EURO J Comput Optim (2013) 1:201-218
DOI 10.1007/s13675-013-0007-y

ORIGINAL PAPER

Restrict-and-relax search for 0-1 mixed-integer
programs

Menal Guzelsoy - George Nemhauser -
Martin Savelsbergh

Received: 2 September 2012 / Accepted: 21 December 2012 / Published online: 31 January 2013
© Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research
Societies 2013

Abstract A highly desirable characteristic of methods for solving 0-1 mixed-integer
programs is that they should be capable of producing high-quality solutions quickly.
We introduce restrict-and-relax search, a branch-and-bound algorithm that explores
the solution space not only by fixing variables (restricting), but also by freeing, or
unfixing, previously fixed variables (relaxing). Starting from a restricted 0-1 mixed-
integer program, the branch-and-bound algorithm may, at any node of the search tree,
selectively relax, or unfix, previously fixed variables, restrict, or fix, additional vari-
ables, or unfix and fix variables at the same time using dual or structural information
(problem-specific information). This process yields a dynamic search that is likely to
find high-quality feasible solutions more quickly than a traditional search and that is
also capable of proving optimality. A proof-of-concept computational study demon-
strates its potential. A straightforward generic implementation in SYMPHONY, an
open source solver for mixed-integer programs, is shown to generate high-quality
solutions for many MIPLIB instances as well as for large-scale multicommodity fixed-
charge network flow instances much more quickly than SYMPHONY itself.

Keywords 0-1 Integer programming - Branch-and-bound - Feasible solutions -
Restrict-and-relax

Mathematics Subject Classification 90C11 - 65K05

This work was supported by funding from ExxonMobil and the Air Force Office of Scientific Research.

M. Guzelsoy - G. Nemhauser
Georgia Institute of Technology, Atlanta, GA, USA

M. Savelsbergh ()

University of Newcastle, Callaghan, Australia
e-mail: martin.savelsbergh@newcastle.edu.au

@ Springer

202 M. Guzelsoy et al.

Introduction

A highly desirable characteristic of methods for solving 0-1 mixed-integer programs
(MIPs) is that they should be capable of producing high-quality solutions in the early
stages of the computation. From a practical perspective, finding high-quality solutions
and doing so quickly is frequently all that is desired. From a methodological perspec-
tive, it is important because many of the techniques embedded in integer programming
solvers rely on the availability of both lower and upper bounds. Therefore, it is not
surprising that substantial effort has been dedicated, especially in the last decade, to
enhancing the ability of methods for solving 0-1 MIPs to find high-quality solutions
quickly, either by embedding techniques specifically designed for this purpose, or by
modifying the methods themselves.

One of the techniques specifically designed to find high-quality solutions and
embedded in state-of-the-art commercial branch-and-bound solvers, such as CPLEX,
XPRESS, and Gurobi, is relaxation induced neighborhood search (RINS) [2]. RINS
explores a part of the search space defined by a known feasible solution and a lin-
ear programming solution. Variables with the same value in both solutions are fixed,
and the resulting restricted MIP is solved. The hope is that the reduced search space
defined by the fixed variables contains high-quality integer solutions and that it can
be explored efficiently by solving the restricted MIP. A variant that does not require a
known feasible solution is relaxation enforced neighborhood search (RENS) [1].

Local branching [5] is a related, but quite different, example of the effective use
of restricted MIPs. In local branching, given a reference solution x, a neighborhood
of the reference solution is defined by those feasible solutions that differ in at most
k of the binary variables, i.e., the feasible solutions with a Hamming distance of less
than or equal to k from the reference solution. This concept (or more specifically
the local branching constraint) is used to define a branching scheme in which in one
branch a restricted MIP is solved to find a best solution in the neighborhood, and in
the other branch a Hamming distance of greater than or equal to k + 1 is enforced.
The resulting branch-and-bound algorithm favors improving the incumbent solution,
hence producing high-quality solutions in the early stages of the computation.

Yet another example of the effective use of restricted MIPs is branch-and-price
guided search (BPGS) [8]. BPGS is based on an extended formulation of the MIP to
be solved, in which restrictions of that MIP are enumerated. The extended formulation
is solved with a branch-and-price algorithm, which automatically defines and solves
restricted MIPs and is guaranteed to produce a provable optimal solution when run to
completion. Computational experience demonstrates that the pricing problems quickly
produce restricted MIPs that yield high-quality solutions.

The common characteristic of these approaches is that they explore portions of the
solution space by defining a restricted MIP and then solving that MIP using a general
MIP solver. The idea is that by fixing certain variables to obtain a restricted MIP,
the restricted MIP can be solved more quickly and if the variables that were fixed
were chosen appropriately, the resulting solution will be a high-quality solution to the
original, unrestricted MIP.

In this paper, we introduce restrict-and-relax search, a branch-and-bound algorithm
that explores the solution space not only by fixing variables (restricting), but also by

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 203

freeing, or unfixing, previously fixed variables (relaxing). Starting from a restricted 0-1
mixed-integer program, the branch-and-bound algorithm may, at any node of the search
tree, selectively relax, or unfix, previously fixed variables, restrict, or fix, additional
variables, or unfix and fix variables at the same time using dual or structural information
(problem-specific information). This process yields a dynamic search which tends to
find high-quality feasible solutions more quickly than a traditional search. Restrict-
and-relax search always works with a restricted, but dynamically changing, set of
variables. As a consequence, restrict-and-relax search can be used to tackle instances
that are so large that they cannot be fully loaded into memory. Producing high-quality
solutions quickly to large MIPs was the main motivation for developing restrict-and-
relax search. Another was to investigate whether it is possible to effectively exploit
information obtained during branch-and-bound to refine an initial restricted MIP, e.g.,
either by fixing additional variables or by unfixing previously fixed variables.

