genes being studied, and w0 is

a constant bias term.

We identify the coefficient weights wi using stepwise

multiple linear regression, with a forward selection strategy

(Hadi 2006; Draper and Smith 1998). The predictors for a

given gene are identified starting with the inclusion of the

constant term w0. In each forward selection step, individual

predictor variables are considered for addition based on

their statistical significance in the regression fitting. The p

value of an F statistic for each variable is calculated to test

the model including and excluding that variable using the

null hypothesis that its weight coefficient is zero, using the

following equation (Hadi 2006; Draper and Smith (1998):

F ¼ SSE� � SSE

SSE=ðn� p� 1Þ

where SSE is the sum of squared error according to the

expanded model using p ? 1 predictor variables, and SSE*

is the sum of squared error according to the reduced model

using only p predictor variables as follows:

SSE ¼
X
ðyi � ŷiÞ2

SSE� ¼
X
ðyi � ŷ�i Þ

2

where ŷi and ŷ�i are the values predicted by the expanded

and reduced models, respectively.

If the F statistic is significant, the null hypothesis is

rejected, and that particular predictor variable is included

in the model. Our forward selection procedure considers

the full set of predictor variables, returning a p value for

each one. If any predictor variable had a p value less than

an entrance tolerance, it was added to the model. This

ensures that variables with marginal contributions (with a

coefficient close to zero) are omitted from the model.

Since the data were already normalized the constant term

w0 can be set to zero, and without loss of generality, the

expression levels of all the genes at time t can be written as:

Gt ¼ Gt�1 �M

where G is an N 9 1 vector of gene expression values and

M is an N 9 N matrix of weight coefficients. The coeffi-

cient matrix M can be converted into a sparse matrix,

replacing insignificant interactions with zeros.

The model described above utilizes only the most pre-

ceding time point as input. This single time point provides

only a static snapshot of the changing gene expression

levels. It is not, for instance, directly possible to infer

whether the expression level of a gene was going up or

down during the preceding time point. We therefore con-

sider the more general case of utilizing prior s time points,

where the expression level of a gene gj is now modeled as a

linear function of all the genes from the preceding s time

points:

g j
t ¼ w0 þ

X

q¼t�s...t�1

X

i¼1...N

wi
qgi

q

Correspondingly, the expression levels of all the genes at

time t can now be written as:

Gt ¼ Gt�s; Gt�sþ1; . . .; Gt�2; Gt�1½ � �Ms

where Gt is again an N 9 1 vector of predicted gene

expression values at time t; the expression levels of the

Fig. 1 Demonstration of microarray time-series data and the com-

putational prediction problems investigated in this study. a Sample

time-series microarray data with 4 genes and 3 time points. Red,

green, and black colors denote high, low, and medium expression

levels, respectively. b Single time point prediction problem showing

prediction of expression levels at time t from time t - 1. c Simulation

of entire time-series data from the initial expression levels at time

t = 1. d An example reconstructed network involving the four genes,

where arrows indicate transcriptional regulation (color figure online)
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genes at all previous s time points are concatenated into a

single sN vector, and Ms is a coefficient matrix of size

sN 9 N, containing the coefficients from all genes at the

previous s points. The value of s can be determined

empirically from the mean squared error on the training

data, as described in the experiments below. Starting from

the first s time points of a given experiment, the learned

coefficient matrix is used to incrementally simulate the rest

of the time points.

The weight matrix M (and Ms) describes the influence of

each predictor gene on the response genes. The magnitude of

these weights indicates the strength of the interaction and their

sign indicates whether the interactions are activating or

inhibitory. Each weight is also associated with a p value,

indicating the statistical significance of the corresponding

interaction. We rank the interactions by their p values and use

the top-k most significant interactions in the network recon-

struction, where k can be pre-defined from the average number

of interactions observed in real networks or discovered

empirically, as presented below to minimize the training error.

