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Abstract A particularly difficult class of scheduling and routing problems involves
an objective that is a sum of time-varying action costs, which increases the size and
complexity of such problems. Solve-and-improve approaches, which find an initial
solution for a simplified model and improve it using a cost function, and mixed integer
programming (MIP) are often used for solving such problems. However, constraint
programming (CP), particularly with lazy clause generation (LCG), has been found
to be faster than MIP for some scheduling problems with time-varying action costs.
In this paper, we compare CP and LCG against a solve-and-improve approach for
two recently introduced problems in the area of maritime logistics with time-varying
action costs: the liner shipping fleet repositioning problem (LSFRP) and the bulk port
cargo throughput optimisation problem (BPCTOP). We present a novel CP model for
the LSFRP, which is faster than all previous methods and outperforms a simplified
automated planning model without time-varying costs. We show that a LCG solver is
faster for solving the BPCTOP than a standard finite domain CP solver with a simplified
model. We find that CP and LCG are effective methods for solving problems with
time-dependent task costs and are worth investigating for other scheduling and routing
problems that are currently being solved using MIP or solve-and-improve approaches,
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even when customized global constraints are not available. We also investigate a novel
approach to solving the BPCTOP—converting the problem into a vehicle routing
problem (VRP) and solving using an existing VRP solver.

Keywords Constraint programming - Scheduling - Routing - Maritime logistics

Mathematics Subject Classification 90B06

Introduction

Scheduling problems typically aim to select times for a set of tasks so as to opti-
mise some cost or value function, subject to problem-specific constraints. Traditional
scheduling problems usually aim to minimise the makespan, or total time, of the result-
ing schedule. More complex objective functions, such as minimising the total weighted
tardiness, may vary with time (Smith 2005). Routing problems have many similari-
ties with scheduling—both may have resource constraints and setup time constraints,
both have actions that need to be scheduled in time, and both may have complex
time-dependent cost functions for actions.

In anumber of important, real-world scheduling problems, such as the liner shipping
fleet repositioning problem (LSFRP) (Tierney and Jensen 2012; Tierney et al. 2012b)
and the bulk port cargo throughput optimisation problem (BPCTOP) (Kelareva et al.
2012a,c), the objective is a sum of time-varying costs or values for each task. Additional
problems include net present value maximization in project scheduling (Russell 1970);
satellite imaging scheduling (Lin et al. 2005; Wolfe and Sorensen 2000); vehicle
routing with soft time windows (Sexton and Choi 1985; Figliozzi 2012); ship routing
and scheduling with soft time windows (Fagerholt 2001; Christiansen and Fagerholt
2002); and ship speed optimisation (Fagerholt et al. 2010; Norstad et al. 2011).

Mixed integer programming (MIP) is a standard approach used to solve many
scheduling and routing problems. Solve-and-improve approaches are also commonly
used to solve scheduling and routing problems with complex constraints or complex
objective functions, such as objective functions that are the sum of time-dependent
task costs. Solve-and-improve approaches initially solve a simplified problem, then
improve the solution using the objective function and constraints of the full problem.

However, for some problems, such as the BPCTOP (Kelareva et al. 2012a), Con-
straint programming (CP) (see, e.g., Rossi et al. 2006) has been shown to be more
effective than using a MIP. CP is also a very flexible method that can be used to
model a wider variety of constraints than MIP, which is limited to linear constraints. A
number of recent approaches have combined CP with other techniques such as large
neighbourhood search for vehicle routing (Kilby and Verden 2011), SAT (Ohrimenko
et al. 2009) and MIP (Achterberg 2009) to combine the flexibility of CP with fast
algorithms for specific problems. CP approaches may be worth investigating for other
problems that have traditionally been modelled with MIP. One CP technique in partic-
ular which has been found to be effective on a number of scheduling problems is lazy
clause generation (LCG) (Ohrimenko et al. 2009)—a method for solving CP problems
which allows the solver to learn where the previous search failed. A CP solver that
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uses LCG was found by Schutt et al. (2012) to be more efficient than traditional finite
domain CP solvers for a number of scheduling problems (Schutt et al. 2012; Feydy
and Stuckey 2009).

When faced with a new problem with time-dependent task costs, or when trying
to add such costs to an existing problem, it is not clear which approaches will yield
good results. In this paper, we try to provide guidance for researchers and practitioners
dealing with problems with such costs. We do this through an investigation of several
key problems in the literature and the introduction of models for two maritime trans-
portation problems. To this end, this paper contains the following novel components:
(1) a review of methods for solving problems with time-dependent task costs, (2) a
CP model of the LSFRP that outperforms all previous approaches, (3) a comparison
of LCG and solve-and-improve approaches on the LSFRP, (4) a solve-and-improve
approach for the BPCTOP, (5) and a vehicle routing based modelling of the BPCTOP
that finds high-quality solutions even on large BPCTOP instances. We note that this
article is an expanded version of the conference paper by Kelareva et al. (2013).

In “Background”, we review a number of scheduling and routing problems with
time-varying action costs, present a summary of problem characteristics and solution
approaches, and discuss techniques that may be generalisable between applications,
and problems that may benefit from being extended with time-varying action costs.

In the rest of this paper, we adapt several techniques from other applications to
two recent scheduling and routing problems with time-varying action costs in the
field of maritime transportation. The main contribution of this paper is to compare
the effectiveness of CP and LCG against traditional MIP and solve-and-improve tech-
niques for the BPCTOP and LSFRP. “BPCTOP” presents a summary of earlier work
on the BPCTOP, including CP and MIP models, as well as a VRP formulation. We
compare these models against the new techniques presented in this paper. “LSFRP”
summarises earlier work on the LSFRP, including a MIP model and an automated
planning approach. This section also presents a novel CP model for the LSFRP and
shows that this model is faster than existing approaches. In “Lazy clause generation”,
we show that a CP solver with LCG is more effective at solving both the BPCTOP
and LSFRP than a traditional finite domain CP solver. In “Solve-and-improve”, we
describe solve-and-improve approaches for the LSFRP and BPCTOP that simplify the
time-varying cost function to find an initial solution. Finally, in “Summary”’, we solve
our BPCTOP VRP model using an existing VRP solver, obtaining solutions much
more quickly than any previous method, but at the expense of solution optimality.

Background

This section presents a review of a number of scheduling and routing problems with
time-dependent action costs, as well as approaches that have been used to solve these
problems. A variety of optimal techniques exist for solving routing and scheduling
problems, but it is often unclear which technique will offer the best results given a
problem with time-dependent task costs. Our goal is to give a detailed overview of the
approaches that are available in the literature before we investigate several of these
methods in further detail in the rest of this paper. In doing so, we hope to provide some
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intuition into which methods perform best on different types of time-dependent task
cost problems.

We note that there are other problems where time-dependent task costs are present,
e.g., optimization of electricity usage whether in the home (e.g., Agnetis et al. 2013)
or in a data center (e.g., Rao et al. 2010). We have selected several key problems where
a variety of solution methods have been proposed. We use this information to try to
draw conclusions on which directions seem to be the most promising.

Satellite imaging scheduling

One scheduling problem with time-dependent quality functions for each action is the
problem of satellite imaging scheduling, where the goal is to schedule a set of obser-
vations of an Earth observing satellite. Each observation may only be performed for
a specified period of time during the satellite’s orbit, and the quality of the observa-
tion drops off to zero for times before and after the peak quality window (Wolfe and
Sorensen 2000). A satellite scheduling problem also includes resource constraints,
as each satellite can only perform one observation at a time, and sequence-dependent
setup times, as different observations may require different orientations of the satellite.

Satellite scheduling approaches handle the time-varying image quality objective in
a number of ways. One approach used by Yao et al. (2010) and Wang et al. (2007)
is to simplify the image quality function by converting it to hard time windows when
a “good enough” image could be obtained. This simplifies the problem significantly,
but does not account for the fact that images scheduled closer to the centre of the time
window will be of higher quality.

Another approach presented by Lin et al. (2005) is to first find a feasible solution by
decomposing the problem into independent subproblems using Lagrangian relaxation
and then to use heuristics to improve the solution quality by minor changes in the
schedule. This approach is suboptimal, but produces better quality solutions than just
using feasible time windows, with solutions being within 2 % of optimality.

The quality functions in satellite imaging scheduling may be further complicated by
the fact that it is possible to partially satisfy an imaging request, by taking images that
cover only a portion of the requested area. The possibility of partial rewards is handled
by an objective function which gives the highest weighting to complete requests and
only a low weighting to partial requests (Lemaitre et al. 2002; Lin et al. 2005).

Wolfe and Sorensen (2000) compared three algorithms for satellite imaging
scheduling with time-dependent task quality functions: priority dispatch, look ahead,
and genetic algorithms (GA). The priority dispatch approach also used a solve-and-
improve method, first building a schedule by allocating jobs in order of priority, then
improving the schedule by adjusting job start and end times using a hill-climbing
search to improve schedule quality. The look ahead algorithm produced a 12 % aver-
age improvement in schedule quality over the priority dispatch algorithm, by using
the quality function earlier in the process, to allocate jobs immediately to the peak of
their quality window, rather than using the quality function only to improve the initial
schedule. The GA approach produced further improvements in schedule quality, but
at the expense of a significant reduction in speed.
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Simplifying the quality function to hard time windows is the simplest and most
efficient approach for decreasing the solution time, but does not account for quality
at all. Improving the quality with small local changes to the schedule can produce
schedules that are within 2% of optimality, with only a small time cost (Lin et al.
2005). More complex quality optimisation approaches produce better schedules, but
with increasingly slower calculation times (Wolfe and Sorensen 2000) and an approach
that finds an exact optimal solution would introduce a much larger time cost.

Optimal approaches may be worthwhile for problems where even a small deviation
from the optimum has a significant impact, such as bulk port cargo throughput optimi-
sation (Kelareva et al. 2012a), but close-to-optimal approaches such as that presented
by Lin et al. (2005) suffice for applications such as satellite scheduling where a small
deviation from the optimum has less impact.

Project scheduling with net present value

Another scheduling problem with time-dependent action costs is the problem of max-
imising the net present value (discounted cash flow) in project scheduling, first intro-
duced by in Russell (1970). In standard project scheduling, the objective is usually
to minimise makespan (total time). For the alternative objective of maximising net
present value, each activity has an associated positive or negative cash flow, which is
discounted over time according to a given discount rate.

Project scheduling may also include resource constraints and precedence constraints
between actions. The objective function component for each action is monotonic,
unlike the satellite scheduling image quality function, which has a plateau of peak
quality, and drops off before and after.

The problem of maximising net present value in project scheduling without resource
constraints can be solved in polynomial time by transforming to a linear program
(Grinold 1972). However, the resource-constrained project scheduling problem with
net present value (RCPSPNPV) is NP-complete.

The RCPSPNPV can be solved by relaxing the problem to remove resource con-
straints and using the resource-unconstrained solution as an upper bound in the search.
A review of both the resource-constrained and unconstrained max-nvp problem is pre-
sented by Vanhoucke et al. (1999).

Vanhoucke et al. (2001) solved the RCPSPNPV using a depth-first branch-and-
bound algorithm with the resource-unconstrained solution as the upper bound. The
search algorithm scheduled positive-cashflow activities as early as possible in the
process, and negative-cashflow activities as late as possible, thus focussing the search
on good quality solutions.

Another technique that has been used to solve this problem is CP with lazy clause
generation (LCG) (Ohrimenko et al. 2009), which combines constraint programming
with learning nogoods from failed search results. LCG was found by (Schutt et al. 2012)
to be more efficient at solving this problem than basic constraint programming. CP and
LCG are very general approaches that can be used for any constrained optimisation
problem, which makes CP and LCG promising candidates for generalising to other
scheduling or routing problems with time-varying task costs.
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Bulk port cargo throughput optimisation with time-varying draft

A recently introduced maritime scheduling problem with time-dependent action values
is the bulk port cargo throughput optimisation problem (BPCTOP) with time-varying
draft restrictions. Many ports have safety restrictions on the draft (distance between
waterline and keel) of ships sailing through the port. At most ports, these restrictions
vary with the height of the tide, as well as with other environmental conditions. Most
maritime scheduling problems either ignore draft constraints entirely (Fagerholt 2004),
or do not consider time variation in draft restrictions (Rakke et al. 2011; Song and
Furman 2010). This simplifies the problem and improves scalability, but may miss
solutions which allow ships to sail with higher draft (and thus more cargo) close to
high tide.

Introducing time-varying draft restrictions requires a problem to be modelled with a
very fine time resolution, as the draft can change every 5 min. This greatly increases the
size of the problem, so time-varying draft restrictions have thus far only been applied
to the problem of optimising cargo throughput at a single bulk export port—the bulk
port cargo throughput optimisation problem (BPCTOP). The objective function for the
BPCTOP with time-varying draft restrictions is the sum of maximum drafts for each
ship at their scheduled sailing times. The shape of the objective function is similar to
satellite image scheduling, as the maximum draft for each ship peaks around high tide
and drops off before and after. The BPCTOP also includes resource constraints on the
availability of tugs, berths or shipping channels, and sequence-dependent setup times
between successive ships.

Approaches for dealing with the time-varying quality function in the BPCTOP are
similar to satellite scheduling—traditional ship scheduling problems with constant
draft are similar to satellite scheduling with time windows of “good enough” quality,
whereas optimisation with time-varying draft is similar to the approach of optimising
a weighted sum of time-varying satellite images qualities used by Lin et al. (2005).