It is insightful to highlight the main differences between restrict-and-relax search
and some of the other approaches exploiting the benefits of solving restricted MIPs.
Restrict-and-relax search is fundamentally different from standard branch-and-bound
enhanced with local search to find high-quality solutions in the early stages of the com-
putation (e.g., branch-and-bound enhanced with RINS). The latter approach always
works on the full MIP, but, at certain nodes in the search tree, solves a specific restricted
MIP. Restrict-and-relax search, instead, always works on a restricted, but changing,
MIP, and might only look at the full MIP at the end of the search if it is desired
to prove optimality. Restrict-and-relax search never solves a specific restricted MIP.
Restrict-and-relax search also differs from traditional IP-based local search, in which
some sequence of restricted MIPs is solved, since it can, if desired, yield a proof of
optimality, and bounds can be obtained throughout the search.

A computational study demonstrates the potential of restrict-and-relax search. Our
generic implementation in SYMPHONY [11], an open source solver for mixed-integer
programs, is shown to generate high-quality solutions for many MIPLIB instances as
well as for large-scale multicommodity fixed-charge network flow instances much
more quickly than SYMPHONY itself.

In the rest of the paper, we first present the core ideas underlying restrict-and-relax
search. Then we discuss our proof-of-concept implementation of restrict-and-relax
search and we present the results of an extensive computational study. We close with
some final remarks and directions for further research.

Restrict-and-relax search

Consider the 0-1 MIP

z = mincx, (1)
xeS

where S = {x € B" x R’:rIAx = b}. Restrict-and-relax search solves this problem

by branch-and-bound, but instead of starting with the full problem, restrict-and-relax
search starts with a restricted problem, i.e., a subset of variables indexed by F C [=

@ Springer

204 M. Guzelsoy et al.

{1, ..., r}issetto one of their bounds, i.e., x; = X;, where x; is either O or 1, resulting
in the restricted 0-1 MIP

ZF = min cx,)
)CES[:

where Sp = {x € B" x R["" | Ax =b,x; =%; ,i € F} € S. Ateach node 7 of the
branch-and-bound tree, the linear programming (LP) relaxation of

Z; = min cx
st. Ax =0
xi=x;,i € FUB
xeB x R'jr_’, 3)

is solved, where B, € I\ F is the index set of variables fixed by branching decisions.
Because the restricted 0-1 MIP given by (3) is a subproblem of the restricted 0-1 MIP
given by (2) and thus a subproblem of the original 0-1 MIP given by (1), we have
it 2 IF 2 2.

The benefit of solving the restricted 0-1 MIP given by (2) is that it is smaller than
the original 0-1 MIP and therefore can likely be solved much faster. Unfortunately,
there is no guarantee that an optimal, high-quality, or even feasible, solution is found.
That depends on the choice of the index set F of variables that is fixed, and the choice
of the values to which these variables are fixed. To eliminate this uncertainty, restrict-
and-relax search, at any node of the search tree, may unfix previously fixed variables.
Furthermore, to maintain the benefit of solving a small, restricted 0-1 MIP, restrict-
and-relax search, at any node of the search tree, may also fix additional variables.

That is, at certain nodes of the search tree, the sets of fixed and unfixed variables
are altered, i.e., at some node 7, we replace F with F and explore the part of the search
space defined by

Z; = min cx
s.t. Ax=5>b
x,-:)fi,iel*:UB,
xeB xR 4)

The goal, and the challenge, is to choose F in such a way that 7, < z, and F does
not differ much from F. We use dual information associated with the solution to the
LP relaxation to guide the choice of variables to fix and to unfix. It is advantageous to
change F gradually and solve a sequence of LP relaxations

min cx
st. Ax=»>b
xi=X%,ieF UB
X € Rﬁ, ®)

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 205

forj =1,...,k where F) = F and |FIJAFZJ_1 | is small, i.e., the number of variables
in the symmetric difference of two consecutive sets of fixed variables is small. This
not only guarantees that the linear programs can be solved quickly, it also ensures that
up-to-date dual information is available (and used) to guide the choice of variables to
fix and to unfix in each iteration. We store any integer-feasible solutions found along
the way and then either prune the node or branch on a variable x;,i € I \ {F,k U B;}.

Observe that the choice of variables to unfix (and fix) is based on local information,
i.e., information that is relevant to the restricted 0-1 MIP defined by the node in the
branch-and-bound tree. The hope and expectation is that this quickly guides the search
into promising parts of the solution space; therefore, producing high-quality solutions
early in the search (and thus avoids exploring unnecessary parts of the solution space).
Note too that restricting and relaxing serve two different purposes in restrict-and-relax
search. Restricting serves to increase the efficiency by reducing the size of the linear
programs that need to be solved, whereas relaxing serves to increase the solution
quality by expanding the space that is explored.

Recognizing that in a traditional branch-and-bound tree, the levels corresponds to
the number of variables fixed by branching, restrict-and-relax search can be interpreted
as starting at a node at level k, where & is the number of variables fixed initially, and
then jumping up and down the tree as variables are unfixed and fixed. The rules used for
pruning nodes are the same as in traditional branch-and-bound search, unless restrict-
and-relax search is turned into a heuristic by pruning some nodes without proof that
they cannot contain an optimal solution (see below for more details).

