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Abstract The wind farm layout optimization problem is concerned with the optimal
location of turbines within a fixed geographical area to maximize profit under sto-
chastic wind conditions. Previously, it has been modeled as a maximum diversity (or
p-dispersion-sum) problem, but such a formulation cannot capture the nonlinearity
of aerodynamic interactions among multiple wind turbines. We present the first con-
straint programming (CP) and mixed integer linear programming (MIP) models that
incorporate such nonlinearity. Our empirical results indicate that the relative perfor-
mance between these two models reverses when the wind scenario changes from a
simple to a more complex one. We then extend these models to include landowner
participation and noise constraints. With the additional constraints, the MIP-based
decomposition outperforms CP in almost all cases. We also propose an improvement
to the previous maximum diversity model and demonstrate that the improved model
solves more problem instances.
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196 P. Y. Zhang et al.

Introduction

Wind farm layout optimization problems deal with the optimal placement of tur-
bines in a wind farm field. Currently, this problem appears only in the engineering
research literature (Mosetti et al. 1994; Grady et al. 2005; Chowdhury et al. 2010;
Donovan 2005; Fagerfjäll 2010; Kwong et al. 2012), where much effort has been
spent on developing metaheuristics (Mosetti et al. 1994; Grady et al. 2005; Chowd-
hury et al. 2010; Dilkina et al. 2011) and greedy algorithms Zhang et al. (2011)
for variations of the problem. Some existing heuristic methods (Mosetti et al. 1994;
Grady et al. 2005) and mixed integer models (Donovan 2005; Fagerfjäll 2010; Turner
et al. 2014) have explored this problem with discretization: the land is decomposed
into a set of small cells, where each accommodates one turbine. Compared with a
continuous approach (Kwong et al. 2012), the discrete approach is less sensitive to
discontinuity in the wind farm land. Such discontinuity is common in practice due
to existing infrastructure and geographic constraints (Manwell et al. 2009c). In the
current work, our problem instances are square wind farms with equal-size square
cells.

An interesting feature of this problem that sets it apart from standard location prob-
lems is the aerodynamic interaction among multiple turbines. In a simple scenario
with only two turbines, the turbine downstream is said to be in the wake region of the
upstream turbine, and it experiences a loss in energy production due to the reduction
in wind speed and increase in turbulence intensity (Jensen 1983). In practice, a turbine
that is downstream of multiple turbines is affected by all upstream turbines simulta-
neously and the overall effect is a nonlinear function of individual wakes. There are
different analytical equations to describe the superposition of multiple wakes, some
being closer to the physical reality than others (Renkema 2007). It is difficult to incor-
porate the more accurate wake equations into a mathematical programming model
due to their nonlinearity: currently, only heuristics (Mosetti et al. 1994; Grady et al.
2005; Chowdhury et al. 2010; Kwong et al. 2012) include the most accurate wake
models.

Another interesting aspect of this problem relates to the noise impact of wind farms.
In Ontario, Canada, noise regulation is strict (Ministry of the Environment 2008, 2011)
and the acceptable noise limit at a receptor is dynamic, depending on the participation
of the corresponding landowner and the wind condition. A participating landowner
usually hosts a turbine, a wind farm substation, or a section of the cable network. Com-
pared with a non-participating landowner, the noise limit for a participating landowner
is relaxed. Some previous work has included static noise constraints (Fagerfjäll 2010).
To the best of our knowledge, no previous wind farm layout optimization models
considered the participation of landowners.

Our goals are to computationally improve existing mixed integer programming
(MIP) models and incorporate more accurate wake models into constraint program-
ming (CP) and MIP models. In addition, we extend these models to include the afore-
mentioned noise constraints while modeling the participation of landowners. In this
work, we focus on the Jensen wake model (Jensen 1983) and power maximization
objective. The Jensen wake model is currently one of the most accurate analytical

123



Wind farm layout optimization with MIP and CP 197

models of wake impact included in any optimization or heuristic approaches (Man-
well et al. 2009c; Renkema 2007).

The contributions of this paper are: the proposal of two novel mathematical pro-
gramming models (CP and MIP) that can describe the physics of the problem more
accurately than the previous MIP models; the extension of a previous MIP model
so that the solution quality and time are improved; the comparison of four models
on twelve problem instances, with varying wind scenario complexity, turbine num-
bers, and wind farm grid resolution; and the proposal of linear noise constraints and
inclusion of landowner participation.

Problem definition: the physics of wakes and noise propagation

Description of the problem

Wind farm site selection, or wind farm siting, is based on meteorological condi-
tions, topological features of the site, and accessibility for construction and electrical
transmission, among other factors (Manwell et al. 2009c). After siting, wind farm
developers optimize the layout of the turbines according to prescribed objectives and
constraints in a process called micro-siting. In a typical case, design engineers try
to maximize the expected profit and minimize hazardous side-effects during wind
farm construction and operation (Manwell et al. 2009c). This is a challenging task
because there are many objectives and constraints, and every site is different. To limit
our scope, we consider the maximization of energy capture of a wind farm as our
only objective, as it is closely related to the long-term profit of the wind farms and
it is well accepted in the wind farm optimization literature (Mosetti et al. 1994; Grady
et al. 2005; Chowdhury et al. 2010). We further assume that the wind farm land is flat,
and all turbines are of the same type.