As with satellite scheduling, ship scheduling involves a tradeoff between solution
quality and scalability. Traditional ship scheduling techniques with constant draft are
the most scalable, but do not consider time variation in the allowable amount of cargo.

Ship scheduling with time windows, such as the approaches presented by Chris-
tiansen and Fagerholt (2002), Fagerholt (2001) could be used to consider time windows
of “good enough” draft, at the cost of increased complexity. This would allow ships
to be scheduled even if they cannot sail at all phases of the tidal cycle. However, this
approach would still produce schedules with less than the maximum loading for ships
that are large enough to be able to load extra cargo to the peak of the tide. Optimal
approaches, such as those discussed by Kelareva et al. (2012a), produce higher quality
schedules, but are significantly more complex and less scalable to large problems.

Kelareva et al. (2012a) compared CP and MIP approaches for the BPCTOP and
found that CP with a good choice of search strategy was able to find optimal solutions
faster than MIP and was also able to solve problems with more ships. These approaches
also produced significantly better solutions compared to human schedulers (Kelareva
etal. 2012c). Each extra centimetre of draft can increase profit for the shipper by up to
$10,000 (Kelareva et al. 2012a), so there is a high incentive to find optimal solutions,
and non-optimal approaches for this problem have not yet been investigated.
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Liner shipping fleet repositioning

Another recently introduced scheduling and routing problem with time-varying action
costs in maritime transportation is the Liner Shipping Fleet Repositioning Problem
(LSFRP) Tierney et al. (2012b). The LSFRP concerns itself with the repositioning of
container ships in a liner shipping network when routes in the network are added or
changed. We describe the LSFRP in detail in “LSFRP”.

The LSFRP is a relatively new problem to the optimisation community, having
not been mentioned in any of the most comprehensive surveys of maritime research
(Christiansen et al. 2004, 2007, 2013).

The LSFRP was first solved by Tierney et al. (2012b), who compared two planning
approaches and a MIP model for solving the problem. First, the LSFRP was modelled
using PDDL 2.1, a modelling language for automated planning problems (see Fox and
Long 2003) and solved using the POPF planner (Coles et al. 2010). Although POPF found
solutions, it could not solve the LSFRP to optimality. The authors further introduced
a MIP based on an activity-flow approach, in which the various activities that can be
undertaken by vessels are modelled as nodes, and arcs represent which activities can be
ordered after one another. The authors then introduced linear temporal optimisation
planning (LTOP), which uses temporal planning to build optimisation models and
solves these using an optimisation version of partial-order planning based on branch-
and-bound. LTOP outperformed both the traditional planning approach and the MIP
on a limited dataset of instances.

Both LTOP and MIP were able to find optimal solutions for problem sizes with up
to three ships. These are realistic problem sizes similar to those used by shipping lines.
As with the BPCTOP, there is a high motivation to find the optimal solutions, even if
solving the problem to optimality is more difficult, since the cost of repositioning a
single ship can be hundreds of thousands of dollars (Tierney et al. 2012b).

Tierney and Jensen (2012, 2013) and Tierney (2013) solve a version of the LSFRP
including cargo flows, which the version we address in this paper lacks. In these two
papers, the authors sacrifice the flexibility of choosing amongst several phase-in and
phase-out opportunities to lower the overall problem size enough to include cargo
flows. Therefore, the problem we address in this work is an equally important, parallel
problem to the LSFRP with cargo flows. We note that the version of the LSFRP
presented in this work is based on activities that avoid disrupting cargo flows, even
though they are not taken explicitly into account.

Ship scheduling with soft time windows

Other ship scheduling and routing problems have also involved time-varying action
costs. Fagerholt (2000, 2001) modelled a ship routing and scheduling problem as a
multi-port pickup-and-delivery problem with soft time windows. Soft time window
penalties were used to find better schedules with lower shipping costs by allowing
deliveries outside a customer’s preferred time window. Different penalty functions
for deliveries outside the preferred window were compared, which could be used for
different situations, e.g., when a customer gets a fixed discount for a delivery outside
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the preferred time, or where the discount depends on the lateness of the delivery. This
problem was inspired by similar approaches to vehicle routing with soft time windows,
which were found to produce better schedules by allowing controlled violation of
delivery time windows. This problem was solved by generating feasible shipping
routes, then generating possible schedules (with corresponding costs) for each route,
and finally using the schedules as input to a set partitioning problem. This approach
resulted in a 15 % reduction in shipping costs by shipping 12 % of cargo outside the
preferred delivery times (Fagerholt 2000).

Another ship scheduling problem with time-dependent action costs was presented
by Christiansen and Fagerholt (2002), who considered penalties for ships arriving at
port close to weekends, to avoid the risk of long delays caused by some ports closing
on weekends. This problem included multiple soft time windows—a situation rarely
explored in the literature, with the exception of a few vehicle routing problems. The
penalty function peaked before weekends and dropped to O at the start of each week.
The objective function was a weighted sum of the transportation costs and the penalty
costs for “risky” arrival times. This problem was also solved using a set partitioning
approach.

Another type of ship scheduling and routing problem with time-dependent action
costs is the problem of ship routing and scheduling with speed optimisation, investi-
gated by Norstad et al. (2011). The cost function for each ship sailing is monotonic
and increases with sailing speed, similarly to the LSFRP. This problem is solved by
discretising ship arrival times at each port, generating feasible solutions, and itera-
tively improving them using local search. Problems for a single shipping route were
solved successfully, and significant profit increases were found due to ships being able
to carry extra cargoes by sailing faster, or use less fuel by sailing slower.

Vehicle routing with soft time windows

Time-varying action costs are also often found in the domain of vehicle routing, par-
ticularly in the vehicle routing problem with soft time windows (VRPSTW), which
includes penalties for early and late arrival outside each customer’s preferred time
window. In vehicle routing, time windows allow the modelling of real-world con-
straints on delivery deadlines. However, hard time windows often result in tightly
constrained problems which require a larger fleet of vehicles to meet deadlines. Soft
time windows allow better utilisation of vehicles, thus reducing transportation costs,
while still servicing most customers within their preferred time windows. However,
soft time windows result in a more complex objective function, making the problem
significantly more difficult to solve (Qureshi et al. 2009).

Some VRPSTW approaches optimise first for the number of vehicles (routes), then
for minimal travel time and distance, and then for minimal cost only as a final objective
with time window penalties included (Figliozzi 2012). Others optimise for a combined
weighted objective that includes all of the above costs (Qureshi et al. 2009; Fan et al.
2011). Some VRPSTW approaches include penalties for both late and early arrival
(Figliozzi 2010; Fan et al. 2011), whereas others only include penalties for lateness,
with no penalties for arriving early (Qureshi et al. 2009).
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Figliozzi (2010) solved the VRPSTW using an iterative route construction and
improvement algorithm. First, a set of feasible routes are constructed sequentially by
adding unrouted customers to partial solutions; then the initial routes are improved
iteratively. The first improvement step aims to reduce fleet size and routing costs
by merging routes with underutilised vehicles. The second route improvement step
aims to reduce total route duration and time window penalties by improving customer
service times.

While this method is not optimal, it resulted in improved solutions for a number
of VRPSTW benchmarks and showed a clear trade-off between solution quality and
calculation time. This approach was further extended by Figliozzi (2012) to be able
to take into account time-dependent travel times, which result in much more complex
constraints between tasks.

Qureshi et al. (2009) investigated an exact solution approach for the VRPSTW
based on column generation and compared results of different levels of time window
relaxation against solutions with hard time windows. Penalties were only applied for
late arrival, not for early arrival, leading to monotonic cost functions for each task.

Kilby and Verden (2011) investigated an approach to vehicle routing that combined
large neighbourhood search (Shaw 1997) with CP. Their Indigo vehicle routing solver
not only implements some constraints natively, for faster calculation, but also integrates
with a CP solver to allow flexible side constraints such as a “blood bank™ constraint
requiring that deliveries be made within 20 min of pickup. Indigo implements time
window constraints natively and can consider soft time windows with linear early
and late penalties. The CP system uses backtracking search with Indigo acting as the
variable/value choice heuristic: if a variable/value assignment made by Indigo leads
to a CP constraint being violated, this information gets propagated back to Indigo, to
prevent the Large Neighbourhood Search from making the same assignment in future.
The Large Neighbourhood Search destroys part of the solution in each iteration and
uses insertion heuristics to repair the partial solution.

The VRPSTW has received more attention in the literature than other problems
with time-varying costs, so a number of efficient VRP solvers exist that can handle
soft time windows. As a result, one of the new approaches we investigate in this paper
is modelling a problem with time-varying costs as a VRPSTW to see if VRP solvers
can be used to efficiently solve scheduling problems in other fields.

Summary

Each of the problems we reviewed in this section involves time-dependent action
costs; however, other constraints as well as the shapes of these objective functions vary
between problems. Most problem types include resource constraints and setup times
between tasks; however, not all problems include sequence-dependent setup times.
Some problems such as ship scheduling and vehicle routing also include optional
tasks, whereas for other problems such as project scheduling, the set of tasks is fixed.
Finally, some of the problems also include routing constraints. Table 1 summarises
additional constraints and objective function shapes for problems reviewed in this

paper.
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Some approaches to dealing with time-dependent action costs, such as (Rakke
et al. 2011), involve simplifying the objective function by modelling it as constant
over time or by reducing the time-varying action costs to hard “good enough” time
windows (Yao et al. 2010). However, in this paper, we will focus on approaches that
do consider time-dependent objectives, whether by optimising for the time-varying
objective directly, such as Kelareva et al.’s (2012b) solution to the bulk cargo port
throughput optimisation problem or by solving a simplified constant-time problem
initially and then improving the solution with respect to the time-varying objective,
such as Lin et al.’s (2005) approach to satellite imaging scheduling.

The choice of an appropriate algorithm needs to be informed by how important
it is to get a good quality solution for the given application. In optimising the cargo
throughput for a bulk export port, problem sizes are small—there may only be up to
10 ships sailing on a tide—but solution quality is very important, as every centimetre
of extra draft for a ship results in a $10,000 increase in profit (Kelareva et al. 2012b).
In the LSFRP, varying the speed of a single vessel can result in savings of tens or even
hundreds of thousands of dollars. In satellite image scheduling, however, problems
sizes may be very large with thousands of tasks to be scheduled (Wolfe and Sorensen
2000), but the consequences of a suboptimal solution may be less expensive, so a
method that produces solutions within 2 % of optimality such as that presented by Lin
et al. (2005) is sufficient.

We conclude from our overview of the literature that time-dependent task costs can
often be tackled directly without being simplified or abstracted out of the problem.
Such models can provide practitioners with more accurate decision support over dis-
cretised or otherwise simplified approaches. In particular, we note the effectiveness of
constraint programming approaches for solving such problems, even in the absence
of customized propagators, a theme we will further explore in this work.

As there are many similarities between scheduling and routing problems involving
cost functions that are a sum of time-varying task costs, some techniques may be
generalisable from one problem type to others. In the next three sections, we discuss
techniques that have been successfully used for one of the problem types discussed
in this section that may be generalisable to other problems and apply these technique
to ship scheduling with time-varying draft constraints and to the liner shipping fleet
repositioning problem.

In particular, we present comparisons of CP versus MIP models for both the BPC-
TOP and LSFRP; we compare a CP solver with lazy clause generation (LCG) against
a traditional finite domain solver for both problems; we present simplified models
without time-varying costs and investigate the speedup obtained by removing these
costs for both problems; and we model the BPCTOP as a vehicle routing problem, to
investigate the effectiveness of state-of-the-art VRP solvers for scheduling problems
in related fields.

BPCTOP

Kelarevaetal. (2012a) presented CP and MIP models for the bulk port cargo throughput
optimisation problem (BPCTOP) and found that CP with a good choice of search
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strategy was much faster than MIP. However, the CP model solution time was highly
dependent on the choice of modelling approach and search strategy used—a number
of different modelling approaches and search strategies were investigated in (Kelareva
et al. 2012a,c). This section briefly summarises the results presented in (Kelareva et
al. 2012a,c), which are then compared against new approaches for the BPCTOP in the
rest of the paper.

Bulk port cargo throughput optimisation

The allowable sailing times for a ship arriving or departing a port depend on the draft
and other dimensions of the ship, the times when other ships are scheduled to sail, and
a complex set of factors affecting the under-keel clearance (amount of water under the
ship’s keel). Factors affecting under-keel clearance include the tide, waves, currents,
and wind; other environmental conditions such as water salinity may also need to
be taken into account at some ports. O’Brien (2002) presents a detailed analysis of
under-keel clearance calculation at a port; however, for the purposes of this paper, we
simplify these calculations down to a function that specifies the maximum allowable
sailing draft for each ship at a range of discretised times.

Ports may also have safety restrictions on the minimum separation times between
ships, as ships sailing too close together in a narrow channel may pose a safety risk.
Minimum separation times between ships may also depend on which berths the ships
sail from and the order in which they sail. If a ship departing from a berth at the
back of the port sails first, a second ship sailing from a berth close to the channel
exit will have to wait for it to pass. If the ships sail in the opposite order, however,
they may be far enough apart at their starting locations to be able to start sailing
simultaneously.

Some ports may also have resource constraints on the availability of tugs—small
boats used to assist large ships in entering and leaving a port. At Port Hedland, tugs
are required to assist every ship over a given size, which includes all draft-restricted
ships. When there are many ships sailing on a single tide, the number of tugs available
may form a bottleneck in the ship scheduling problem, so tug constraints need to be
included in the model.