The key to success for restrict-and-relax search is choosing the variables to fix
and to unfix effectively. It is natural to use the primal and dual information available
at a node to do so. This reflects one of the main thrusts underlying restrict-and-relax
search, namely exploiting local information to guide the search for high-quality integer
solutions.

We fix variables only at LP-feasible nodes and choose variables to fix that are likely
to preserve feasibility and that are not likely to cause an increase in LP value when
other variables are fixed. More precisely, we choose variables to fix (at LP-feasible
nodes) from among the set

{xi |i € I\FFUB; and x/ =0 or x; =1},

that is, the set of unfixed integer variables that are set either to their lower or to their
upper bound in the current LP solution x*. For an unfixed variable x;, LP duality for
an optimal primal—dual solution pair yields

ifx’ =0, thenr] >0 and ifx =1, thenr/ <0,

where " is the reduced cost of variable x;. We choose to fix variables in non-increasing
order of the absolute value of their reduced costs. Thus, we give priority to variables
with large slacks in their corresponding dual constraints, so that when the dual solution
is no longer optimal for a subsequent subproblem, the contribution of these constraints
to the violation of optimality is likely to be minimal.

@ Springer

206 M. Guzelsoy et al.

Unfixing variables at a node is more involved. There are three cases to consider:
(1) the LP is feasible and the LP value is less than the value of the best known feasible
solution; (2) the LP is feasible and the LP value is greater than or equal to the value of
the best known feasible solution; and (3) the LP is infeasible. In case (1), we choose
variables to unfix that are likely to cause a decrease in the LP value. For a fixed variable
x;,i € Fy,wehavethatifx = Oandr} < Oorifx] = landr}* > 0, then unfixing this
variable may result in the current solution no longer being optimal and thus yielding a
new problem with a strictly lower LP solution value. Hence, we only unfix variables
with this property and, similar to fixing variables, we choose to unfix variables in non-
increasing order of the absolute value of their reduced costs. In case (2), we cannot
fathom the node as normally would be done in a branch-and-bound algorithm, since it
is possible that by unfixing some of the fixed variables, the LP value will become less
than the value of the best known feasible solution. Therefore, in this situation, we unfix
variables as described above. However, care has to be taken with the implementation.
Within a branch-and-bound tree, MIP solvers use the dual simplex algorithm to solve
LPs and stop as soon as the LP value exceeds the value of the best known feasible
solution, and therefore can terminate without producing a primal LP solution. In fact,
there may not even be a feasible primal solution. Therefore, if there is a cut-off, we
remove it and resolve the LP to obtain its true status. If it is feasible, we proceed as
before, i.e., we use dual information to unfix variables. Case (3) is similar to case (2),
but the dual is now unbounded. In this case, we have found that more drastic action is
needed to see if we can fathom the node. If the number of fixed variables is not too big,
we unfix all previously fixed variables (i.e., all but the variables fixed by branching)
and resolve the LP. If the LP is feasible and has an objective value below the value
of the best known feasible solution, we unfix the variables that have a value different
from their previously fixed value. For instance, if a variable was fixed to 1, but now
has a value 0.6, then it will be unfixed. If the LP is feasible but has an objective value
above the value of the best known feasible solution, or the LP is infeasible, the node
is discarded, since it has been completely processed.

Observe that the scheme for handling nodes with an infeasible LP ensures that
only nodes that can truly be discarded are discarded and thus the proposed method is
capable of solving the instance to proven optimality. However, the scheme involves
solving the full LP, which we may not want to (or may not be able to) do for very
large instances. In these situations, restrict-and-relax search can be converted into a
heuristic by either accepting the LP infeasibility immediately, or by exploring what
happens when a small number of previously fixed variables is unfixed.

The success of restrict-and-relax search may depend on the quality of the initial
restriction. Three natural choices for initial fixings are: (1) choose the variables to fix
based on some known feasible solution; (2) choose the variables to fix based on the
solution to the linear programming relaxation; or (3) choose the variables to fix based
on the initial feasible solution to the linear programming relaxation, i.e., the solution
after Phase I. The last option is of interest when dealing with extremely large instances
or when dealing with instances for which it is very time-consuming to solve the linear
programming relaxation to optimality.

We have employed strategies (2) and (3). That is, we fix variables with integral
values in an LP solution. More specifically, if xl!‘P = 0, then we assignascore s; = —c¢;,

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 207

and if leP = 1 then we assign a score s; = ¢;. We then fix variables in nondecreasing
order of these scores, so that we first fix variables that, when relaxed, increase the
value of LP solution more than others. Note that this implies that fixing is random
for variables with the same objective coefficients. We fix at most 90 % of the binary
variables.

The use of cutting planes in modern integer programming solvers has contributed
substantially to their success. Cutting planes are generated and added at selected
nodes of the branch-and-bound tree to obtain a tighter polyhedral approximation of
the convex hull of the integer feasible set.

The use of cutting planes in restrict-and-relax search requires careful consideration
because inequalities generated at a node ¢ for the subproblem defined by F/, i.e., the
subproblem given by (5), may not be valid for the subproblem defined by F; Jt1 (unless
F/ i+ C F; /) and for the subproblem associated with a node s in the subtree rooted at
t (unless F C F,j). The valid inequalities also might cut off feasible solutions when
variables are relaxed.

To be able to use cutting planes in restrict-and-relax search, we have a few options:

e All existing cutting planes are removed as soon as variables are relaxed. (Of course
new cutting planes can be generated for the new subproblem.)

e All relaxed variables are lifted in all existing cutting planes using some lifting
algorithm.

e Cutting planes are generated in such a way that they are globally valid, where
globally valid is with respect to S in problem (1), i.e., the cutting planes are
generated assuming that all variables (other than variables fixed by branching) are
relaxed.

