
METABOLIC HEALTH (R PASQUALI, SECTION EDITOR)

The Hypothalamic-Pituitary-Adrenal Axis, Obesity,
and Chronic Stress Exposure: Foods and HPA Axis

Femke Rutters & Susanne La Fleur & Sofie Lemmens &

Jurriaan Born & Mieke Martens & Tanja Adam

Published online: 16 August 2012
# Springer Science+Business Media, LLC 2012

Abstract The prevalence of overweight and obesity has
increased worldwide to epidemic proportions. Dysregula-
tion of the hypothalamic–pituitary–adrenal (HPA) axis and
chronic stress exposure are hypothesized to contribute to
obesity development. In this review, we discuss the potential
role of the HPA axis for energy balance regulation, with
particular attention to energy intake. We present evidence
from human and animal studies that highlight the bidirec-
tional relationship between HPA axis functioning and ener-
gy intake. Of particular interest is the association between
dysregulation of the HPA axis and altered homeostatic and
non-homeostatic food intake regulation. Lastly, we discuss a
model depicting a role for a hyperactive HPA axis in over-
eating and the development of obesity, suggesting chronic
stress as a major risk factor for excessive weight gain and
(visceral) obesity.
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Introduction

The prevalence of overweight and obesity has increased
worldwide to epidemic proportions [1]. Obesity results from
a chronic dysregulation of energy balance, with energy
intake exceeding energy expenditure, leading to the storage
of excessive energy as fat [2]. Elements of modern society,
including western diet, sedentary lifestyle, and stress may
contribute to a positive energy balance and the develop-
ment of obesity, possibly through dysregulation of the
hypothalamic–pituitary–adrenal (HPA) axis. The HPA ax-
is is one of the neuro-endocrine axes that plays an important
role in the regulation of the stress-response, by regulat-
ing the secretion of glucocorticoids: cortisol in humans
and corticosterone in animals [3]. The cascade of the
HPA axis beholds that first the hypothalamus produces
and releases corticotropin-releasing hormone (CRH),
which subsequently stimulates the synthesis and release
of adrenocorticotropin (ATCH) from the anterior pitui-
tary. ACTH is produced from a larger precursor protein
namely the proopiomelanocortin (POMC) protein, and
stimulates the synthesis and release of cortisol or corti-
costerone by the adrenal cortex. Physiological glucocorticoid
levels follow a circadian rhythm; an early morning peak
just prior to awakening, a rapid decrease over the next
few hours, and then a more gradual decline over the course of
the day, to very low levels at bedtime [4].

Evidence for the involvement of the HPA axis in the
regulation of body weight and body fat distribution is found
in two extremes of plasma cortisol concentrations in
humans; Addison’s disease (hypocortisolism) that is related
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to weight loss, and Cushing’s syndrome (hypercortisolism)
that is related to rapid weight gain, particularly fat gain in
trunk and face but not in the limbs [5]. Additional support is
found in obese subjects with visceral fat accumulation, who
show chronic hyper-activation of the HPA axis, namely
decreased salivary and serum cortisol levels, increased uri-
nary secretion of cortisol, enhanced awakening cortisol re-
sponse, as well as increased cortisol secretion after physical
and psychological stressors [6–13]. In our latest study, we
observed an inverse relationship between HPA axis func-
tioning and visceral fat accumulation after standardized,
high intensity, physical activity accompanied by ingestion
of 4 mg dexamethasone [14]. This suggests that visceral fat
accumulation relates to disturbance of HPA axis functioning
under basal and challenged conditions.

The literature describes several possible mechanisms
through which the HPA axis may contribute to the
development of obesity. With respect to the effect of
HPA axis functioning on energy expenditure we earlier
reported dual effects. We argued that the stimulatory
actions of glucocorticoids on energy expenditure are
overruled by other, inhibitory actions during prolonged
or chronic exposure [15]. A recent study by Westerterp
et al. indicated that energy expenditure did not change
over the last few decades [16]. This suggests that the
disturbance in energy balance is mainly caused by in-
creased energy intake. Therefore, the focus of the pres-
ent review will be on the relationship of HPA axis
activity with energy intake. We start by describing the
interactions between HPA axis functioning and energy
intake regulation. Followed by the description of the
homeostatic and non-homeostatic pathways through
which the HPA axis may affect energy intake, and
ultimately body weight. This will lead to a proposed
model on the relationship between alterations in HPA
axis functioning, energy intake regulation, and (visceral)
obesity development.