Tug constraints are complex and depend on the order in which ships sail, the origins
and destinations of successive ships, and the safety rules in place at the port specifying
the number of tugs required for each type of ship. Kelareva et al. (2012a) investigated
several ways of modelling the tug constraints, and the best approach found in Kelareva
et al. (2012a) is summarised here.

Our approach to modelling tugs uses features of the problem to split the tug con-
straints into four scenarios, each of which can be considered separately. The port is
assumed to have one channel, which ships can traverse in only one direction at a time,
inbound or outbound—the channel is not wide enough for ships travelling in different
directions to pass each other safely. The berths are close together compared to the
length of the channel, so the travel time for tugs assisting a ship moving from sea to
berth can be considered to be independent of the location of the berth. (Note: the tug
travel time we allow for in our scheduling problem must in any case be conservative
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enough to ensure tugs do not end up running late to a second ship after assisting their
first ship).

These assumptions are valid for Port Hedland, the port we considered in our case
study in Kelareva et al. (2012a), but for some ports worldwide this may not be the
case, so the BPCTOP model based on these assumptions may need to be extended to
be usable at these ports.

These assumptions enable us to split the ship schedule into four scenarios—a
sequence of outbound ships, a sequence of inbound ships, an inbound ship followed by
an outbound ship, or an outbound ship followed by an inbound ship. The tug constraints
can consider each scenario independently, as only one scenario can be occurring at
any given time in the schedule. This greatly simplifies the tug constraints compared to
any approach investigated in Kelareva et al. (2012a) that considers all four scenarios
at once and allows realistic sized problems to be solved to optimality. Both the CP and
MIP model presented below use this method of modelling tug constraints.

CP model for BPCTOP

Let V be the set of vessels to be scheduled. Let [1, Tihax] be the range of discretised
time indices. Each vessel v has an earliest departure time E (v), a maximum allowable
draft D(v, t) at each time 7, and a tonnage per centimetre of draft C(v). ST (v;, v;)
specifies the minimum separation time between the sailing times of every ordered pair
of ships v;, v; € V.

Let B be the set of pairs of incoming and outgoing ships B;(b) and B, (b) indexed
by b that use the same berth. For every such pair of ships, d(b) is the minimum delay
between their sailing times.

The binary decision variable s(v) specifies whether ship v is included in the sched-
ule. Let7(v) € [1, Tmax] be the decision variable specifying the scheduled sailing time
for vessel v. The binary variable sb(v;, v;)—SailsBefore(v;, v;)—is true iff vessel v;
sails earlier than vessel v}, defined by Eq. (1).

sb(vi,vj) =1 < (t(v;) <t(vj) Asbwj,v;)) =0), Y, v;eViv #v; (1)

Let Unax be the number of tugs available at the port. Let 7 and O be the sets of
incoming and outgoing ships. G (v) is the number of groups of tugs required for ship
v, and H (v, g) is the number of tugs in group g of vessel v. Gpax is the maximum
number of groups of tugs required for any ship.

R(v, g) is the “turnaround time”, the time taken for tugs in group g of ship v
to become available for another ship in the same direction (incoming versus outgo-
ing). X (v;, v;) is the extra time required for tugs from incoming vessel v; to become
available for outgoing vessel v,.

u(v, t, g) is adependent variable that specifies the number of tugs busy in tug group
g of vessel v at time ¢, assuming the next ship for these tugs is in the same direction.
x (v, t) defines the number of extra tugs that are busy at time ¢ for an outgoing vessel
v, due to still being in transit from the destination of an earlier incoming ship. Finally,
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I(v, t) specifies that the extra tug delay time for incoming vessel v overlaps with the
sailing time of an outbound vessel at time ¢.

Parameters The following tables summarise the parameters and variables used in
our CP model for easy reference. The model uses the following parameters:

Vv

[1, Tmax]
E(v)

D(v, 1)
C(v)

ST (vi,vj)
B

B;(b), Bo(b)
L)
Umax

o

G(v)
H(v,g)
Gmax

R(v, 8)

X(vi,vj)

Set of vessels

Range of discretised time indices

Earliest departure time for vessel v € V

Maximum allowable draft for vessel v € V at time ¢

Tonnage per centimetre of draft for vessel v € V

Minimum separation time between vessels v;, v; € V

Set of pairs of incoming and outgoing ships using the same berth
Incoming and outgoing ships in pair b € B

Minimum delay between the sailing times of vessels B; (b), B, (b) forb € B
Number of tugs available

Set of outgoing ships

Number of groups of tugs required for vessel v € V

Number of tugs in group g of vessel v

Maximum number of groups of tugs required for any vessel v € V/

“Turnaround time”—the time taken for tugs in group g of vessel v € V to become
available for another ship in the same direction (incoming versus outgoing)

Extra time required for tugs from incoming vessel v; € I to become available for
outgoing vessel v, € O

Variables The variables used in the model are as follows:

s(v)

ty € [1, Tmax]
sb(v,-, Uj)
u(v,t, g)
x(v,t)

(v, 1)

Binary variable specifying whether vessel v € V is included in the schedule
The scheduled sailing time for vessel v € V/
SailsBefore(v;, vj)—true iff vessel v; sails before vessel v, where v, vj € V

Number of tugs busy in tug group g of vessel v € V at time ¢, assuming the next ship
for these tugs is in the same direction

Number of extra tugs busy at time ¢ for an outgoing vessel v € O, due to still being in
transit from the destination of an earlier incoming ship

Binary variable specifying that the extra tug delay time for incoming vessel v € 1
overlaps with the sailing time of an outbound vessel at time ¢

Objective and constraints The model uses the following objectives and constraints:
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sb(vi,v;) =0, Yv € Viu #v; 5)
s)=1 Asj)=1= (6)
(b, vj) =1=1t(v;) —t(v;)) > ST (v;,v;)), Yv;, v;eV

s)=1At>t, ANt <ty+ R, g = ul,t,g)=H(,g), (7)
VveV, tell, Thal, g €1, Gmax]

sW)=0ver<t,vt>t,+ R, g) = u(v,t,g) =0, (8)
v v E V7 t € [1’ Tmax]7 g € [17 Gmax]

x(vt)v t) = Ov V Vo € 09 re [17 Tmax] (9)

l(vi,t) &= Jv,€0 sit. (10)

t=1(o) ANt (v;) < (Vo)A

t(v;)) + max R(v;, g) + X(vi, vp) > 1(vo),
gel1.G(v)]

Vv el, t €[l, Tmaxl

x(vj. 1) = bool2int(l (v, 1)). D H(v;.g). (11
g€l1,G(vi)]
Vv el, t €ll, Tnaxl
DD u,t,8) < Unax, V1 €L, Tl (12)
vel geG(v)
D> o t, @)+ D x (i 1) < Unax, (13)
vo€0 geG(v,) viel

vVt €1, Tax]

The objective function (2) maximises total cargo throughput for the set of ships.
Constraint (3) specifies the earliest departure time for each vessel. Equation (4) ensures
that the berths for any incoming ships are empty before the ship arrives. Equation (5)
specifies that no ship sails before itself. Equation (6) ensures that there is sufficient
separation time between successive ships to meet port safety requirements.

Equations (7)—(13) specify that the total number of tugs in use at any time must be
no greater than the number of tugs available at the port, by splitting the tug constraints
into four independent scenarios. Equations (7) and (8) specify that the number of tugs
used by any one-directional sequence of ships (incoming/outgoing) at any time must
not exceed the number of tugs available. Equations (10) and (11) specify that any tugs
used for an incoming ship are not available for an outgoing ship until the extra delay
required for tugs to travel between berths has passed. Equation (9) specifies that there
is no extra delay needed for tugs moving from an outgoing ship to an incoming ship.
Finally, Egs. (12) and (13) specify that the total number of tugs in use at any time by
both incoming and outgoing ships must be no greater than the number of tugs available
at the port.
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The tug constraints for each scenario are similar to a cumulative constraint, and in
fact Eq. (12) ensuring that there are enough tugs for incoming ships can be represented
by a cumulative constraint. However, the constraints for ensuring sufficient tugs for
outgoing ships are more complex. In particular, if these constraints were to be rep-
resented by a cumulative constraint, the starting time and duration of each outgoing
ship task would depend on the starting times of all incoming ship tasks, thus making
the set of constraints much more complex than a standard cumulative constraint.

MIP model for BPCTOP

While the CP model was able to solve realistic size problems to optimality in a reason-
able time frame, we also implemented a mixed integer programming (MIP) model for
the BPCTOP, to investigate whether MIP or CP would scale better to larger problems.
The MIP model introduced in Kelareva et al. (2012a) is similar to the CP model, but
with non-linear constraints converted to linear forms.

Variables The MIP model uses the same parameters and variables as the CP model,
but adds the following additional variables:

s(v,t)  Binary variable which specifies whether vessel v € V is scheduled to sail at time ¢ € [1, Tnax]

ty Time slot when vessel v € V is scheduled to sail, given by Eq. (14)
= > s .t, YveV (14)
t€[1, Tmax]

Objective and constraints The objective function and Egs. (9), (12) and (13) are
unchanged from the CP model. Other CP constraints need to be converted to linear
form for the MIP model. Modified constraints are shown below.

> swn<l YveV (15)
t€[l, Tnax]
ty>EW), YveV (16)
t(B,(b)) < t(B;i(b)) — L(b) (17)
> sBob).ty= D s(Bi(b).1), VbeB
€1, Timax] €1, Tmax]
s(i, 1) + > s(j, 1) <1 (18)
t'e[t,min (Tmax,t+ST (v;,vj)—1)]
s(uj, 1)+ Z s(ui, ') <1

t'€[t,min (Tmax,1+ST (vj,v;)—1)]

Yo, vj € V, t €[1, Tmax]
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u(v,t,g) = H(@, g). Z s, t) (19)

t'e[max (1,t—R(v,g)+1),t]
YveV,tell, Tnxl, g€ll,Gmaxl

x(i. ) =1, 1). > H(.g) (20)
gell,G)]
Yovel, t ell, Thaxl
[(vi, 1) = s(vo, 1) + > s(i, 1) — 1 1)

Z/E[max(l,[*lrange);t”
Yviel, v, € O, t €1, Thax], where

Irange = I — X(i,v) — max (R(v;, g)) +1
g<€ll,G(vi)]

Equation (15) specifies that each ship can sail at most once in the time range.
Constraint (16) specifies the earliest departure time for each vessel. Equation (17)
ensures that the berths for any incoming ships are empty before the ship arrives.
Equation (18) ensures that there is sufficient separation time between successive ships
to meet port safety requirements.

Equations (19)—(21) describe the modified tug constraints. Equation (19) speci-
fies that the number of tugs used by any one-directional sequence of ships (incom-
ing/outgoing) at any time must not exceed the number of tugs available. Equations
(20) and (21) specify that any tugs used for an incoming ship are not available for
an outgoing ship until the extra delay required for tugs to travel between berths has
passed.

CP versus MIP

These models were formulated in MiniZinc 1.4 and solved with the G12 2.0 finite
domain CP solver (Nethercote et al. 2010, 2007) and MIP OSI CBC solver (Lougee-
Heimer 2003).

Kelareva et al. present a comparison of runtimes for both solvers, tested on a set
of problems with 4—13 ships sailing on a single tide, based on a fictional but realistic
port, similar to the SHIP_SCHEDULING data set used for the 2011 MiniZinc challenge
(University of Melbourne 2011). The CP model had significantly shorter runtimes than
the MIP model for all problems, and the CP solver was able to solve larger problem
sizes within the cutoff time for every problem type, with up to 4 more ships able to be
scheduled.

The G12 FD solver was able to solve problems with up to 6 ships for even the
most tightly constrained problems, where all ships are very large and can continue
loading extra cargo right up to the peak of the high tide, and with 10 or more ships for
less tightly constrained problems. These are realistic problem sizes—Port Hedland,
Australia’s largest bulk export port recently set a record of 5 draft-constrained ships
sailing on the same high tide (OMC International 2009).
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Conversion to vehicle routing

Of all scheduling and routing problems with time-varying task costs, the vehicle
routing problem with soft time windows (VRPSTW) is one of the most thoroughly
researched, comprising about 90 % of the literature on scheduling and routing prob-
lems with soft time windows. Since the vehicle routing domain has been investigated
more extensively than other scheduling and routing problems with time-varying task
costs, there are several fast, efficient solvers for the VRPSTW in existence.

Many scheduling problems, particularly those without complex side constraints,
can be modelled as a VRP, which brings us to the idea that for some scheduling
problems, converting them to VRPs and solving using an existing VRP solver may be
more efficient than using a generic CP or MIP solver.

The VRPSTW consists of a number of jobs that must be completed by a set of
vehicles.! Each job is located at a node in a graph and must be serviced within a given
time window, with early or late arrival at the job being penalized proportionally to the
time window violation. Jobs are additionally associated with a profit value that varies
depending on when the job is completed. Arcs connect graph nodes and have a fixed
travel time and cost. The goal of the problem is to find a tour for each vehicle such
that every job is assigned to a vehicle and the sum of the earned job values minus the
costs of the tours is maximal.

We now investigate converting the BPCTOP costs to a VRPSTW. The basic BPC-
TOP without tug availability constraints can be converted easily to a VRPSTW; how-
ever, the complex tug constraints are more difficult to convert to vehicle routing con-
straints. Thus, we only show how to convert the BPCTOP to the VRPSTW when
ignoring tug constraints. The model is as follows:

Each ship is modelled as a job.