The accuracy of the reconstructed network is evaluated with

respect to a reference network, such as the pathways available

in the KEGG compendium (Kanehisa and Goto 2000), using

the following measures:

Precision ¼def # of correctly predicted edges

# of predicted edges

Recall ¼def # of correctly predicted edges

# of edges in the known network

F-measure ¼def
2� precision� recall

precisionþ recall

Precision, recall, and F-measure each take values in the

range between 0 and 1, with 1 being the best score. The

ability to rank the interactions by their significance allows

us to control the precision–recall trade-off, which is

presented as precision–recall plots below. Note that

existing approaches produce or report a single precision

and recall result; we use the same number of predicted

edges in the network for comparison with earlier studies. In

comparisons, we denote our approach as SMLR (stepwise

multiple linear regression).

3 Experiments and results

3.1 Datasets

The time-series datasets modeled in this study are from

Spellman et al. (1998). These datasets were generated using

four different methods to synchronize Saccharomyces

cerevisiae cell cultures to the same phase of the cell cycle

(Spellman et al. 1998; Cho et al. 1998). The experiments

utilized multiple strains of yeast and mRNA was harvested

from cells extracted from the cultures at predetermined

time intervals. The usage of different methods of syn-

chronizing the cultures resulted in four unique datasets,

each named after the synchronization method. Each of the

datasets consisted of yeast cells whose cell cycles had been

arrested at a different phase. This results in the different

datasets beginning at different phases of the cell cycle.

One dataset (ALPHA) utilized the alpha factor to arrest

the cell cycle and consisted of 18 time points separated by

intervals of 7 min. A second dataset separated cells by

elutriation (ELU dataset). By separating cells of different

sizes the investigators were able to extract cells of similar

size that were likely to be in the same phase of the cell

cycle. They collected daughter cells that were not budding

into new cells. This dataset consisted of 14 time points

separated by intervals of 30 min. These first two datasets

were collected by Spellman et al. 1998 (Zhu et al. 2000).

Spellman et al. included two further datasets from Cho

et al. (1998) in their analysis. The third dataset used

CDC15 strain of yeast cells, where the cell cycle was

arrested by raising the temperature of the culture. This

dataset had 24 time points separated by 10- or 20-min

time intervals. We excluded the time points that were

separated by 20-min intervals from our analysis. The

fourth dataset consisted of the strain of yeast possessing

CDC28 and also was synchronized by temperature

change. This dataset had 17 time points separated by

10-min intervals. All the expression data were normalized

so that the mean log2 ratio of the data was 0 (Cho et al.

1998).

3.2 Identification of parameter values

The performance of the linear model was first investigated

for the next time step prediction problem. To do so, all

‘‘predictor–responder’’ pairs (i.e., all input–output pairs in

Fig. 1b) were extracted from the four datasets and com-

bined into a single set. In a fourfold cross-validation

scheme, three-fourths of these pairs were randomly selec-

ted for training and the remaining pairs were used for

testing. The performance was evaluated in terms of the

mean squared error (MSE) of the predicted testing data

compared with the real data.

Since we used the p values calculated from the multiple

linear regression to determine which genes would be used

as predictors of the response gene under consideration,

finding a proper cutoff p value was important and pre-

vented us from over-fitting our model to the training data

by excluding many insignificant predictors. As demon-

strated in Fig. 2a, the average number of predictors per

response gene was directly related to the cutoff p value, but

there was no clear plateau for the number of predictors with

Data simulation and regulatory network reconstruction using SMLR 7
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respect to the p value cutoff. By examining the MSE versus

the average number of predictors (Fig. 2b), we were able to

identify an average number of predictors giving a mini-

mum MSE value. Optimum MSE values on the test dataset

are obtained for the average number of predictors ranging

from 2 to 3, which is in line with the number of interactions

observed or estimated by others (Andrecut et al. 2008;

Thieffry et al. 1998; Guelzim et al. 2002; Luscombe et al.