HPA Axis Functioning and Energy Intake

Stress appears to alter overall energy intake in two ways;
under- or overeating, a fact which seems to be influenced by
the nature of the stressor, stressor severity and individual
predisposition [17]. A retrospective survey of United States
Marine’s food intake during combat showed that live threat-
ening stress resulted in a decrease in energy intake. While a
study in a student population showed that examination stress
resulted in an increase in energy intake [17]. In concordance
with animal studies, severe stress appears to decrease energy
intake, while milder forms of stress increases energy intake
[17]. A recent review by Scott et al. elegantly describes the
role of psychosocial stress in the development of obesity, in

particular the role of social stress, which is found in the
workplace in humans and in subordination models in ani-
mals [18]. Additionally, more recently, one type of stress has
gained a lot of attention in the scientific community, namely
sleep deprivation. Total or partial sleep deprivation is asso-
ciated with increased cortisol secretion, and subsequent
increased energy intake [19, 20]. With the average amount
of sleep in the general population decreasing, sleep depri-
vation may become one of the most important moderate
stressors present in our society, next to work related and
emotional stressors.

With regard to the direct orexigenic effect of glucocorti-
coids on energy intake, animal studies provide us with some
convincing evidence; they show a clear reversal of the
anorectic effects of adrenalectomy through corticosterone
replacement [21, 22]. Human studies assessing the effects
of cortisol on energy intake are limited, but generally sup-
port the findings in laboratory animals [23, 24]. Stimulation
of energy intake by glucocorticoids is however macronutri-
ent specific. When rats had a free choice for different chow
compositions, corticosterone withdrawal and subsequent re-
placement principally affected fat intake, which is mediated
by an effect of corticosterone on insulin secretion [22].
Moreover, it was shown that rats subjected to repeated
stress specifically increased the fat and sugar components
of the free choice high fat high sugar diet [25]. This
suggests that actions of glucocorticoids may underlie the
preference for certain macronutrients and kinds of foods in
humans after stress, in particular foods high in saturated fat
and sugar [22, 26–28].

The literature however proposes a bidirectional relation-
ship between HPA axis functioning and energy intake. From
animal studies it has become clear that the ingestion of high
fat/sugary foods decreases HPA axis activation and brain
corticotropin-releasing-factor (CRF) [22, 29], which how-
ever did result in insulin resistance [30]. In addition, it has
been shown that stressed people that overeat have decreased
cerebrospinal CRF levels and HPA axis activity [31]. It has
therefore been postulated that people eat foods high in fat
and sugar in an attempt to reduce the neural network in-
volved in the stress response [32]. Also our laboratory
showed particular effects of food intake on HPA axis func-
tioning. In those studies a single macronutrient containing
meal was offered to normal weight men, which resulted in
increased plasma cortisol levels in response to the carbohy-
drate condition, compared to the control, protein or fat
conditions [33•]. These findings are supported by other,
human as well as animal studies; while rats responded with
reduced HPA axis activity to a high protein diet [34], female
viscerally obese women responded with increased HPA axis
activity to a high carbohydrate meal [35]. These studies
suggest that the altered HPA axis response to certain macro-
nutrients, may contribute to the vicious cycle of HPA
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activity and overeating, observed in obesity. Stress can trigger
overconsumption of comfort food, high in sugar and fat [27],
which further increases HPA axis activity [33•]. This hypoth-
esis might however be too simple, as studies using mixed
meals instead of single macronutrients did not detect an effect
of macronutrients on HPA axis activity [36], or even came to
contradictory conclusions [37, 38]. Studies from our labora-
tory did not observe effects of consumption of meals with
different macronutrient contents (high-protein vs. high-
carbohydrate) on cortisol levels or mood when the subjects
were stressed [39, 40]. Generally, the use of mixed meals
instead of single macronutrients [33•, 34, 35] may limit the
detection of possible effects of macronutrients on cortisol
concentrations. Another explanation may be gender related
differences and gender selection, associated with the experi-
ments. Our latest experiment showed higher HPA axis activity
following a meal in men compared to women, irrespective of
sex-specific differences in body composition, body fat distri-
bution, psychological variables, or in age [41]. Finally, free-
dom of choice might influence the relationship, while rats
forced to eat high fat and sugary foods did not show decreased
HPA axis activation, while those with free choice did [22, 42].
Further research is required to clarify the interaction between
energy intake and HPA axis functioning.