We use the same problem setup that Mosetti et al. (1994) proposed in their sem-
inal paper. The objective is to maximize the wind farm’s overall power generation
capability. There are three types of constraints:

1. Proximity: turbines must be placed five turbine rotor diameters apart to avoid
structural damage induced by strong aerodynamic interactions;

2. Boundary: Turbines must be placed within the wind farm boundaries;
3. Turbine number: The number of turbines is fixed.

The reason that the total number of turbines is fixed—instead of bounded by a
maximum number of turbines—is due to practical considerations. During wind farm
development, the total number of turbines is determined prior to the design process, by
government regulations and the local electricity grid interconnection capacity among
other factors. However, to explore the design space more fully, a given model can be
solved multiple times with different numbers of turbines.

As mentioned in the previous section, we use a discrete representation of wind farm:
land is decomposed into a set of square cells, where each cell can only accommodate
one turbine. This approach is common in the literature (Mosetti et al. 1994; Donovan
2005; Grady et al. 2005).
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Fig. 1 A wind rose depiction of a pseudo-wind regime, showing common practice of wind speed and
direction discretization. The legend is in meters per second

Wake and energy models

While some constraints of this problem are similar to vertex packing (Atamtürk
et al. 2000), undesirable facility location (Owen 1998), and circle packing problems
(Stephenson 2005), the objective function is unique to wind farm layout optimization.
In particular, the available wind energy at each turbine is proportional to the cube of
wind speed at that location. In turn, the wind speed at a turbine is a nonlinear function
of the distances to its upstream turbines. Note that “upstream” is relative to the wind
direction, which varies over time.

Although wind changes speed and direction frequently, we assume that the turbine
can re-orient its rotor towards the incoming wind direction. We further assume that
there is no power loss during the transient states. Overall, the yearly wind frequency
data at each direction fits well into a Weibull distribution (Manwell et al. 2009b).
In the literature, it is a common practice to discretize the yearly wind frequency
data into multiple directions and multiple speeds (Mosetti et al. 1994; Grady et al.
2005; Chowdhury et al. 2010), such as the pseudo-wind regime shown in Fig. 1,
so that the total energy production is the weighted sum of energy produced at each
wind state (speed and direction). Then, the expected power is only different from
the expected annual energy production (AEP) by a constant (the number of seconds
per year). Therefore, we only deal with the expected power in this work to simplify
calculations.

Single wake

The downstream region of a wind turbine, with increased levels of turbulence and
decreased energy, is called the wake region (Fig. 2). Equation (1), first proposed
by Jensen (1983), describes the propagation of a single wake. Parallel arrows in
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Fig. 2 Jensen (1983) wake
model: r0 is the rotor radius, R
is the wake radius immediately
behind the rotor (R > r0), x is
the downstream distance in the
wind direction, and r is the
resulting wake region radius at
distance x . A typical wake
recovery curve is shown in Fig. 3

Fig. 2 represent wind direction and speed. The region with lower wind speed (shorter
arrows) is the wake region. The two ellipses represent a turbine. The physical basis of
Jensen’s wake model is momentum conservation within the wake region. In addition,
wind speed is assumed to be uniform and non-turbulent across the circular wake cross
section.

Let R be the wake radius immediately after rotor; r be the downstream wake
radius; r0 be the rotor radius; u∞ be the free-stream wind speed; ur be the wind speed
immediately behind the rotor; ux be the speed of wind at downstream distance x ; α be
the wake decay constant; z0 be the roughness of terrain; z be the turbine height; and a
be the axial induction factor (the percentage reduction in wind speed between the free
stream and the turbine rotor) (Manwell et al. 2009a). Then, momentum conservation
yields the following expression:

π R2ur + π
(

r2 − R2
)

u∞ = πr2ux (1)

where ur = (1 − a)u∞, the speed of wind immediately after the turbine rotor is a
function of the free-stream wind speed; r = R+αx indicates how fast the wake region

expands downstream; R = r0

√
1−a

1−2a describes the wake region radius immediately

after the turbine; and α = 0.5/ ln( z
z0

) shows that the wake expansion is related to the
ground roughness. Solving these equations leads to the relationship:

ux = u∞

[
1 − 2a(

1 + αx
R

)2

]
(2)

Multiple wakes: sum-of-squares

Following Mosetti et al. (1994), we write the effective wind speed in the wakes of
multiple turbines as:
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Fig. 3 Wind speed recovery after a turbine. D = 2r0 is the turbine diameter

Fig. 4 Selection of the
downstream affected cells due to
a particular wind state: if the
center of cell j is covered by the
wake originated from cell i , then
j ∈ Uid

uid = uid,∞

⎡
⎣1 −

√√√√ ∑
j∈Uid

(
1 − ui jd

uid,∞

)2
⎤
⎦ (3)

uid and uid,∞ are the wind speeds at turbine i at wind state (speed and direction) d
with and without wake interactions, respectively, where d ∈ D, the set of all possible
wind states; Uid is the set of upstream turbines for turbine i at wind state d (Fig. 4); ui jd

is the wind speed at turbine i due to a single wake from upstream turbine at j , which
can be obtained by Eq. (1). Currently, this is the most accurate analytical expression
accounting for multiple wakes (Renkema 2007).
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Based on this model, the expected power production of the wind farm can be
calculated as:

Expected power =
m∑

i=1

∑
d∈D

1

3
u3

id pd (4)

where m is the total number of turbines and pd is the probability of wind state d
occurring, subject to

∑
d∈D pd = 1.