2004; Andrecut and Kauffman 2006). Using fewer than 2

predictors was insufficient to capture the expression pat-

tern, while using more than 3 predictors resulted in over-

fitting. Our experiments using multiple preceding time

points also showed similar behavior. Thus, in subsequent

experiments, we chose a p value cutoff of 0.025, which

provided 3 predictors for each gene on average.

We followed a similar approach for determining the

optimal number of preceding time points, s, to consider in

the model. Figure 3 shows the MSE for various number of

time points used in prediction. The fourfold cross-valida-

tion experiment was repeated 1,000 times and the error

bars indicate the standard error of the mean for the average

MSE in these 1,000 runs. The MSE obtained when 2 pre-

ceding time points were used was significantly better than

the MSE for other values of s (p value of two sample t test

between the MSE for s = 2 and s = {1, 3, 4, 5} are

0.0008, 0.0003, 0.0002, 0.0002, respectively). When 2 time

points were used, 53 and 47 % of the predictors were from

the first and second preceding time points, respectively.

In order to compare our results with those reported in

Abul et al. (2006), we also used CDC15 for training and

CDC28 and ALPHA datasets for testing. The result of this

comparison is shown in Table 1. We note that the training

error obtained by our approach is significantly better than

those from FuzzyNet for all but two genes. Overall, SMLR

is able to provide lower error rates for 50 % of the pre-

dictions. SMLR incurs very high error rates in the testing

datasets for two of the genes, namely the transcription

factor MBP1 and the S-phase entry cyclin-6 gene CLB6.

We attribute the high error rate in the testing datasets for

MBP1 to the fact that the gene expression pattern for

MBP1 in the training dataset does not show a clear cyclic

expression pattern like the other genes do (Fig. 5), whereas

in the testing datasets, such an expression pattern is

observed (Figs. 6, 7). This may be due to MBP1 being

under different regulatory pressures for different cell-cycle

synchronization methods.

CLB6 has three regulators in the KEGG pathway for the

genes used in this study, and we suspect that the nonlinear

interaction between these regulators is not sufficiently

captured by our linear model. Although we anticipated

such cases, we leave inclusion of higher order terms into

our model under limited data availability conditions as

future work. Despite the high MSE values, SMLR is able to

detect the gene expression pattern for CLB6 (Figs. 6, 7).

3.3 Time-series data simulation

Taking the next time step prediction function, we iterated

the prediction over the entire time course. Only the first s
time points were given as input and the predicted

Fig. 2 a The average number

of predictors versus the cutoff

p value calculated including

only the most preceding time

step. b The mean square error

versus the average number of

predictors. Similar results were

obtained when multiple

preceding time steps were

considered

Fig. 3 The mean squared error versus the number of preceding time

points used for prediction. Bars show the average MSE from of 1,000

fourfold cross-validation experiments. Error bars show the standard

error of the mean
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expression levels are fed into the next iteration of the

simulation. In each simulation experiment, one of the

datasets was left out for testing and the model parameters

were trained on the remaining datasets.

We have observed that the simulated expression patterns

match that of the real data (Fig. 4, top row), but with an

increase or decrease in the frequency of the expression

patterns. We attribute this change in the periodicity to the

fact that the datasets were generated with different time

intervals, causing the trained function to output an

expression level that is not in-sync with the testing dataset.

Specifically, the ELU dataset had a time interval of 30 min,

which is larger than the others (7 or 10 min). Testing a

model trained for the other three datasets on the ELU

dataset would give predictions with an increased period

compared to the real data. Conversely, including ELU in

training data would give predictions that are beyond the

time interval of other datasets, effectively giving acceler-

ated cell cycle for the predicted test dataset. We confirm

this by repeating the training with the exclusion of the ELU

dataset. As expected, this exclusion corrects the phase shift

in the predictions (Fig. 4, bottom row).

Excluding the ELU dataset, we performed three addi-

tional experiments, taking each of the remaining datasets

for testing (Figs. 5: CDC15, 6: ALPHA, and 7: CDC28).

