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Abstract With time-definite services occupying a large part of the delivery

business, the explicit consideration of time windows into a route design has the

potential to reduce transportation costs and the penalty costs associated with late

deliveries. In this paper, we incorporate time windows into a priori routes by

introducing the probabilistic traveling salesman problem with time windows

(PTSPTW). The PTSPTW is an extension of the well-known probabilistic traveling

salesman problem, where in addition to stochastic customer presence, each cus-

tomer has an associated time window during which deliveries must be made. We

present a recourse model and a variable neighborhood search with variable neigh-

borhood descent algorithm to solve problem instances. We also present computa-

tional experiments that demonstrate the value of incorporating stochasticity into the

problem.
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Introduction

Time-definite delivery plays a crucial role in the shipping industry. Now more than

ever, businesses are operating with lean production strategies and just-in-time

inventories. With this trend, freight is shipped in smaller lot sizes and the

predictability of arrival times is critical (Schultz 2008). Randy Guidry, communi-

cations coordinator for Averitt Express, notes ‘‘Every year, more and more of our

customers are requesting appointments within a delivery window’’ (Terreri 2011).

In 2010, time-definite, day definite and same day delivery services accounted for

51.4 % of the United States shipping industry’s total market value (Datamonitor

2010b). In the European market, these segments accounted for 62.3 % in 2010, a

10.6 % increase from 2009 (Datamonitor 2010a, 2009).

With time-definite services occupying a large part of the delivery business, the

explicit consideration of time windows into a route design has the potential to

reduce transportation costs and the penalty costs associated with late deliveries.

Currently, many companies employ a pre-planned, or a priori, route which identifies

an ordering of all possible customers that a particular driver may need to visit. The

driver then skips those customers on the route who do not require a delivery on that

day. A priori routes can be implemented with relative ease and are an alternative to

the high cost of re-optimization. In addition, a priori routes offer both drivers and

customers consistency and help to improve driver efficiency as the driver becomes

familiar with the route. Although businesses place high importance on delivery time

windows, the consideration of time windows in a priori routing has received little

attention in the literature. Additionally, a priori policies can be important

subproblems in dynamic routing problems (Goodson et al. 2012; Manni 2009).

For these reasons, we examine the impact of time windows on a priori route design.

We incorporate time windows into a priori routes by introducing the probabilistic

traveling salesman problem with time windows (PTSPTW). While methods have

been developed to address such elements as stochastic travel or service times within

a time window constrained environment, the literature does not address how to deal

with stochastic customer presence within this same environment. For this reason, we

maintain the presence of the customer as the only stochastic element in our model.

The PTSPTW can be considered an extension of the probabilistic traveling

salesman problem (PTSP). The PTSP is the problem of finding a minimum expected

cost a priori tour through a set of customers N ¼ fi j 1; . . .; ng with probabilities

P ¼ fpi j 1; . . .; ng of requiring service on any given day. The travel time between

any two customers i and j is given by dij, where dij = dji. These travel times also

serve as the cost to traverse each arc. In the PTSPTW, also associated with each

customer i 2 N is a time window with an earliest time of service ei and latest time of

service li, where service must begin at or after ei but should not begin later than li. If

arrival at customer i occurs prior to ei, then service is postponed until ei.

Time windows present particularly challenging modeling issues when considered

in conjunction with stochastic customer presence. This paper’s primary contribution

is the presentation of a recourse model that incorporates time windows into a routing

problem with stochastic customer presence. As in previous work on the probabilistic

traveling salesman problem with deadlines (PTSPD), our recourse model accounts
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for late deadline violations by penalizing any violations in the objective function.

Unlike the PTSPD however, our model for the PTSPTW also accounts for early

arrivals. This is an extension that requires nontrivial calculations to find the

probability of early arrivals at each customer. A secondary contribution of this paper

is the results from computational experiments that identify the circumstances under

which PTSPTW solutions differ from the solutions for the TSPTW. The TSPTW is

the deterministic analog of the PTSPTW. Ultimately, this knowledge can help

practitioners to determine when the added computational burden of incorporating

stochasticity into the model is justified.

This paper is organized as follows: In ‘‘Literature review’’, we survey the related

literature. In ‘‘Recourse Model’’ and ‘‘Solution Approach’’, we present a recourse

model and an algorithm to solve problem instances. We describe our experimental

design in ‘‘Experimental Design’’ and present results of computational experiments

in ‘‘Results’’. ‘‘Conclusions’’ summarizes our work and offers directions for future

research.