Multiple wakes: linear superposition

Another way to account for multiple wakes in the energy production calculation is to
use a direct linear superposition of power deficits. This is known to be less accurate than
(3). However, it is more easily representable in mathematical programming models
(Donovan 2005; Fagerfjäll 2010):

Expected power =
m∑

i=1

∑
d∈D

⎛
⎝1

3
u3

id,∞ −
∑
j∈Uid

1

3

(
u3

id,∞ − u3
i jd

)⎞
⎠ pd (5)

and again ui jd can be obtained from Eq. (1).
With the physics introduced, we want to make a note on the representation of these

equations in our optimization models. Although the power calculation Eqs. (3) and (5)
appear to be nonlinear in wind speeds, we can actually remove some of the nonlinearity
due to the choice of discrete optimization models. As illustrated by Donovan (2005),
the linear superposition model (Eq. 5) is completely linear, because all the wind speed
terms can be calculated prior the optimization, since the candidate turbine locations (i ,
j) and wind states D are known in the discrete representation. However, linearizing the
wake model given by Eq. (3) is a non-trivial task, because even after pre-calculating
the wind speed terms, we still have the square root of a weighted sum. In Sect. 3, we
will first introduce a CP model that directly represents the nonlinearity in its objective
function, and then describe our novel approach that can incorporate the physics of Eq.
(3) into a mixed integer linear program.

Noise propagation and perception

The ISO 9613-2 document provides a method to calculate sound propagation and
attenuation in an outdoor environment (International Organization for Standardiza-
tion 1996). Its scope and assumptions match those of a wind farm project, and this
standard document is used by the Government of Ontario, and many other jurisdictions
across the world, to evaluate the noise impact of a wind farm project at downwind
locations (Ministry of the Environment 2008). Usually a noise source emits sounds
at different frequencies and human ears have different sensitivity towards different
frequencies (International Electrotechnical Comission 2003). As a result, to measure
the perceived impact of noise, the ISO standard formulates a method that combines
the sound pressure levels (in decibels, or dB) from different frequencies and presents
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one numeric value in dBA (A-weighted sound pressure level). In the context of wind
farm development, the receptor locations are determined by the residential infrastruc-
ture. Overall, the sound pressure level (SPL) at a receptor is a superposition of SPL
from each sound source, which in turn is calculated as a combination of SPLs (L f )
at eight frequencies ( f ) ranging from 63 Hz to 8 kHz (International Organization for
Standardization 1996),

L f = L0 f + Dcf − A f (6)

where L0 f is the SPL at the source; Dcf is used to correct the directional effect
that is different from a omni-directional source (an omni-directional point source has
Dcf = 0); A f is the attenuation term; and f denotes the frequency. The attenuation
term can be decomposed into several components:

A f = Adiv + Aatm + Agr + Abar + Amisc (7)

The terms to the right of the equality sign (omitting the frequency index for simplic-
ity) are attenuations due to geometrical divergence, atmospheric absorption, ground
effects, barriers, and miscellaneous effects, respectively. They are all functions of the
distance from source to receptor. For their exact functional forms, the readers are
referred to Sect. 7 in International Organization for Standardization (1996). To calcu-
late the A-weighted SPL at a receptor, the following equation is used in International
Organization for Standardization (1996):

L = 10 log

⎛
⎝

ns∑
i=1

⎛
⎝

8∑
f =1

100.1(L f (i)+B f )

⎞
⎠

⎞
⎠ (8)

where L (dBA) is the A-weighted SPL at receptor, log is the base-10 log function, ns

is the number of point sound sources (turbines), f is the frequency index, L f (i) is the
SPL (dB) at the receptor location due to point source i , and the B f ’s are the standard
A-weighting coefficients.

Figure 5 shows the A-weighted sound pressure levels at various receptor distances
from one turbine. Note the exponentially decaying behavior, in contrast to the behavior
of wind speed recovery within a wake, Fig. 3. In other words, a low-noise wind farm
requires the wind turbines to be close together (i.e., further from the surrounding noise
receptors), but a high-yield wind farm means the turbines should be located far apart
from each other. Thus, energy maximization and noise minimization are competing
objectives.

Ontario regulations

In Ontario, landowner participation in a wind farm project affects the acceptable noise
levels. A landowner is participating if his or her land hosts part of the wind farm
(a turbine, cable, substation, etc.) and non-participating otherwise. Specifically, each
square cell of our discretized wind farm belongs to one landowner, and the participation
of a landowner depends on whether he/she hosts a turbine in one of his/her cells.
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Fig. 5 Sound pressure level (A-weighted) as a function of horizontal distance from the turbine (L0 f = 95
dB for all f , receptor height = 1 m, turbine height = 60 m, rotor diameter D = 40 m, turbine as a sound
source is omni-directional)

Every landowner has one or more noise receptors (e.g., houses) on the property, and
their locations are determined prior to optimization. Therefore, noise constraints are
dynamic in the sense that the constraint related to a noise receptor depends on the
existence of turbines on the corresponding landowner’s property. For non-participating
landowners, the maximum noise at the receptor location is 40–51 dBA, depending on
the wind condition; for participating landowners, these constraints are relaxed (i.e.,
with higher tolerance) (Ministry of the Environment 2008).

Optimization models

In this section, we first present five basic optimization models using MIP or CP,
ignoring the noise constraints. We then show how the noise constraints can be added
to each model.

Sum-of-squares optimization models (SOM)

The following three optimization models are based on the more accurate way of
accounting for multiple wakes (Eq. 3).