The simulations covered the gene expressions of 83 genes,

which were known to be participating in the yeast cell

cycle. We present the simulated results of only 14 genes

that are later used for the regulatory network reconstruc-

tion. For each simulation, we show the predictions for

models with s = 1 (red) and s = 2 (green). We observe

that the overall expression patterns of the predictions are

very well matched with the real data. However, the

predictions tend to be conservative in their amplitude

compared to the real data (especially see CDC6 and CLB5

in CDC15 dataset; SWI4, FAR1, CDC6, SIC1, and CLN2

in ALPHA dataset; SWI4, CDC20, and CLB6 in CDC28

dataset).

In general, the simulated expression levels follow a

smoother trend compared to the real data. This is expected,

considering that the real microarray measurements contain

fluctuations due to biological variations or noise from the

data collection technology. The predictions for s = 1 and

s = 2 have a high degree of overlap. Using two preceding

time points as input results in slightly better predictions

(see for instance FAR1, CDC6, SIC1, and CLN2 in Fig. 6).

In order to examine the large-scale behavior of the gene

expressions, we generated heat-maps for the real and

simulated data (Fig. 8). Two clusters of expression patterns

have emerged from the heat-map for the real data. The

simulated data using both 1 and 2 time preceding time

points are able to preserve these expression clusters. A

cluster of genes show up-regulation from second to seventh

time points and begin to be up-regulated in the next cycle

starting from 14th time point. A second cluster of genes

show up-regulation between the fifth and tenth time points.

The genes CDC20, MBP1, SWI6 show expression patterns

different from the other genes. The highly fluctuating

behavior of MBP1 explains the high mean squared error

reported for MBP1 in Table 1.

3.4 Network reconstruction

Having created a model of the expression of each gene as a

linear function of the expression levels of the genes at

preceding time points, we were able to directly apply this

Table 1 Mean squared error comparison with FuzzyNet for the next time step prediction problem

Dataset CDC15 CDC28 ALPHA Average

Gene FuzzyNet SMLR FuzzyNet SMLR FuzzyNet SMLR FuzzyNet SMLR

CLB5 0.17 0.06 0.18 0.08 0.45 0.05 0.27 0.06

SWI4 0.36 0.09 0.49 0.08 0.12 0.05 0.32 0.07

SIC1 0.45 0.08 0.41 0.31 0.74 0.24 0.53 0.21

CDC20 0.55 0.48 0.37 0.07 0.62 0.09 0.51 0.21

SW16 0.28 0.07 0.33 0.36 0.50 0.13 0.37 0.19

CLN2 0.56 0.08 0.58 0.26 0.73 0.23 0.62 0.19

CLN3 0.25 0.06 0.25 0.27 0.15 0.46 0.22 0.26

CDC28 0.13 0.40 0.07 0.41 0.06 0.47 0.09 0.43

CLN1 0.19 0.30 0.36 0.61 0.67 0.89 0.41 0.60

CDC6 0.37 0.05 0.34 0.97 0.42 0.98 0.38 0.67

MBP1 0.27 0.10 0.43 1.91 0.70 2.13 0.47 1.38

CLB6 0.40 0.07 0.36 2.86 0.25 1.71 0.34 1.55

For both FuzzyNet and SMLR, CDC15 dataset was used for training and CDC28 and ALPHA were used for testing. The average MSE calculated

for each gene were compared. Superior MSE values for each dataset and gene are shown in bold
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model to the gene regulatory network reconstruction

problem. A central intuitive assumption in this application

is that the coefficients of the predictor genes directly reflect

the strength of their influence on the respective target

response genes in the gene interaction network. The pre-

dictors of all genes were compiled into a single list of

Fig. 4 Including ELU dataset in training causes error in predicted

periodicity. The models were tested on the CDC15 dataset. Upper
training with the ELU, CDC28, and ALPHA datasets. Lower training

with the CDC28 and ALPHA datasets. Real CDC15 data are shown in

black, simulated expression levels are shown in red. Expression

patterns for only 5 of the genes that best illustrate the error in the

periodicity are shown (color figure online)

Fig. 5 Simulated data of CDC15 from models trained from ALPHA and CDC28 datasets using one previous time point (red) or two previous

time points (green). The real data are shown in blue (color figure online)
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predicted regulatory interactions, ranked by their p values.