— The channel is modelled as a single vehicle that must be used to complete all jobs.

The sequence-dependent separation times between ships are modelled as direction-

dependent travel times between successive jobs.

— Each job has an earliest time when it can be completed, corresponding to the ship’s
earliest sailing time.

— The value of each job request corresponds to the weighted draft of the ship.

For each request, soft time window cost penalties are specified corresponding to

the reduction in draft if the ship sails outside its maximum draft window.

— The objective of the VRP is to maximise the total value of all fulfilled requests.

One of the advantages of this VRP conversion is that the VRP graph size is relatively
small. Each node in the graph represents a ship, meaning the routing aspect of the
problem is not very hard to solve. The complication comes mainly in the soft time
window penalties, which must be overcome with specialized VRPSTW heuristics.

1 Some versions of the VRPSTW minimize the number of vehicles used; here, we assume this value is
fixed.
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Fig.1 An example repositioning scenario with two vessels (solid and dashed black lines) from their initial
services to the goal service

LSFRP

In this section, we describe the LSFRP and present a novel CP model. We compare the
CP model against the MIP and automated planning models introduced in Tierney et
al. (2012b) on a dataset of 39 instances based on data from our industrial collaborator.
We show that CP greatly outperforms previous approaches. We begin the section with
an overview of the previous approaches, followed by our CP model and experimental
results.

Fleet repositioning

Liner shipping networks must be regularly updated to adjust them to seasonal demands
and shifts in the world economy. In order to do this, shipping lines reposition ships
between services in the network. A service is a cyclical route consisting of a sequence
of ports with fixed visitation times. Services can be thought of like bus routes, in that
each port is visited on a regular (i.e., periodic) frequency. Many shipping lines set
this frequency to be one or two weeks, meaning each port on a service is visited by a
vessel every week or every other week. This regularity allows liner shippers, who are
the customers of shipping lines, to more easily integrate cargo shipments into their
international supply chains.

Given a set of vessels and a goal service, where each vessel is assigned an initial ser-
vice, the aim of the LSFRP is to reposition each vessel to the goal service within a given
time period at minimal cost. Figure 1 shows an example repositioning at an abstract
level. Two vessels (black lines) are repositioned to their goal service (blue, left).

A vessel begins repositioning when it phases out from its original service and ends
repositioning when it phases in to its new service. Vessels must phase in to their goal
service such that the liner shipping structure of the service is maintained. That is, a
periodic (often, but not always, weekly) schedule must be created. To ensure this is
the case, vessels all phase-in in the same port in a sequential, week-by-week fashion.?

2 Using the same port for a phase-in is an assumption of this model and is not always necessary in practice.
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Fig. 2 A subset of a real-world repositioning scenario, from Tierney et al. (2012b)

The total cost of the repositioning depends on the fuel usage from sailing the vessel
between ports and a fixed hourly cost, called the hotel cost, that is paid for the time
between the phase-out and phase-in. The hotel cost represents the baseline costs for
keeping a ship running, such as a paying the crew, purchasing food and parts, etc.
Minimizing the hotel cost ensures that the sailing costs are balanced against the costs
of running the vessel, i.e., not too much time is spent in a non-revenue generating
repositioning.

The cost function for a sailing action decreases as the duration of a sailing increases
because less fuel is needed to sail at slow speeds than at fast speeds. We use a linear
approximation of vessel fuel consumption in this work. The cost of sailing also depends
on whether the vessel sails empty or carries empty containers. Carrying empty con-
tainers is called a sail-equipment (SE) opportunity. Another option for repositioning
vessels is to replace another vessel in a regular service, which is called a sail-on-service
(SoS) opportunity. SoS opportunities significantly reduce the cost of a repositioning,
but may increase sailing duration due to the delay in loading and unloading cargo.
The times at which these sailings may be performed may also be limited. Our model
also includes cabotage restrictions, which prevent ships from violating laws in certain
countries that protect domestic shipping routes from international competition. The
LSFRP is not a pure scheduling problem, as there is a choice of actions and action dura-
tions. Note that in this work we do not take a detailed view of cargo flows as in Tierney
et al. (2014), Tierney and Jensen (2012), however, the modelling of the problem does
attempt to avoid significant disruptions to the overall flows of the network.

Figure 2 shows a subset of a repositioning scenario in which the new Intra-WCSA
service requires three vessels that must be repositioned from their services in South-
East Asia. One of the vessels was originally on the CHX service, and the other two were
on other services not shown in this figure. The cost of repositioning in this scenario
can be reduced by carrying equipment from China to South America (e.g., DLC to
BLB), or using the AC3 service as an SoS opportunity.

Automated planning and linear temporal optimization planning (LTOP)

Automated planning is used to model problems where it is difficult to select and
sequence activities to achieve specific goals starting from an initial state. This is done
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through a state-based search in which real-world activities are modelled as planning
actions that can be applied only if a set of preconditions hold and when applied change
the state according to a set of effects. We use a state variable representation of planning
(Fikes and Nilsson 1971) in which variables with finite domains hold information about
the current status of all agents or actors in a planning problem, e.g., the position of a
liner shipping vessel or what is loaded on the vessel. We refer the reader to (Nau et
al. 2004) for the details of automated planning. Automated planning offers a distinct
advantage over other modelling approaches in the way actions correspond directly
to real-world activities, making models easy to understand and interpret for domain
experts.

LTOP

LTOP uses a type of automated planning called partial-order planning (Penberthy and
Weld 1992) to build and search through optimization models that involve continuous
time, metric quantities, and a complex mixture of action choices and ordering con-
straints. LTOP fundamentally diverges from classical automated planning approaches
by introducing two sets of modelling variables that decouple the planning problem
from the optimization model. Thus, the optimization model is not tightly bound to the
semantics of actions. Actions are merely used as handles to optimization components
that are combined to complete optimization models using partial-order planning. In
other words, LTOP builds optimization models with the help of automated planning,
i.e., the focus of LTOP is on the optimization model of a problem, whereas classi-
cal planning approaches include optimization components within actions merely as a
byproduct of the overall planning process.

As mentioned, LTOP is built on a state variable representation of propositional
STRIPS planning. LTOP utilizes partial-order planning (Penberthy and Weld 1992)
and extends it in several ways. First, an optimization model is associated with each
action in the planning domain. This allows for complex objectives and cost interactions
that are common in real-world optimization problems to be easily modelled. Second,
instead of focusing on simply achieving feasibility, LTOP minimizes a cost function.
Finally, begin and end times can be associated with actions, making them durative.
Such actions can have variable durations that are coupled with a cost function. A
branch-and-bound search is used to find the plan with the minimal (or maximal) cost.

We briefly describe how the LTOP approach works, but refer to Tierney et al.
(2012b) for a formalization of the approach. Algorithm 1 shows the branch-and-bound
procedure of LTOP. The LTOP function is initialized with an initial and goal state,
7 and G, respectively. The initial state is a complete assignment of state variables to
values in their domain, whereas the goal state consists of an assignment of a subset
of all the variables. An empty plan is generated on line 2, and the best plan, mpeg; 1S
initialized to null. The algorithm then enters a loop which ensures that every possible
plan must be explored. On line 5 a plan is selected from the set of plans that must be
explored, IT. The mechanism behind this selection is irrelevant to the completeness
of the algorithm, i.e., it can use a lowest cost heuristic or other mechanism. On line 7
the plan is checked to see if it has any flaws, which are problems in the plan that must
be fixed in order for the plan to connect the initial state to the goal state in the state
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Algorithm 1 Linear Temporal optimization planning algorithm, from Tierney et al.

(2012b).

1: function LTOP(Z, G)

2: IT < {INITIALLTOP(Z, G)} > Empty plan initialization
3: Tpest < null

4: while IT # ¢ do

5: 7 < SELECTPLAN(IT)

6: IT <« I\{r}

7: if NUMFLAWS(7r) = 0 and COST(7r) < COST(7pes;) then > Incumbent update
8: Thest < 7T

9: else if ESTIMATECOST(7) < COST(7pey) then > Bounding step
10: f < SELECTFLAW(7r)

11: IT < IT U REPAIRFLAW(7, f)

12: return e

action—a

1
5 Obja (X)|CO7’La (X> -
action—c

w \
=1 e _ z2=17
w5< /yi2 0bje(x)| cone(x) w—S\w=3
action—b
1 y=2

objiy (x)| cony (x)

Fig. 3 An example LTOP plan

space. For example, a plan that does not satisfy a goal condition or a plan in which two
actions simultaneously set the value of a state variable to different values is considered
flawed. If the current plan, v, has one or more flaws, its cost is estimated on line 9 by
solving a linear program and using a heuristic to provide a lower bound on the plan
cost. This lower bound is compared with the current incumbent to prune plans from
the search that will never lead to the optimal solution. If the plan cannot be pruned, a
flaw is selected (line 10) and repaired (line 11), which consists of branching on all of
the possible ways of repairing the flaw.

Figure 3 shows an example plan from LTOP. The plan consists of an initial and
goal state and three actions, which are represented by boxes with preconditions on the
left side and effects on the right. There are four state variables: v, w, y, z. Each action
contains an optimization model consisting of an objective and constraints, which in
the case of LTOP form a linear program. Solid lines represent causal links, which
connect the effects of actions to the conditions they satisfy. Dashed lines are order-
ing constraints that prevent, for example, actions from invalidating the precondition
required by another action. This is the case for actions a and ¢, which must be ordered
to prevent action ¢ from setting w = 3, thereby invalidating the precondition of action
a, which requires w = 5. As this plan has no flaws, its cost can be computed using
a linear programming solver with the objective obj, + obj, + obj., subject to the
constraints con, A conp A cone.

LSFRP LTOP model

We describe the LTOP model found in Tierney et al. (2012b) and refer read-
ers to Tierney et al. (2012a) or Tierney et al. (2014) for more details about
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the automated planning PDDL domain that was compared against LTOP, since
LTOP greatly outperforms this approach on the LSFRP. The LTOP model consists
of several core actions: phase-out, phase-in, sail, sail-on-service,
sail-with-equipment that are based around keeping track of the state of each
vessel being repositioned. A vessel can be in one of three states: initial, transit, or
goal, which describe a vessel being on its initial service, performing a repositioning,
or having reached its goal service, respectively.

We create phase-out actions at every port call along each vessel’s initial service.
Phase-out actions may only be applied for a particular vessel when it is in its initial
state, meaning it has not yet begun its repositioning. Applying a phase-out action
transitions a vessel to a state of transit. Phase-in actions are created at each port on
the goal service in each week of the planning period. Vessels must be in a transit state
to use a phase-in action. The effect of a phase-in action indicates that a vessel has
reached the goal service, which satisfies the goal state of the model.

While a vessel is in transit (i.e., repositioning), it may use any sailing, SoS or sail
equipment action to move between ports. Sailing actions are created between all ports
in the model, except for sailings with phase-out ports as the destination, as once a vessel
leaves the phase-out service it is not allowed to go back. We create SoS actions for each
SoS specified by the repositioning coordinator, and equipment sailing opportunities
between all ports with equipment surpluses and those with equipment demands.

Our actions describing sailing, SoS opportunities, and equipment sailings are dura-
tive actions, meaning they take place over a time period that is specified through the
preconditions of the action. In the case of SoS actions, the amount of time they require
is fixed based on the start port and end port of the action. However, sailing with and
without equipment has a variable duration that must be between the minimum and
maximum speed of a vessel. Phase-out and phase-in actions are instantaneous actions
that have no duration.

We model sailing costs by setting the fixed cost of sailing (and sailing with equip-
ment) actions to the maximum possible cost of sailing between two ports, i.e., sailing
at maximum speed. We then subtract an amount from the action cost based on the
duration of the sailing, meaning longer sailing subtract more from the cost, making
them cheaper.

Hotel costs, i.e., the fixed hourly cost of operating a vessel, are modelled by associ-
ating each vessel with two optimization variables representing the begin and end time
of the hotel period for that vessel. The hotel period is constrained to be the duration of
the vessel between its phase-out and phase-in, minus the duration of any SoS oppor-
tunities used. In this way, no extra actions are needed to model the hotel cost, which
is a key time-dependent task cost of the LSFRP. Each action that is added to an LTOP
plan updates the bounds of the hotel cost, assisting LTOP in its search for the optimal
solution.

All repositioning plans contain, at the very least, a phase-out and a phase-in action
for each vessel. Sailings, SoS opportunities, and sail equipment actions can be ordered
between the phase-out and phase-in to bring the vessel to the goal service.

Figure 4 presents an example LTOP plan for the real-world scenario in Fig. 2.
Actions are shown in boxes with state variable preconditions to the left and effects
to the right. The objective and constraints over optimization variables for each action
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Fig.4 An LTOP plan solving the LSFRP scenario for a single ship presented in Fig. 2

are contained inside their boxes. Causal links connecting preconditions and effects
are shown with solid lines. The state variable s,, indicates whether vessel v is on its
initial service (1), performing its repositioning (T), or on its goal service (G), while at,
points to the geographical location of v. Vessel v begins its repositioning by phasing
out from the CHX service at TPP and sails to the port YTN where it picks up an SoS
opportunity on the AC3 across the Pacific. Once arriving at BLB the vessel joins its
goal service, the Intra-WCSA.