CP and MIP models

Figure 6 presents the SOM1 CP model. The binary decision variable xi represents
whether there is a turbine at location i ; N is the set of n locations; m is the total number
of turbines; and E = {(i, j)| location i and location j cannot both have turbines due to
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maximize
∑
i∈N

∑
d∈D

1
3

xi

⎛
⎝uid,∞

⎡
⎣1 −

√√√√ ∑
j∈Uid

xj

(
1 − uijd

uid,∞

)2
⎤
⎦

⎞
⎠

3

pd

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ N

Fig. 6 SOM1: a constraint programming model

maximize
∑
i∈N

zi

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
∑
d∈D

1
3

u3
id,∞pdxi ∀i ∈ N

zi ≤ M

⎛
⎝|Si| −

∑
j∈Si

xj

⎞
⎠ + wi,Si

∀i ∈ N , ∀Si ⊂ N \ i (∗)

xi ∈ {0, 1} ∀i ∈ N

Fig. 7 SOM2: a mixed integer programming model

proximity constraint}. This set is determined by the proximity constraint and the grid
resolution. We choose equality for the first constraint for practical reasons—the total
number of turbines is usually determined prior to the optimization based on project
financing and government regulations. For the problem instances used in this work,
the optimal energy production is an increasing function of m (Du Pont and Cagan
2010). The potential advantage of this model is that the complex objective function
can be directly represented in the expressive language characteristic of constraint
programming.

In Fig. 7, we present SOM2, a MIP sum-of-squares model where the nonlinearity is
dealt with via a potentially exponential number of constraints. The auxiliary variable
zi represents the average power production at each location i . The key of this model
is the set of constraints indicated by (∗). M is a sufficiently large constant.In general,
wi,Si is the maximum amount of power convertible when all cells with indices in Si

have turbines and all cells with indices in N \ Si do not; and Si is a set of turbine
locations not including i . wi,Si is calculated according to Eqs. (3) and (4).

A decomposition model

It is not hard to see that the number of constraints (∗) is exponential in n due to
the requirement (∀Si ⊂ N \i). Therefore, rather than experimenting with SOM2, we
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Fig. 8 SOM3: a mixed integer
programming model of the
master problem

maximize
∑
i∈N

zi

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
∑
d∈D

1
3

u3
id,∞pdxi ∀i ∈ N

(cuts)

xi ∈ {0, 1} ∀i ∈ N

propose a third model, SOM3, which can be understood as a decomposition of SOM2
(Bertsimas and Tsitsiklis 1997).

In Fig. 8, a MIP master problem is formulated that includes all constraints of
SOM2 except for those indicated with (∗) in Fig. 7. After solving the master problem,
a subproblem calculates the actual power according to Eqs. (3) and (4), by following
steps 1–3 below:

1. Evaluate the turbine layout power considering full wake effects based on xt (the
solution from the master problem at iteration t) by substituting it into

∑
i∈N

∑
d∈D

1

3
xt

i

⎛
⎝uid,∞

⎡
⎣1 −

√√√√ ∑
j∈Uid

x t
j

(
1 − ui jd

uid,∞

)2
⎤
⎦

⎞
⎠

3

pd

2. If it is evaluated to the same as the objective value from the master problem or the
maximum solution time is reached, terminate; otherwise:

3. Generate cuts in the form of zi ≤ gi (xt ) and zi ≤ hi jk(xt ) [see Eqs. (9), (10)
below]; return to the master problem.

The master problem is then re-solved with the new cuts. In the first iteration, the
master problem assumes that there is no wake interaction at all. In each subsequent
iteration, the cuts refine the modeling of turbine interactions. The master problem does
not represent the interaction of a specific group of turbines unless the related cuts are
added. Therefore, the master problem always over-estimates the true objective value.

Instead of solving the master problem to optimality, we run it with a time limit
of T seconds. In our experiment, we choose T0 = 30 s for the first iteration. T is
increased by 5 s each time the current best master solution is the same as the previous
iteration. In other words, if the master problem produces the same solution as the
previous iteration and it does not converge to the subproblem value, the algorithm will
keep running with no new cuts generated, therefore, getting stuck in a loop. This will
happen if the master problem is unable to make any new progress in a new iteration
(compared with the previous iteration) within the prescribed time limit. The base and
incremental values of T are tuned via tests on the given problem instances.

Cuts We propose two types of cut: a no-good cut and a 3-cut. The former is presented
in Eq. (9). M is a large constant; xt

j is the j th component of xt ; N t is the set of locations
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that host turbines in iteration t ; wi,A is the maximum amount of power convertible
when all cells with indices in A have turbines; wi , wi, j and wi, jk are short forms for
wi,∅, wi,{ j} and wi,{ jk}, following the definition of wi,A.

gi (xt ) = M

⎛
⎝|N t | −

∑
j∈N t

x j

⎞
⎠ + wi,N t ∀i ∈ N (9)

In practice, the no-good cuts alone are inefficient in large problem instances, because
an exponential number of them are required to correctly shape the feasible region and
the information of each cut is minimal when there are many wind states and location
cells. Therefore, we propose another type of cut to increase the speed of refinement
of the representation of turbine interactions. Equation (10) presents the 3-cuts.

hi jk(xt ) = wi + (wi, j − wi )x j + (wi, jk − wi, j )xk ∀i, j, k ∈ N t (10)

For each downstream turbine i , there are
(|N t |−1

2

)
cuts generated. The power of

3-cuts lies in their accurate description of the interaction between a group of three
turbines (thus the name 3-cut). In practice, the closest few upstream turbines have the
most significant influence on a downstream turbine (Fig. 3). The following proposition
states that the three-turbine interaction accurately describes the feasible region:

Proposition 1 The cut zi ≤ wi + (wi, j − wi )x j + (wi, jk − wi, j )xk is tight (cutting
off all infeasible values for zi assuming no turbines are “on” except for j, k) at
(xi , x j , xk) = (1, 0, 0), (1, 1, 0), and (1, 1, 1).