These p values were corrected for false discovery rate

using the Benjamini–Hochberg method (Benjamini and

Hochberg 1995). For a given p value cutoff, the

interactions with greater statistical significance were used

to reconstruct the regulatory network.

The regulatory network was reconstructed by connec-

ting the selected predictors with their response gene using a

Fig. 6 Simulated data of ALPHA from models trained from CDC15 and CDC28 datasets using one previous time point (red) or two previous

time points (green). The real data are shown in blue (color figure online)

Fig. 7 Simulated data of CDC28 from models trained from CDC15 and ALPHA datasets using one previous time point (red) or two previous

time points (green). The real data is shown in blue (color figure online)
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directed edge. The magnitude of the weights in the model

represents the strength of the regulatory interaction, and

their sign determines whether it is an activating or inhibi-

tory regulation. For comparison with existing methods that

only determine the presence or absence of the interactions,

we constructed the regulatory network as an unweighted,

directed graph. We compared the gene regulatory networks

reconstructed from our model to the networks recon-

structed using DBN (Kim et al. 2004) and FuzzyNet (Abul

et al. 2006) methods. The target network contained 14

genes, as shown in Fig. 9a. Using all of the datasets for

training, the DBN model predicted 15 edges consisting of 4

correct, 8 half-correct, and 3 incorrect edges (Fig. 9b),

where the correct and incorrect edges are the edges present

or absent, respectively, in the KEGG pathway and half-

correct edges are those that either capture indirect effects

or the reverse direction of interaction. For the same number

of edges predicted from the CDC28 dataset alone, our

model is able to predict 7 correct, 5 half-correct, and 3

incorrect edges (Fig. 9c).

Since each edge in our model is associated with a p

value, a straightforward method of integrating the results

from all of the datasets is to pool the predicted edges from

different datasets and re-rank them by their p values.

Integrating the interactions predicted from each of the

datasets in this fashion increases the number of correctly

predicted edges to 8 and decreases the number of half-

correct predictions to 4 (Fig. 9d). Each dataset provided

support for a different but overlapping set of interactions,

where three of the interactions (SWI6! SWI4 SWI6!
MBP1, and SWI4! CLN2) were determined highly sig-

nificant across all datasets. The performance of our method

when trained on individual datasets and when trained on all

four datasets is summarized in Table 2. Excluding ELU

and training on the remaining three datasets did not affect

the network reconstruction performance.

Next we compare the performance of our method

(SMLR) to those of other methods. DN, DBN, and

FuzzyNet have reported 14, 15, and 36 predicted interactions,

respectively. For direct comparison, we generated three

networks by varying the cutoff p value in SMLR, such that

the same numbers of edges are obtained. SMLR achieves

better precision, recall, and F-measure values when com-

pared with these methods (Fig. 10). Particularly, the pre-

dictions made by SMLR are at least twice more precise and

complete when compared with the same number of pre-

dictions made by BN and DBN. FuzzyNet makes a larger

number of predictions than BN and DBN and performs

slightly worse than SMLR for the same number of

predictions.

Note that our method is additionally able to rank the

predicted interactions using their associated statistical

significance values, such that any desired number of

interactions can be generated. The precision–recall curves

of the predictions made by our method for varying p values

are shown in Fig. 11. Integrated predictions outperform

predictions from individual datasets in precision, up to a

recall of 20 %. We attribute this partially to our integration

strategy, which focuses on collecting predictions with high

statistical significance from individual datasets, biasing the

improvement to the top predictions. The performance of

our method is slightly better than that of FuzzyNet for

comparable precision and recall values.

