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Abstract In many countries across the world, fossil fuels, especially petroleum,

are the largest energy source for powering the socio-economic system, and the

transportation sector dominates the consumption of petroleum in these societies. As

the petroleum price continuously climbs and the threat of global climate changes

becomes more evident, the world is now facing critical challenges in reducing

petroleum consumption and exploiting alternative energy sources. A massive

adoption of plug-in electric vehicles (PEVs), especially battery electric vehicles

(BEVs), offers a very promising approach to changing the current energy con-

sumption structure and diminishing greenhouse gas emissions and other pollutants.

Understanding how individual electric vehicle drivers behave subject to the tech-

nological restrictions and infrastructure availability and estimating the resulting

aggregate supply–demand effects on urban transportation systems is not only crit-

ical to transportation infrastructure development, but also has determinant impli-

cations in environmental and energy policy enactment. This paper presents an
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equilibrium-based analytical tool for quantifying travel choice patterns in urban

transportation networks with both gasoline and electric vehicular flows. Specifi-

cally, a network equilibrium problem with combined destination, route and parking

choices subject to the driving range limit and alternative travel cost composition

associated with BEVs are formulated, solved, and numerically analyzed under

different network settings and scenarios. The defined problem introduces a new

dimension of modeling network equilibrium problems with side constraints. The

practical significance of the developed tool lies in its solution tractability and

extension capability and its ease of being embedded into the existing urban travel

demand forecasting framework.

Keywords Electric vehicles � Network equilibrium � Travel demand analysis �
Travel choices � Distance constraint � Partial linearization method

List of symbols

Variables
fk,g
rs,n trip flow rate of GVs traveling on path k between O-D pair r-s and entering the

ordinary parking facility at destination s

fk,e
rs,n trip flow rate of BEVs traveling on path k between O-D pair r-s and entering

the ordinary parking facility at destination s

fk,e
rs,e trip flow rate of BEVs traveling on path k between O-D pair r-s and entering

the special parking facility at destination s

xa,g traffic flow rate of GVs on link a

xa,e traffic flow rate of BEVs on link a

xa total traffic flow rate on link a

qg
rs trip flow rate of GVs between O-D pair r-s

qe
rs trip flow rate of BEVs between O-D pair r-s

Dg
s arrival trip flow rate of GVs at destination s

De
s arrival trip flow rate of BEVs at destination s

Rs,n arrival trip flow rate at the ordinary parking facility at destination s

Rs,e arrival trip flow rate at the special parking facility at destination s

Pg
rs probability of GVs departing from origin r choosing destination s

Pe
rs probability of BEVs departing from origin r choosing destination s

ts,n parking access and search time of the ordinary parking facility at destination s

ts,e parking access and search time of the special parking facility at destination s

ta travel time of link a

pk,g
rs generalized travel cost of GVs along path k between O-D pair r-s

pk,e
rs generalized travel cost of BEVs along path k between O-D pair r-s

Parameters
Og

r departing trip flow rate of GVs from origin r

Oe
r departing trip flow rate of BEVs from origin r

da,k
rs 1 if link a is on path k from r to s, and 0 otherwise

q value of time

ug unit operating cost of GVs on roadway links

ue unit operating cost of BEVs on roadway links
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cs,n parking fee of the ordinary parking facility at destination s

cs,e parking fee of the special parking facility at destination s

da physical length of link a

lk
rs physical length of path k between O-D pair r-s

D driving range limit of BEVs

cg, ce scale parameters of the multinomial logit models of GVs and BEVs for

destination choice, respectively

Introduction

The human society’s overdependence on petroleum has contributed to a suite of

serious economic, security, geopolitical, and environmental problems. Reducing

petroleum use and seeking energy diversity have become a growing global interest

and public consensus in many countries. In the US, the transportation sector

accounts for 27 % of its greenhouse gas emissions and 70 % of the petroleum

consumption (EIA 2010). The majority of the petroleum consumption in the

transportation sector is for fueling light-duty vehicles. Encouraging viable energy

alternatives to power vehicles and hence changing the current energy consumption

structure are becoming an urgent task for enhancing the nation’s energy security and

economic and environmental sustainability.

With innovations in battery technologies and expectedly rapid expansions of

electricity-charging infrastructures, powering vehicles with electricity is of

increasing interest in the public and provides a promising strategy in the search

for ways to reduce petroleum use. In the US, the federal government recently

announced its strategic plan of promoting electricity as a replacement alternative to

petroleum for transportation purposes. An official domestic goal of putting one

million plug-in electric vehicles on the road by 2015 has been established, and a

variety of fiscal and institutional policies proposed and implemented by the federal,

state, and local governments to encourage the electrification of transportation

systems (Becker et al. 2009).

Different from gasoline vehicles (GVs), plug-in electric vehicles (PEVs) are

vehicles relying primarily or exclusively on electricity and designed for being

recharged by plugging its battery into the electric grid. Those plug-in vehicles

equipped with both gasoline engines and electric motors (e.g., BYD F3DM,

Chevrolet Volt, and Toyota Prius,1 to name a few) are plug-in hybrid electric

vehicles (PHEVs), while those relying entirely on electricity (e.g., BYD E6, Ford

Focus EV, Mitsubishi i-MiEV, Nissan Leaf, Smart ED, and Subaru R1E) are

classified as battery electric vehicles (BEVs) or all electric vehicles (AEVs).

Once a BEV’s battery storage is depleted, the vehicle cannot be driven any

further. Among the aforementioned BEV models, the driving range of a Mitsubishi

i-MiEV of its 2011 version is around 62 miles, while a Nissan Leaf can run up to

1 Note that Toyota Prius includes a family of vehicle models with different engine types and

technologies, one of which is a plug-in hybrid electric version.
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100 miles on a single charge, for example. Given that the electricity consumption is

typically proportional to the driving distance, the driving range for BEVs is

primarily confined by the battery capacity. At the initial stage of the market, the

number of charging stations in most urban areas at present is very limited (for

instance, among all the states in US, California is now the only state that has more

than five hundreds charging stations (DOE 2011)), which makes drivers perceive the

driving range limit as a potential worry. This phenomenon has been described as the

so-called ‘‘range anxiety’’: the mental distress or fear of being stranded because the

battery runs out of charge (Mock et al. 2010). Although many cities are planning the

construction and expansion of charging infrastructures for BEVs, it is susceptibly

likely that in the foreseeable future BEV commuters will need to charge their

vehicles at home most of the time (Marrow et al. 2008). It is obvious that the driving

range limit inevitably adds a certain level of restrictions to BEV drivers’ travel

behaviors, at least in a long future period prior to the coverage of recharging

infrastructures reaching a sufficient level.

The widespread adoption of PEVs calls for fundamental changes to the existing

network flow modeling tools for properly capturing changed behaviors and induced

constraints in forecasting travel demands and evaluating transportation development

plans. This paper is devoted to developing a network equilibrium model that takes

into account the driving range limit of BEVs and implementing the model for

evaluating the impacts of the driving range limit on destination, route and parking

choice behaviors under equilibrium conditions. As we will see, given the simple

settings for the driving range limit and multi-dimensional travel choice set, this

network equilibrium problem can be characterized by a convex optimization model,

and be easily incorporated into the existing trip-based travel demand forecasting

framework that has been extensively used across transportation planning agencies.

The remaining part of this paper is organized as follows. The relevant literature is

reviewed in the section of ‘‘Literature review’’. The model formulation and solution

properties are elaborated in section ‘‘Model formulation and analysis’’. In section

‘‘Solution approach’’, the partial linearization method is adapted for solving this

problem. Section ‘‘Numerical analysis’’ presents and analyzes the computational

results for a couple of numerical examples of small and medium sizes. Finally, we

conclude the paper and sketch our future research directions.

Literature review

The network equilibrium problem we will address below synthesizes a few

protrudent modeling features compared to other problems in the literature.

Specifically, our problem implies a simultaneous determination of destination,

route and parking choices of both GV and BEV drivers, considers different parking

policies and infrastructure availability for GVs and BEVs, and imposes a limit on

the driving distance of BEVs in a combined urban traffic routing-parking

equilibrium system. Given the inclusion of these modeling elements, our review

work below is accordingly streamlined by tracing a number of relevant problem

classes in the wide context of network equilibrium.

58 N. Jiang et al.

123



Network equilibrium problems with combined travel choices

Network equilibrium models with combined travel choices have been extensively

studied in past decades, and there is a substantial body of literature on relevant

problems of destination and route choices.