Proof When (xi , x j , xk) = (1, 0, 0), (1, 1, 0), and (1, 1, 1), the cut reduces to zi ≤ wi ,
zi ≤ wi, j , and zi ≤ wi, jk , respectively. These values are tight by definition of wi , wi, j ,
and wi, jk . When (xi , x j , xk) = (1, 0, 1), the cut reduces to zi ≤ wi + wi, jk − wi, j .
Since zi ≤ wi,k by the definition of wi,k , and the combination of power deficits is
sub-linear (Eqs. 3, 4), wi + wi, jk − wi, j ≥ wi,k . Therefore, zi ≤ wi + wi, jk − wi, j

is not tight and does not cut off any feasible region. 
�

Overall, the no-good cuts ensure that the problem can eventually reach the true
optimality while 3-cuts increase the communication between subproblem and master
to speed up convergence. Since this master problem completely ignores the wake
interactions, we add an option for the master problem to warm-start. Specifically,
these constraints can be included in the master problem:

zi ≤
∑
d∈D

(
1

3
u3

id,∞ − 1

3

(
u3

id,∞ − u3
i jd

)
x j

)
pd ∀i, j ∈ N (11)

This cuts can be included in the SOM3 master so that the model considers every
turbine’s most influential upstream neighbor.
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maximize
∑
i∈N

∑
d∈D

⎛
⎝1

3
u3

id,∞xi −
∑
j∈N

1
3

(
u3

id,∞ − u3
ijd

)
yij

⎞
⎠ pd

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E
xi + xj − 1 ≤ yij ∀i, j ∈ N
yij ≥ 0 ∀i, j ∈ N
xi ∈ {0, 1} ∀i ∈ N

Fig. 9 LSOM1 (Donovan 2005)

Linear superposition optimization models (LSOM)

Previous MIP models use a simpler [and less accurate (Renkema 2007)] calculation of
energy: the power deficits from individual wakes are combined linearly to account for
the total power loss. The following two MIP models are based on such linear super-
position technique. The first model (LSOM1) was originally proposed by Donovan
(2005), while the second one (LSOM2) is our extension of LSOM1.

Figure 9 presents the LSOM1 model where 1
3 (u3

id,∞ −u3
i jd) is the power reduction

at wind state d at turbine i due to the presence of upstream turbine j . These values can
be calculated prior to running the optimization (Eq. 5). Variable yi j indicates whether
there are turbines at both positions i and j , and so yi j is 1 if both xi and x j are 1, and 0
otherwise. Although yi j is a continuous variable, it is assigned a value of either 0 or 1
due to the objective being a maximization function. E is the set of cell pairs (i, j) that
are too close to both host turbines. Due to the use of the simpler linear superposition
model of upstream turbines, the model over-estimates the energy deficit (Renkema
2007).

Other location problems in the literature such as the maximum diversity problem
(MDP) (Kuo et al. 1993) and the p-dispersion-sum (pDS) problem (Pisinger 1999) are
similar to Donovan’s model. However, we have not seen any application of the state-
of-art MDP/pDS solution algorithms to this wind farm layout optimization model.

In LSOM1, the yi j variables are always equal to the product of xi and x j , indicating
if there are turbines at both places. Since i, j ∈ N , there are in total |N |2 yi j variables.
A high resolution of the wind farm grid with a complicated wind regime results in
denser coefficient matrix for this optimization formulation. To address this weakness
we propose LSOM2.

Figure 10 presents the LSOM2 model. It does not have yi j variables. Instead, we
use zi to represent the power production at location i . If there is no turbine at location
i , then the right-hand side of constraint (†) is zero, and in most cases it is tighter
than (††). So, if no turbine appears at i , then there will be no power production from
location i . If there is a turbine at i , then in general constraint (††) is tighter due to the
extra negative terms (deduction of power due to upstream turbines). The value of zi is,
therefore, calculated by the total available power subtracting the linear combination
of power losses due to wakes.
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maximize
∑
i∈N

zi

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
∑
d∈D

1
3

u3
id,∞pdxi ∀i ∈ N (†)

zi ≤
∑
d∈D

⎛
⎝1

3
u3

id,∞ −
∑
j∈N

1
3

(
u3

id,∞ − u3
ijd

)
xj

⎞
⎠ pd ∀i ∈ N (††)

xi ∈ {0, 1} ∀i ∈ N

Fig. 10 LSOM2

However, LSOM2 is not equivalent to LSOM1. When xi = 0 and constraint (†)
is zi ≤ 0, constraint (††) may become zi ≤ −c, where −c is a negative value.
This is because the linear superposition model over-estimates power losses, making
it possible for the right-hand side of (††) to be negative. Fortunately, this case does
not arise during our experiments due to the proximity constraint such that turbines
cannot be less than 5 rotor diameters apart, which is an industry standard for wind
farm design.

Noise-constrained models

Here, we incorporate the noise constraints and update the energy-maximizing models
into profit-maximizing models with landowner participation (Figs. 11, 12, 13 and 14).