Together, these findings demonstrate a close relationship
between the HPA axis activation and energy intake regula-
tion. The literature suggests several homeostatic and non-
homeostatic mechanisms through which HPA axis function-
ing may regulate energy intake. These mechanisms will be
discussed in the following sections.

HPA Axis and Homeostatic Food Effects
on Intake Regulation

Activity of the HPA axis is orchestrated by a complex interplay
of glucocorticoids with central intra- and extra-hypothalamic
sites [43]. Of particular interest for the interaction of HPA
activity and energy intake are the intra-hypothalamic sites,
including the paraventricular nucleus (PVN), and the arcuate
nucleus (ARC).

HPA Axis, PVN and ARC

Glucocorticoid receptors are abundantly expressed in both,
the PVN and in the ARC [44]. The important role of the
PVN for the initiation of glucocorticoid secretion is accen-
tuated by experiments showing markedly reduced CRH
levels, and stress induced ACTH levels after PVN lesions
[45]. In addition to their major role in the stress response,
both areas play a co-regulative role for energy intake regu-
lation [46, 47]. Signals representing nutritional status access
the PVN directly or indirectly through activation of ARC

afferents. The PVN then affects the periphery and stimulates
gut hormones release through neuroendocrine output signals
including oxytocin, vasopressin and CRH [48]. CRH is
considered an anorexigenic signal, as evidenced through
studies using direct CRH administration or blockade of the
CRH receptors in the PVN [49].

The PVN receives major input from the ARC, where
Neuropeptide Y (NPY) and Agouti-related Peptide
(AGRP) neurons are co-localized [50]. Both are considered
orexigenic peptide hormones. NPY neurons innervate CRH
neurons in the PVN and stimulate CRH release. The subse-
quently stimulated glucocorticoid release then in turn stim-
ulates NPY activity, but decreases hypothalamic CRH, thus
forming a positive feedback loop in favour of energy intake
stimulation [43]. The interplay between the anorexigenic
CRH and the orexigenic NPY neurons is essential in the
maintenance of a healthy body weight. Increased NPY
concentrations in response to stress may therefore be an
underlying biochemical mechanism of stress eating. It
should be mentioned that other studies report hyperphagia
in the absence of high NPY concentrations [51]. Those
however show an increased sensitivity to the orexigenic
effect of NPY.

The NPY/AGRP neurons are regulated in part through
the leptin and insulin receptors, both of which are abundant
in the ARC [52]. NPY/AGRP neurons are inhibited by
insulin and leptin signalling and are activated under circum-
stances of low insulin and leptin concentrations [50, 53].
Through the co-localisation of neurons and receptors, HPA
axis signalling affects energy intake regulation directly or
indirectly through an effect on the expression of orexigenic
and anorexigenic peptides within the ARC. Describing the
relationship between HPA axis activity and the signals rel-
evant to homeostatic energy intake regulation demonstrates
that the two systems are intricately involved with each
other, stronger, even need each other for function [54],
but that the balance needed for metabolic health is a rather
fragile framework.