In our current implementation we have adopted the last option, but the second
option could produce much tighter relaxations.

Implementation

We have presented a generic version of restrict-and-relax search and a variety of
implementations is possible. We have implemented a version controlled by a large
number of parameters to allow us to experiment with different setups. The control
parameters are listed and defined in Table 1.

Let # be a node with a tree level that is multiple of If, that is greater than d min_and
that is less than d™®*, or a node that is to be pruned by bound (if pb is enabled), or a
node that is to be pruned by infeasibility (if pi is enabled). Then, we fix and relax at
node ¢ at least once and at most tl times until the node LP relaxation is feasible and
has a solution value strictly less than the current upper bound.

Varying the parameter values can have significant impact on the performance on
specific instances. The default values provide a compromise that seems to perform
reasonably well across the instances in our test set.

The integer programs associated with child nodes in a traditional branch-and-bound
tree always correspond to restricted versions of the integer program associated with
the parent node. Consequently, the LP value at the parent node is less than or equal

@ Springer

208 M. Guzelsoy et al.

Table 1 Restrict-and-relax search parameters

Min-depth (4™in) Fix and unfix only at nodes below tree level 4™ (default: 0)
Max-depth (d™3%) Fix and unfix only at nodes above tree level d™* (default: 50)
Level-frequency (If) Fix and unfix at a node if the node level is a multiple of If (default: 3)
Trial-limit (tl) At a node, fix and unfix at most tl times (default: 5)
Unfix-ratio (ur) In a trial, unfix at most ur % of the fixed variables (default: 5)
Fix-ratio (fr) In a trial, fix at most fr % of the unfixed variables (default: 5)
Prune-by-bound (pb) If enabled, fix and unfix at nodes pruned by bound regardless

of the node level (default: enabled)
Prune-by-infeasibility (pi) If enabled, fix and unfix at nodes pruned by infeasibility regardless

of the node level (default: enabled)

to the LP value at the child nodes. It is because of this property that a node (and the
subtree rooted at the node) can be pruned when the LP value at the node is greater than
or equal to the value of the best known feasible solution. In restrict-and-relax search,
the property that the integer programs associated with child nodes in the search tree
always correspond to restricted versions of the integer program associated with the
parent node is no longer true, since fixed variables in the integer program associated
with the child node may be relaxed. Therefore, a node is not pruned unless one of the
following conditions occurs:

e all integer variables (other than the variables fixed by branching) are unfixed and
the node LP yields an integer feasible solution;

e all integer variables (other than the variables fixed by branching) are unfixed and
the node LP is infeasible or the node LP value is greater than the value of the best
known feasible solution; or

e fixing and unfixing has been performed tl times and the node LP remains either
infeasible or has a value that is greater than the value of the best known feasible
solution.

Because of the trial limit tl, our current implementation does not prove optimality
of the solution produced, even if the search tree is completely explored, since it is
possible that nodes containing an optimal solution are discarded. This is reasonable
since our goal is to achieve high-quality solutions, and the approach is not necessarily
intended to be run until the search tree is completely explored.

We have embedded restrict-and-relax search in the development version of SYM-
PHONY [11] with CLP (the COIN LP solver) because SYMPHONY provides the
capability to start from a restricted problem and to fix and unfix variables at selected
nodes in the search tree (functionality that is not available in the commercial solvers
CPLEX, Gurobi, and XPRESS).

SYMPHONY itself contains various techniques aimed at finding feasible solutions
quickly, e.g., two rounding heuristics, six diving heuristics, an implementation of the
feasibility pump [4], local branching and RINS, and restrict-and-relax search benefits
from (and to some extend relies on) their effectiveness.

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 209

Computational study

We have conducted a computational study to assess the potential of restrict-and-relax
search. The goal of the computational study is to compare traditional branch-and-
bound with restrict-and-relax search with regard to finding good solutions quickly.
The computational study has two parts. In the first part, we use restrict-and-relax
search to quickly find high-quality solutions to 0-1 MIPs from the well-known test
set MIPLIB [10]. In the second part, we use restrict-and-relax search to quickly find
high-quality solutions to instances of the multicommodity fixed-charge network flow
problem. All experiments were run on an Intel Xeon E5520 processor at 2.27 GHz.

We use restrict-and-relax search with the default settings for the control parameters
to quickly find high-quality solutions for a subset of 0-1 MIPs from the well-known test
set MIPLIB 2010 [10]. The subset of instances used in our computational experiments
was obtained by discarding the following instances from MIPLIB, where we report
the number of instances discarded in parentheses:

Instances with general integer variables (72);

Instances which are infeasible, the instances labeled I in MIPLIB (15);

Instances which are extra large, the instances labeled X in MIPLIB (9);
Instances which are unstable, the instances labeled U in MIPLIB (16);

Instances which are unstable for either CLP or SYMPHONY (23);

Instances which are easy, where easy is defined as being solved to optimality by
SYMPHONY in less than 500 s (34).

Additionally, we discard instances in which fewer than 60 % of the 0-1 variables are at
one of their bounds in the solution to the LP relaxation. The implementation of restrict-
and-relax search used in this proof-of-concept study only incorporates a simple scheme
for creating the initial restriction. Because restrict-and-relax search is likely to be more
successful when the initial restricted integer program is significantly smaller than the
original integer program, we limit ourselves to instances where the simple scheme
for creating the initial restriction does produce significantly smaller restrictions. This
highlights the need for further research on more sophisticated methods for creating the
initial restricted integer program. An additional 65 instances were discarded, leaving
us with a test set containing 127 instances.