In the travel forecasting context, combined network equilibrium or travel demand

models were developed for overcoming the inherent inconsistency of the sequential

procedure. If travel cost functions are separable across different links, these models

can be in general formulated as convex optimization models. Florian et al. (1975)

and Evans (1976) separately proposed combined trip distribution and traffic

assignment models, as an extension of the convex optimization formulation for the

prime traffic assignment problem by Beckmann et al. (1956). In their work, the

traffic assignment process follows the user-equilibrium principle and the trip

distribution module follows a gravity model. A partial linearization algorithm was

proposed by Evans (1976) to solve the combined model, which linearizes only the

route choice part of the objective function. To capture the congestion effect at

destinations, Oppenheim (1993) added the endogenous destination cost into the

above model, as a function of the arriving flow at destinations. Erlander (1990)

derived an alternative combined trip distribution and traffic assignment problem, the

unique feature of which is that the stochastic user equilibrium instead of

deterministic user equilibrium is used for specify the traffic assignment pattern.

The same model appears in Lundgren and Patriksson (1998), who made an

algorithmic progress by combining the partial linearization algorithm with the

disaggregate simplicial decomposition algorithm for updating link flows, which

significantly improves the computational performance of the original partial

linearization method by Evans.

When multiple user classes (i.e., travelers with different behavioral or choice

characteristics) are considered, a prerequisite for the integrability condition on the

objective function of an optimization model is that the cross-class flow-cost effects

must be symmetric (Dafermos 1972). Florian and Nguyen (1978) developed a

combined trip distribution, modal split and trip assignment model which removes

the asymmetric Jacobian elements by using separate traffic and transit subnetworks.

Friesz (1981) presented an equivalent optimization model for combined multiclass

trip distribution, traffic assignment and modal split, which avoided the symmetry

restriction on cost functions by expressing Wardrop’s user-equilibrium principle as

a set of nonlinear constraints. However, the resulting optimization model is not

convex and requires route enumeration for its solution. Lam and Huang (1992)

proposed a convex formulation for the multiclass combined trip distribution and

traffic assignment problem which uses symmetric ‘‘normalized’’ link cost functions.

They adapted the Frank-Wolfe algorithm and Evans algorithm for solving the

problem and concluded that the Evans algorithm performs better than the Frank-

Wolfe. Wong et al. (2004) presented a combined trip distribution, (hierarchical)

modal split, and traffic assignment model with multiple user and mode classes and

employed the Evans algorithm for its solutions. In a different modeling paradigm,

Ho et al. (2006) proposed a combined trip distribution and traffic assignment model

for a continuum traffic equilibrium problem with multiple user classes. They
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assumed that route choice follows the user-equilibrium principle and destination

choice is specified by a logit model. A finite-element method was used to solve the

model.

Network equilibrium problems with parking choices

Conventionally, parking choice is not included in combined urban network

equilibrium or travel demand models. However, an increasing number of studies

have found that parking becomes a major contributing factor to urban traffic

congestion (e.g., Axhausen and Polak 1991; Lambe 1996; Anderson and de Palma

2004). Very often, drivers spend a significant portion of their total travel time

looking for available parking spaces and circling for parking considerably worsens

traffic conditions and air quality of urban networks that are already congested. For

example, circling on streets for parking contributes to up to 30 % of San

Francisco’s congestion (SFMTA 2011). Due to this reason, in many urban areas,

parking management has become an essential part of urban transportation

management and should be used as a tool to mitigate traffic congestion and

balance land development. Preferential parking policies, for example, may be

implemented to encourage the usage of low-emission vehicles. As an integral part

of urban network modeling and analysis, it is important to understand and predict

the parking choice behaviors of travelers under various parking policies and travel

choice restrictions.

Many studies on static or dynamic network equilibrium analysis of combined

parking and travel choice models have been carried out in the literature. Here we

highlight a few examples. Florian and Los (1980) proposed an entropy maximi-

zation-based model for predicting parking occupation in a park-and-ride network.

Parking capacity was explicitly considered as a side constraint in their model. Nour

Eldin et al. (1981) developed a combined parking and traffic assignment model

which takes into account the interaction between parking supply and traffic flows by

adding imaginary links to represent parking-related searching, parking and walking

activities. Gur and Beimborn (1984) modeled the time spending in looking or

waiting for a parking space as an increasing function of the utilization level of the

parking area, and analyzed the parking process in the framework of user

equilibrium. In view of that static models are unable to characterize the

spatiotemporal travel and parking interactions, Bifulco (1993) developed a quasi-

dynamic network equilibrium model in which the traffic flow pattern in the road

network during each time interval is in a steady-state equilibrium with stochastic

perceptions while the parking demand in the parking system has an accumulated

effect across time intervals. Specifically, it is assumed in his research that travelers

start and complete their journeys within the same time interval and the connection

between successive time intervals is represented by the parking occupancy that is

carried over to the next interval. In a subsequent study, Lam et al. (2006) also

presented a more complex quasi-dynamic network equilibrium model which

simultaneously considers departure time, route, parking location and parking

duration choices in road networks with multiple user classes and multiple parking

facilities. Their model allows trips to go through multiple time intervals.
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Network equilibrium problems with side constraints

From the modeling perspective, the driving range limit of BEVs poses a side

constraint on their path lengths. By side constraints, we mean those extra constraints

imposed on traffic flows or travel costs of links, paths, origin–destination (O-D)

pairs, origins, or destinations, in addition to the basic flow conservation and

nonnegativity constraints. Adding side constraints into a network equilibrium model

often increases the solution difficulty significantly. In the literature, research efforts

on network equilibrium problems with side constraints were dominantly focused on

side constraints for link flows, which lead to the so-called capacity-constrained

traffic assignment problem (e.g., Hearn 1980; Larsson and Patriksson 1995; Nie

et al. 2004). This type of problems has been well addressed by dual, penalty or

Lagrangian relaxation methods. Larsson and Patriksson (1999) extended the

capacity-constrained traffic assignment problem to a more general form, but still

assumed that the general side constraints are imposed on links. In the class of

dynamic traffic assignment models, the link capacity is in general explicitly

included to confine the traffic throughout rate and the queue formation and

dissipation.

In contrast, few research activities have been devoted to traffic assignment

problems with path-level side constraints, except two recent studies. Jahn et al.

(2005) proposed a system-optimal traffic assignment problem with an upper bound

on path travel times for designing a route guidance system that simultaneously

promotes system optimum and user fairness; Jiang et al. (2012) presented a user-

equilibrium problem with an upper bound on path lengths for the need of modeling

the route choice pattern of electric vehicles. Both of the research teams solved their

problems in the Frank-Wolfe solution framework. Despite the different settings of

the optimization objective (i.e., system optimum vs. user equilibrium) and path-

constrained component (i.e., flow-dependent travel time vs. flow-independent travel

distance), the two problems pose a similar path cost structure under optimality

conditions. In particular, Jiang et al. (2012) showed that the optimal path cost of an

individual traveler with a path length limit contains a special path-specific out-of-

limit cost term.

Model formulation and analysis

It is most likely that in a long period in the future GVs and BEVs will coexist in the

automobile market. For this reason, the model we present below includes two

classes of vehicles, GVs and BEVs, which distinguish from each other in terms of

driving distance range and travel cost composition. To simplify the modeling

complexity in such a mixed-traffic network and ensure our modeling focus on the

most essential demand characteristics and system behaviors of the anticipated

network equilibrium, a set of assumptions regarding demand heterogeneity, travel

behavior, and parking availability are suggested here.
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First, it is assumed that the demand population is only comprised of GVs and

BEVs. PHEVs are not explicitly considered since they can be simply treated as an

in-between class of GVs and BEVs in terms of the technological and economic

features (i.e., driving range limit and travel cost composition), or a special type of

GVs with lower operating costs. For modeling simplicity, we consider only one type

of BEVs. Certainly, if needed, multiple types of BEVs with different driving range

limits and unit operating costs can be easily incorporated into the model without

changing the problem’s nature and model’s structure.

Second, we assume that the total travel demand at each origin for each class/type

of vehicles is deterministically known a priori. In other words, we ignore the elastic

and stochastic effects of demand generation. For route choice, the most prime form

of traffic assignment—user equilibrium—is used, in which each traveler chooses a

route that minimizes his/her travel cost and no one can reduce his/her travel cost by

unilaterally switching to an alternative route. For an individual GV traveler, user

equilibrium simply implies a minimum cost search; for a BEV traveler, however, it

poses a distance-constrained minimum cost problem. On the other hand, individual

destination and parking choices are specified by the multinomial logit model (Ben-

Akiva and Lerman 1985), which is in principle equivalent to the traditionally used

gravity model for trip distribution (Anas 1983). In the network equilibrium context,

this specification also results in the stochastic user-equilibrium state on the network

level when the cost-flow consistency is required. Again, subject to the added driving

range limit, the aggregated destination and parking flow patterns will be shifted for

BEV travelers.