Literature review

The PTSPTW is related to both the PTSP and stochastic vehicle routing problems

with time constraints. Jaillet (1988) introduces the PTSP. Campbell and Thomas

(2008) introduce and propose models for the PTSPD, and Campbell and Thomas

(2009) offer tractable ways to solve the PTSPD. These papers on the PTSPD

summarize related literature prior to 2008.

A number of recent papers have been published on the PTSP and related

problems. A subset of these papers focus on solving the PTSP through local search

methods (Marinakis and Marinaki 2010; Balaprakash et al. 2009; Marinakis and

Marinaki 2009; Liu 2008; Marinakis et al. 2008). Birattari et al. (2008) and

Weyland et al. (2009) use local search methods but also employ sampling

techniques for the evaluation of the objective function. Mohan et al. (2008) and

Chen et al. (2009) introduce arc-routing variants of the PTSP.

Weyland et al. (2011) introduce a new method for reducing the computational

complexity of the objective function of the PTSPD. An approximation for the

objective function based on Monte Carlo Sampling is combined with a quasi-

parallel evaluation of the samples. The authors show that heuristics which use this

new method outperform previous approaches for the PTSPD both in terms of

computational time and solution value. Weyland et al. (2012) show that the

evaluation of the objective function of the PTSPD is #P-hard. The complexity class

#P captures the set of problems where one is not only interested in whether a

solution exists, but also the number of solutions that exist (Weyland et al. 2012).

While our problem relates to the PTSP in that it deals with stochastic customer

presence, problems in the literature can also be characterized by other stochastic

elements such as stochastic demands or travel times. The common feature among

these different stochastic elements is that they all lead to stochastic arrival times.

The remainder of this section focuses on a variety of stochastic problems with time

constraints.
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Jaillet et al. (2012) seek to minimize a lateness index for single-vehicle problems

with stochastic travel times and deadlines. However, this objective is not

appropriate when a payment is made based on late delivery, as is the situation in

our problem.

Chang et al. (2009) developed a heuristic for a version of the time-dependent,

stochastic traveling salesman problem with time windows (STSPTW) where travel

and service times are stochastic. The authors use an n-path relaxation of a

deterministic traveling salesman problem (TSP) and a convolution-propagation

approach to approximate arrival times at each customer.

A related problem to the TSP is the orienteering problem (OP). In the

orienteering problem, a profit is associated with each customer. The objective is to

construct a tour that maximizes the total profit while observing a specified time

limit. Campbell et al. (2011) and Tang and Miller-Hooks (2005) introduce

stochastic versions of the OP where travel and service times are random. Campbell

et al. formulate a recourse model and present a variable neighborhood search to

solve instances of the orienteering problem. Tang and Miller-Hooks formulate their

problem as a chance-constrained stochastic program and develop an exact method

that solves small to medium-size problems as well as a heuristic method for larger

instances.

Another related routing problem is the stochastic vehicle routing problem

(SVRP) where customers have demands and vehicles have capacity constraints.

Several recent papers highlight the SVRP with time windows (SVRPTW). Lei et al.

(2011) model a version of the SVRPTW with stochastic demands as a stochastic

program with recourse and propose an adaptive large neighborhood search heuristic.

Li et al. (2010) introduce a problem with stochastic travel and service times and

present two different model formulations. The first model is a chance constrained

programming model where the objective is to minimize transportation cost when

some constraints hold under a certain confidence level. The second model is a

stochastic programming model with recourse where the objective is to minimize the

expected transportation cost of a priori solutions. A tabu search-based method is

used to solve both models.

Erera et al. (2009) present a stochastic dynamic vehicle routing problem with

time windows (SDVRPTW). The SDVRPTW is a problem in which customers are

dynamically inserted into routes. The problem is similar to ours in that customer

presence is stochastic and each customer has an associated time window. However,

Erera et al. maintain time window feasibility and use a paired-vehicle recourse

action while we penalize late time window violations and use a single-vehicle

recourse action.

Recourse model

In this section, we present a recourse model for the PTSPTW. A recourse model is

characterized by two stages. In stage one, an a priori solution is determined. Then

the random variables are realized and a recourse action is applied to the original

solution. In this case, the a priori solution is a route that identifies the order in which
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customers will be visited. After information becomes available about which

customers need to be visited, the recourse action is applied. This recourse action

consists of adjusting the route so that customers who do not need to be visited are

skipped, but the remaining customers are still visited in the a priori route order.