At a receptor r , the sound pressure level (Lrd ) for a certain wind condition (d) can
be modeled as a function of turbine locations:

Lrd = 10 log

(
n∑

i=1

sird xi

)
(12)

sird is the contribution of noise from position i to receptor r , under the wind condition d
[calculated with the inner summation of (8)]; xi is the variable indicating the existence
of a turbine at location i .

To model the landowner participation, we add logical relationships among
landowner’s participation (wk), existence of turbines (xi ), and the SPL within each
land piece:

wk =
{

1, if Lrd ≥ ld ∃r ∈ Rk and ∃d ∈ D; or xi = 1 ∃i ∈ Ik

0, otherwise
(13)

where Rk is the set of receptors at land k; Ik is the set of possible turbine locations
either within land k or within the proximity of land k; ld is the noise limit set by the
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maximize c0
∑
i∈N

∑
d∈D

1
3

xi

⎛
⎝uid,∞

⎡
⎣1 −

√√√√ ∑
j∈Uid

xj

(
1 − uijd

uid,∞

)2
⎤
⎦

⎞
⎠

3

pd − c′w

subject to
n∑

i=1

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E
wk ≥ xi ∀k ∈ K, i ∈ Ik

wk ≥
∑

i∈N sirdxi − 10ld/10

10(ld+lδ)/10 − 10ld/10
∀k ∈ K, d ∈ D, r ∈ Rk (∗)

xi ∈ {0, 1} ∀i ∈ N
wk ∈ {0, 1} ∀k ∈ K

Fig. 11 SOM1 noise, with a slightly different objective function than SOM1 and extra noise constraints

maximize c0
∑
i∈N

zi − c′w

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
∑
d∈D

1
3

u3
id,∞pdxi ∀i ∈ N

wk ≥ xi ∀k ∈ K, i ∈ Ik

wk ≥
∑

i∈N sirdxi − 10ld/10

10(ld+lδ)/10 − 10ld/10
∀k ∈ K, d ∈ D, r ∈ Rk

(cuts)

xi ∈ {0, 1} ∀i ∈ N
wk ∈ {0, 1} ∀k ∈ K

Fig. 12 SOM3 noise master, with a slightly different objective function than SOM3 and extra noise con-
straints

government for wind state d [for example, the limits from Ministry of the Environment
(2008)].

Furthermore, even if a landowner participates, we do not allow unlimited noise. We
can cap the maximum noise at a location regardless of the landowner’s participation:

Lrd ≤ ld + lδ ∀r, d (14)

To calculate the numeric value of Lrd , we have to use the nonlinear function in (12),
which is undesirable in the case of MIP. Fortunately, since the log function is strictly
monotonic, and the term inside the log function of (12) is linear, we can transform the
logic of (13) and (14) into linear constraints (as shown in the models).

All four models (SOM1, SOM3, LSOM1, and LSOM2 noise) have profit maximiz-
ing objectives: c is the cost vector for engaging different landowners, and c0 is a con-
stant that maps the expected power to revenue. The value for c0 is chosen based on the
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maximize c0
∑
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∑
d∈D

⎛
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xi + xj ≤ 1 ∀(i, j) ∈ E
xi + xj − 1 ≤ yij ∀i, j ∈ N
wk ≥ xi ∀k ∈ K, i ∈ Ik

wk ≥
∑

i∈N sirdxi − 10ld/10

10(ld+lδ)/10 − 10ld/10
∀k ∈ K, d ∈ D, r ∈ Rk

yij ≥ 0 ∀i, j ∈ N
xi ∈ {0, 1} ∀i ∈ N
wk ∈ {0, 1} ∀k ∈ K

Fig. 13 LSOM1 noise, with a slightly different objective function than LSOM1 and extra noise constraints

maximize c0
∑
i∈N

zi − c′w

subject to
∑
i∈N

xi = m

xi + xj ≤ 1 ∀(i, j) ∈ E

zi ≤
∑
d∈D

1
3

u3
id,∞pdxi ∀i ∈ N

zi ≤
∑
d∈D

⎛
⎝1

3
u3

id,∞ −
∑
j∈N

1
3

(
u3

id,∞ − u3
ijd

)
xj

⎞
⎠ pd ∀i ∈ N

wk ≥ xi ∀k ∈ K, i ∈ Ik(
10

(ld+lδ)
10 − 10

ld
10

)
wk ≥

∑
i∈N

sirdxi − 10ld/10 ∀k ∈ K, d ∈ D, r ∈ Rk

xi ∈ {0, 1} ∀i ∈ N
wk ∈ {0, 1} ∀k ∈ K

Fig. 14 LSOM2 noise, with a slightly different objective function than LSOM2 and extra noise constraints

per kilowatt electricity price and net present value of profit from energy sales, whereas
the values of c are determined empirically to balance the second part of the objective
function. In the SOM1 noise model (Fig. 11), the constraints are for: total number of
turbines, landowner participation due to hosting of turbines, noise, and binary condi-
tions for the variables. The noise constraint (∗ in Fig. 11) states that the aggregated
sound level at a receptor r will determine the participation status of the landowner.

If the sound pressure is very low (
∑

i∈N sird xi −10ld /10

10(ld +lδ )/10−10ld /10 ≤ 0), then the project developer

has the choice of not engaging the landowner. If 0 <

∑
i∈N sird xi −10ld /10

10(ld +lδ )/10−10ld /10 ≤ 1, then the
landowner must be a participant. Otherwise, the noise level is above the threshold and
makes the problem infeasible.