Third, we assume that two types of parking garages are available at each

destination, namely, ordinary parking garages and special parking garages. Special

parking garages are equipped with charging stations and are only open to BEVs,

while ordinary parking garages are open to both GVs and BEVs. For such a parking

classification, on one hand, it reflects the emerging parking policies that encourage

the purchase and usage of BEVs; on the other hand, it offers a mechanism of

preserving the charging equipment and devices exclusively for BEVs, if needed.

Despite the fact that there remain multiple ordinary and special parking garages at

each destination, and both ordinary and special parking spots exist in a single

garage, we aggregate all ordinary parking spaces at each destination into one virtual

ordinary parking facility and all special parking spaces into one virtual special

parking facility. Explicitly treating multiple ordinary and special parking garages

only slightly adds the modeling complexity while not changing the problem’s

structure.

Finally, without loss of generality, we assume that both GV and BEV travelers

use a common form of systematic travel cost/disutility for determining their travel

and parking choices: travel time (i.e., driving time and parking access and search

time) ? monetary cost (i.e., operating cost and parking charge). While the travel

time and parking time are assumed to be the same to both the GV and BEV

classes (along the same route and in the same parking facility), their operating

costs considerably differ due to the difference between the gasoline price and

electricity price and possible different road and parking pricing policies for GVs

and BEVs. As we will see, this cost difference, plus the driving range limit and
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parking infrastructure availability, will significantly distinguish GV and BEV

travelers in their decision making behaviors in face of destination, route and

parking choices.

It is clear that given the set of modeling assumptions described above, the

complexity of the proposed model is primarily due to the introduction of BEVs into

the combined network equilibrium problem. In particular, the destination and route

choices of BEV travelers are subject to the driving range limit, and they face

parking choices between the special and ordinary parking facilities. If the travel and

parking flow patterns of BEVs are fixed, the remaining modeling issues for GVs can

be simply aggregated as a combined trip distribution and traffic assignment

problem, which, as we discussed earlier, has been well addressed by Evans (1976),

Florian et al. (1975), Erlander (1990), Oppenheim (1993), and Lundgren and

Patriksson (1998), among others. The purpose of this paper is on the development of

a distance-constrained, combined network equilibrium model for estimating the

aggregated behavior of an equilibrium transportation network with both GVs and

BEVs and on an investigation of the impacts of the battery capacity and penetration

rate of BEVs on the network performance. It is expected that the battery capacity

and other vehicle performance specifications will be continuously improved in

future years to accelerate the growth of the penetration rate of BEVs in urban

networks.

The remaining part of this section will discuss the model formulation and

solution properties. For discussion convenience, we refer readers to the notation list

presented at the beginning of this paper.

Model formulation

The general network representation paradigm, where nodes denote origins,

destinations and intersections, and links denote roadway segments between nodes,

is extended to include parking facilities as follows: Every destination node s is

connected with two parking nodes via two parking links that represent the ordinary

parking facility and special parking facility at this destination, respectively. The

parking access and search time, the parking fee, and other attributes of the parking

facilities are all associated with the parking links, as shown in Fig. 1a. Under this

representation, all infrastructure elements in this integrated roadway and parking

system are consistently depicted in a node-link network, in which the congestion

effect of each parking facility can be modeled the same way as that of a roadway

link. Moreover, we add a dummy destination node for any O-D pair in the network

and a dummy link with zero travel cost and travel distance between each parking

node to the dummy node, as shown in Fig. 1b. Though it is not necessary from the

modeling perspective, this node and link additions let us treat parking choice and

route choice in a unified modeling mechanism and creates great algorithmic

convenience, as we will see later on.

Given the above network representation, the combined trip distribution, traffic

assignment and parking split problem can be written into the following convex

optimization model:
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where the variables in the parentheses beside equations (2)–(6) are dual variables

associated with constraints.

The objective function of the optimization model can be briefly described as

follows. Its first term specifies the destination choice behavior, which will be proved

to follow the multinomial logit model. The second term replicates Beckmann’s

transformation for the user-equilibrium traffic assignment. The third term is the sum

of the operation costs, which are proportional to travel distances and independent of

traffic flow rates. The combination of the second and third components ensures that

the route choice in our model follows the Wardropian user-equilibrium principle in

terms of the total individual travel cost (i.e., sum of individual travel time and

individual monetary cost). The fourth term is used to indicate the constrained user-

equilibrium parking demand split, which has a similar form to the second term,

where the constraint is from the parking restriction that all special parking facilities

are not available for GVs. Similar to the third term, the fifth term simply denotes the

sum of flow-independent parking costs.

The constraint set of the model can be grouped into three subsets. Constraints

(2)–(5) are flow conservation equations. Constraint (6) defines the distance

constraint for feasible paths of BEVs, i.e., if the BEV flow rate on path k connecting

origin r and destination s is positive, the length of this path cannot exceed the

driving range limit D. The set of constraints (7) simply define the non-negativity of

all flow variables. In addition, definitional constraints (8)–(12) specify the

relationship among link flows, path flows, and parking demands.

The link travel time functions ta are assumed to be separable between different

network links and identical for different vehicle classes. These functions are assumed

to be positive, monotonically increasing, and strictly convex. The same assumptions

are also held for the parking access and search time functions ts,n and ts,e. These

assumptions on the link travel time and parking time functions can be mathemat-

ically written as follows. Specifically, for any network link a, if xa C 0, we have
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ts;n Rs;nð Þ[ 0;
dts;n Rs;nð Þ

dRs;n
[ 0;

ots;n �ð Þ
oRm;n

¼ 0 for s 6¼ m; and
d2ts;n Rs;nð Þ

dðRs;nÞ2
[ 0

ts;e Rs;eð Þ[ 0;
dts;e Rs;eð Þ

dRs;e
[ 0;

ots;e �ð Þ
oRm;e

¼ 0 for s 6¼ m; and
d2ts;e Rs;eð Þ

dðRs;eÞ2
[ 0

The following part then discusses the solution existence and uniqueness of the

solution of the proposed model and its equivalence to the proposed network

equilibrium conditions.

Solution existence and uniqueness

The presence of the distance constraint (6) might result in an infeasible problem, when

none of the paths from an origin to all its destinations satisfies the distance constraint.

When the problem is feasible, given that the feasible region confined by constraints

(2)–(12) is compact, we know that optimal solutions must exist. Further, given the

strict convexity of the link travel time functions, the parking access and search time

functions, and the entropy term in the objective function for destination choice are all

strictly convex, ensuring that the objective function in the feasible region, it can be

readily proved that the Hessian of the objective function (1) is positive definite.

Moreover, the feasible region defined by linear constraints (2)–(12) is convex.

Therefore, the optimization problem defined in (1)–(12) poses a unique solution for

destination flows and link flows (but not necessarily for GV and BEV link flows).

Solution equivalence

The equilibrium conditions corresponding to the optimal solution of the proposed

convex optimization problem can be analyzed below through checking the first-

order conditions of its Lagrangian dual problem. First, we write the Lagrangian dual

problem as follows, given the dual variables of constraints, which are listed in the

parentheses beside equations (2)–(6),

L ¼ zðx fð Þ; qÞ þ
X

rs

prs
g qrs

g �
X

k

f
rs;n
k;g

" #
þ
X

rs

prs
e qrs

e �
X

k

f
rs;n
k;e þ f

rs;e
k;e

� �" #

þ
X

r

lr
g Or

g �
X

s

qrs
g

 !
þ
X

r

lr
e Or

e �
X

s

qrs
e

 !