In our model, service at each customer cannot begin before ei. An early arrival

requires the driver to wait until ei. However, the vehicle is permitted to visit a

customer after li has passed, but a penalty is incurred for doing so. We utilize a per-

unit-time penalty charge for arriving after the close of the time window. The penalty

is represented by k. The per-unit-time charge represents cases where the delivery

company is charged per unit time of lateness. For instance, FedEx Custom Critical

refunds varying percentages of the cost of a shipment based on how late the

shipment is delivered (FedEx 2005). For additional examples, see Charnisirisakskul

et al.(2004) and Slotnick and Sobel (2005). Thus, the objective of the PTSPTW,

formulated as a recourse model, is to identify an a priori route where the sum of the

expected travel costs between customers and the expected penalty term is minimum.

In the case of our recourse model, we let s define an order, or tour, in which the

customers i ¼ 1; . . .; n are to be visited. We assume that the customers are indexed

according to their position in s. We assume a tour always begins and ends at a fixed

depot, and the depot is indexed as i = 0. We assume integer travel times and

deadlines and that all tours start at time t = 0. Our recourse model provides a

formula for evaluating the cost of a given tour s.

As a result of our assumptions, the expected travel costs can be calculated as they

are for the well-known PTSP (see Jaillet (1988) for further reference) with a

straightforward modification for the fixed depot (Campbell and Thomas 2008):

Xn

j¼1

pjd0;j

Yj�1

k¼1

ð1� pkÞ þ
Xn�1

i¼1

Xn

j¼iþ1

pipjdi;j

Yj�1

k¼iþ1

ð1� pkÞ þ
Xn

i¼1

pidi;0

Yn

k¼iþ1

ð1� pkÞ:

ð1Þ

This formula calculates the probability and the resulting expected cost of any arc

that may appear in the tour. The expected cost of an arc (i, j) depends on customers i
and j being realized and no customers k, k ¼ iþ 1; . . .; j� 1; being realized.

For both the issue of early and late arrivals, we need to determine the probability

that arrival at a customer occurs at a particular time t. To begin, let the random

variable

Xi ¼
0 if customer i is not realized

1 if customer i is realized.

�

Also, let Ai be a random variable representing the time of arrival at the customer in

position i in s. We assume that arrival at a customer i cannot be early or late if

customer i is not realized. Hence, we are left to compute PðAi ¼ t j Xi ¼ 1Þ, where t
represents the time of arrival at customer i. For notational convenience, let

gði; tÞ ¼ PðAi ¼ t j Xi ¼ 1Þ. We also let Gði; tÞ ¼ PðAi� t j Xi ¼ 1Þ, which can be

computed as G(i, t) =
P

k=0
t g(i, k) = G(i, t - 1) ? g(i, t). We assume that arrival

at the depot occurs at time t = 0. Therefore, G(0,t) = 1 for all values of t. Because
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there is no time window or penalty associated with the depot, it is not necessary to

consider the probability that the arrival at the depot on the return trip occurs at any

particular time.

To account for the fact that arrival at customer i depends on the departure times

at previous customers, we let h(i, t) be the probability of departing from customer i
at time t. We can then compute the g and h values in an iterative, recursive fashion.

Note that arrival and departure times for a customer differ when waiting for the

opening of the time window occurs. Before describing the computation procedure in

Algorithm 1, we first introduce bounds on the earliest and latest times that a

customer can be visited.

If the triangle inequality holds for the travel time data, then the times between the

earliest possible arrival time and the latest possible departure time that need to be

considered for each customer i can be limited based on the location of customer i in

the tour. The earliest arrival time at customer i, expressed as Ti
min, occurs when all

customers prior to i are not realized. Thus, Ti
min = d0,i for all i. The latest possible

arrival time at customer i is computed by assuming that every customer prior to i is

realized. If arrival occurs prior to the start of the time window for any customer

prior to i, then this additional waiting time must be accounted for in the

computation. Given T1
max = d0,1, we can compute the other values recursively:

Tmax
i ¼ maxðTmax

i�1 ; ei�1Þ þ di�1;i: ð2Þ

All values of t outside of the range of Ti
min to Ti

max result in g and h values of zero

unless Ti
max \ ei, in which case h(i, ei) has a value of one.
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We now clarify the initialization procedure for Algorithm 1. The values

g(i, t), h(i, t), and G(i, t) are set to zero for all combinations of i and t, where

i ¼ 0; 1; . . .; n and t ¼ 0; 1; . . .; Tmax
n , unless explicitly noted. The values g(0,0) and

h(0,0) are set to one to represent the probabilities of both arriving and departing

from the depot at time zero. Also, h(i, ei) is set to one if Ti
max \ ei. Finally, G(0,t) is

set to one for all values of t.
Using the previously described bounds and initialization, Algorithm 1 recursively

computes h and g values. Recall that g(i, t) represents the probability of arriving at

customer i at a particular time t, given that customer i is realized. Therefore, the

algorithm considers the probability that previous customers are realized, as well as

the probability of departing at a particular time from these previous customers. Thus

gði; tÞ ¼
Pi�1

v¼0 pvhðv; t � dv;iÞ
Qi�1

k¼vþ1ð1� pkÞ, and is computed recursively in

Algorithm 1. In words, pv h(v, t - dv,i) represents the probability that customer v
is realized times the probability that departure from customer v occurs at the current

time minus the travel time from customer v to customer i. This departure time

implies that customers v and i are realized but no customers k; k ¼ vþ 1; . . .; i� 1;
are realized. The probability that these customers are not realized is represented by

the term
Qi�1

k¼vþ1ð1� pkÞ in the formula. Note also that when t \ dv,i, t - dv,i is

negative, and thus represents an impossible situation when considering the original

assumptions of the problem. Thus h(v, t - dv,i) is set to zero when t \ dv,i.

Because G(i, t) is the cumulative function for g(i, t), G(i, t) can be computed

recursively using the formula G(i, t - 1) ? g(i, t). We are left to compute h(i, t),
which depends on three situations. Either

1. time t is before the start of the time window,

2. time t is equivalent to the start of the time window, or

3. time t is after the start of the time window.

If the first situation occurs, then the probability of departing from customer i at time

t is zero. That is, h(i,t) = 0. If the second situation occurs, then the probability of

departing from customer i at time t is equivalent to the probability of arriving at

customer i at or before time t. Therefore, h(i, t) = G(i, t). If the third situation

occurs, h(i, t) = g(i, t). This completes the description of Algorithm 1.

To account for the per-unit-time penalty, we complete the objective by adding

the following to Eq. 1:

Xn

i¼1

pi

XTmax
i

t¼liþ1

kgði; tÞðt � liÞ: ð3Þ

Thus we have the following objective function:

Xn

j¼1

pjd0;j

Yj�1

k¼1

ð1� pkÞ þ
Xn�1

i¼1

Xn

j¼iþ1

pipjdi;j

Yj�1

k¼iþ1

ð1� pkÞ

þ
Xn

i¼1

pidi;0

Yn

k¼iþ1

ð1� pkÞ þ
Xn

i¼1

pi

XTmax
i

t¼liþ1

kgði; tÞðt � liÞ:
ð4Þ
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The computation of the objective function is more complex than that of the PTSP,

but is similar to the complexity of the PTSPD. The initialization of Algorithm 3 is

computed in O(n Tn
max) time, while the body of the algorithm is computed in O(n2

maxi{Ti
max-Ti

min}) time. Without restrictions on distances, this is not necessarily

polynomial in n. Once the g and h values are known, the per-unit-time penalty

portion of the objective can be computed in O(n maxi{Ti
max -li}) time, and the

distance portion of the objective function can be computed in O(n2) time. The entire

objective calculation is dominated by the g and h computations, and thus takes O(n2

maxi{Ti
max-Ti

min}) time. In addition, Weyland et al.’s (2012) characterization of the

PTSPD objective function as #P-hard can be trivially extended to the PTSPTW.

Solution approach

Our solution approach is motivated by the recent work of da Silva and Urrutia

(2010) on the TSPTW, the deterministic version of the problem discussed in this

paper. Da Silva and Urrutia combine a Variable Neighborhood Search (VNS) with a

Variable Neighborhood Decent (VND) as a local search. The algorithm yields high

quality solutions for the data sets from which those used in this paper are derived

and achieves best-known results on other benchmark data sets. Thus, we chose to

implement a VNS/VND heuristic as well.

In broad terms, the VNS we use can be described as a systematic change of

neighborhoods during a two-phase procedure. The first phase is a perturbation of the

current best solution, while the second phase is a descent to find a new local

minimum. The purpose of the perturbation is to move the solution out of a local

minimum. Note that we do not need the initial construction phase implemented by

da Silva and Urrutia (2010) because we penalize time window violations, thus

making all solutions feasible.