To assess the potential of restrict-and-relax search, we compare the best solution
obtained for the instances in our test set with four different approaches:

1. Running the default solver (SYMPHONY) on the full MIP (denoted by Def-full);

2. Running the default solver (SYMPHONY) on the initial restricted MIP (denoted
by Def-restricted);

3. Running restrict-and-relax search in which the fixing of variables during the search
is disabled (denoted by RR-relax-only);

4. Running restrict-and-relax search (denoted by RR).

The reason for including the variant of restrict-and-relax search in which the fixing
of variables during the search is disabled is to investigate the importance of relaxing,
which is the fundamental idea of restrict-and-relax search. Since the primary goal
of restrict-and-relax search is to quickly find high-quality solutions, we investigate a
range of time limits: 100, 250, 500, 1,000 and 2,000 s.

@ Springer

210 M. Guzelsoy et al.

Table 2 Performance statistics for RR-relax-only

Def-full Def-restricted

100s 250s 500s 1,000s 2,000s 100s 250s 500s 1,000s 2,000s

Feas 8 8 12 4 4 14 21 26 25 27
< 35 48 53 56 51 39 45 49 50 50
= 11 11 13 14 20 7 3 3 4 4
> 26 20 17 21 23 20 18 17 16 17
No-feas 4 4 3 4 4 0 2 1 1 0

Table 3 Performance statistics for RR

Def-full Def-restricted

100s 250s 500s 1,000s 2,000s 100s 250s 500s 1,000s 2,000s

Feas 7 7 10 3 3 13 21 24 24 26
< 34 46 49 52 47 42 43 52 52 54
= 14 13 14 17 20 6 3 3 4 2
> 24 21 21 23 27 18 20 15 15 15
No-feas 4 3 2 3 4 0 2 0 0 0

In Tables 2 and 3, we show for how many instances restrict-and-relax search pro-
duced a feasible solution where the default solver did not (feas), for how many instances
restrict-and-relax search produced a better solution (<), an equally good solution (=),
and a worse solution (>), and for how many instances restrict-and-relax search pro-
duced no feasible solution where the default solver did (no-feas). The counts are taken
over those instances for which at least one of the approaches produced a feasible solu-
tion, which is the reason why the sum of the counts is not the same for each column.

We observe that both variants of restrict-and-relax search perform significantly
better than the default solver when either given the full MIP or the initial restricted
MIP. Furthermore, the benefits of restrict-and-relax search are most clearly seen with a
time limit of 500 s. When the time limit is smaller, a relatively large portion of the time
is consumed by root node processing and the benefits of the dynamic exploration of the
search space cannot be fully realized. When the time limit is larger, the benefits of the
dynamic exploration of the search space, i.e., finding a high-quality solution quickly, is
less significant, as the default solver has sufficient time to find a high-quality solution
as well. The ability of restrict-and-relax search to quickly find feasible solutions can
be observed for the smaller time limits, since the number of instances where restrict-
and-relax search finds a feasible solution and the default solver does not is higher
than the number of instances where the default solver finds a feasible solution and the
restrict-and-relax search does not.

A direct comparison between RR-relax-only and RR, given in Table 4, shows that
RR has a slight edge when it comes to finding feasible solutions quickly, whereas RR-
relax-only has a slight edge when it comes to finding high-quality solutions. For these

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 211

Table 4 Performance statistics

for RR RR-relax-only

100 s 250 s 500 s 1,000 s 2,000 s

Feas 1 1 2 1 2
< 19 21 25 26 26
= 39 41 40 40 41
> 21 24 28 28 29
No-feas 0 1 1 1 1

instances, the efficiency gains from fixing additional variables, do not seem to have an
impact. (The situation is different for the multicommodity fixed-charge network flow
instances used in the computational experiments.)

The counts presented and discussed above give an initial indication of the poten-
tial of restrict-and-relax search, but, at the same time, provide only a limited view.
Therefore, we next provide a more comprehensive comparison of the four approaches
by means of performance profiles [3]. Let ¥/ denote a performance metric and

a
a Vi

= T denote the relative performance of solution approach a on instance i,
a

respectivelyl, where the value of the performance metric is nonnegative and a smaller
value is preferred. The function p%(7) = “el‘;ﬁ gives the fraction of instances for
which solution approach a is within a factor t of the best. The performance profile for
solution approach a is the graph of p(7) on alog scale. In general, the higher the graph
of a solution approach, the better its relative performance. The performance metric
used to compare Def-full, Def-restricted, RR-relax-only, and RR is the gap between
the value of the best feasible solution found by the approach and the value of the best
known feasible solution, where for most instances the value of the best known feasible
solution is taken directly from the information provided in the MIPLIB distribution,
and where for those instances for which there is no information regarding the value
of the best known solution in the MIPLIB distribution, the value of the best feasible
solution produced by commercial solver CPLEX (version 12.4) when given 10 h of
computing time. The performance profiles for the different time limits are shown in
Fig. 1, where the performance profile for a given time limit is computed over the set
of instances where at least one of the approaches found a feasible solution.