�
X

rs

X

k

krs
k D�

X

a

dad
rs
a;k

 !
f

rs;n
k;e þ f

rs;e
k;e

� �

ð13Þ

The solution equivalence between the original problem and the Lagrangian dual

problem can be realized if the dual problem is maximized with respect to the dual
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variables, in which the relaxed Lagrangian problem is minimized subject to the

remaining flow nonnegativity constraints:

f
rs;n
k;g ; f

rs;n
k;e ; f

rs;e
k;e � 0 8r; s; k ð14Þ

Among the dual variables, the one associated with the distance constraint is the

only constrained dual variable:

krs
k � 0 8r; s; k ð15Þ

The derivatives of the Lagrangian dual problem with respect to path flow

variables are,

oL

of
rs;n
k;g

¼ q
X

a

taðxaÞdrs
a;k þ

X

a

ugdad
rs
a;k þ qts;n Rs;nð Þ þ cs;n � prs

g ð16Þ

oL

of
rs;n
k;e

¼ q
X

a

taðxaÞdrs
a;k þ

X

a

uedad
rs
a;k þ qts;n Rs;nð Þ þ cs;n � prs

e

� krs
k D�

X

a

dad
rs
a;k

 !
ð17Þ

oL

of
rs;e
k;e

¼ q
X

a

taðxaÞdrs
a;k þ

X

a

uedad
rs
a;k þ qts;e Rs;eð Þ þ cs;e � prs

e

� krs
k D�

X

a

dad
rs
a;k

 !
ð18Þ

the derivative with respect to dual variable kk
rs is,

oL

okrs
k

¼ � D�
X

a

dad
rs
ak

 !
f

rs;n
k;e þ f

rs;e
k;e

� �
ð19Þ

and the derivatives with respect to O-D flow variables are,

oL

oqrs
g

¼ 1

cg

ln qrs
g

� �
þ prs

g � lr
g ð20Þ

oL

oqrs
e

¼ 1

ce

ln qrs
e

� �
þ prs

e � lr
e ð21Þ

Now, let us set,

qta xað Þ þ ugda ¼ pa;g ð22Þ
qta xað Þ þ ueda ¼ pa;e ð23Þ

where pa,g and pa,e are the generalized link travel costs for GVs and BEVs,

respectively, each of which includes two cost components: travel time and operation

cost. Moreover, we further set,

q
X

a

taðxaÞdrs
a;k þ

X

a

ugdad
rs
a;k ¼

X

a

pa;gd
rs
a;k ¼ prs

k;g ð24Þ

A network equilibrium analysis on destination, route and parking choices 67

123



q
X

a

taðxaÞdrs
a;k þ

X

a

uedad
rs
a;k ¼

X

a

pa;ed
rs
a;k ¼ prs

k;e ð25Þ

where prs
k;g and prs

k;e are the generalized path travel cost for GVs and BEVs,

respectively. Let
P

adadak
rs = lk

rs, then lk
rs is the distance of path k from r to s. Then,

the first-order conditions of the Lagrangian dual problem are thus,

f
rs;n�
k;g prs�

k;g þ qts;n� þ cs;n � prs�
g

h i
¼ 0 8r; s; k ð26Þ

prs �
k;g þ qts;n � þ cs;n � prs�

g � 0 8r; s; k ð27Þ

f
rs;n�
k;e prs�

k;e þ qts;n� þ cs;n � krs�
k D� lrs

k

� �
� prs�

e

h i
¼ 0 8r; s; k ð28Þ

prs�
k;e þ qts;n� þ cs;n � krs�

k D� lrs
k

� �
� prs�

e � 0 8r; s; k ð29Þ

f
rs;n�
k;e prs�

k;e þ qts;e� þ cs;e � krs�
k D� lrs

k

� �
� prs�

e

h i
¼ 0 8r; s; k ð30Þ

prs �
k;e þ qts;e� þ cs;e � krs�

k D� lrs
k

� �
� prs�

e � 0 8r; s; k ð31Þ

1

cg

ln qrs�
g

� �
þ prs�

g � lr�
g ¼ 0 8r; s ð32Þ

1

ce

ln qrs�
e

� �
þ prs�

e � lr�
e ¼ 0 8r; s ð33Þ

krs�
k D� lrs

k

� �
f

rs;n�
k;e þ f

rs;e�
k;e

� �
¼ 0 8r; s; k ð34Þ

D� lrs
k

� �
f

rs;n�
k;e þ f

rs;e�
k;e

� �
� 0 8r; s; k ð35Þ

qrs�
g �

X

k

f
rs;n�
k;g ¼ 0 8r; s ð36Þ

qrs�
e �

X

k

f
rs;n�
k;e þ f

rs;e�
k;e

� �
¼ 0 8r; s ð37Þ

Or
g �

X

s

qrs�
g ¼ 0 8r ð38Þ

Or
e �

X

s

qrs�
e ¼ 0 8r ð39Þ

f
rs;n�
k;g ; f

rs;n�
k;e ; f

rs;e�
k;e � 0 8r; s; k ð40Þ

krs�
k � 0 8r; s; k ð41Þ

Route and parking choices

For combined route and parking choices, optimality conditions (26)–(31) plus (40)

together can be rewritten as the following three systems of conditional equations/

inequalities:
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prs �
k;g þ qts;n� þ cs;n ¼ prs�

g if f
rs;n�
k;g [ 0

prs �
k;g þ qts;n� þ cs;n� prs�

g if f
rs;n�
k;g ¼ 0



ð42Þ

prs �
k;e þ qts;n� þ cs;n þ krs�

k lrs
k � D
� �

¼ prs�
e if f

rs;n�
k;e [ 0

prs �
k;e þ qts;n� þ cs;n þ krs�

k lrs
k � D
� �

� prs�
e if f

rs;n�
k;e ¼ 0

(

prs �
k;e þ qts;n� þ cs;e þ krs�

k lrs
k � D
� �

¼ prs�
e if f

rs;e�
k;e [ 0

prs �
k;e þ qts;n� þ cs;e þ krs�

k lrs
k � D
� �

� prs�
e if f

rs;e�
k;e ¼ 0

( ð43Þ

In the first system of equations/inequalities (42), pg
rs* can be interpreted as the

minimum combined travel and parking cost for GVs from origin r to destination

s. We name it the minimum composite path cost for GVs. Similarly, pe
rs*, the

minimum composite path cost for BEVs, can be interpreted as the minimum travel

and parking cost for BEVs from origin r to destination s.

In the second and third systems, note that different from that for GVs, the

composite path cost for BEVs includes the term kk
rs*(lk

rs - D), which is defined as

the path out-of-range cost (Jiang et al. 2012). The entire set of equilibrium

conditions given above specified that the combined route and parking choice

behaviors of gasoline and electric vehicles follow the user-equilibrium principle,

which can be respectively interpreted as follows,

• If the generalized path travel cost of driving GVs on a path connecting r and

s plus the parking cost at the regular parking facility at s is higher than the

minimum composite path cost for GVs between r and s, no GV will choose this

path.

• If the generalized path travel cost of driving BEVs on a path connecting r and

s plus the parking cost at the regular parking facility at s and its out of range cost

along this path is higher than the minimum composite path cost for BEVs

between r and s, no BEV will choose this path and park at the regular parking

facility.

• If the generalized path travel cost of driving BEVs on a path connecting r and

s plus the parking cost at the special parking facility at s and its out-of-range cost

along this path is higher than the minimum composite path cost for BEVs

between r and s, no BEV will choose this path and park at the special parking

facility.

We can also rewrite the equilibrium conditions in (34)–(35) and (41) in a similar

way,

D� lrs
k

� �
f

rs;n�
k;e þ f

rs;e�
k;e

� �
¼ 0 if krs�

k [ 0

D� lrs
k

� �
f

rs;n�
k;e þ f

rs;e�
k;e

� �
� 0 if krs�

k ¼ 0

8
<

: ð44Þ

which can be interpreted as the following three cases:

• If lk
rs [ D, the total flow of BEVs along path k, f

rs;n�
k;e þ f

rs;e�
k;e , equals zero. That is,

if the length of a path exceeds the driving range limit of BEVs, no BEV will

choose this path.
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• If lk
rs \ D and f

rs;n�
k;e þ f

rs;e�
k;e [ 0, we must have kk

rs* = 0. As a result, the out-of-

range-cost of path k, kk
rs*(lk

rs - D) = 0. That is, no extra cost will be incurred if

the length of a path is shorter than the driving range limit.

• If lk
rs = D, we know that condition kk

rs*(lk
rs - D) = 0 will always hold and no

extra out-of-range cost will be incurred on this path.

Despite the route and parking equilibrium conditions are presented above in a

combined form, the two choices can be explicitly represented in separate

equilibrium regimes, due to the existence of a single destination node between

any O-D pair and the parking links connected with this destination node (see

Fig. 1a). If we add a dummy destination node for this O-D pair and a dummy link

with zero travel cost between each parking node to the dummy node (see Fig. 1b), it

is readily known that the subnetwork connecting the origin and destination nodes

and the parking subnetwork connecting the destination node and the dummy

destination node both hold an equilibrium state under the optimality conditions.

With the added dummy node, the combined route and parking equilibrium collapses

to a pure Wardropian user equilibrium for routing. Therefore, the route equilibrium

and parking equilibrium can be separated, given that the Wardropian user

equilibrium is one of the network equilibrium conditions that imply the Markovian

routing behavior (e.g., Akamatsu 1996; Correa and Stier-Moses 2011) in which any

individual would choose his/her remaining route to the sink node (i.e., the dummy

destination in our case) without considering the route he/she has experienced

between the source node (i.e., the origin in our case) and his/her current location.