We now describe the algorithm by beginning with a description of the VNS. As

input, the VNS takes an initial seed tour x, a value kmax that controls the maximum

level of perturbation in the Shake function, and an objective function f ð�Þ that maps

a tour to the set of positive real numbers. Specifically, f ð�Þ is the objective function

presented in Eq. 4. After initializing k to 1 and improvement to true, the algorithm

perturbs the current solution x by calling the Shake function. The perturbed solution,

x0, is then passed to the VND to find a local minimum x*. If the objective value of x*

is less than the objective value of the current solution x, then x is set to x*, k is reset

to 1, and the procedure repeats. If, on the other hand, the objective value of x* is not

less than the objective value of x and k does not equal kmax, then k is incremented by

1 and the procedure repeats. When k reaches kmax, then no improving solution has

been found within the last kmax iterations. The parameter improvement is set to false,

the current solution x is set to best, and the algorithm terminates returning best, the

best tour found. The pseudo code for the VNS algorithm is presented in Algorithm

2.
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We now describe the Shake function that is used to perturb the current best

solution. As input, the Shake function requires a tour x and a neighborhood

specification k. We denote a set of neighborhoods for the Shake function with

NShake
k ¼ f1; . . .; kmaxg and with Nk

Shake(x) the set of solutions in the kth neighbor-

hood. Specifically, Nk
Shake(x) contains all tours that differ from x by a combination of

k 1-shift moves. A 1-shift move removes a single customer from a tour and reinserts

the customer in a new location on the tour. We assume the solutions from Nk
Shake(x)

are ordered such that fx1; . . .; xjN
Shake
k
ðxÞjg. The perturbation selects a random tour

xw 2 NShake
k ðxÞ, sets x0 to xw, and outputs the perturbed solution x0. The pseudo code

for the algorithm is presented in Algorithm 3.

In the algorithm presented by da Silva and Urrutia, kmax is set to 30. However,

such large neighborhoods lead to many iterations of the VNS and VND. Because the

computational complexity of the PTSPTW objective calculation is greater than that

of the TSPTW objective calculation, a large number of iterations causes the running

time to be very large. Additionally, during preliminary experiments, we found that

the algorithm often converged to the same solution for values of kmax set to 30 and

set to 5. For these reasons, we set kmax to 5.

Hansen et al. (2010) propose an implementation of VNS/VND for combinatorial

optimization problems which differs from the implementation proposed by da Silva

and Urrutia in the procedure for changing neighborhoods within the VND. In

preliminary experiments, we found that both algorithms generally converged to the

same solutions, but the algorithm proposed by Hansen et al. converged faster. For

this reason, we base our VND implementation on the algorithm proposed by Hansen

et al.
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The VND is used to optimize the recently perturbed solution. The input for the

VND includes a tour x, a value jmax, and the previously described objective function

f ð�Þ. We denote a set of neighborhoods for the VND with NVND
j ¼ f1; . . .; jmaxg and

with Nj
VND(x) the set of solutions in the jth neighborhood. The value jmax represents

the last neighborhood that the VND iterates through. We set j to 1 to specify the the

previously discussed 1-shift neighborhood and we set j to 2 to specify the 2-Opt

neighborhood. A 2-Opt move deletes two edges from a tour so that the tour is

broken into two paths, then reconnects the paths in the only other possible way.

Because we specify two neighborhoods for the VND, we set jmax to 2. Our choices

of the 1-shift and 2-Opt neighborhoods are also motivated by the work of da Silva

and Urrutia and the descriptions of the neighborhoods can be found therein.

After initializing j to 1 and improvement to true, a locally optimal solution x0 is

found by iterating through the entire neighborhood Nj
VND. If the objective value of x0

is less than the objective value of the current solution x, then x is set to x*, j is reset

to 1, and the procedure repeats. If, on the other hand, the objective value of x0 is not

less than the objective value of x and j does not equal jmax, then j is incremented by 1

and the procedure repeats. When j reaches jmax, then no improving solution has been

found in either neighborhood. The parameter improvement is set to false, the current

solution x is set to x*, and the algorithm terminates returning x*, the best locally

optimal tour found. The pseudo code for the VND algorithm is presented in

Algorithm 4.

Experimental design

Next, we investigate what instance characteristics result in different tours when

customer presence is modeled stochastically instead of deterministically. To address

this question, we focus on the effects of customer realization probabilities, time

window widths, per-unit-time penalties, and the number of customers.

The data sets we use are a subset of the TSPTW instances first proposed by

Dumas et al. (1995). We use the 20-, 40- and 60-customer instances with time-
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window widths of 20, 60, and 100 U. These instances are labeled ‘‘Feasible’’ in the

results tables. We also generate new data sets from each of the existing instances.