The performance profiles highlight different aspects of the performance of the
solution approaches. When t = 1, the performance profile shows the fraction of
instances for which a solution approach performs best. We see that when the time
limit is 100 s, the fraction of instances for which a solution approach performs best is
similar for RR, RR-relax-only, and Def-full, a little over 40 %. As we observed before,
when the time limitis only 100 s, the benefits of restrict-and-relax search cannot always
be realized because a relatively large fraction of the time is spent on processing the
root node. When the time limit is between 250 and 1,000 s, we see that RR and RR-
relax-only do substantially better than Def-full, performing best in about 50 % of the
instances compared to about 30 % for Def-full. The difference in performance between
RR and RR-relax-only and Def-full is a bit less when the time limit is 2,000 s, but still

@ Springer

212 M. Guzelsoy et al.

Profile of gaps (100s) Profile of gaps (250s)
T T 1 T T

Def-restricted Def-restricted

02

Def-full 02F Def-full
RR-relax-only -- RR-relax-only --
1= J— RR -
O Il Il Il Il O Il Il Il Il
1 2 4 8 16 32 1 2 4 8 16 32

Profile of gaps (500s) Profile of gaps (1000s)
1 T 1 T T

Def-restricted Def-restricted

0.2 Def-full Def-full
RR-relax-only RR-relax-only --
2] J— 2] J—
0 Il Il Il Il 0 Il Il Il Il
1 2 4 8 16 32 1 2 4 8 16 32

Profile of gaps (2000s)
1 ‘ ‘ ‘

Def-restricted
Def-full -
RR-relax-only -
RR -

0 Il Il Il L
1 2 4 8 16 32

0.2

Fig. 1 Performance profiles for MIPLIB instances

substantial. It is important to realize that when given enough time, Def-full should be
at least as good as RR and RR-relax-only because it will find an optimal solution (and
possibly even better because our implementation of RR and RR-relax-only does not
guarantee that they find an optimal solution). However, apparently the time limit of
2,000 s is not enough for Def-full to catch up. When t = 32, the performance profile
essentially shows the fraction of instances for which a solution approach has found
a feasible solution (out of the set of instances for which at least one of the solution
approaches has found a feasible solution). We see that when the time limit is either
250 or 500 s RR and RR-relax-only do noticeably better than Def-full, whereas for the
other time limits the difference is minor, although it exists. This clearly demonstrates
the ability of restrict-and-relax search to quickly find high-quality feasible solutions;

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 213

if only limited time is available to find a feasible solution, restrict-and-relax search
should be the method of choice. When t is between 2 and 4, we get an indication
of the average performance of the solution approaches. A high value indicates that
a solution approach may not necessarily have been the best, but it has not been far
from the best. The fact that we observe a relatively large difference between RR and
RR-relax-only and Def-full in this range, again especially when the time limit is 250
or 500 s, shows the robustness of restrict-and-relax search. Overall, the performance
profiles demonstrate decidedly that restrict-and-relax search has the ability to quickly
find high-quality solutions. The performance profiles also demonstrate indisputably
that relaxing is crucial to the success of restrict-and-relax search since the performance
of Def-restrict, which solves the initial restricted integer program, is far worse than
the other three approaches.

The interpretation of the performance profiles is somewhat complicated by the
fact that we are comparing four approaches and for a particular instance the best
solution can be found by any one of the four approaches. The interpretation is more
straightforward when we compare two approaches. Therefore, in Fig. 2, we show
the performance profiles of just Def-full and RR. The benefits of restrict-and-relaxed
search are even more obvious.

Finally, in Tables 5 and 6, we report on the quality of the solutions produced by
restrict-and-relax search. More specifically, we show for various gap ranges the number
of instances for which restrict-and-relax search produced a better solution (<) than the
default solver, an equally good solution (=), and a worse solution (>) within 500 s,
e.g., for 25 instances RR produced a solution with a gap of between 1 and 5 % with
18 of them better than, 1 of them equally good, and 6 of them worse than the result of
Def-full.

We see that the quality of many of the solutions produced by RR is quite good, but
that for some instances the quality of the solution is still quite poor. It is important
to remember that some of the instances in the test set are quite large and that only
relatively few nodes have been evaluated in the 500 s.

In the second part of our computational study, we investigate whether the generic
restrict-and-relax search implementation is able to find high-quality solutions to a
set of large-scale instances of integer multicommodity fixed-charge network flow
problems (see Hewitt et al. [7] for a description of the problem and the instances). The
size of these instances varies between 150,000—-600,000 variables, 180,000-700,000
constraints and 750,000-3,000,000 nonzero elements.

Even solving the LP relaxation for some of these instances in a reasonable amount
of time can be challenging. Therefore, we construct the initial restricted IP using
the primal feasible LP solution obtained by the Phase I simplex algorithm. The LP
relaxation of the restricted IP is then solved to obtain the dual information used for
fixing and unfixing at the root of the search tree.

Recall that when an infeasible LP is encountered, the generic implementation of
restrict-and-relax search unfixes all previously fixed variables (i.e., all but the variables
fixed by branching) and resolves the LP. Because we do not want to solve the full LP,
when an infeasible LP is encountered during the search, unfixing is done using dual
information associated with the LP solution at the parent node. If the resulting LP is
feasible and has an objective value below the value of the best known feasible solution,

@ Springer

214 M. Guzelsoy et al.

Profile of gaps (100s)

Profile of gaps (250s)

0.2} E 0.2 | R
Def-full Def-full
R R

Profile of gaps (1000s)

0.2} E 0.2 | R
Def-full
RR --=----

0 Il Il Il Il 0 Il Il Il Il
1 2 4 8 16 32 1 2 4 8 16 32

Profile of gaps (2000s)
1 ‘ ‘

0.8
0.6
0.4} B
0.2} B
Def-full
RR ===nnn-
0 L L L A
1 2 4 8 16 32

Fig. 2 Performance profiles for MIPLIB instances

then variables that have a value different from their previously fixed value are unfixed
(otherwise the node is fathomed).