In particular, the equilibrium route and parking choices for GVs and BEVs can be

briefly stated as follows. For each O-D pair, the routing choice of GVs follows the

Wardropian user equilibrium while the routing choice of BEVs follows a distance-

constrained Wardropian user equilibrium; the parking choice of GVs follows a

facility-restricted Wardropian user equilibrium while the parking choice of BEVs

follows the Wardropian user equilibrium.

Destination choice

We prove below that the destination choice behaviors of both GV and BEV drivers

obey the result of the multinomial logit model. The equilibrium conditions (32) and

(33) can be rewritten as,

qrs�
g ¼ exp �cg prs�

g � lr�
g

� �h i
8r; s ð45Þ

qrs�
e ¼ exp �ce prs�

e � lr�
e

� �� �
8r; s ð46Þ

Equations (45) and (46) can be interpreted as the demand models for GV and

BEV trips between O-D pair r and s.Given the origin demand conservation

constraint, equations (45) and (46) can be respectively substituted into equations (4)

and (5) to give,

Or
g ¼

X

s

qrs�
g ¼

X

s

exp �cg prs�
g � lr�

g

� �h i
8r ð47Þ
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Or
e ¼

X

s

qrs�
e ¼

X

s

exp �ce prs�
e � lr�

e

� �� �
8r ð48Þ

Consequently, the destination choice probability for a GV driver departing from

origin r and choosing destination s is,

Prs�
g ¼

qrs�
g

Or
g

¼
exp �cgp

rs�
g

h i

P
s exp �cgprs�

g

h i 8r; s ð49Þ

Similarly, the destination choice probability for a BEV driver departing from

origin r and choosing destination s,

Prs�
e ¼

qrs�
e

Or
e

¼
exp �cep

rs�
e

� �
P

s exp �ceprs�
e

� � 8r; s ð50Þ

It is evident that both GV and BEV drivers exactly follow the behaviors specified

by the multinomial logit model in their destination choices.

It should be noted that in the proposed combined network equilibrium model the

driving range limit affects the trip distribution result as well. If, between some O-D

pair r-s, there is no path whose length is less than or equal to the driving range limit,

i.e., lrs
k [ D; 8k 2 Krs, we know that krs�

k ¼ þ1; 8k 2 Krs and hence

prs�
e ¼ min

k2Krs

prs �
k;e þ cs;n� � krs�

k D� lrs
k

� �
; prs �

k;e þ cs;e� � krs�
k D� lrs

k

� �n o
¼ þ1:

In this case, following Equation (50), Pe
rs* = 0. This result, as an extreme

example, illustrates the impact of the driving range limit on destination choice.

Sensitivity analysis

One of the primary concerns of this paper is on the equilibrium analysis of the

impacts of the driving range limit of BEVs on travel and parking choices. In other

words, beyond the model development, our concern also includes the evaluation of

the changes of destination, route and parking choice patterns due to the change of

the driving range limit, which poses a sensitivity analysis problem.

For many network equilibrium problems, such a sensitivity analysis task can be

done by both analytical and numerical methods. Tobin and Friesz (1988) first

developed a variational inequality-based sensitivity analysis method for evaluating

the impact of the perturbation of network supply and demand parameters on

deterministic equilibrium network flows; following this seminal work, Yang (1997)

and Leurent (1998) extended the sensitivity analysis approach to evaluating the

changes of elastic-demand equilibrium networks and bi-criterion equilibrium

networks, respectively. In another modeling paradigm, Ying and Miyagi (2001) and

Clark and Watling (2002), respectively, developed optimization-based sensitivity

analysis methods for logit-based and probit-based stochastic user equilibrium

networks. The network equilibrium implied by our proposed problem is a

combination of deterministic user equilibrium (for route and parking choices) and

stochastic user equilibrium (for destination choice). A combination of these

analytical methods can be used to conduct sensitivity analyses in our case for
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continuous system parameters such as link capacity and other link attributes and

perturbations of these continuous parameters typically result in continuous changes

of the network equilibrium state.

The driving range limit, which is a continuous parameter itself, however, does not

cause a continuous change to network equilibrium flows. The underlying reason is

that the distance constraint is imposed on path lengths and individual path lengths are

discrete, fixed values in any given finite set of paths. As a result, the change of

equilibrium network flows will be a discontinuous function of the driving range limit

and hence the above sensitivity analysis methods are not appropriate for the case of

the driving range limit. Let us use an example problem below to illustrate this.

The illustrative example uses a toy network with 4 nodes, 5 links, 1 origin and 2

destinations, as shown in Fig. 2. Node 1 is the origin node and nodes 3 and 4 are the

destination nodes. The two terms in the parenthesis beside each link are the link

travel time and link length, respectively, where x is the link flow rate. The demand

departing from origin node 1 is 12. The scale parameter of the logit model for

destination choice is set as ce = 0.01. For simplicity, we assume that all travel

demands are BEVs, the travel choices of which are subject to the driving distance

limit, and neither parking restriction nor parking time and cost are considered.

Figure 3 shows the variation of the network flows and cost over a full spectrum of

the driving distance limit, say D [ (5, ??). It is noted that this example problem

does not have any feasible solution when D \ 5.

It can be seen clearly from Fig. 3 that a piecewise relationship exists between the

link and O-D flows and the distance limit as well as between the total network cost

and the distance limit. These numerical relationships are neither continuous nor

monotone. If a change of the distance limit does not increase or reduce the number

of used paths (and the number of O-D pairs) in the equilibrium solution set, the

network flow pattern remains fixed; otherwise, the network flow pattern will in

general make a saltation. In the illustrative example shown above, the key distance

limit values causing the saltation of the network flow pattern include D = 5, 8, 10

and 13. For example, when the driving range limit is C 8, both destination nodes 3

and 4 are reachable; when it is \ 8, all travel demand goes to destination 3 only.

Because of the reason we discussed above, we resort to numerical evaluations to

analyze the impacts of the driving range limit on network flows, which are simply a

collection of the equilibrium flow results from repeatedly solving the network

equilibrium problem for a prespecified set of selected parameter values. The next

section depicts a partial linearization solution method for the network equilibrium

problem, while the details of the numerical analysis results from implementing the

solution method are then presented in the section of ‘‘Numerical analysis’’.

1

3

2

4r s

(50 + x, 5) (10x, 5)

(10x, 5) (50 + x, 3)

(1
0

+
x,

3)

Fig. 2 An illustrative example
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(a) Variation of link flow rates

(b) Variation of O-D Flow rates 
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(c) Variation of total network cost 
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Fig. 3 Illustrative relationships
between the network flows and
cost and the driving range limit
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Solution approach

A number of solution methods can be adapted or modified for solving the proposed

distance-constrained, combined network equilibrium problem for mixed GV and

BEV flows under the partial linearization framework by Evans (1976). The partial

linearization strategy was originally developed for the combined trip distribution

and traffic assignment problem, by which a linearized traffic assignment subproblem

and a trip distribution subproblem are solved sequentially and separately at each

iteration. For the linearized traffic assignment subproblem, the core procedure (i.e.,

the traffic loading procedure) of a few well-known solution algorithms can be

adopted for its solutions, including the linear approximation (or Frank-Wolfe)

algorithm and its variants (LeBlanc et al. 1975, 1985; Florian et al. 1987), convex

simplex algorithm (Nguyen 1974), simplicial decomposition algorithm (Larsson and

Patriksson 1992), origin-based algorithm (Bar-Gera 2002; Nie 2010), Dial’s

algorithm (Dial 2006), and gradient projection algorithm (Jayakrishnan et al. 1993;

Chen et al. 1999, Florian et al. 2009). Solving our problem under the partial

linearization framework follows a similar algorithmic process, in which the

linearized traffic assignment subproblem can be solved by one of the traffic loading

procedure and the parking split and trip distribution problems can be analytically

solved via their complementarity system of equations and logit-based probability

functions, respectively (due to the small size of the choice sets associated with the

parking and destination choice problems).

In our implementation, the traffic loading procedure of the linear approximation

algorithm, which results in an all-or-nothing assignment, is adapted for solving the

linearized traffic assignment subproblem, given the ease of its implementation. The

possibility of applying more efficient algorithms for the linearized traffic assignment

problem should be discovered in further research; our focus in this paper is more on the

model and result analysis rather than the solution efficiency and computational

performance. In particular, the traffic loading procedure collapses to assigning all trips of

GVs between an O-D pair to its minimum cost path and all trips of BEVs to its distance-

constrained minimum cost path. As shown in Jiang et al. (2012), the distance-

constrained minimum cost problem may be solved in an efficient manner by a hybrid

preprocessing and label-setting algorithm developed by Dumitrescu and Boland (2003).