123



Wind farm layout optimization with MIP and CP 211

Fig. 15 Cumulative wind probability distribution for problem instance WR36

Experiment setup

All energy models were implemented with Microsoft Visual C++ Express 2010 and
IBM ILOG CPLEX 12.3. Noise-constrained models are implemented in C++ and
solved with IBM ILOG CPLEX 12.5. All models are solved on a Dell Vostro 460
with Core i5-2500 CPU (3.30GHz, 64-bit). Twelve widely used benchmark instances
(Mosetti et al. 1994; Grady et al. 2005; Chowdhury et al. 2010; Du Pont and Cagan
2010; Kwong et al. 2012) (referred to as WRq-n-m) were used to test the performance
of models. WR1 refers to the wind regime of one-directional wind (from west to east)
and WR36 refers to the wind regime with wind coming from 36 directions, each with
three different speeds (Fig. 15); n refers to the number of turbine locations; and m
refers to the number of turbines.

Common parameters for the test instances, used in previous works (Mosetti et al.
1994; Grady et al. 2005), are: z = 60 m (turbine height), z0 = 0.3 m (ground rough-
ness), r0 = 20 m (turbine rotor radius), and the wind farm is a flat, square terrain of
size 2km by 2km (10 by 10 and 20 by 20 grids). For the noise-constrained models, we
partition the land into 25 (5 by 5) equal-sized squares, each belonging to a landowner.
There is one receptor for each land piece, located in the center of that region. Since the
SOM models evaluate the power production by sum-of-squares (Eq. 3) and the LSOM
evaluation is based on linear superposition (Eq. 5), the four models are not directly
comparable. We, therefore, compare the solution quality in Table 1 by a posteriori re-
evaluating the LSOM solutions based on the (more accurate) sum-of-squares method.
The power production values in brackets indicate the objective function value of the
LSOM solutions. The LSOM noise and SOM noise models are compared based on
the sum-of-square energy evaluations.

Results

Table 1 summarizes the performance of the four models (without noise constraints)
by comparing the expected power and solution times. The MIP optimality gaps are
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included where applicable. Columns n and k represent the total numbers of cells and
turbines. For LSOM1 and LSOM2, there are two power values: the power calculated
with the sum-of-squares wake model and, in parentheses, the objective function value
based on linear superposition model. Overall, LSOM2 outperforms the other models in
most cases in terms of solution quality. SOM3 and LSOM2 can solve problem instances
with high grid resolution and high wind data resolution (WR36-400-m), while the other
two models cannot even initialize these instances within an hour due to the size of the
model. Interestingly, although the LSOM models use less accurate wake models, they
yield better solutions (within the 1-h time limit) when evaluated with the more accurate
sum-of-squares evaluations. This observation empirically shows that although LSOM
optimality solutions should be worse than the SOM optimal solutions, the less accurate
wake model of LSOM is actually a reasonably proxy when the experiments are run
under the 1-h time limit.

SOM1 vs. SOM3

Table 1 shows that SOM3 solves more instances than SOM1. In the higher resolution
case (WR36-400), the SOM1 objective function expression must account for many
wind directions and turbine pairs leading to memory saturation during the model
creation phase and the inability to start search within an hour. SOM3 also performs
better in WR1 cases. We believe that the simpler turbine interactions for WR1 instances
are accurately captured by no-good and 3-cuts.

For a more detailed examination of these results, Figs. 16, 17 and 18 present the
evolution of solution quality over time for SOM1 and SOM3 for selected problem
instances. In the single-direction scenario (WR1), SOM3 consistently outperforms
SOM1. For the WR36 instances where SOM1 was able to run, SOM3 performs much
worse than SOM1 (Fig. 18). To understand these results, recall that SOM3 is a decom-
posed model where the improvement from iteration to iteration is based on cuts repre-
senting information of turbine interactions. In the WR1 cases, every cell has about 10
(20) upstream cells, because the wind farm resolution is 10 by 10 (20 by 20). During
the optimization, the better layouts often have turbines spaced out in the wind direc-
tion, thus the 3-cut, although only describing the interactions between a few turbines,
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Fig. 16 Single wind direction, 100 cells
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Fig. 18 Thirty-six wind directions, 100 cells

already contains enough information for the master problem to make good decisions.
However, in the WR36 cases, every turbine has k − 1 upstream turbines and the 3-cut
only expresses the impact of the most significant two upstream turbines. Therefore,
SOM3’s search for better objective value in WR36 instances is often stalled due to the
lack of effective cuts.

SOM3 also improves more slowly in the WR1-400-m instances (Fig. 17) than in the
WR1-100-m instances (Fig. 16). There are more combinations of three turbines in the
former instances and therefore more 3-cuts must be generated for the master problem
to improve its objective value. Eventually, SOM3 catches up with SOM1 because the
3-cuts describe the interactions of all turbines reasonably accurately.

LSOM1 vs. LSOM2

Table 1 shows that the power production calculated by linear superposition method
(in brackets) is always lower than or equal to the sum-of-squares calculation. For
some values of n and k, the problem cannot be solved to optimality within an hour,
while some other instances are solved in less than 10 s. Table 1 clearly shows that
LSOM2 outperforms LSOM1 in solution quality in all but one instance (WR1-400-40).
In the WR1-400-40 case, LSOM1 outperforms LSOM2 in terms of the revised power
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calculation, however, LSOM2 is “misled” by the objective function (in brackets).
Thus, if we compare the true optimization objective for LSOM1 and LSOM2, LSOM2
strictly dominates LSOM1 in solution quality. In terms of computation time, LSOM2
performs similarly to LSOM1 except the WR1-100-30 and WR1-100-40 instances.
A closer look at the CPLEX solution log reveals that LSOM2 arrived at the actual
optimal solution (proven by LSOM1) within a few seconds for both cases, but was
unable to quickly tighten the dual bound. As with the SOM1 model, the bigger cases
(WR36-400) cannot be solved by LSOM1 within 1 h because the CPLEX solver either
took a few hours to initialize or could not start at all.