Finally, based on some preliminary experimentation, the following parameter values
were used: max-depth, 1,000; trial-limit, 100; unfix-ratio, 0.50 %; and fix-ratio, 1.0 %.

We report results for time limits of 15 and 60 min in Tables 7 and 8. The instances
are identified using the following notation: 7-x-y-z, where x denotes the number of
nodes divided by 100, y denotes the number of arcs divided by 1,000, and z denotes
the number of commodities. We also include the value of the LP relaxation at the root
(or —oo when no LP solution has been found). For the four approaches, i.e., Def-full,
Def-restricted, RR-relax-only, and RR, we report the value of the best IP solution
found and the number of IP solutions found. For each of the instances, the value of the

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 215

Table 5 Optimality gaps

for solutions produced Def-full Def-restricted

by RR-relax-only in 500 s B _ - _ — _
[0, 1) 11 9 1 18 2 1
[1,5) 15 1 6 16 0 6
[5. 10) 10 2 1 12 0 1
[10, 20) 10 0 5 13 0 2
[20, 50) 8 1 1 1 0
[50, 100) 3 0 3 0 0
[100, 0o) 8 0 0 0 7

g;i?:ozs l?r%té?:;g}é}% eg)l;fic:]r Def-full Def-restricted

500 s _ _ _ - - N
(0, 1) 11 11 1 21 1 1
[1,5) 18 1 6 19 0 6
[5.10) 8 1 2 11 0 0
[10, 20) 6 0 4 10 0 0
[20, 50) 6 1 4 8 2 1
[50, 100) 2 0 3 0 0
[100, 00) 8 0 | 0 ;

best IP solution found is shown in bold type face. We note that for all of the instances,
90 % of the variables were fixed in the creation of the initial restricted IP.

A number of observations can be made regarding these results. First, we see that
solving the LP relaxation of these instances is indeed quite challenging. Even with
a time limit of 60 min, CLP is unable to solve the LP relaxation for 6 out of the 11
instances. (With CPLEX version 12.4 similar results are obtained; CPLEX is unable
to solve the LP relaxation within 60 min for 7 out of the 11 instances.) Secondly,
we observe that restrict-and-relax search is able to produce IP solutions for all of
the instances within 15 min. In fact, for all of the instances, restrict-and-relax search
has generated many feasible IP solutions within 15 min. This clearly indicates the
enormous potential of restrict-and-relax search for extremely large instances of certain
classes of integer programs. Thirdly, we observe that for these instances, there is a
clearly observable difference between the performance of RR and RR-relax-only. A
closer examination of the results shows that RR evaluates far more nodes than RR-
relax-only (75 % more with a time limit of 15 min and 150 % more with a time limit of
60 min), which is almost certainly due to the fact that large numbers of variables are
fixed at nodes in the tree resulting in smaller linear programs being solved at nodes.
RR therefore explores a much larger portion of the solution space than RR-relax-only.

@ Springer

216 M. Guzelsoy et al.

Table 7 Results for multicommodity fixed-charge network flow instances with a 15-min time limit

ZLp Def-full Def-restricted RR-relax-only RR

z #sol z #sol z #so0l z # sol

found found found found

T-5-2-150 —o0 00 0 16,791,739 1 10,633,431 12 6,348,474 110
T-5-2-200 —o0 00 0 18,264,978 1 10,295,957 13 6,971,284 106
T-5-2.5-100 3,010,123 3,096,873 1 11,421,658 1 6,680,455 13 3,816,954 62
T-5-2.5-150 —o0 00 0 16,519,891 1 12,725,369 5 7,778,874 101
T-5-2.5-200 —o0 00 0 22,803,549 1 19,499,182 4 16,915,379 22
T-5-3-100 —o0 00 0 15,336,883 1 10,976,480 4 6,990,546 111
T-5-3-125 —o0 00 0 13,856,412 1 8,983,917 6 5,822,540 59
T-5-3-150 —o0 00 0 15,464,987 1 12,539,533 4 8,173,244 31
T-5-3-200 —o0 e 0 23,302,848 1 20,855,570 2 14,119,195 50
T-5-3-50 2,143,902 2,310,557 1 7,539,845 3 3,818,608 15 2,858,502 64
T-5-3-75 —00 00 0 11,478,392 1 6,484,868 17 4,622,346 49

Table 8 Results for multicommodity fixed-charge network flow instances with a 60-min time limit

ZLp Def-full Def-restricted RR-relax-only RR

z #sol z #sol z #so0l z # sol

found found found found

T-5-2-150 5,080,051 7,455,350 1 16,791,739 1 9,666,279 19 6,048,452 133
T-5-2-200 5,410,777 oo 0 18,264,978 1 9,603,211 16 6,659,686 123
T-5-2.5-100 3,010,123 3,096,873 1 11,421,658 1 5,440,807 27 3,459,553 75
T-5-2.5-150 —o0 00 0 16,519,891 1 11,867,108 9 6,963,319 146
T-5-2.5-200 —o0 00 0 22,803,549 1 18,937,251 5 12,827,664 83
T-5-3-100 —o0 00 0 15,336,883 1 10,967,825 5 6,797,231 120
T-5-3-125 —o0 00 0 13,856,412 1 8,715,813 7 5,115,193 99
T-5-3-150 —o0 00 0 15,464,987 1 11,365,537 5 6,752,942 88
T-5-3-200 —o0 00 0 23,302,848 1 19,307,474 4 10,569,513 144
T-5-3-50 2,143,902 2,310,557 1 7,539,845 3 3,055,353 27 2,858,502 64
T-5-3-75 3,540,911 oo 0 11,478,392 1 6,293,908 23 4,545,794 53