These new instances differ in the starting and ending times of the time windows, and

represent the situations where feasible solutions with respect to time windows are

unlikely to exist if all customers are realized. These situations are likely to occur as

the demand for time-definite services grows. Our results, which are presented in the

next section, indicate that large cost savings are possible when these situations are

modeled stochastically compared to deterministically. We denote the new early and

late deadlines as e0i and l0i, respectively. In general, we set l0i equal to the early

deadline. Then we set e0i equal to l0i minus the width of the corresponding time

window, unless that time is negative in which case e0i is set to zero. As an example,

consider an instance with a time window width of 20 where ei = 15 and li = 35.

Then l0i ¼ 15, and since 15–20 = -5, set e0i ¼ 0. Sometimes, however, l0i is equal to

zero. In this case, we instead let l0i equal the late deadline and e0i equal l0i minus the

width of the corresponding time window. Suppose we again have a time window

width of 20. If ei = 0 and li = 20, then since l0i would equal 0, we let l0i ¼ 20 and

e0i ¼ 0. These instances will be referred to in the tables by the label ‘‘Infeasible.‘‘

Similar to the design of the PTSPD experiments in Campbell and Thomas (2008)

(see Campbell and Thomas (2006) for PTSPD benchmark data sets), we consider

four different probability settings for each instance. Three of these settings are

homogeneous with customer presence probabilities set to 0.1, 0.5, and 0.9,

respectively. These instances are referred to as 0.1, 0.5, and 0.9 in the results tables.

The probabilities represent the likelihood that each customer will be realized. A

probability of 0.1 may be suitable to represent a home or small business because

packages are unlikely to be delivered every day. Probabilities of 0.5 may be suitable

to represent small or medium businesses that receive packages a few days a week,

while probabilities of 0.9 may be suitable to represent medium or large businesses

that receive packages almost every day. The fourth probability setting is

heterogeneous, where the probability of each customer is randomly assigned a

probability of either 0.1 or 1. This case represents the situation in which both small

and large businesses are served by the same vehicle. This data set will be referred to

in the tables by the label ‘‘Mixed.’’

For each instance with 20, 40 and 60 customers, we consider two different per-

unit-time penalties. As was done in the PTSPD work of Campbell and Thomas

(2008), one penalty is set to 5, while in the other case the penalty is set to 50. These

penalties represent small and large costs of failing to satisfy customer time

windows. In total, we solve 720 different instances.

Because our goal is to determine differences between TSPTW and PTSPTW

solutions, for feasible instances we seed the VNS/VND heuristic described in

‘‘Solution Approach’’ with the best-known TSPTW solution [see da Silva and

Urrutia (2010)] and solve the corresponding PTSPTW instance with homogeneous

and mixed probability settings. For the infeasible instances, we construct

corresponding TSPTW solutions to use as seed solutions for the VNS/VND

heuristic. To construct these TSPTW solutions, we assign the same per-unit-time

penalties as the corresponding PTSPTW set, and set all probabilities to one. We run
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the VNS/VND heuristic 10 times using the corresponding best-known TSPTW

solution with feasible time windows, converted to infeasible time windows, as a

starting solution. We select the best TSPTW solution out of the 10 runs for each

instance to use as the seed solutions for the VNS/VND algorithm to solve the

corresponding PTSPTW infeasible instances with homogeneous and mixed

probability settings.

In evaluating our computational results, it is necessary to be able to compare two

solutions. One useful metric of comparison is the Hamming distance introduced by

Bierwirth et al. (1996) for the Job Shop Scheduling problem. Ehmke et al. (2012)

use this measure with vehicle routing problems. In terms of tours, the Hamming

distance is the ratio of the precedence relationships of customers being preserved

between two tours. In order to calculate the Hamming distance, a tour must be

converted to a bit-string representation. A tour with n customers has a bit-string

representation of n2�n
2

bits. If customer i is located before customer j on a tour, then

the bit is set to one. On the other hand, if customer j is located prior to i, then the bit

is set to zero. The normalized Hamming distance for two tours represented as bit-

strings x and y is calculated by dx;y ¼ 1
l

Pl
k¼1 xorðxk; ykÞ, where l is the length of the

bit-strings. The ‘‘exclusive-or‘‘ operator is represented by xorð�Þ and results in one if

the bits xk and yk differ, and zero otherwise. In this paper, a Hamming distance of

zero indicates two identical tours, while a Hamming distance of one indicates that

no customers share the same precedence relationship between two tours. A

Hamming distance of one occurs only in the case where one tour is the exact inverse

of the other tour.