MIP model

Despite the success of LTOP in solving LSFRP instances, the question remains as
to how it performs versus more traditional combinatorial optimization techniques. To
find out, we create a MIP model of the LSFRP that considers the activities that a vessel
may undertake and connects activities based on which ones can feasibly follow one
another temporally. The structure of the LSFRP is embedded directly into the graph of
the MIP, meaning that it is unable to model general automated planning problems as
in Kautz and Walser (1999) and Van Den Briel et al. (2005). Note that, unlike LTOP,
the MIP is capable of handling negative activity costs.

Since the vessel state in fleet repositioning is relatively simple, encompassing where
a vessel is and whether it has begun its repositioning or not, there is not an exponential
growth in the number of graph nodes as there would be in many planning problems if
they were modeled using a graph.

Graph and MIP description

Given a graph G = (A, T'), where A is the set of actions (nodes), and 7 is the set of
transitions, with (a, b) € T iff action b may follow action a, let the decision variable
Ya.b € {0, 1} indicate whether the transition (a, b) € T is used or not. The auxiliary
variable w, = Z(a’ byeT Ya,b indicates whether action a is chosen by the model and
x5, x¢ € RT are action a’s start and end time, respectively. Finally, the variables h?,
and h¢ are the start and end time of the hotel cost period for vessel v.

Each action a € A is associated with a fixed cost, ¢, € R, a variable (hourly) cost,
o, € R, and aminimum and maximum action duration, d:l“i“ andd™ . Theset A’ C A
specifies actions that must begin at a specific time, #,. The use of a particular action
may exclude the use of other actions. These exclusions are specified by n : A — 241,
There are also n sets of mutually exclusive actions, given by u : {1,...,n} — 2/4l.
We differentiate between phase-out and phase-in actions for each vessel using the sets

AP Agi C A, respectively, and let A’ = A\ Uyey (AN’ U Agi) be all actions that are

@ Springer



CP methods for scheduling and routing

171

not related to the phase-out or phase-in. Finally, let c,fl € R™ represent each vessel’s
hourly hotel cost.
The upper bound on the difference between the end and start of two actions is given
by M 5 - The upper bound on the start of a vessel’s hotel period and the lower bound
on the end of the vessel’s hotel period are given by M; and m¢, respectively.
Parameters We now summarize the parameters and variables used in our MIP model
for easy reference. The model uses the following parameters:

G=(AT)
1%
AP°

pi
Ay

d;nm, dér]nax
y

Ma,b

M3 ms

w(a)

n(a)

Graph of nodes A (actions) and arcs T (transitions)
Set of vessels

Set of phase-out actions for vessel v € V

Set of phase-in actions for vessel v € V

Set of actions with fixed start times

Specifies the time that action a € A’

Fixed cost of action a

Variable cost of action a

Hotel cost of vessel v € V per hour

Minimum and maximum duration of action a

Maximum time difference between the start of actions a and b

Upper and lower bound of the start and end of vessel v € Vs hotel period
Set of actions that are mutually exclusive with a

Set of actions that are excluded by a (but not necessarily mutually exclusive)

Variables The model uses the following variables:

Ya,b € {0, 1}

Indicates whether transition (a, b) € T is used

Wa = 2 (4.byeT Yab  Auxiliary variable indicating whether action a is used or not

x5, x¢ e RT
e s +
hy, hy e R

Start and end time of action a € A, respectively

Start and end of the hotel period for vessel v € V, respectively

Objective and constraints The objective and constraints are as follows:

min Z (Cawa + aq (xS — x3)) + Z e —nd)

acA veV

5.L. Z Yap =1 Va € U Abe

{(a.b)eT | beA\AY") vev
D Yab= D Ybe Vb e A

(a,b)eT (b,c)eT
> vap =1 Vb e A/
(a.b)eT

xg—x) < My, (1= yap) Y(a,b) €T

(22)

(23)
(24)
(25)
(26)
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X, <x; Va e A (27)
d™My, < x8 — x5 < d™w, Va € A (28)
X, = tawg Yae A’ (29)
B+ MSw, < M5 41, Vae | ) AY (30)

veV
R+ mCw, = mé + 1, Vae | ) AV (31)

veV
Z w, < 1 fori = 1,2,...n (32)

aeu(i)
n@lws + D wp < (@) Va € A (33)
ben(b)

The objective, (22), sums the fixed and variable costs of each action that is used
and adds this to the hotel cost for each vessel. The single unit flow (i.e., node disjoint)
structure of the graph is enforced in constraints (23) and starts the flow of vessels
through the graph, ensuring that every vessel transitions out of its phase-out. Con-
straints (24) are flow balance constraints that ensure vessels sail traverse path in the
graph. Constraints (25) limit the incoming number of vessels to any activity to one,
meaning that only a single vessel may undertake any particular activity. Constraints
(26) enforce the ordering of transitions between actions, preventing the end of one
action from coming after the start of another if the edge between them is turned on.
Action start and end times are ordered by (27), and the duration of each action is limited
by (28). Actions with fixed start times are bound to this time in (29). Constraints (30)
and (31) connect the hotel start and end times to the time of the first and last action,
respectively. Note that the objective forces /3 and h¢ as close together as possible and
that the big/little-Ms are required because each action has a different start time. The
mutual exclusivity of certain sets of actions is enforced in constraints (32). Finally,
constraints (33) prevent actions from being included in the plan if they are excluded
by an action that was chosen. These constraints are primarily used to ensure the block
phase in structure necessary to have a weekly temporal spacing of vessels. When a
phase-in is chosen for a vessel, phase-ins that could not possibly be used with it are
disabled. For example, in a 3-vessel problem, any phase in more than 2 weeks later
from a particular phase-in is disabled if a vessel uses that phase-in.

A novel CP model

In contrast to our MIP model for the LSFRP, which is based on an activity graph, our
CP model exploits the fact that SoS and SE activities cannot be chained together. The
CP model uses a number of variables to store the state of each vessel in each stage of
its repositioning and connects these stages through logical constraints.

Let O, be the set of possible phase-out actions for the vessel v and let P be the
set of possible phase-in ports for the new service. The decision variable p € P is the
phase-in port for all vessels. The decision variables w, € {1, ..., W} represent the
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phase-in week for each vessel v, where W is the number of weeks considered in the
problem. For each vessel v we also define a decision variable g, € O, specifying the
phase-out action (port and time) used for that vessel.

For each vessel v and phase-out action o, the function t°* (v, 0) specifies the phase-
out time for that action. Similarly, " (p, w) specifies the phase-in time for a vessel
phasing in at port p in week w. The function C (v, o, p, w) specifies the cost for vessel
v using the phase-out action o, and phasing in at port p in week w, with —1 as a flag
that indicates vessel v cannot phase in at port p in week w if it phased out using action
o (for example, if action o starts too late for vessel v to reach port p on time). The
dependent variable ¢, specifies the cost for vessel v when the vessel sails directly from
the phase-out port to the phase-in port. For each vessel v, Cy (v) specifies its hourly
hotel cost, and 4, is the duration of the hotel cost time period (from the phase-out to
the phase-in).

We split each SoS opportunity into several SoS actions, where each SoS action
represents starting the SoS at a different port on the SoS service. SoS opportunities
save money by allowing vessels to sail for free between two ports; however, a cost for
transshipping cargo at each side of the SoS is incurred. Let S be the set of available SoS
actions and S’ be the set of SoS opportunities. The decision variable s, € S specifies
the SoS action used for each vessel v, with 0 being a flag indicating that vessel v does
not use an SoS action. For each SoS action s € S, the function y : § — S’ specifies
which SoS opportunity each SoS action belongs to, with y(s) = 0 being a flag that
specifies that the vessel is not using any SoS opportunity.

In order to use an SoS opportunity, a vessel must sail to the starting port of the SoS
opportunity before a deadline, and after using the SoS it sails from the end port at a
pre-determined time to the phase-in port. The function C*°(v, s, 0) specifies the cost
of vessel v using SoS action s, phasing out at phase-out o going to the SoS action, and
cfrom(y, s, p, w) is the cost of vessel v to sail from SoS action s to phase in port p in
week w, with —1 as a flag that indicates that this combination of vessel, SoS action,
phase-in port and week is infeasible. The dependent variables o° and olf“’m specify
the SoS costs for vessel v for sailing to and from the SoS, respectively. The function
A(v, s) specifies the cost savings of vessel v using SoS action s, and the dependent
variable 03‘“ specifies the SoS cost savings for vessel v on the SoS.

Let Q be the set of sail-equipment (SE) opportunities, which are pairs of ports in
which one port has an excess of a type of equipment, e.g., empty containers, and the
other port has a deficit. Since we do not include a detailed view of cargo flows in this
version of the LSFRP, SE opportunities save money by allowing vessels to sail for
free between two ports as long as the vessel sails at its slowest speed. The cost then
increases linearly as the vessel sails faster. Let the decision variable e,, € E be the SE
opportunity undertaken by vessel v, with e,, = 0 indicating that no SE opportunity is
used. Let the decision variables d°, dsur and d,fmm be the duration of vessel v sailing
to, during, and from an SE opportunity.

The functions C* (v, ¢, 0), Cd“r(v, e) and Cfr"m(v, e, p, w) specify the fixed costs
of sailing to, utilizing, and then sailing from SE opportunity e, where v is the vessel, o
is the phase-out port/time, p is the phase-in port, and w is the phase-in week. Together
with the constant «,,, which is the variable sailing cost per hour of vessel v, the hourly
cost of sailing can be computed. This is necessary since SE opportunities are not fixed
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in time and, thus, must be scheduled. Let the dependent variables A1, A9 and Afom be
the fixed costs sailing to, on and from an SE opportunity. Additionally, let Aﬁgin (v, e, 0),
Afrﬂ;(v, e) and Agl(i’rrln(v, e, p, w) be the minimum sailing time of v before, during,
and after the SE opportunity and A, (v, e, 0), A (v, ¢) and AT (v, ¢, p, w) be
the maximum sailing time of v before, during, and after the SE opportunity.

In this version of the LSFRP, the chaining of SoS and SE opportunities is not
allowed, meaning each vessel has the choice of either sailing directly from the phase-
out to the phase-in, undertaking an SoS, or performing an SE. The decision variable
ry € {SoS, SE, SAIL} specifies the type of repositioning for each vessel v, where v
utilizes an SoS opportunity, SE opportunity, or sails directly from the phase-out to the

phase-in, respectively.

We summarize the model parameters, functions, and decision variables in the fol-

lowing tables:

Parameters and functions

%%y, 0) e RT
ti“(p, w) € RT
y(s) € S

t
A {(r)nin, max}

d
A{1Er11rin,max} (v, )

from

A[min,max}(v’ e p,w)

C(v,0, p,w) € Rt

Cy(v) e Rt
CP,s,0) e RT

cfromey, s, p, w)

CP,e,0) e RT
cur(y, e) e RT

cfromey e p, w) e RT

ay €R

(v, e,0)

Set of vessels

Set of weeks in the planning horizon

Set of phase-out actions for vessel v € V

Set of phase-out ports for all vessels

Set of SoS actions

Set of SoS opportunities (each of which consists of multiple SoS actions)
Set of SE opportunities

Phase-out time for port v € V in week 0 € Oy

Phase-in time for port p € P in week w € W

Specifies the SoS action that an SoS opportunity, s € S, belongs to

Minimum and maximum sailing time for vessel v € V from phase-out
0 € Oy to SE e € Q, respectively

Minimum and maximum duration that vessel v € V may sailon SE e € Q,
respectively

Minimum and maximum duration for vessel v € V to sail from SE e € Q
to phase in at port p € P in week w € W, respectively

Cost for vessel v € V to phase out with action o € Oy and phase in at port
p € P inweek w € W; -1 if the phase-in is not possible for this vessel

Hourly hotel cost for vessel v € V

Cost for vessel v € V to phase out with action 0 € Oy and sail to the SoS
actions € S

Cost for vessel v € V sail from SoS action s € S to port p € P in week
w € W to phase in

Fixed cost for vessel v € V to sail from phase-outo € O, to SEe € Q
Fixed cost for vessel v € V touse SEe € Q

Fixed cost for vessel v € V to phase in at port p € P in week w € W from
SEee€ Q

Sailing cost coefficient for vessel v € V

Variables We split the variables of the CP model into two categories: decision
variables and dependent variables. The dependent variables simply keep track of costs
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that are determined by the decision variables to make modelling the problem more
simple.
Decision variables

qv € Oy Phase-out activity for vessel v € V

pEP Phase-in port

wy €W Phase-in week for each vessel v € V

sy €S SoS action used by vessel v € V, or the value 0 if no SoS action is used

€y

€Q

SE opportunity used by vessel v € V, or the value 0 if no SE
opportunity is used

d,tf’, ds‘" and d,grom Sailing duration of vessel v € V to the SE, during the SE, and from the

SE to the phase-in, if an SE is used

ry Specifies one of {SosS, SE, SAIL}, indicating the type of repositioning
being undertaken
Dependent variables
cy eRT Stores the cost for vessel v € V during a direct sailing from a phase-out to

a phase-in activity

aff’, a,‘}“r, a,fmm e Rt Stores the costs to sail to the SoS, sail on the SoS, and sail from the SoS to

to
)“U

)Lgur

fi
)Lvrom

the phase-in, respectively

Stores the cost for vessel v € V to sail from its phase-out to an SE
opportunity, if it uses one

Stores the cost for vessel v € V to sail on an SE opportunity, if it uses one

Stores the cost for vessel v € V to sail from an SE opportunity to its
phase-in, if it uses an SE opportunity