The algorithmic procedure of implementing the partial linearization method can

be detailed as follows.

Step 1: Select an initial feasible solution ðxa;g; xa;e;R
s;n;Rs;e; qrs

g ; q
rs
e Þ:

Step 2: For each roadway link a, compute the generalized costs c0a;g and c0a;e; for

each parking link, compute the parking cost qts,n ? cs,n or qts,e ? cs,e.

Step 3: For each O-D pair (r, s), determine the minimum cost path for GVs, which

is the path with the minimum prs
k;g value, and set prs

g ¼ mink prs
k;g

� �
þ qts;n þ cs;n;

determine the distance-constrained minimum cost path for BEVs, which is the

path correspond to mink prs
k;e : lrs

k �D
n o

, and set prs
e ¼ mink prs

k;e : lrs
k �D

n o
þ

min qts;n þ cs;n; qts;e þ cs;ef g. If no path between some O-D pair (r, s) satisfies the

distance constraint, set pe
rs = M, where M is a very large number.
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Step 4: Find a new set of GV and BEV demand rates q̂rs
g and q̂rs

e for each origin node r:

q̂rs
g ¼ Or

g

exp �cgp
rs
g

h i

P
s exp �cgprs

g

h i

q̂rs
e ¼ Or

e

exp �cep
rs
e

� �
P

s exp �ceprs
e

� �

where pg
rs and pe

rs are the minimum composite path cost for GV and BEV drivers

traveling between O-D pair r-s, respectively, as we defined earlier.

Step 5: Assign q̂rs
g to the minimum cost path obtained in Step 3 and assign

q̂s
g ¼

P
r q̂rs

g to the parking link (s,n) for GVs; assign q̂rs
e to the distance-constrained

minimum cost path and assign q̂s
e ¼

P
r q̂rs

e to one or both of the parking links (s,n)

and (s,e), where the parking split result for q̂s
e between the ordinary and special

parking facilities at destination s, Rs,n and Rs,e, is the optimal solution of the

following trivial traffic assignment problem in a three-node, two-link subnetwork

that represents the parking system at destination s:

minz xs;n
e ; xs;e

e

� �
¼ q

ZRs;n

0

ts;n vð Þdvþ q
ZRs;e

0

ts;e vð Þdvþ Rs;ncs;n þ Rs;ecs;e

subject to
xs;n

e þ xs;e
e ¼ q̂s

e 8s

where
Rs;n ¼ q̂s

g þ xs;n
e 8s

Rs;e ¼ xs;e
e 8s

where xe
s,n and xe

s,e are the arrival flow rates of BEVs at destination s entering the

ordinary parking facility and the special parking facility, respectively. Given the

above traffic assignment and parking split results, calculate the auxiliary link flow

pattern: x̂a;g, x̂a;e and x̂a on roadway links and R̂s;n and R̂s;e on parking links.

Step 6: Find the optimal step size h* by solving the following one-dimensional

optimization problem:

minz hð Þ ¼
X

rs

1

cg

qrs
g ln qrs

g

� �
� 1

h i
þ 1

ce

qrs
e ln qrs

e

� �
� 1

� �
( )

þ q
X

a

Zxa

0

taðxÞdxþ
X

a

xa;gcgda þ xa;eceda

� �

þ q
X

s

ZRs;n

0

ts;n vð Þdvþ
ZRs;e

0

ts;e vð Þdv

0
B@

1
CA

þ
X

s

R
s;n

cs;n þ R
s;e

cs;e
� �
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subject to

0� h� 1

where, for any O-D pair r-s,

qrs
g ¼ qrs

g þ h q̂rs
g � qrs

g

� �
8r; s

qrs
e ¼ qrs

e þ h q̂rs
e � qrs

e

� �
8r; s

for any destination s,

R
s;n ¼ Rs;n þ hðR̂s;n � Rs;nÞ 8s

R
s;e ¼ Rs;e þ hðR̂s;e � Rs;eÞ 8s

and for any link a,

xa;g ¼ xa;g þ h x̂a;g � xa;g

� �
8a

xa;e ¼ xa;e þ h x̂a;e � xa;e

� �
8a

xa ¼ xa;g þ xa;e 8a
The updated solution ðxa;g; xa;e;R

s;n;Rs;e; qrs
g ; q

rs
e Þ can then be calculated by the

above functions with the optimal step size h*.

Step 7: Check the stopping criterion. If D\ e, stop; otherwise return to step 2,

where D is the average gap of link flows and parking flows between consecutive

iterations and e is a predetermined convergence criterion for D.

Numerical analysis

Our adapted version of the partial linearization method was coded in C??.

Implementing this iterative solution method requires solving a few linear, nonlinear

or combinatorial optimization subproblems at each iteration. The most computa-

tionally intensive part is the solution of the distance-constrained minimum cost

problem (see Step 3), which poses NP-hard complexity. We adopted Dumitrescu

and Boland’s (2003) modified label-setting algorithm with preprocessing for its

solution. As for the basic minimum cost problem (see Step 3), Dijkstra’s (1959)

classic label-setting algorithm is used in our implementation. Another optimization

subprocess in implementing the Evans method is to find the optimal step size h at

each iteration (see Step 5). We suggested the bisection search for this one-

dimensional nonlinear optimization problem. In all the experiments, the conver-

gence criterion for the flow difference between consecutive iterations is set as

e = 0.001.

This section contains a presentation of the numerical analysis results we obtained

from applying the partial linearization method for solving the combined equilibrium

problem in a couple of synthetic and realistic example networks. The purpose of this

numerical analysis is twofold: (1) to illustrate and justify the correctness of the
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modeling and solution methods for the distance-constrained, combined network

equilibrium problem; (2) to assess the impacts on the network performance from

different BEV battery capacities or driving range limits under different network

scenarios, such as different BEV penetration rates. The driving range limit is a key

specification of BEVs and a determinant factor that stimulates or discourages the

purchase willingness of potential BEV users.

For both the synthetic and realistic networks, we use the following link travel

time function and parking access and search time functions to describe the supply

performance on network links and parking facilities. The link travel time function

employs the form of the Bureau of Public Roads (BPR) function:

ta ¼ ta xað Þ ¼ ta;0 1þ aa

xa

ma

� 	ba

 !
8a

where ta,0 is the free-flow travel time of link a, ma is the link capacity or maximum

flow rate, and aa and ba are function parameters. Similarly, we assume that the

parking access and search time function has a BPR functional form as well,

ts;n Rs;nð Þ ¼ t
s;n
0 þ as;n

Rs;n

ms;n

� 	bs;n

8s

ts;e Rs;eð Þ ¼ t
s;e
0 þ as;e

Rs;e

ms;e

� 	bs;e

8s

where t0
s,n (or t0

s,e) is the free-flow parking access and search time for the ordinary

parking facility (or the special parking facility), ms,n (or ms,e) is the capacity of the

ordinary parking facility (or the special parking facility), and as,n and bs,n (or as,e

and bs,e) are function parameters for the ordinary parking facility (or the special

parking facility). These performance function parameters reflect the non-measurable

performance specifications of the roadway and parking infrastructures and deter-

mination of these parameter values is critical to the success of evaluating the net-

work performance. Systematically calibrating parameters over the whole network is

often very challenging. In the two example problems given below, we assume that

all the required function parameter values are known a priori.

The Lam-Huang network

To look into the traffic and parking flow patterns on the link, O-D and destination

levels given different driving range limits, a small network shown in Fig. 4 is used

as an illustrative example. This network was originally used by Lam and Huang

(1992) to study a combined trip distribution and traffic assignment problem. The

network includes 15 links, 6 nodes and 10 O-D pairs. Nodes 1, 2 and 3 represent

origin zones; nodes 1, 2, 4 and 5 represent destination zones.

The following parameter values are applied to the Lam-Huang network. The

scale parameters of the logit model for destination choice: cg = 0.0039 and

ce = 0.0057; the parameters of the link travel time function: aa = 0.15 and ba = 4;

the value of time: q = 4; the unit operation cost: cg = 3.85 and ce = 1.28; the
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parameters of the parking access and search time function for all destinations:

as,n = as,e = 0.1 and bs,n = bs,e = 3; and, finally, for simplicity, the parking cost:

cs,n = 0 and cs,e = 0. In addition, the supply and demand data sets for modeling the

Lam-Huang network include the following. The link free-flow travel times are:

t1;0; t2;0; . . .; t15;0

� �
= (22, 12, 25, 38, 70, 55, 20, 20, 35, 25, 18, 15, 18, 14, 23); the

link distances are: d1; d2; . . .; d15ð Þ = (3.8, 1.2, 2.0, 3.9, 5.6, 4.2, 2.8, 2.8, 3.9, 3.1,

1.5, 2.4, 2.3, 1.5, 1.9); the link capacity is assumed to be the same on all links:

ma = 335; the parking free-flow times are: c
1;n
0 ; c2;n

0 ; c4;n
0 ; c5;n

0

� �
= (5, 4, 5, 4) and

c
1;e
0 ; c2;e

0 ; c4;e
0 ; c5;e

0

� �
= (2, 3, 2, 3); the capacities of the ordinary and special parking

facilities are also assumed to be the same with all destinations: ms,n = 500 and

ms,e = 200, respectively; the departing demand rates at the origin nodes:

O1
g;O

2
g;O

3
g

� �
= (250, 120, 430) and O1

e ;O
2
e ;O

3
e

� �
= (290, 160, 260). The departing

demand pattern indicates the penetration rate of BEVs ranging from 37.7 to 57.1 %

across origins. Finally, note that other parameters and data listed above are directly

copied from Lam and Huang (1992).