Another metric that we use to compare solutions is the percentage of change in

objective value. In the case of feasible instances, the initial solution is the best-

known TSPTW solution. For infeasible instances, the initial solution is the best

TSPTW solution we found using our heuristic technique. Both the initial and final

solutions are evaluated with the PTSPTW objective function. The percentage of

change in objective value is calculated as

Initial objective value� Final objective value

Initial objective value

� �
� 100 %: ð5Þ

Because the initial objective value is either equal to or greater than the final

objective value, the percentage of change always represents a decrease in value

from the initial seed tour.

Because of the probabilistic nature of the algorithm, each instance is run 10

times. The online resource for this paper provides results for all instances. In the

next section, we provide a summary of those results in Tables 1 and 2. In order to

clearly understand the abbreviated labels in the summary tables, we first present a

description of some of the labels found in the online resource. ‘‘Avg. D (%)‘‘

represents the average percentage of change in objective value for each instance

across the 10 runs. Similarly, ‘‘Avg. Ham.’’ and ‘‘Avg. Time‘‘ represent the average

Hamming distance and the average CPU seconds of runtime, respectively. In the

summary tables, the abbreviation ‘‘AVG.’’ represents the calculation of an average

of an average. ‘‘AVG. D (%)‘‘ is the average of ‘‘Avg. D (%)‘‘ over each of the five

100 S. A.Voccia et al.
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instances at each setting from the tables in the online resource. ‘‘AVG. Ham.’’

represents the average of ‘‘Avg. Ham.‘‘ over the five instances at each setting.

Similarly, ‘‘AVG. Time’’ is the average of ‘‘Avg. Time‘‘ for each of the five

instances at each setting. For simplification of language, when discussing results

from the summary tables, the term ‘‘average’’ is assumed to refer to the ‘‘AVG.‘‘

calculation. The abbreviation ‘‘NC’’ within the tables stands for ‘‘No Change,‘‘ as

opposed to ‘‘0.00’’ which means that a very small change has occurred.

Results

The summarized results in Tables 1 and 2 indicate that the 0.1 homogeneous

setting has greater differences in tour structure from the TSPTW solution than the

other homogeneous and mixed settings. Meanwhile, the 0.9 setting displays the

smallest differences. This outcome is logical, because as customer realization

probabilities increase towards one, the problem gets closer to the deterministic

TSPTW. An example of this trend is displayed in Fig. 1. The PTSPTW solution for

the 0.9 probability instance is visually similar to the TSPTW solution and has a

Hamming distance of 0.02. On the other hand, the 0.1 instance looks very different

from the TSPTW solution and has a larger Hamming distance of 0.14. The key
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Fig. 1 Solution tours for homogeneous probabilities for the third feasible instance with 20 customers,
time window widths of 100, and a per-unit-time penalty of 50. a TSPTW solution, b PTSPTW solution
for 0.9 probabilities, Hamming distance: 0.02, change in objective value: 0.06 %. c PTSPTW solution for
0.5 probabilities, Hamming distance: 0.03, change in objective value: 0.48 %, d PTSPTW solution for 0.1
probabilities, Hamming distance: 0.14, change in objective value: 0.39 %
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difference is the number of times that the tour crosses itself. The increased crossings

in instances with smaller probabilities occur as a way to improve routing cost when

it is possible to skip customers.

Out of all the probability settings, the mixed setting displays the largest

differences from the TSPTW solutions for cost. This is because of the PTSPTW’s

ability to prioritize customers with larger probabilities in the tour. As noted earlier,

however, the mixed setting does not display the largest differences in structure. This

indicates that even small changes in tour structure can produce large changes in

cost.

It is intuitive that time windows drive the tour construction for the TSPTW. Our

results support the idea that time windows are also a significant contributor to tour

construction for the PTSPTW. In a majority of cases, instances with time window

widths of 100 have greater percentage of changes in objective value and also greater

Hamming distances than instances with time window widths of 20. This is because

larger time windows allow greater flexibility in the construction of the tours.