Model The CP model is formulated as follows:

minimize Z (CH(v) (ti“ (p, wy) — " (v, qv)) +cyp + U,fmm + cr,ﬁh" + o0

veV

+ )‘E)O + )Lgur + )\f)rom + av(dlt}o + d:}iur + dlt;rom)) (34)
subjectto alldifferent({w, |v e V}) (35)
max wy, —minw, = |V| —1 (36)

veV veV
alldifferent_except_0({sy, | v e V}) (37)
alldifferent_except_0({y(sy) |v e V}) (38)
ry = SAIL — ¢y = C(v, gy, p, Wy) YveV 39

ry = SAIL — (sv=0Ay(sv)=0AaS“r=O/\o,fr°m:0/\65(’:0

ANey=0AL =0Ar =0Am = Q)vp e V (40)

ry =808 — sy, > 0 A y(sy) >0 /\Gl‘)iur =—A(v, sp)
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Agflom — oMy s 0, wy) Al = C, s,, gy)Vv € V
(4D)
Fo =508 =, =0Ae, =0AA=0A T =AM = 0ovu e V (42)

Sy >0V y(sy) >0—>r,=SoSVv eV 43)
alldifferent_except_0({e, | v eV} (44)

ry=SE = e, > 0ALM=C"0, ey, qp) AR = CW (v, ep)

A pdrom — cfrome, o, wy), Yo € V (45)

ry = SE — 5y =0/\y(sv)=0/\03“r=0/\cv =0
Aolom — Aol =0Vv eV (46)
ey>0—>r,=SEYveV 7
A (v, ev, ) < dP < A (v, ev, go)VV €V (48)
A% (v, e,) < dd < AW (v, e,)VV €V (49)
ATy ey, p, wy) < dTM < ANy ey p, wy) VU € V (50)
ol glom ¢ > 0vv eV (51)

The objective function (34) minimises the sum of the hotel costs and repositioning
action costs minus the cost savings for SoS actions for the set of vessels. Constraints
(35) and (36) specify that the vessels must all phase in to the new service on different,
successive weeks. Constraints (37) and (38) specify that all vessels using SoS actions
must use different actions and action types. al1ldifferent_except_0 isa global
constraint that requires all elements of an array to be different, except those that have
the value 0.

Constraints (39) and (40) set the costs for a vessel if it uses a SAIL repositioning
and ensures that the SoS/SE actions and costs are set to 0, as they are not being used.
Constraints (41) and (42) specify that if vessel v uses an SoS (SoS) repositioning
action sy, then its repositioning cost is equal to the costs for sailing to and from that
SoS action based on the phase-out action, phase-in port and week, minus the cost
savings A (v, sy) for that SoS action. In addition, the normal repositioning cost ¢, and
the sail equipment action for that vessel are set to 0. We also add redundant constraints
(43) to reinforce that the repositioning type be set correctly when an SoS is chosen.

In constraints (44) we ensure that no two vessels choose the same SE action (unless
they choose no SE action), and constraints (45) and (46) bind the costs of the sail
equipment action to the dependent variables if an SE is chosen, as well as set the costs
of a direct sailing and SoS opportunities for each vessel to 0. The redundant constraints
(47) ensure that the repositioning type of vessel v is correctly set if an SE action is
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chosen. The minimum and maximum durations of the parts of the SE (sailing to the
SE from the phase-out, the SE itself, and sailing from the SE to the phase-in) are set
in constraints (48), (49) and (50). Constraint (51) requires that all SoS actions and
phase-out/phase-in combinations must be valid for each vessel (i.e., transitions with
—1 costs must not be used).

We note that our model essentially consists of a number of table constraints for each
vessel bound together by the variables preventing multiple vessels from undertaking
similar activities (such as phase-outs, phase-ins, etc.). We have chosen this approach
instead of an even larger table constraint as the table would grow too big. This is
mainly due to the effect of time on the model, as the planning period can be several
months, and all of the activities in this period must be handled.

LSFRP CP results

To compare our CP model for the LSFRP against an earlier MIP model and against
the LTOP planner (Tierney et al. 2012b), we use the 11 AC3 problem instances from
Tierney et al. (2012b) and augment them with 27 new instances based on a real-world
scenario provided by an industrial collaborator. The problem instances contain up to
9 vessels, with varying SoS and sail-with-equipment opportunities that may be used
to reduce repositioning costs.

The LSFRP CP model was formulated in the MiniZinc 1.6 modelling language
(Nethercote et al. 2007, 2010) and solved using the G12 finite domain solver (Wallace
2009). We compare the CP against a MIP model and the LTOP planner (Tierney et al.
2012b), both using CPLEX 12.4. All problems were solved to optimality. Note that
in our CP model for MiniZinc we had to add constraints on the maximum duration of
SE actions, as well as a constraint on the maximum sum of the objective, to prevent
integer overflows. These constraints do not cut off any valid solutions from the search
tree. Since MiniZinc does not support floating point objective values, the MiniZinc
model is a close approximation of the true objective.

We also used several search annotations within MiniZinc to help guide the solver to
a solution. The first is to branch on the type of repositioning, r,,, before other variables.
We thereby attempt to first find an SoS option for each vessel, then search through
SE options, and finally SAIL options. This search order was the most efficient for the
most complex models that include both SoS and SE opportunities. This is because SE
constraints are more complex than SoS constraints, so searching SE options first is
more time consuming for models that contain both SoS and SE opportunities.

For instances with SE opportunities, we also add a search annotation to branch on
the SE opportunity, e,, using the “indomain_split” functionality of MiniZinc, which
excludes the upper half of a variable’s domain. Both annotations use a first failure
strategy, meaning the variable the solver branches on is the one with the smallest
domain.

Table 2 compares the run times of the CP model against the MIP model and LTOP,
all of which solve to optimality.> We ran the CP model with search annotations using a

3 We used Intel Core i7-2600K 3.4GHz processors with a maximum of 4GB of RAM per execution.
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search order of SAIL/SoS/SE (CP-A), with search annotations and the SoS/SE/SAIL
ordering (CP-AO), as well as with only the redundant constraints and using the solver’s
default search (CP-R), and using the SoS/SE/SAIL ordering with redundant con-
straints (CP-AOR). We label instances with the format G_S_O_ce, where G is the
name of the goal service in Maersk Line’s network, S is the number of ships, O is
the number of SoS opportunities, ¢ indicates that there are cabotage restrictions, and
e indicates whether the instance contains any equipment.

CP-AOR outperforms LTOP on all instances in the dataset, and the MIP on all but
one instance in the dataset. This contrasts with the results in (Kelareva et al. 2013),
where CP—AOR outperformed the MIP on all AC3 instances. This is because we
are using CPLEX 12.4, and Kelareva et al. (2013) uses CPLEX 12.3. This shows
that using a well-supported solver like CPLEX (or the G12 CP solver) can provide
advantages over less-developed techniques, like LTOP, in that new versions can provide
significantly faster solution times without any model changes. The average solution
time required by CP-AOR is also significantly less than LTOP and the MIP both in
terms of the arithmetic and geometric means, with CP—AOR requiring, on average,
only 59 % the time of the MIP, and 46 % of the time of LTOP in terms of the arithmetic
mean, respectively.

We provide results for the various parameterizations of our CP approach to deter-
mine the source of its good performance. No configuration on its own is able to
dominate the others across all instances. Combining annotations, ordering and redun-
dant constraints into CP—AOR provides better average performance than any single
configuration, as well as finds more optimal solutions than any other configuration.
Interestingly, several of the best CPU times are not found by CP-AOR, but by individ-
ual configurations, such as on FM3_4_4ce, FM3_6_6e, FM3_6_6ce, and TP7_6_4.
In fact, CP-R finds an optimal solution to TP7_6_4 not found by any other solver,
indicating that an instance-specific solving approach using machine learning, like in
Kadioglu et al. (2010), could be a good approach on problems like the LSFRP. We
save the implementation of such a system for future work.

Our CP model comes with two limitations. The first limitation is the model’s flex-
ibility. A natural extension to this model would be to allow for the chaining of SoS
and SE opportunities, which is easy to do in both the LTOP and MIP models, due to
automated planning’s focus on actions, and our MIP model’s focus on flows. However,
the CP model is structured around exploiting this piece of the problem. Other natural
changes, such as allowing vessels to undergo repairs, would also be difficult to imple-
ment. The second limitation is that many of the components of the CP model involve
pre-computations that multiply the number of phase-out actions with the number of
phase-in ports and weeks. Although the model works well on our real-world instance,
these pre-computations pose an issue for scaling to larger liner shipping services.

We note that the success of this model is rather promising for other, similar prob-
lems, as no custom propagators needed to be written to solve the model. This means
that concepts from this model can rather easily be copied into other CP models and
extended with problem-specific side constraints. It stands to reason that good results
can thus be obtained.

In light of these results, we make the following recommendations for solving prob-
lems with time-dependent task costs. First, a traditional network flow model using
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Table 2 Computation times to optimality in seconds with a timeout of one hour for the CP model with and
without annotations (A), repositioning type order (O), and redundant constraints (R) versus LTOP and the
MIP

Problem LTOP MIP cpP CP-A CP-AO  CP-R CP-AOR
AC3_1_0 0.6 0.3 0.1 0.1 0.1 0.1 0.1
AC3_2_0 27.1 2.0 0.1 0.1 0.1 0.1 0.2
AC3.3.0 107.1 12.0 0.2 0.2 0.2 0.2 0.3
AC3_1_le 2.1 0.9 0.3 0.3 0.3 0.4 0.2
AC3_2_2ce 8.1 9.3 - 483 12.3 - 5.3
AC3_3_2¢ 111.6 549 2.8 1.3 13 2.8 1.4
AC3_3_2 1124 69.7 657.2 6.8 7.0 10525 6.1
AC3.3 2cel 1044 733 999.5 12.2 7.1 834 6.2
AC3.3.2ce2 996 68.0 78.6 15.8 9.7 505.7 8.2
AC3_3 2ce3 2340 190.1 - 30675 3386 - 2289
AC3.3.3 41.0 439 7.0 5.0 4.6 72 48
FM3_4_0 30024 14693 8.2 9.0 8.5 8.2 8.1
FM3_4_4 - 712.9 6.5 10.8 6.7 6.5 6.4
FM3_4_4c 3,039 3802 6.5 7.0 6.7 6.4 6.4
FM3_4_4ce - 514.6 - 38.1 68.6 33700 559
FM3_5_0 - 6154 23.0 274 235 232 22.6
FM3_5_4 - 897.3 20.4 25.8 21.1 20.5 20.4
FM3_5_de - 12055 - 120.4 2276 - 172.5
FM3_5_6 - 836.4 21.6 30.5 253 217 226
FM3_6_0 - - 69.2 80.3 724 71.1 68.6
FM3_6_1 - - 89.8 98.3 93.8 937 88.7
FM3_6_2 - - 90.3 128.8 93.9 927 89.1
FM3_6_4 - - 98.8 111.9 89.5 101.5 86.1
FM3_6_6 - - 90.5 106.3 88.1 942 83.3
FM3_6_6e - - - 466.7 30634 - 735.5
FM3_6_6ce - 22903 - 529.6 30716 - 736.0
TP7_6_0 - - 468.6 472.7 4672 469.9 4463
TP7_6_4 - - - - - 20412 -
TP7_6_de - - - - - - -
TP7_7_0 - - - - - - -
TP7_7_4 - - - - - - -
TP7_7_4e - - - - - - -
TP7_8_0 - - - - - - -
TP7_8_6 - - - - - - -
TP7_8_6e - - - - - - -
TP7_9_0 - - - - - - -
TP7_9_3 - - - - - _ _
TP7_9_6 - - - - - - -
TP7_9_6e - - - - - - -
Mean 25495  199.1  1,731.8 12467 13079 16839  1,1823
Geo. mean 909.6 553.1 188.2 97.3 92.9 186.8 82.1
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an arc-routing approach does not necessarily provide the best performance. In partic-
ular, the LP-relaxation of the model is not tight. This has a strong influence on the
search, as many nodes in the branch-and-bound tree cannot be pruned. We note that
time-dependent task costs do not make the relaxation require more time to solve than
not having such costs. Second, while automated planning techniques show promise
for making modelling tasks easier to perform, they are not yet developed enough to
scale past small instances. Finally, CP is able to handle time-dependent task costs even
without specialized propagators; thus we can recommend the use of CP as a first-step
in modelling problems with time-dependent task costs.

Lazy clause generation

Lazy clause generation (LCG) (Ohrimenko et al. 2009) or CP with learning has been
found to be effective on a number of scheduling problems (Schutt et al. 2012; Feydy
and Stuckey 2009; Chu et al. 2010). LCG combines a finite domain CP solver with a
SAT solver by mapping finite domain propagators to clauses in a SAT solver.

Mapping a complete CP problem to a SAT problem often results in a very large SAT
problem which is intractable for even the best modern SAT solvers. LCG gets around
this limitation by lazily adding clauses to the SAT solver as each finite domain propaga-
tor is executed, precisely at the point when the new clauses are able to trigger unit prop-
agation. This approach benefits from efficient SAT solving techniques such as nogood
learning and backjumping, while maintaining the flexible modelling of a CP solver
and enabling efficient propagation of complex constraints (Ohrimenko et al. 2009).