Noise-constrained models

Table 2 shows the noise-constrained versions of the LSOM and SOM models. In
general, the relative performance of these models under the additional constraints did
not shift much. In WR36 cases, LSOM2 noise is the dominating model, solving all
WR36 instances to much higher objective values. In WR1 cases, the performance is
more even between SOM3 noise, LSOM1 noise, and LSOM2 noise. By comparing
Tables 1 and 2, we can see that the resolution of wind farm grid is much more important
in the noise-constrained case. With the same number of turbines and wind regime, the
increase of grid resolution can improve wind farm profit significantly, and in some
cases change the problem from infeasible to feasible. In the layouts presented in
Figs. 19, 20 and 21, we see that the main challenge in the low-resolution grid is to
occupy fewer sub-farms without violating the noise constraints. The inclusion of noise
constraints substantially changes the layout, especially when the turbine density is not
too high (Fig. 19). Therefore, for noise-regulated wind farm layout optimization, it is
important to include the dynamic noise constraints in the optimization model instead
of ignoring them and modifying the layouts later.

Discussion

Since the SOMs represent the first time that the most accurate analytical wake equa-
tions (Renkema 2007) are modeled with constraint programming and mixed integer
programming, there is much to learn about the performance and potential opportunities
for the SOMs. We describe several promising research directions. For SOM1, nonlin-
earity appears only in the objective function, thus we could apply nonlinear solvers
that are based on linear solvers [e.g., SCIP (Tobias Achterberg 2009)]. The SOM3
cuts capture information in two ways: no-good cuts capture interaction between all k
turbines in very specific layouts, while the 3-cuts capture information from a wider
range of layouts, but limited to the interaction among three turbines. We can poten-
tially apply the same idea of 3-cut and generate constraints that inform the master
problem more effectively, without having to generate too many of them (e.g., 4, 5-
cut). A straightforward hybridization would be the sequential application of SOM1
and SOM3, where we start the problem with low resolution (coarse grid) and progres-
sively increase it. In this case, we could solve SOM1 in the initial stages, utilizing the
constraint propagation of CP solvers for the proximity constraints, and then solve the
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Fig. 19 WR36-400-20 LSOM2 (left) and LSOM2 noise (right) layouts. Landowner properties are separated
by dashed lines

Fig. 20 WR36-400-30 LSOM2 (left) and LSOM2 noise (right) layouts. Landowner properties are separated
by dashed lines

problem with SOM3 in the later stages while fine-tuning the turbine positions, utilizing
the fact that this fine-tuning focuses on clusters of closely located turbines and that
such information can be effectively captured by 3-cut (or 4, 5-cut). It is interesting
to observe that although the LSOMs employ less accurate power models (i.e., their
optimal solutions are not the same as the optimal solutions of SOM), LSOMs still
produce good solutions when benchmarked by the more accurate power calculations.
We plan to explore this in more detail once the SOMs are improved.

Conclusion

We have constructed a decomposition model (SOM3) in order to outsource the energy
evaluation of a layout to a subproblem, so that the master problem can remain as a
MIP while the subproblem can take on any form—from nonlinear equations for wake
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Fig. 21 WR36-400-40 LSOM2 (left) and LSOM2 noise (right) layouts. Landowner properties are separated
by dashed lines

superposition to computational fluid dynamics simulation that can capture the flow
of the field in more details. The current paper focuses on the validity of the SOM3
model with a set of simple nonlinear equations for the wake superposition. Future
extension of SOM3 includes the alteration of the subproblem into a simulation-type
evaluation. We proposed two models to incorporate the nonlinearity in the super-
position of wakes according to the existing literature. The first model (SOM1) is a
direct formulation of the problem in constraint programming. While having promis-
ing performance under complex wind scenarios, the major drawback of this approach
is the “curse of dimensionality”—the growth of the numbers of variables and terms
quickly exceeds reasonable computational capacity. A second decomposed MIP model
(SOM3) performs well in the simple wind regimes, because no-good and 3-cuts can
accurately describe the turbine interactions. However, with more complicated wind
regimes, SOM3 is unable to improve its early feasible solutions due to the weakness of
the current cuts. We also presented a novel extension of an existing LSOM model. The
LSOM models are based on a less accurate model of power productions, thus having
different objective functions than the SOMs. However, the models can be solved more
quickly and achieve high-quality solutions when a posteriori evaluated with the more
accurate sum-of-squares power calculation.

In summary, we have presented two new models for the wind farm layout opti-
mization problem. We also included noise constraints and landowner decisions in a
profit-maximization version of the models, to account for the environmental and social
impact of wind farms. To our best knowledge, this is the first work dealing with the
on/off links between the landowner participation and noise limit levels. These CP and
MIP models are the first mathematical programming models that capture the wind
turbine interactions by modeling the sum-of-squares equations—the most accurate
analytical multi-wake modeling in the literature (Renkema 2007). We also presented
an extension (LSOM2) to a previous MIP model (LSOM1) and demonstrated improved
solution quality and time. Based on the experimental study, we think that the most
promising directions for future work include the strengthening of cuts for SOM3 and
hybridization of SOM1 and SOM3.
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