Another result comes from comparing the percentage of changes in objective

value of the feasible instances to those of the infeasible instances. The average

percentage of changes in objective value for the feasible instances are much smaller

than those of the infeasible instances. The average change across all feasible

instances is 0.92 %, while the average for the infeasible instances is 11.86 %. An

example of the type of change in tour structure that creates a large decrease in

objective value is displayed in Fig. 2. The PTSPTW tour chooses to serve customers

7 and 9, which are far from the other customers, in a very different way. If

customers 7 and 9 are not realized, the PTSPTW tour will be much shorter and

allow more customers to be visited feasibly than the TSPTW tour. This result

indicates that when infeasibility exists in terms of time windows, it may be very

beneficial to use the PTSPTW formulation as opposed to the TSPTW formulation.

Per-unit-time penalty increasing from 5 to 50 affects the solution tours for all the

instances as expected. For the feasible instances, the average percentage of change

in objective value decreases as the penalty increases. Because these are feasible

instances, it is possible to serve many customers within their respective time
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Fig. 2 Solution tour for 0.1 probabilities for the second infeasible instance with 20 customers, time
window widths of 100, and a per-unit-time penalty of 50. a TSPTW solution, b PTSPTW solution for 0.1
probabilities, Hamming distance: 0.43, change in objective value: 53.41 %
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windows. It is likely that incurring a large penalty cost for missing a deadline is

more costly than traveling a longer distance to arrive within the respective time

window. Thus, larger penalties push the solutions toward the optimal TSPTW

solutions. All of the Hamming distances either decrease or do not demonstrate

change within two significant digits.

For infeasible instances, the opposite trend occurs. The average percentage of

change in objective value generally increases as the penalty increases from 5 to 50.

By construction of these instances, it is unlikely that a tour exists such that the driver

will be able to serve all customers within their respective time windows. Therefore,

penalty charges are unavoidable. As the charge increases, the cost of the tour

increases. Any percentage of change in objective value that occurs at a low penalty

level is multiplied at the higher level.

An increase in the number of customers also causes an increase in the average

percentage of change in objective value for both feasible and infeasible instances.

Hamming distance, on the other hand, tends to decrease and is most evident with

time window widths of 100. It is possible that because of the larger number of

customers on the tour, more precedence relationships are preserved even when

customer positions differ and cause changes in the objective value.

Lastly, it is worthwhile to mention two factors contributing to increased runtimes.

The most noticeable factor is problem size. As the number of customers increases,

so does the runtime. This is due to the fact that as the solution space grows, the

number of times that the objective value is calculated increases. The second factor is

the use of small or mixed probabilities. Instances with these two probability types

deviate more from their TSPTW solutions than instances with larger probabilities.

This implies that the increased runtime is caused by more local search moves.

Conclusions

In this paper, we have presented a recourse model for the PTSPTW that requires

construction of a tour that visits each realized customer but pays a penalty if the late

deadline of the time window constraint is violated. We described a VNS/VND

heuristic to solve instances of the PTSPTW. Finally, we presented computational

results that offer the following key insights when comparing PTSPTW solutions to

their TSPTW counterparts:

– Large probabilities of customer presence have less impact on the solution than

small probabilities.

– When customers have a combination of high and low probabilities, solutions are

significantly impacted by modeling customers stochastically. This is because of

the stochastic model’s ability to prioritize customers with larger probabilities in

the solution.

– Large time window widths have a greater impact on the solution than small time

window widths when customers are modeled stochastically. An explanation is

that as time window widths increase, the algorithm has more flexibility for

placing customers on the tour.
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– Solutions to the PTSPTW come with large computation times due to the

complexity of the objective calculation. Factors that contribute to larger

runtimes are large problem sizes and problems with low or mixed probabilities.

Because the PTSPTW is a new problem in vehicle routing, there are many

directions for future research. One such research direction would be to apply a

fixed-charge penalty for arriving after the late time window deadline. The fixed-

charge recourse represents the case where the delivery company reimburses the

customer for the cost of the delivery in the event that the deadline is violated. Well-

known examples of such penalties are FedEx’s and UPS’ money-back guarantees

(FedEx 2011; United Parcel Service 2011). Our solution method is capable of

handling such an extension of the problem. For the fixed-charge penalty, the

following term would need to be added to Eq. 1:

Xn

i¼1

piK �Gði; liÞ; ð6Þ

where �Gði; liÞ ¼ 1� Gði; liÞ and K is the fixed-charge penalty.

An additional recommendation for future work is to solve larger problem

instances. The key challenge with larger instances is the computational complexity

of the objective function. Therefore, the solution method will likely need to

incorporate sampling methods to evaluate the objective. Investigation of these ideas

will help further our understanding of the advantages and disadvantages of

incorporating stochasticity into the model.
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