In addition to the comparison of SMLR to the methods

that are suitable for time-series data, we also compared

SMLR to the methods that use steady-state microarray

data, including ARACNE (Margolin et al. 2006a, b), which

is a state-of-art method based on mutual information (MI)

calculation. Here, ARACNE was used to reconstruct the

regulatory network using the same four datasets, where the

microarray samples at each time point in the time series

were regarded as different steady-state samples. The edges

predicted by ARACNE were sorted by their associated MI

scores. Besides ARACNE, we also attempted to reconstruct

the network by calculating the gene expression correlation

between each pair of genes. The edges representing the

gene pairs were sorted by the p value of the correlation.

Since the results of ARACNE and correlation calculation

Fig. 8 The heat-maps show the periodic behavior of the genes over time steps. Left real data. Middle simulated data using one time points. Right
simulated data using two time points
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lack the edge directionality, for the purpose of comparison

we consider the presence of an edge as correct if the edge is

observed in the known network, without regarding its

direction. Figure 12 demonstrates that the performance of

SMLR using time-series data is superior to that of both

ARACNE and correlation-based reconstruction. This indi-

cates that utilizing the time-series data as a dynamic

and dependent set of measurements instead of static

independent samples results in a more reliable recon-

structed network.

In order to further evaluate how well the predicted network

is statistically supported from the data, we performed random

permutations of the time points and analyzed the resulting

predicted interactions (Fig. 13). The integrated predictions

perform consistently better than randomly permuted datasets,

at two standard deviations better precision than randomized

datasets. This shows that the predictions made by our method

are not simply due to spurious expression patterns in the

dataset due to noise or systematic errors. On the other hand,

predictions from individual datasets degrade quickly, and one

can be confident of their accuracy only for the top few best

predictions. Figure 13 also demonstrates the effectiveness of

using the p value for ranking the predictions, as concluded

from the general trend of the overall monotonicity in the

reduction of the precision as more edges are predicted. Sur-

prisingly, the performance of the DBN model is close to the

results obtainable by our method for randomized data indi-

cating that the results of DBN may not be statistically sup-

ported from the datasets.

Fig. 9 Regulatory network reconstruction. a Sub-network extracted

from yeast cell-cycle pathway obtained from KEGG. The KEGG

pathway contains 51 edges in total; multiple edges between covarying

modules are not displayed here. b Regulatory interactions predicted

by the DBN model (Kim et al. 2003, 2004). c Interactions predicted

by a model trained on the CDC28 dataset. d Integration of predictions

from the four datasets

Table 2 Prediction performance of our method for each of the four

different datasets separately and for integrating the results from all of

the training datasets

Dataset(s) Precision (%) Recall (%) F-measure (%)

CDC28 46.7 13.7 21.2

CDC15 33.3 9.8 15.1

ALPHA 33.3 9.8 15.1

ELU 26.7 7.8 12.1

Integrated 53.3 15.6 29.9

Evaluations in this table are based on the top 15 most significant

edges predicted from each dataset
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Another important advantage of our approach over

existing methods is the interpretability of the inferred

coefficients as the strength of the interactions. We have

listed the coefficients for the top 15 predicted interactions

in Table 3. There are currently no quantitatively anno-

tated datasets for regulatory networks, so we are not able

to validate the magnitude of these coefficients directly.

On the other hand, the KEGG pathway contains infor-

mation regarding whether an interaction activates or

inhibits the target gene. We observe that the signs of

the correctly predicted coefficients match for some of

the top predictions. The positive sign of the half-

correct interaction FAR1! SIC1 maps to two conse-

cutive inhibitory interactions in the KEGG pathway

(FAR1! CLN1=2;CDC28! SIC1), which effectively

makes it an activating interaction.

4 Discussion

In this paper, we have employed a multiple linear regres-

sion model to predict and simulate time-series microarray

data and also to reconstruct gene regulatory networks from

this model. Linear models provide a compelling alternative

to other existing approaches due to their simplicity,

robustness against noise, and low computational require-

ments. Our approach introduces two additional parameters,

in addition to the coefficients estimated in the linear model.