HPA Axis and Adiposity Signals: Insulin and Leptin

But glucocorticoid receptors are abundantly expressed in
both the PVN and in the ARC [44]. The ARC is an area
where insulin and leptin, which circulate in proportion to fat
mass, convey signals about energy status. With low energy
stores, leptin and insulin concentrations will be low, which
removes inhibition within the ARC to stimulate feeding
behaviour. Thus, insulin in the brain serves a catabolic
purpose through directly inhibiting orexigenic NPY/AGRP
neurons and exciting anorexigenic POMC/cocaine- and
amphetamine-regulated transcript (CART) neurons in the
ARC [55]. Glucocorticoids interfere with insulin signalling
on a peripheral and central level. Centrally, glucocorticoid
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signalling undermines the antagonizing effect of insulin on
NPY, thereby stimulating energy intake [56]. In the periph-
ery, steady state concentrations of glucocorticoids are asso-
ciated with increases in plasma insulin concentrations [22].
Chronically elevated glucocorticoids exert diabetogenic
effects not only through hyperinsulinemia, but also by
impairing the insulin induced translocation of the intracel-
lular glucose transporter, as well as through interference
with receptor binding in liver and skeletal muscle [57•].
There is converging evidence for the co-occurrence of pe-
ripheral and central insulin resistance. While the mecha-
nisms are not fully elucidated, chronically elevated levels
of glucocorticoids may play a role through their contribution
to prolonged hyperinsulinemia, and their interference with
insulin reception in the periphery and the brain. The devel-
opment of glucocorticoid induced insulin resistance may
also help explain the sometimes counterintuitive results
regarding the effect of glucocorticoids on energy intake.
Due to the insulin stimulatory effect, glucocorticoids could
be expected to generally decrease energy intake. Removing
or reducing insulin action (through either insulin deficiency
or insulin resistance) removes the inhibitory effect, and thus
glucocorticoids will then stimulate feeding behaviour [22].

Similar to their effect on insulin, glucocorticoids stimu-
late systemic leptin concentrations [58], while they inhibit
the central action of leptin [59]. In the brain, leptin admin-
istration increases hypothalamic CRF, likely through the
ARC, which contains an abundance of leptin receptors
[52]. This in turn decreases peripheral glucocorticoid release
from the adrenals through the negative feedback loop. On a
peripheral level, the antagonistic relationship between leptin
and glucocorticoids was shown through a direct inhibition
of corticosteroid production and a reduction in basal cortisol
secretion after incubation with recombinant leptin [60].
Similar to insulin glucocorticoids may be implicated in the
development of leptin resistance through the stimulation of
hyperleptinemia in the periphery.

HPA Axis and Non-homeostatic Effects on Food
Intake Regulation

In addition to the homeostatic pathways involved in energy
intake regulation, non-homeostatic regulation of energy in-
take, including processes such as reward perception, and
cognition, were shown to be able to overrule homeostatic
regulatory mechanisms [61].

HPA Axis and Reward

Recent studies in animals even suggest that exclusively the
non-homeostatic properties of energy intake result in damp-
ening HPA axis reactivity [62•, 63]. Evidence for the HPA

axis influencing non-homeostatic eating in humans is found
in some of our own studies, which use the ‘eating in the
absence of hunger’ paradigm. Stress induced eating in the
absence of hunger, observed through increased snack intake
in stressed subjects, who just ate a regular lunch [64, 65].
Especially in (viscerally) obese participants, changes in food
reward perception were involved in stress augmented eating
in the absence of hunger [66]. Like addictive drugs, palat-
able foods may act as their own reinforcer, thereby stimu-
lating their own intake. Berridge and Robinson defined two
distinct psychological processes determining the reinforcing
value of food, namely “liking” and “wanting”. The combi-
nation of liking and wanting, defines the rewarding value of
a given item and thereby its specific maximum of perceived
food reward [67]. A recent study from our laboratory
showed that stress was associated with reduced food liking
in both lean and overweight subjects [68]. The processes
underlying liking and wanting are regulated by different
neural networks, and are mediated by different neurotrans-
mitters, the latter being the opioid, endocannabinoid, sero-
tonergic and dopaminergic systems [69, 70], all of which are
modulated by glucocorticoids [71•]. In studies that investi-
gated food reward specifically with various paradigms, us-
ing food images, smells and tastes, brain areas involved
were the amygdala, striatum, hippocampus anterior cingu-
late cortex, and orbitofrontal cortex [71•, 72]. Regarding the
influence of stress on reward specific brain activation, we
observed that the reward signalling-associated regions, such
as the amygdala, putamen, hippocampus and cingulate cor-
tex showed lower activation while choosing food in the
stress condition compared to the rest condition [65], espe-
cially in overweight subjects [73]. In a subsequent study, we
showed that in rest, behavioural liking and wanting were
supported by task related signalling in the anterior insula,
nucleus accumbens and thalamus. When stressed however,
task related brain activation representative of behavioural
liking and wanting appeared in more reward related regions,
particularly post-meal [74]. Together, these results suggest
that high HPA-axis activation disrupts and redirects normal
liking and wanting related brain signalling [73, 74]. Togeth-
er with previous studies, our studies proposes stress to
decrease the sensitivity of the neural correlates regulating
food reward [65, 71•, 73, 74], thereby facilitating stress
induced non-homeostatic eating.