It has been emphasized that the distinguishing feature of our model, different

from previous models of this type, is the introduction of a driving range constraint.

It is of our particular interest to assess how the constraint with different upper

bounds (i.e., distance limits) affects the computation results and reshapes the

network flow patterns across different network components.

The relationship between the system performance and the driving range limit is

first examined. Figure 5 depicts the variations of the objective function value and

the total system cost (i.e., the sum of all driving and parking times and monetary

cost) over a range of distance limits. From the optimization objective, it is well

known that the objective function value of any minimization problem turns higher

when any of its constraint becomes looser. This phenomenon is clearly observed in

the Fig. 5a. More specifically, the objective function value drastically decreases in

14

3

6

5

5

3

13

6

14

12 2

10 4

15

8 1

9

2

7

11

Fig. 4 The Lam-Huang
network
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the section of the distance limit from 5 to 8, while it only slightly changes when the

distance limit is lower than 5 or higher than 8. Recall that the distance limit in

general causes a discontinuous change of the network equilibrium state because of

the discrete nature of path lengths. Similarly, the variation of the total system cost

shows a similar 3-section pattern, in which its value changes significantly in the

section of the distance limit between 5 and 8, as shown in Fig. 5b. However,

different from the objective function value, the total system cost is not monotone

over the given range of distance limits. This result clearly shows the possible

outcome similar to the Braess paradox, in which increasing the distance limit does

not necessarily increase or decrease the total system cost.

We further proceed to examine how the network flow patterns shift due to the

change of the distance limit on the network links, O-D pairs and parking facilities.

Given the small size of the Lam-Huang network, we can conveniently exhaust the

results for all individual network components. The results for the network links,

O-D pairs and parking facilities are given in Figs. 6, 7 and 8, respectively. In each of

these figures, three representative distance limit values, namely, D = 4, 6, and 10,

which are picked up from the 3-distance limit sections shown in Fig. 5a,

respectively, and the case of no distance limit are used. The latter is used as the

base case for the comparison purpose. Again, in all these cases, the penetration rate

of BEVs is fixed, ranging from 37.7 to 57.1 %, across different origin nodes.
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Fig. 5 Variation of system
performance measures over a
range of distance limits
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It is evident from Fig. 6 that BEV link flows change much more significantly, due

to the change of the distance limit, than GV link flows. The result is intuitively

understandable: travel choices of BEVs are directly restricted by the distance limit.

For example, when D = 4, which represents the tightest distance limit in Fig. 6,

there are only four paths available for BEVs, namely, path 1-5-2 between O-D pair

1-2, path 1-5 between O-D pair 1-5, path 2-5 between O-D pair 2-5 and path 3-4

between O-D pair 3-4. As a result of this limited feasible path set for BEVs, only

links 1, 4, 6 and 10 carry BEV flows. With a higher distance limit, more paths are

eligible for BEVs and hence more links carry BEV flows.

The O-D flow changes show a similar pattern in comparing the GV and BEV

flows. In particular, the trip distribution of BEVs is more strongly affected by the

changed distance limit than that of GVs. For example, when D = 4, BEVs can only

travel between O-D pairs (1, 2), (1, 5), (2, 5) and (3, 4), as shown in Fig. 7. Since no

BEV heads to destination 1, the parking demand for the special parking facility at

destination 1 is zero, as shown in Fig. 8. From this figure, it is observed that parking
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Fig. 6 Variation of individual link flow rates with different distance limits (links with zero flows are
omitted in this figure)
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flows entering the special parking facilities are typically more fluctuant to the

change of the distance limit than the ordinary parking facilities.

In all the above figures (i.e., Figs. 6, 7 and 8), it is found that the flow results for

the cases of D = 10 and no distance limit are the same. A closer look into the

problem reveals the reason that the distance constraint is in fact not binding at the

optimal solution of this example problem when the distance limit D is higher than 7.
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Fig. 7 Variation of O-D trip rates with different distance limits
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The Anaheim network

In addition to the synthetic results about individual network components from the

above toy network, we are more interested in the system-wide effects imposed by

the distance constraint, under different penetration levels of GVs and BEVs and

from real-world transportation networks. The Anaheim network (shown in Fig. 9) is

used here to serve this purpose. This network has a typical urban grid topology and

poses a medium-size problem in the context of transportation planning: 38 origin

and/or destination zones, 416 nodes, and 914 links.

It is hypothesized that the total departing demand rates from all origin zones

are fixed while the penetration rates of BEVs and GVs vary. The underlying

assumption is that the automobile market in the urban area (e.g., Chicago,

Philadelphia, and Providence in the US) is relatively stable and the total travel

demand in the network reaches a saturated level, but the penetration rate of BEVs

are expected to rapidly increase, for which the major part of new BEV purchases

is from the replacement of old GV models. Even if the travel demand may still

experience increases with the population and business growth, its increasing rate

would be marginal compared to the increasing rate of the number of BEVs. If a

region with fast population growth (e.g., Houston, Austin, and Phoenix in the

U.S.) is modeled, the corresponding travel demand increase should be certainly

taken into account. Moreover, for modeling simplicity, we set the same

penetration rate across all origin zones in all scenarios of distance limits and

penetration levels.
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Fig. 8 Variation of parking demand rates with different distance limits
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All basic supply and demand data and parameter sets can be viewed from the network

problem’s source website,2 so we do not present them here. Additional parameters

pertaining to our specific setting are given as: value of time is $10/hour ($0.16/min), the

unit operation costs of GVs and BEVs are $0.16/mile and $0.04/mile, respectively, the

parking fees of the regular and special parking facilities at all destinations are $5 and $3,

respectively, the capacities of the regular and special parking facilities at all destinations

are 500 and 300 vehicles, respectively, and the parameters of the parking access and

search time function are as,n = as,e = 0.024 and bs,n = bs,e = 4.

Firstly, we checked the network influence from different distance limits (D = 5, 10

and 15 miles3) and BEV penetration rates (10, 50 and 90 %) on the computational

efficiency of the algorithm. The results shown in Fig. 10 reveal that when the

penetration rate of BEVs is relatively high, the impact of the distance constraint on the

convergence performance is significant and the significance becomes more obvious

when the distance constraint is tighter (i.e., the distance limit is smaller); when the BEV

penetration rate is relatively low, the impact of the distance limit on the convergence

performance may be negligible. In overall, under the same distance limit, the higher the

28

40

19

20

21

35

36

37

2

22

34

3

4

5

6

23

33

7

8

9

10

24

32

11

31

12

13

15

25

3041

16

17

2638

29

39

27

SR-91

SR-22

SR-55

I-5

SR-57
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2 A set of transportation network test problems maintained by H. Bar-Gera can be accessed at

http://www.bgu.ac.il/*bargera/tntp/.
3 Most of BEV models in the market have a much higher driving range limit than the values listed here.

Given that the geographic size of the Anaheim network is relatively small, these driving range limit

values are deliberately hypothesized for the illustration purpose only; otherwise, the impacts of the

driving range limit on network flow shifts may not be apparent.
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penetration rate is, the larger the number of iterations is required for achieving the same

convergence level. This result is also true even when there is no distance limit imposed

on BEVs. Under this condition, the major reason for the extra computational cost is from

the parking availability restriction, in that BEVs can choose between two parking

facilities while GVs can only choose ordinary parking lots. This phenomenon is also

proved by an alternative experiment result from limiting the parking choice of BEV

drivers to only special parking facilities. In that case, 41 iterations are required for

solution convergence, which is smaller than 75 iterations, the number of iterations

required for solution convergence for the case of BEVs choosing between two types of

parking facilities, given that the distance limit is 5 and penetration rate is 50 %.