LCG solvers can be used for any problem that is modelled as a constraint pro-
gramming problem, which makes LCG a highly generalisable technique that is worth
investigating for scheduling and routing problems with time-varying action costs. In
this section, we compare a LCG solver against a finite domain CP solver for the BPC-
TOP CP model from (Kelareva et al. 2012b) summarised in “BPCTOP”, as well as
for the LSFRP CP model presented in “LSFRP”.

Experimental results for BPCTOP

We used a CP solver with LCG to solve the above CP model for the BPCTOP. The CP
model was formulated in the MiniZinc modelling language (Nethercote et al. 2007) and
solved using the CPX solver included in G12 2.0 (Wallace 2009; Feydy and Stuckey
2009), which uses LCG. The runtimes were then compared against the G12 2.0 finite
domain CP solver, using backtracking search with the fastest variable selection and
domain reduction strategies as discussed in Kelareva et al. (2012a,c). All BPCTOP
experiments used an Intel i17-930 quad-core 2.80 GHz processor and 12.0 GB RAM,
with a 30-minute cutoff time.

The CPX solver builds on the G12 finite domain solver and combines it with a
SAT solver. The FD solver controls the search, posting an explanation clause to the
SAT solver every time a propagator is executed which updates a variable domain
or causes failure. Explanation clauses explain the reason for a failure or a variable
domain change; however, the implementation of a LCG solver may differ in how
explanation clauses are generated, which may affect the efficiency of both the CP and
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Table 3 CPU time (s) for CPX

solver with LCG versus G12 NShips No tugs With tug constraints
finite domain solver GI2.FD  GI2.CPX  GI2.FD  GI2_CPX
4 0.34 0.23 0.23 0.33
5 0.23 0.22 0.33 0.33
6 0.44 0.22 0.44 0.67
7 0.34 0.33 2.95 3.60
8 0.45 0.87 47.0 244
9 4.70 234 184 65.7
10 99.9 482 >1,800 817
11 609 >1,800 - >1,800
12 >1,800 - - -

SAT components. After receiving a new explanation clause, the SAT solver performs
unit propagation, which may cause further domain changes to be made, after which
control passes back to the FD solver. See Ohrimenko et al. (2009) for an introduction
to lazy clause generation, and Feydy and Stuckey (2009) for an in-depth discussion
of the CPX solver.

Both solvers were used to solve problems presented in Kelareva et al. (2012a). This
data set contains problems of 4 distinct types, with each set containing 17 problems
ranging from 4 to 20 ships, for a fictional but realistic port. The problem types vary
in terms of how tightly constrained the problems are. The ONEWAY_NARROW (ON)
problems are the most tightly constrained, with all ships sailing in the same direction
(outbound) with high maximum drafts, leading to narrow windows at the peak of the
tide. The MIXED_WIDE (MW) problems are the least constrained, with ships being
evenly split between outbound and inbound and with low maximum drafts and wide
sailing windows. The MIXED_NARROW (MN) and ONEWAY_WIDE (OW) problem
types are moderately constrained, with lower maximum drafts for the ONEWAY_WIDE
(OW) problem set and a mix of inbound and outbound ships for the MIXED_NARROW
(MN) problem set. Each problem type was also solved both with and without tug
constraints, since not every port will have tugs as the bottleneck in ship scheduling.
This resulted in 4 x 17 x 2 = 136 different problem instances.

Table 3 presents calculation times in seconds for CPX and the G12 FD solver,
for each number of ships that could be solved to optimality within the 30-min cut-
off time, for the problems in the most tightly constrained (and thus most difficult)
ONEWAY_NARROW (ON) problem set. A dash indicates that the optimal solution was
not found within the cutoff time. Problems with 13 or more ships could not be solved
within the cutoff time and are thus omitted.

Table 4 shows the number of ships in the largest problem that could be solved
within the 30-min cutoff time for all four problem types, with and without tugs, with
runtimes in seconds given in brackets. In both tables, bold font indicates the solver
that was faster to solve a given problem.

Table 3 shows that CPX scales better than the FD solver for large ON problems
with tug constraints. However, CPX is slower to solve ON problems without tugs.
This may indicate that CPX finds effective nogoods (areas of the search space with no
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Table 4 CPX solver versus G12

finite domain solver: number of Problem FD CPX
22;525“\;%&%;252’3226 MIXED_WIDE (MW) 11 (326) 16 (1,040)
with CPU time in seconds in ONEWAY_WIDE (OW) 11 (1,480) 11 (273)
brackets MIXED_NARROW (MN) 11 (370) 16 (1,100)
ONEWAY_NARROW (ON) 11 (609) 10 (482)
MIxep_WIDE_TuGs (MWT) 10 (11.5) 13 (1,290)
ONEWAY_WIDE_TUGS (OWT) 9(81.5) 11 (1,680)
MIXED_NARROW_TUGS (MNT) 10 (202) 12 (1,350)
ONEWAY_NARROW_TUGS (ONT) 9 (184) 10 (817)

good solutions) for tug constraints, enabling CPX to avoid searching large areas of the
search space for the problem with tug constraints. The FD solver, on the other hand,
cannot eliminate those areas of the search space, leading to excessive backtracking
resulting from the highly oversubscribed tug problem.

Table 4 shows that the difference between the CPX and FD solvers is even greater
for MIXED problems. MIXED problems have a mix of inbound and outbound ships,
resulting in a less constrained problem, but one that has more complex tug constraints
due to needing to consider tugs moving between inbound and outbound ships. This
indicates that CPX is very fast at dealing with complex constraints, but the speed
difference decreases when the problem is tightly constrained. CPX is able to solve
larger problems faster for all problem types except for ONEWAY_NARROW without
tugs—this is the most constrained problem type, using the simplest constraints (no
tugs, and no interaction between incoming and outgoing ships).

The slower performance of CPX on the problem without tugs indicates that there
may be room for improvement if better explanations are added for constraints that
do not involve tugs, such as the sequence-dependent setup times between ships, and
the propagation of the objective function itself. As the TUGS problem is composed of
the NOTUGS problem with additional constraints, speeding up the solution time of the
NOTUGS problem would likely further improve the solution time of the TUGS problem.

Experimental results for LSFRP

We use the Opturion CPX 1.0 optimizer (Opturion Pty Ltd 2013) to solve the LSFRP.*
Table 5 shows the time to solve the LSFRP to optimality in seconds for all of the
instances in our dataset for both using LCG (CPX-AOR) and without LCG (CP-
AOR). We omit LTOP, the MIP and other CP configurations from these results due
to the dominance of CP-AOR on the LSFRP. Using LCG results in an average time
of 138 s less than not using LCG, although the geometric means of both approaches
are relatively similar. Of particular note is that LCG is able to solve three instances
that timeout when not using LCG, allowing instances with up to 9 ships to be solved.
In addition to these three instances, CPX-AOR posts significant runtime gains on

4 This is essentially the same solver as the CPX solver included with G12 that we use for the BPCTOP
except for some bug fixes that allow it to work with the LSFRP.
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Table 5 Computation times to

optimality in seconds with a Problem CP-AOR CPX-AOR

e b P s

with LCG (CPX-AOR) AC3.2 0 0.2 0.3
AC3_3.0 0.3 0.6
AC3_1_1le 0.2 0.2
AC3_2_2ce 53 5.8
AC3_3_2c 14 1.0
AC3_3_2e 6.1 11.0
AC3_3_2cel 6.2 14.5
AC3_3_2ce2 8.2 14.1
AC3_3_2ce3 228.9 75.5
AC3_3.3 4.8 2.0
FM3_4 0 8.1 13.5
FM3_4 4 6.4 8.1
FM3_4_4c 6.4 8.3
FM3_4_4ce 55.9 125.7
FM3_5_0 22.6 25.3
FM3_5_4 20.4 28.2
FM3_5_4e 172.5 507.7
FM3_5_6 22.6 53.9
FM3_6_0 68.6 44.5
FM3_6_1 88.7 80.5
FM3_6_2 89.1 82.4
FM3_6_4 86.1 218.6
FM3_6_6 83.3 84.4
FM3_6_6e 735.5 823.4
FM3_6_6ce 736.0 825.2
TP7_6_0 446.3 63.4
TP7_6_4 - -
TP7_6_4e - -
TP7_7_0 - 435.6
TP7_7_4 - -
TP7_7_4e - -
TP7_8_0 - 1,303.4
TP7_8_6 - -
TP7_8_6e - -
TP7_9_0 - 3,455.5
TP7_9_3 - —
TP7_9_6 - -
TP7_9_6e - _
Mean 1,182.3 1,043.9
Geo. mean 82.1 83.1
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4 instances, although it is significantly slower than not using LCG on 10 instances,
with the rest of the instances resulting in (roughly) a tie. LCG seems to be somewhat
slower on problems with equipment, which tend to have more time-dependent task
costs in their objective than instances without equipment, which could indicate that
LCG is useful for problems with limited numbers of time-dependent tasks or tasks
that resemble the hotel costs present in all LSFRP instances.

Discussion

Lazy clause generation (LCG) is a very general technique that has been successfully
used to speed up calculation times for many different types of scheduling problems.
However, as it is a recent method, its effectiveness for many other problem types has
not yet been investigated. Like other complete methods, LCG does not scale well to
large problems, but shows promise in its scaling behavior on the LSFRP. However, like
traditional CP solvers, LCG solvers can be combined with decomposition techniques
or large neighbourhood search to improve scalability (Schutt et al. 2012). Given our
positive results on both the BPCTOP and LSFRP, LCG may be worth investigating
as an approach to dealing with other routing and scheduling problems with time-
dependent task costs.

Solve-and-improve

Many scheduling and routing approaches initially solve a simplified model and then use
the constraints and objective function of the full problem to improve it. For routing and
scheduling problems with time-dependent action costs, removing the time dependence
of the objective function is one way to simplify the problem for the first step of a solve-
and-improve approach, as used by Lin et al. (2005).

In this section, we solve simplified models for both problems which ignore time-
varying action costs, and compare the improvement in runtime against improvements
obtained by the LTOP for the LSFRP and the LCG solver for the BPCTOP. The
runtimes for the simplified models are a lower bound on the runtime of a full solve-
and-improve approach, as the improvement step would increase the runtime further.

Results for bulk port cargo throughput optimisation

We implemented a simplified BPCTOP model by replacing the time-varying objective
function by feasible time windows and by solving the problem with the objective of
maximising the number of ships scheduled to sail. Table 6 compares the runtimes of
the normal and simplified models for the largest problem that was successfully solved
by all approaches, as well as for the largest problem solved by any approach. Bold font
indicates the fastest runtime, (i.e., the approach that results in the largest reduction in
runtime).

Table 6 shows that, while the simplified model is faster for small problem sizes, for
large problem sizes the CPX solver with LCG is faster than the simplified model to
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Table 6 Runtime (s) of CPX versus the FD solver with a simplified BPCTOP model

Problem type ~ NShips  Runtime (s) NShips ~ Runtime (s)
(small) FD CPX  SIMPLIFIED  (large) FD CPX SIMPLIFIED

MW 11 326 819 188 16 >1,300 1,040 >1,800
ow 11 1,480 273 0.56 12 >1,800 >1,800 26.7

MN 11 370 7.64 180 16 >1,300 1,100 >1,800
ON 10 99.9 482 0.34 12 >1,800 >1,800 19.6
MWT 10 11.5 17.1 114 13 >1,800 1,290 >1,800
OWT 9 81.5 239  4.60 11 >1,800 1,680 >1,800
MNT 10 202 428 821 12 >1,800 1,350 >1,800
ONT 9 184 657  0.69 10 >1,800 817 262

solve 5 of the 8 problem types, indicating that CPX scales better than the simplified
model for 5 of the 8 problem types. As seen earlier in Table 4, CPX is particularly
effective on large problems with tugs.

One interesting observation from Table 6 is that the simplified model gives the
largest runtime improvement for the most tightly constrained ON and ONT problem:s,
allowing problems with one more ship to be solved within the 30-min cutoff time. The
least tightly constrained MW and MWT problems show only a small improvement in
runtime from relaxing the time window penalties; and the moderately constrained MN,
MNT, OW, and OWT problems show moderate improvements. This result is similar to
the effect of relaxing hard time windows in a vehicle routing problem (Qureshi et al.
2009). Extending the latest delivery time by 10-20 minutes was found to significantly
improve schedule costs for tightly constrained problems. For problems with wide time
windows, on the other hand, where the time windows did not constrain the problem,
relaxing the time windows had little effect on cost and also increased runtime due to
increasing the computational complexity of the problem.

Results for liner shipping fleet repositioning

We implemented a simplified LSFRP model by fixing all sailing and sail equipment
actions to “slow-steaming”, i.e., minimum fuel cost with maximum time using the
LTOP planner (Tierney et al. 2012b). We perform a similar simplification for the
CP model, in which all sail equipment actions are bound to their maximum length.
Sail actions in the CP model are discretised, so we do not need to change them to
simplify the model. We note, however, that the hotel cost calculation, an impor-
tant time-dependent task cost in the LSFRP, cannot be simplified in any reasonable
way.