HPA Axis and Cognition

In addition to the influence of the HPA axis on reward,
relationships between stress and cognition have been ob-
served. Attention and memory are some of the cognitive
processes that are affected by stress [75]. Decreased atten-
tion to external stimuli and reduced short-term memory was
shown during stress in animals and humans [76, 77]. The
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role of attention and working memory in eating behaviour in
humans is a relatively new subject. Studies have shown that
distraction humans during a meal (i.e. watching television or
reading), not only increases energy intake at that moment,
but also later on [78]. This suggests a high risk for overeat-
ing, when little attention is paid to the food consumed. The
importance of working memory in energy intake regulation
has been illustrated by recent studies from Higgs et al [79].
Enhancing the memory of the last meal, decreased later
snack intake, while disruption of encoding of the last meal
in memory increased subsequent snack intake [79]. Com-
bined, these findings support the hypothesis that stress could
decrease attention to food and working memory of energy
intake, resulting in increased energy intake in stressed people.
Until now no studies have tested this hypothesis, but it may
pose a plausible explanation for increased non-homeostatic
eating during stress.

The relationship between HPA axis functioning and cog-
nition is bidirectional. Humans show tendencies to cogni-
tively moderate their energy intake, a phenomenon that has
been called “dietary restraint”. Specific questionnaires, such
as the Three Factor Eating Questionnaire (TFEQ) can be
used to assess dietary restraint. In an earlier study, we
showed that high levels of dietary restraint are related to
hyperactivity of the HPA-axis [80]. Accordingly, three stud-
ies reported that salivary cortisol at one time point (time
point not specified) and 24-hour cortisol excretion were
significantly higher in restrained women compared with
unrestrained women [81, 82]. Although it cannot be exclud-
ed that high ambient cortisol levels increase cognitive
awareness of caloric intake, the opposite (i.e. high level of
dietary stress increased HPA axis activity) seems a some-
what more tempting hypothesis. Dietary restraint is posi-
tively correlated with body fat percentage [83], and the load
of continuously restrained eating behaviour is reportedly
perceived as stressful [84]. Still, dietary restraint may be a
risk factor for stress-induced hyperphagia, as studies
showed that restrained eaters experiencing psychological
stress increased their energy intake, while unrestrained eat-
ers decreased energy intake [26, 85].

Interaction Homeostatic and Non-homeostatic Effects
on Energy Intake Regulation

It should be noted, however, that homeostatic and non-
homeostatic pathways regulating feeding behaviour are not
completely separate systems. Contrary, they are intricately
involved with each other, and interact on different levels.
Particularly the adiposity signals insulin and leptin play
roles for both circuits. Leptin was shown to decrease energy
intake when injected in the ventral tegmental area (VTA) of
rodents, possibly by lowering the firing rate of VTA

dopamine neurons [86]. Moreover, leptin has been shown
to decrease performance in behavioural paradigms that as-
sess the rewarding properties of food [87]. Besides leptin,
the hormone ghrelin also influences both homeostatic and
non-homeostatic pathways. While ghrelin is produced by
the stomach and acts as an orexigenic factor, it also is a key
regulator of reward-based, hedonic eating behaviour, as
ghrelin directly targets the VTA to increase food motivation
[88]. An elegant review by Diz-Chaves et al. presented the
interaction between the HPA axis and ghrelin [89•]. Stress
raises ghrelin levels, which may implicate HPA axis activa-
tion as a moderator for ghrelin to increase energy intake by
increasing food motivation and feelings of hunger.