Fig. 10 Comparison of network reconstruction performance for

SMLR and other methods. The number of estimated interactions

reported by each method is indicated in the parentheses. The p value

threshold of SMLR was adjusted to generate three networks, such that

the same number of edges is reported with the method it is being

compared to

Fig. 11 Comparing the precision–recall curves for our method with

that of others. Results from our method on integrating all datasets,

excluding ELU, and using only CDC28 are shown; other individual

datasets are omitted for clarity

Fig. 12 Comparison of our method (SMLR) to ARACNE and the

correlation-based reconstruction (CORR). Note that unlike the results

reported in Fig. 11. The direction of the edges is disregarded and the

interactions predicted by SMLR in either direction were considered as

correct. ARACNE and CORR only report un-directed interactions

Fig. 13 Comparison of predictions of our method to its predictions

from randomized data. Error bars for the recall of the randomly

permuted datasets show its standard deviation in the 100 random trials
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Specifically, we have shown that the number of prior time

points used to train the model and the p value cutoff of

genes to include in the gene expression prediction function

can be determined empirically from the training data. We

have demonstrated that the proposed model is able to make

correct predictions for the yeast cell-cycle pathway, and

simulate the expressions of the genes involved. The pre-

dicted gene expressions showed similar cyclic behavior

and similar clustering, when compared with the real data.

The linear model presented here is able to model the

presence, directionality, and the strength and sign of the

interactions in a reconstructed regulatory network. This is

an important advantage over most of the existing methods

that at best predict the directionality of the interactions.

The statistical significance associated with each pre-

dicted interaction provides a convenient way of assessing

the reliability of the prediction. Given that most compu-

tational prediction approaches to biological problems aim

to produce new hypotheses that can be validated with

further biological experiments, the prioritization of the

predictions becomes an invaluable feature for these time-

and labor-intensive and low-throughput downstream

experiments. The statistical significance also provides a

straightforward means of integrating multiple time-series

datasets, collected under different experimental conditions

and time scales. Whereas very short time intervals mean

that consecutive time points may not reveal regulatory

interactions, longer time points risk missing the regulatory

window of action. While each regulatory interaction is

likely to operate at different time scales, the integration of

the datasets with varying time intervals would be able to

collect such interactions into a single predicted network.

Although the network reconstruction was robust to the

heterogeneity of the training datasets, the simulation of the

time-course data was sensitive to the time intervals of these

datasets. Of the four datasets used in this study, the elutria-

tion dataset (ELU) was collected at a 30-min time interval,

which was three times longer than any of the other datasets.

Inclusion of this data did not prevent the model from cap-

turing the cyclic behavior of genes; however, our simulation

contained a phase shift compared to the real data. When the

elutriation dataset was included in the training (or testing)

set, our model predicted changes in the gene expression to

occur at earlier (or later) times than they actually occurred in

the real data. We conclude that the model should be trained

with data collected at similar time intervals to the testing data

in order to achieve better performance. Approaches to

interpolate the expression levels and thus artificially gener-

ate new datasets with the same time interval may be pursued

as a potential solution when dataset exclusion is not desir-

able. In particular, the datasets can be re-sampled from a

continuous representation using linear interpolation (Aach

and Church 2001) or spline interpolation (Bar-Joseph et al.

2003a, b). These continuous representations additionally

allow re-alignment of datasets to minimize the effects of

varying phase and periodicity of the datasets. Such dataset

integration methods will be especially useful pre-processing

steps when the method introduced in this paper is applied to

large-scale, heterogeneous datasets.