Table 7 provides the runtimes in seconds for LTOP and CP versus simplified LTOP
and CP approaches, with a timeout of one hour of CPU time.’ The results show that

3 Experiments used Intel Core i7-2600K 3.4GHz processors with a maximum of 4GB per execution.
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Table 7 Computation times to
optimality in seconds for CP and
LTOP versus simplified
approaches (S-LTOP and
S—CP-AOR) with optimal
windows. Note that we have
removed all TP7 instances
except for TP7_6_0 due to
timeouts

Problem LTOP S-LTOP CP-AOR S-CP-AOR
AC3_1_0 0.6 0.5 0.1 0.1
AC3_2.0 27.1 20.7 0.2 0.1
AC3_3_0 107.1 66.1 0.3 0.3
AC3_1_le 2.1 2.3 0.2 0.2
AC3_2 2ce 8.1 8.9 5.3 2.5
AC3_3_2c 111.6 142.7 14 1.3
AC3_3_2e 1124 117.4 6.1 31
AC3_3_2cel 104.4 115.7 6.2 3.2
AC3_3_2ce2 99.6 104.4 8.2 3.5
AC3_3_2ce3 234.0 234.0 228.9 26.9
AC3_3_3 41.0 42.8 4.8 4.5
FM3_4 0 3,002.4 2,931.3 8.1 8.8
FM3_4 4 - - 6.4 7.2
FM3_4 4c 3,031.9 2,939.6 6.4 6.9
FM3_4_4ce — - 55.9 8.6
FM3_5 0 - - 22.6 24.7
FM3_5_4 - - 20.4 22.0
FM3_5_4e - - 172.5 24.3
FM3_5_6 - - 22.6 24.7
FM3_6_0 - - 68.6 73.5
FM3_6_1 - - 88.7 97.2
FM3_6_2 - - 89.1 96.5
FM3_6_4 - - 86.1 92.9
FM3_6_6 - - 83.3 91.8
FM3_6_6e - - 735.5 78.0
FM3_6_6ce - - 736.0 78.3
TP7_6_0 - - 446.3 -
Mean 2,549.5 2,572.5 1,182.3 1,220.0
Geo. mean 909.6 934.5 82.1 61.6

solve-and-improve is not a particularly effective method within the LTOP framework,
with only AC3_3_0 showing any speed improvements. We can, therefore, conclude
that fixing the length and cost of the sail action is not very effective for the LTOP method
on the LSFRP, since the problems where the most benefit can be expected from fixing
action costs are those in which the optimal answer uses all slow-steaming actions.
Using solve-and-improve with CP—AOR leads to more promising results than with
LTOP, although it is unable to offer solutions for large LSFRP instances with equip-
ment. S-CP—AOR is able to find a solution quickly on a number of problems with
equipment, which are the only problems for CP where it can make a difference. In
particular on AC3_3_2ce3, FM3_6_6e, and FM3_6_6ce solve-and-improve requires
only around 10 % of the time of CP-AOR. Of course, the improve step still would

need to be run.
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Discussion

A solve-and-improve approach that simplifies away time-varying action costs was
found by Lin et al. (2005) to be effective for satellite imaging scheduling. However, they
did not compare the calculation speed of the complete problem against the simplified
problem, so there is no indication of the improvement in calculation speed produced by
simplifying away the time-varying quality function. However, our experiments found
that simplifying the LSFRP and BPCTOP models by removing the time-varying cost
function did not produce significant speed improvement and that switching to a CP
model or a solver with LCG was more effective.

It is possible that simplifying the cost function was more effective for speeding
up solution times for Linear Programming problems such as Lin et al. (2005), rather
than for CP or automated planning. However, more work would need to be done to
identify the speed improvement produced by simplifying the quality function in Lin
et al. (2005).

Conversion to vehicle routing

We solve the BPCTOP without tug constraints from “Conversion to vehicle routing”
using the Indigo VRP solver, which is able to consider a wide variety of side constraints
(Kilby and Verden 2011). One limitation of the solver is that it is only able to handle soft
time windows with linear penalties, whereas the draft function can vary non-linearly
outside the peak draft windows. Using linear penalty functions to approximate our
draft functions may lead to schedules that are not entirely optimal with respect to
the true draft functions. While conversion to VRP may be useful for finding close-to-
optimal solutions for large ship scheduling problems, a further improvement step may
be needed to optimise the final schedules. For example, we could use the VRP for an
approximate solution for large multi-port problems or long time scales and then find
optimal schedules for each high tide at each port by solving the CP model with the
exact draft function.

The basic port optimisation problem without tug constraints only has one vehicle
and can, therefore, be considered as a travelling salesman problem which aims to
minimise soft time window penalties instead of the total distance. However, a TSP
approach would not be generalisable to more complex scheduling problems that have
multiple resources. Also, any TSP approach would not be able to handle more complex
constraints such as the BPCTOP tug constraints. In this paper, we only investigate
modelling the problem as a VRP, not as a TSP, since the VRP approach would be
generalisable to a larger range of problems.

We converted the most tightly constrained ONEWAY_NARROW ship scheduling
problems from Kelareva et al. (2012a) with 4-20 ships sailing on a tide to VRP
problems with soft time windows and solved them using the Indigo VRP solver (Kilby
and Verden 2011). Indigo does not yet support constraints that require two jobs to be
completed at the same time in conjunction with early and late arrival penalties, so
we only present results for the problems with no tug constraints for now. Extending
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Table 8 Indigo VRP solver

versus G12 FD and CPX solvers, NShips G12_FD CPX VRP: 200 VRP: 1K

4 o em om o aw
5 0.23 0.22 1.14 5.15
6 0.44 0.22 243 11.7
7 0.34 0.33 4.70 23.0
8 0.45 0.87 8.43 41.6
9 4.70 23.4 13.8 68.6
10 99.9 482 21.3 108
11 609 >1,800 30.7 151
12 >1,800 - 41.7 207
13 - - 53.6 276
14 - - 65.3 330
15 - - 78.4 430
16 - - 93.5 480
17 - - 118 548
18 - - 130 668
19 - - 151 737
20 - - 170 851

Indigo to include the constraints required to support tugs and testing the VRP model
with tug constraints is left for future work.

All experiments were run on a Windows 7 machine with an Intel i7-930 quad-
core 2.80 GHz processor and 12.0 GB RAM, and with a 30-min (1,800-s) cutoff time.
Calculation times for Indigo versus the G12 FD and CPX solvers are shown in Table 8.

The Indigo calculations used a large neighbourhood search with two variations
of the search parameters: starting from 1,000 iterations and increasing the number
of iterations by 200 for every ship; or starting from 200 iterations and increasing
the number of iterations by 40 for every ship. The calculation times for both sets of
iterations are shown in Table 8. Up to 15 visits are removed in each LNS iteration and
then re-inserted.

Indigo uses large neighbourhood search to find the best solution within the given
number of iterations, but it does not produce a proof of optimality for the VRP solu-
tion, and may return suboptimal solutions. Also, since Indigo only supports linear
time-window penalty functions, it cannot model the non-linear task value functions
precisely, which contributes to it finding suboptimal solutions for larger problems
where not all ships are able to sail with their peak draft.

Figure 5 shows the cost increase of the optimal and VRP solutions compared to an
“ideal” situation with all ships sailing with their peak draft, for problems with up to 11
ships for which an optimal solution was found using the CP model. Since the solver’s
large neighbourhood search uses randomisation, the solver was run five times for each
problem, and the best of the five results is shown in Fig. 5. Note: the calculation times
in Table 8 show the mean runtime for the five calculations. The solver failed to find
an optimal solution for problems with 10 or more ships, as well as for 8 ships with the
smaller number iterations of Large Neighbourhood Search.
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Fig. 5 Cost increase of optimal 300
and VRP solutions compared to
all ships sailing with peak draft 250 /
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Tug constraints Modelling the tug constraints as a VRP requires a VRP solver
that can handle constraints that require two jobs to be completed at the same time,
and constraints that specify that two jobs must either both be completed, or both
not completed. Unfortunately, at present, Indigo cannot calculate soft time window
penalties correctly with these side constraints present, and other existing VRP solvers
do not include these types of constraints at all to the authors’ knowledge. For the
moment, the approach of converting a scheduling problem to a VRP is limited only
to simple scheduling problems without complex side constraints. More flexible VRP
solvers may be developed in future.

Summary

The VRP modelling of the BPCTOP can be solved much faster than the CP model for
large problems with 10 or more ships. Indigo is able to solve problems with up to 20
ships in a short timeframe—=8 ships more than the largest problem solved with any CP
solver. However, the results are suboptimal for all problems with 10 or more ships,
and no certificate of optimality can be provided by Indigo for any instance.
Increasing the number of iterations does not significantly improve the quality of
the schedules—in some cases, the best schedule found over five calculations is better
for calculations with fewer search iterations, for example, the case with 11 ships. This
indicates that the solver we chose for our experiments may be prone to getting stuck
in local minima, since past a certain point, searching with restarts is more effective
than simply increasing the number of iterations of large neighbourhood search.
Modelling a scheduling problem as a VRP may be an effective way to find close
to optimal solutions for larger scheduling problems than can be solved using optimal
methods. However, since VRP solvers only support the types of constraints and penalty
functions found in VRP problems, many types of scheduling problems cannot be mod-
elled accurately as a VRP, and a VRP solver will not be able to find optimal solutions
to the scheduling problem. However, even for those scheduling problems where the
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VRP solution is not good enough on its own, it may provide a good starting point for
a slower method that can consider complex constraints and objective functions.

Conclusions and future work

While scheduling and routing problems have usually been solved using mixed inte-
ger programming (MIP) and solve-and-improve approaches, constraint programming
(CP) with a good choice of model and search strategy, as well as recent techniques such
as lazy clause generation (LCG), have been found to be faster for some problem types.
In this paper, we reviewed scheduling and routing problems with time-varying action
costs, which increase the complexity of a problem, across a number of applications,
including three different ship scheduling problems, the vehicle routing problem with
soft time windows, project scheduling with net present value, and satellite imaging
scheduling. We then applied several approaches that had been successfully used to
solve other problems with time-varying action costs to the liner shipping fleet repo-
sitioning problem (LSFRP) and the bulk port cargo throughput optimisation problem
(BPCTOP).

We presented a novel CP model for the LSFRP and compared it against existing
MIP and automated planning models, and found that the CP model was faster than
both existing approaches, by an order of magnitude for some instances. CP was also
found to be faster than MIP for the BPCTOP in an earlier paper (Kelareva et al. 2012a).
We also compared a CP solver that uses LCG against a traditional finite domain CP
solver for the BPCTOP and found that LCG was faster for 7 out of 8 problem types.
On the LSFRP, LCG solves 3 more instances than not using LCG and provides a faster
average solution time across the entire dataset.

Since time-varying action costs make a problem more difficult to solve, one
approach previously used for these problems has been solve-and-improve, which uses
simplified models without time-varying action costs to find initial solutions (Lin et al.
2005). We compared the LTOP and CP models of the LSFRP and the full CP model for
the BPCTOP against simplified models without time-varying action costs and found
that the speed improvement of removing time-varying costs was less than that obtained
by converting the LSFRP to a CP model for all problem instances, and that solving
the BPCTOP using an LCG solver scaled better than using a finite domain solver for
5 of 8 problem types, particularly for the most challenging problems with complex
tug constraints. While our previous approaches were able to solve realistic-sized prob-
lems, the long calculation times limited their usefulness, and the speed improvements
presented here may open up new applications such as using the LSFRP as a subproblem
of fleet redeployment problems.

In our investigation of both the LSFRP and BPCTOP CP models, we found
that the CP model solution time was highly dependent on having a good choice
of model and search strategy. However, with this caveat, we find that CP and
LCG are efficient and flexible methods that are able to handle complex side con-
straints, and may, therefore, be worth investigating for other scheduling and rout-
ing problems that are currently being solved using MIP or solve-and-improve
approaches.
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Overall, we are able to recommend CP techniques as a worthwhile modelling
approach for time-dependent task costs. We find the results of the CP models on
the BPCTOP, LSFRP and in the literature promising, as CP tends to perform well on
such task costs even without having custom propagators that support them. This eases
problem modelling and makes CP a good testbed for a first approach for solving prob-
lems with time-dependent task costs. While MIP approaches do not perform poorly
on such problems, we see that time-dependent task costs are rather detrimental to the
LP-relaxation. This results in large search trees in comparison to CP, which is able
to achieve stronger bounding. It is possible that with the addition of a strong cutting
mechanism for such costs, MIP approaches could achieve better performance.

We also investigated the approach of converting a scheduling problem with time-
varying action costs into a VRPSTW to take advantage of the highly efficient spe-
cialised solvers available for the extensively researched VRPSTW. We modelled the
BPCTOP as a VRPSTW and solved it using the existing Indigo VRP solver. Mod-
elling scheduling problems as a VRP can allow solutions to be found quickly for large
problems; however, if the scheduling problem contains complex cost functions or side
constraints, VRP solvers may not be able to model them accurately, leading to a reduc-
tion in solution quality. VRP solvers may be a fast way to solve simple scheduling
problems or to quickly find an approximate initial solution to use as input to a more
specialised search algorithm.

For future work, we intend to investigate the integration of time-dependent task costs
into other optimization problems to increase their realism and thereby their relevance
to the industry. For example, including time-dependent draft restrictions in problems
such as the liner shipping network design problem (see, e.g., Brouer et al. 2014)
or adding detailed traffic congestion to problems like inter-terminal transportation
delay reduction at container terminals (Tierney et al. 2014). A number of vehicle
routing applications could benefit from a view of time-dependent task costs as in
Malandraki and Daskin (1992) or the pollution routing problem (Bektas and Laporte
2011; Franceschetti et al. 2012). Although adding time-dependent task costs to these
problems would likely increase the solving difficulty, the benefits of more closely
matching real-world processes is worth the trade-off.
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