The Vicious Cycle of HPA-Activity and Overeating

The data presented in this review support the theory pro-
posed by professor Dallman years ago [90]. She proposed
that hyperactivity of the HPA axis is part of a vicious cycle
between HPA axis activation and energy intake, which
makes chronic stress a major risk factor for excessive weight
gain and (visceral) obesity (Fig. 1). Susceptibility to chronic

Fig. 1 A model for the possible relationship between HPA axis,
energy intake, and (visceral) obesity
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stress induced (visceral) obesity can be mediated by genetic
variation in the cascade of the HPA axis. Several single
nucleotide polymorphisms (SNPs) have been described that
cause differences in HPA functioning and/or are involved in
obesity development [91]. One of the most often described
SNPs is the BclI polymorphism (rs41423247), representing
variation in the glucocorticoid receptor. GG carriers of the
BclI polymorphism have increased glucocorticoid sensitiv-
ity, insulin levels, blood pressure, abdominal visceral fat,
and cholesterol levels [92]. In our recent studies, we showed
that BclI is primarily related to differences in HPA axis
functioning and sensitivity to psychological stress, and not
to anthropometric measurements [93, 94]. This suggests that
genetic variations cause alterations in HPA axis functioning,
which in turn result in anthropometric differences. Overall,
these SNP association studies show that humans with cer-
tain alleles of the HPA axis SNP genes are more susceptible
to chronic stress induced obesity.

Another mediating factor for the vicious cycle between
HPA axis activation and energy intake are structural brain
abnormalities. This relationship has recently become of inter-
est and a growing line of evidence suggests that alterations in
HPA axis functioning are related to a decrease in hippocampal
and frontal lobe volume [95]. Similar decreases have been
observed in obese and type 2 diabetes patients [96], which
suggests a role for altered HPA axis functioning in the rela-
tionship between obesity and brain abnormalities [97•]. Re-
cent studies demonstrated that adolescents with insulin
resistance had altered HPA axis functioning, smaller hippo-
campal volumes, and greater frontal lobe atrophy compared to
controls [97•]. Mediation analyses indicated pathways where-
by altered HPA axis functioning was associated with a higher
BMI, which in turn was associated with fasting insulin levels.
Those were associated with smaller hippocampal volume and
greater frontal lobe atrophy. These findings suggests that HPA
axis dysregulation may also impact brain structures through
associations with metabolic abnormalities, and strengthen our
visceral cycle hypothesis [97•].

Summary and Conclusions

HPA axis activation and chronic stress have several neuro-
nal, metabolic and behavioural consequences, which affect
energy intake regulation. All in all, prolonged exposure to
elevated glucocorticoid levels and chronic stress may result
in a positive energy balance through increased energy in-
take, without affecting resting energy expenditure. The stim-
ulatory effects of stress on energy intake involve both
homeostatic and non-homeostatic pathways. Dysregulation
of HPA activation affects homeostatic pathways through to
the development of resistance to adiposity signals in the
periphery and in the brain. An intact negative feedback loop

of the HPA axis is essential for NPY signalling in the brain.
Subsequently, disturbed NPY signalling and resistance to
adiposity signals may both be players in the vicious cycle of
overeating and further HPA axis disturbance.

Non-homeostatic pathways may include neural systems
involved in both the “wanting” and “liking” aspects of food
reward, cognitive factors such as attention and working
memory, as well as the individuals’ attitude towards eating.
The non-homeostatic pathways may even be more rein-
forced through the altered brain systems and brain abnor-
malities caused by the increased HPA axis activations. Both
homeostatic and non-homeostatic pathways result in in-
creased energy intake and altered macronutrient selection,
towards more high fat and high sugar foods (Fig. 1). The
consequential positive energy balance is likely to result in
increased lipogenesis and fat storage, under influence of
glucocorticoids. Visceral adipocytes have a fourfold higher
number of glucocorticoid receptors than adipocytes in other
fat depots. Chronic stress associated hyperactivation of the
HPA axis and subsequent hypercortisolism result in in-
creased fat storage particularly in the visceral region, further
contributing to the related metabolic adverse consequences.
The present review underlines, how the HPA axis play an
essential role in the developing obesity epidemic of Western
society, where high levels of ambient stress and availability
of high fat, sweet foods are abundantly present.
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