Next, we evaluated the network-wide impacts of different range limits and BEV

penetration rates on the average relative changes of O-D, link, and parking flows of

both GVs and BEVs. The equilibrium flow results without any distance limit are

used as the base case. The formula for calculating average relative changes of O-D,

link, and parking flows are given as follows, if, for example, the quantity of interest

here is the average relative change of the GV link flow and the distance limit is Dm:

P
a xD¼Dm

a;g � xD¼m
a;g

���
���

P
a xD¼1

a;g

Figure 11 below records the results of the average relative changes of link flows

given different distance limits. All of the plots in Fig. 11 under different penetration

rates of BEVs (and GVs) show a similar link flow variation pattern: BEV link flows

are much more significantly influenced by the distance limit than GV link flows.

Moreover, the smaller the distance limit is, the more apparent the change of BEV

link flows becomes. This reflects the phenomenon that the distance limit directly

changes the destination and route choice behaviors of BEV flows but influences in

an indirect way the travel behaviors of GV flows via the change of BEV flows. We

also notice that with the increase of the penetration rate of BEVs, GV links flows are

more likely influenced by the distance limit. This is a natural response to the

increasing change of BEV flows.
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Figure 12 summarizes the result of the average relative change of parking

demand rates in terms of the distance limit. All the cases show that the impacts of

the distance limit on both the ordinary and special parking demand rates increase as

(a) The BEV penetration rate = 10%

(b) The BEV penetration rate = 50%

(c) The BEV penetration rate = 90%
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Fig. 11 Variation of average relative changes of link flows with different penetration rates and distance
limits
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the distance limit reduces, except the ordinary parking facilities under the low

penetration rate (i.e., 10 %). This is mainly because when the distance constraint

turns tighter, fewer destinations are reachable by BEVs, which shifts the BEV

parking demands to concentrate to those parking facilities at reachable destinations.

However, across different penetration rates of BEVs, the impacts on the ordinary

and special parking facilities show a different tendency. With the increase of the

penetration rate of BEVs (which also means the decrease of the penetration rate of

GVs, since we assume that the total travel demand is fixed), the average relative

parking demand changes with the ordinary and special parking facilities go down

and up, respectively. This is simply the equilibrium result from the setting that the

ordinary parking facilities can accommodate both GVs and BEVs while the special

parking facilities serve BEVs only.

Finally, the same comparison scheme is applied to the O-D flow patterns in the

Anaheim network, which leads to the result shown in Fig. 13. It clearly shows that

the changes of BEV O-D flows are more sensitive to the change of the distance

limit; with the decrease of the distance limit, the change of BEV O-D flows becomes

increasingly apparent. This is not surprising, since when the distance constraint

becomes tighter, more destinations are not accessible by BEVs and BEV flows are

concentrated to a fewer number of destinations. Comparing the three plots under

different penetration rates of BEVs, we notice that the impact of the distance limit

on GV O-D flows also increases with the increase of the penetration rate of BEVs.

This can also be characterized as a follow-up effect due to the BEV O-D flow

pattern changes as we have discussed for link flows.

In overall, these comparison results justify the hypothesis that the network flow

shifts caused by the driving range limit are significant and complex and these

changes become more apparent as the distance constraint goes tighter and the

penetration rate goes higher. Based on these observations, we can conclude that

when the penetration level of BEVs in the market climbs to a certain level, the

existing network equilibrium and travel demand modeling tools must be revised to

accommodate such changes. The model constructed in this paper provides an initial

attempt, but more modeling efforts need to be made to support other parts of the

existing travel demand modeling framework.

In addition, it should be noted that the numerical analysis results shown above

merely provide approximate relationships between the network flows and driving

range limit, which are estimated by selecting some representative limit points. To

accurately depict the relationship profiles (as shown in Fig. 3), we need to first

identify those key driving range limits that cause the network flow pattern to shift

and estimate network flows at these key limits. A straightforward approach to

identify the key driving range limits over the whole network is to apply a k-shortest

path algorithm to each O-D pair.

Conclusions and future directions

In summary, this paper presents a special combined network equilibrium model with

a driving range limit and multiple types of vehicles for responding to the recent
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(a) The BEV penetration rate = 10%

(b) The BEV penetration rate = 50%
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research calls for new travel demand modeling and network analysis tools for the

coming era of electric vehicles. The model is constructed in the simplest form of its

type and our research focus is given to understand how the network flow pattern on
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the O-D pair, parking facility, and network link levels are reshaped by the

introduction of BEVs into the market and how BEV and GV traffic flows interact

and compete with each other in a combined urban traffic routing-parking system.

The added driving range constraint on path lengths of BEVs imposes a new

restriction on all travel choice behaviors and raises alternative algorithmic

complexities. As we showed in our previous research and this paper, solving the

distance-constrained minimum cost problem is required in quantifying the route

choice behavior of individual BEV drivers, for instance.

The combined network equilibrium problem has been solved by an adapted

partial linearization solution method, in which the linearized traffic assignment

problem is tackled by the linear approximation procedure, the trip distribution

subproblem is evaluated by the logit-based probability functions, and the parking

split result is directly obtained by solving the complementarity system of equations.

The computational results from applying the solution method for the two example

network problems with small and medium sizes clearly illustrate the significant

impacts on the network flow patterns imposed by the alternative travel cost

composition and travel distance limit associated with BEVs. This finding, on one

hand, indicates the need of using updated travel behavior and travel demand

modeling tools for accommodating new travel flexibilities and restrictions brought

by the future massive adoption of electric vehicles (and other alternative-fuel

vehicles); on the other hand, it implies possible new opportunities for transportation

planners and operators to reshape travel and activity patterns and reduce urban

congestions and pollutants on both the planning and operational levels.

In overall, the modeling and solution methods presented in this paper provide us

with a fundamental tool to understand transportation network changes due to the

destination, route and parking choice adjustments with BEV drivers. Starting from this

fundamental tool, we may extend its functionalities to capture more realistic

transportation network phenomena by adding extra modeling components, recasting

supply and demand assumptions, and employing more advanced modeling paradigms.

It is very likely that the automobile market will be comprised of GVs, PHEVs

and BEVs (as well as other types of electric vehicles) simultaneously for a long

period in the predictable future. Unlike BEVs, PHEVs are not subject to the distance

limit and are becoming a very attractive transportation mode to consumers, at least

in the transition period between the gasoline era and electricity era. From the

modeling perspective, this type of vehicles poses a different distance-dependent

energy efficiency curve and operating cost structure. More specifically, a PHEV can

be driven in two different operating modes, defined by the net effect on the battery

state of charge: charge depleting and charge sustaining. A typical driving mode for a

PHEV is that it is powered first by electricity only or a combination of electricity

and gasoline in the charge-depleting mode; once the battery is depleted to a

minimum state of charge, a PHEV uses only gasoline energy in the charge-

sustaining mode. Introducing PHEVs into the already complex mixed GV-BEV

traffic network adds another layer of complexity to the modeling framework

presented in this paper.

In our network equilibrium analysis, we implicitly assume that all BEVs are fully

charged at their origins (e.g., home garages), and ignore possible availability of

A network equilibrium analysis on destination, route and parking choices 89

123



commercial battery-charging or battery-swapping stations emerging in urban areas

in the near future. In most transportation networks, it may take a number of years to

deploy sufficient electricity-recharging infrastructures for achieving a certain level

of coverage. Nevertheless, a partial coverage still offers some recharging

opportunities for BEV drivers and favors their travel choice decisions. Introducing

a limited set of commercial charging or swapping stations (in addition to home

garages) into any BEV-contained network models will inevitably create new

modeling complexities and algorithmic challenges. For example, the individual

route choice behavior with BEV drivers in this case will no longer be formulated as

a distance-constrained minimum-cost problem, but a minimum-cost problem with

relays (Laporte and Pascoal 2011; Smith et al. 2012). Apparently, a more

sophisticated network equilibrium model that accommodates such travel choice

behaviors is necessary and will be very useful in evaluating relevant plans and

policies of developing and maintaining electricity-recharging infrastructures.

Finally, we would like to emphasize that realistic travel and parking behaviors

and network flow congestion conditions can be much better characterized by a

dynamic network model. While a large number of analytical and simulation-based

dynamic traffic assignment models can be used for describing network-wide traffic

dynamics, a detailed parking access and search process (e.g., Thompson and

Richardson 1998) should be also employed for accounting for parking dynamics.

This is not only a requirement for capturing time-varying traffic network states and

developing time-of-day parking policies (as well as many other time-dependent

network control strategies), but also a critical prerequisite for the model potentially

used for evaluating the policy and operational issues of implementing BEVs as

distributed and mobile electricity storage to support coupled transportation-energy

systems (Kezunovic and Waller 2011).
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