In order to identify the predictor genes and fit the model

parameters to the data, we have used a stepwise multiple

linear regression with a forward selection strategy. This

greedy stepwise optimization strategy may not discover a

globally optimal solution. Using more comprehensive

sampling approaches such as Monte Carlo methods (Berg

2004), or utilizing related model fitting methods, such as

ridge regression (Hoerl and Kennard 1970; Marquardt and

Snee 1975) and partial least squares regression (Lindgren

et al. 1993) may improve the model fitting and conse-

quently increase the accuracy of the reconstructed regula-

tory network, at the cost of increased training time. Known

regulatory interactions can also be incorporated as con-

straints in the search and sampling of predictors during the

model fitting stage. Incorporation of known transcription

factors improves network reconstruction (Yao et al. 2010);

consequently, the predictors in our model fitting can be

limited to the set of known transcription factors to improve

the reconstruction accuracy.

It may be argued that using a linear model for repre-

senting regulatory interactions is incorrect or limited.

Table 3 Coefficients and p values of the predicted interactions from

integrated 4 datasets

Source
gene

Target
gene

Accuracy p value
(log10)

Coefficient Sign
correct

SWI4 CLN2 Correct -7.20 1.36 Yes

SIC1 CLB6 Correct -5.79 0.92 No

SWI4 CLN1 Correct -5.73 1.02 Yes

SWI6 SWI4 Correct -5.12 -1.83 No,
co-regulated

FAR1 SIC1 Half-correct -5.04 0.77 Yes
(indirect)

SWI4 CLB6 Incorrect -4.95 2.24 –

SWI6 MBP1 Correct -4.70 0.94 Yes,
co-regulated

CDC6 CDC28 Half-correct -4.29 0.40 Yes

CLN2 FAR1 Half-correct -4.24 -0.65 Yes

SIC1 FAR1 Incorrect -4.20 0.69 –

CDC20 FAR1 Incorrect -4.06 0.58 –

SIC1 CLB5 Correct -4.03 0.46 No

CLN2 CLN1 Correct -4.03 0.64 Yes,
co-regulated

SWI6 CLB5 Correct -3.99 -2.29 No

CLN1 CLB6 Half-correct -3.94 -1.55 No

The sign of the coefficients is compared against the interactions available
in the KEGG yeast cell-cycle pathway. Incorrect predictions naturally do
not have corresponding information in KEGG. For co-regulated genes, we
considered an activating relationship to be correct
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While in this study we do not claim that a linear model

should represent the kinetics of regulatory interactions, we

have shown that in the context of expression prediction,

time-course simulation, and network reconstruction prob-

lems, the linear model provides a sufficient approximation

to the otherwise complex regulatory interactions. Further-

more, using more complex functional forms would incur a

larger number of parameters that need to be estimated from

the data, bringing the sufficiency of the available data into

question.

In evaluating the accuracy of different methods, we used

the interactions available in the KEGG pathways as the

ground truth. We acknowledge that future discoveries may

change the known interactions in the cell-cycle pathway

investigated in this study, and alter the evaluations pre-

sented in this paper. We also expect that the discrepancies

between our predictions and currently known interactions

may guide such new discoveries. Furthermore, the view that

interactions between pairs of genes should be an either

always or never phenomena is limiting, since gene regula-

tion is dynamic and certain interactions may be present only

under certain temporal and experimental conditions. The

investigation of interactions as emerging or disappearing

relationships and the predictions of these dynamic behav-

iors have attracted recent attention (Almansoori et al. 2012).

To conclude, we demonstrated our approach on a rela-

tively small dataset and compared its results to those from

Bayesian Network, dynamic Bayesian Network (Kim et al.

2004) and Fuzzy Neural Network (Abul et al. 2006)

models. Our method generally produced a lower mean

squared error for the simulated data than the neural fuzzy

network method. We also achieved better accuracy than

these methods in reconstructing the yeast cell-cycle path-

way. These early comparisons are promising; however, a

large-scale evaluation using a more comprehensive set of

synthetic and real datasets and different types of recon-

struction methods as well as handling differences in sam-

pling rates is left for future work. Finally, we note that it

may be possible to develop a meta-method that combines

the predictions of various methods into a single improved

regulatory network.
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