Final remarks

The development of restrict-and-relax search was motivated by the need to quickly
find high-quality solutions to very large integer programs. However, as our com-
putational study demonstrates, restrict-and-relax search has significant benefits also
when solving much smaller integer programs. Our proof-of-concept implementa-
tion of restrict-and-relax search in SYMPHONY is effective in producing high-
quality solutions to many of the integer programs in MIPLIB and to large-scale

@ Springer

Restrict-and-relax search for 0-1 mixed-integer programs 217

multicommodity fixed-charge network flow instances much more quickly than SYM-
PHONY itself. Perhaps even more important, it challenges the paradigm that has
been at the heart of branch-and-bound algorithms since their inception: rather than
organizing the search around restrictions only, restrict-and-relax search organizes the
search around restrictions and relaxations. It has long been recognized that the basic
branch-and-bound paradigm has weaknesses (e.g., that it is difficult to recover from
“unfortunate” branching decisions at the top of the tree) and dynamic strategies involv-
ing restarts have been proposed to address these weaknesses. Restrict-and-relax search
provides a fundamentally different perspective on how to explore the space of feasible
solutions.

As mentioned above, we have used a proof-of-concept implementation of restrict-
and-relax search to successfully demonstrate its potential. To reach its full potential,
more research is needed. There is clearly a need to investigate and explore alternative
methods for producing the initial restricted integer program. The choice of the initial
restricted integer program may be especially important for integer programs with few
feasible solutions. Schemes that incorporate ideas from recent work on finding a small
set of critical variables (a “backdoor” in the terminology of [12]) to be used first for
branching, e.g., [9] and [6], may be quite powerful.

When encountering an infeasible LP, the generic implementation of restrict-and-
relax search unfixes all previously fixed variables and resolves the LP to ascertain the
status of the node and, if possible, to obtain dual information to guide the unfixing of
variables. That is a pragmatic, but computationally expensive choice. When solving
multicommodity fixed-charge network flow instances, we chose not to do this, but
instead to use the dual information associated with LP solution at the parent node.
There is a need to better understand the impact of these and other possible choices.

The generic implementation has a large number of parameters that control its behav-
ior. We have observed that varying the parameter values can have significant impact
on the performance on specific instances. The default values provide a compromise
that seems to perform reasonably well across the instances in our test set. A better
understanding of and better mechanisms for detecting when to restrict and when to
relax during the search is essential.

An important component of a branch-and-bound algorithm is the node selection
scheme. Node selection schemes, i.e., schemes that decide which of the active nodes
to evaluate next, balance two goals: finding better solutions and proving that no better
solutions exist. Itis not clear that any of the node selection schemes currently employed
by integer programming solvers is appropriate for restrict-and-relax search. The fact
that it is possible to unfix variables at a node and thus locally enlarge the search space
should be taken into account in node selection schemes.

To summarize, we have introduced a new branch-and-bound search paradigm for
0-1 mixed-integer programs that is designed to find high-quality solutions quickly, but
is also capable of proving optimality or infeasibility. We have conducted computational
experiments with a proof-of-concept implementation that indicates its potential, and
have identified a number of research avenues that should make restrict-and-relax search
even more powerful.

@ Springer

218 M. Guzelsoy et al.

References

1. Berthold T (2012) RENS the optimal rounding. ZIP-Report 12—17, Konrad-Zuse-Zentrum fur
Informationstechnik Berlin
2. DannaE, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods to improve MIP
solutions. Math Program 102:71-90
3. Dolan ED, More JJ (2002) Benchmarking optimization software with performance profiles. Math
Program 91:201-213
4. Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104:91-104
5. Fischetti M, Lodi A (2003) Local branching. Math Program 98:23-47
6. Fischetti M, Monaci M (2011) Backdoor branching. In: Gunluk O, Woeginger GJ (eds) IPCO 2011.
Springer, Berlin, pp 183-191
7. Hewitt M, Nemhauser GL, Savelsbergh MWP (2009) Combining exact and heuristic approaches for
the capacitated fixed charge network flow problem. INFORMS J Comput 22:314-325
8. Hewitt M, Nemhauser GL, Savelsbergh MWP (2012) Branch-and-price guided search for integer
programs with an application to the multicommodity fixed charge network flow problem. INFORMS
J Comput. doi:10.1287/ijoc.1120.0503 (published online before print April 11, 2012)
9. Karzan F, Nemhauser GL, Savelsbergh MWP (2009) Information-based branching schemes for binary
linear mixed integer problems. Math Program Comput 1:249-293
10. Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath G, Gleixner
AM, Heinz S, Lodi A, Mittelmann H, Ralphs TK, Salvagnin D, Steffy DE, Wolter K (2011) MIPLIB
2010. Math Program Comput 3-2:103-163
11. Ralphs TK, Guzelsoy M (2005) The SYMPHONY callable library for mixed integer programming.
In: Proceedings of the ninth INFORMS computing society conference, pp 61-76
12. Williams R, Gomes C, Selman B (2003) Backdoors to typical case complexity. In: Gottlob G, Walsh T
(eds) IICAI2003: proceedings of the eighteenth international joint conference on artificial intelligence.
Morgan Kaufmann, San Francisco, pp 1173-1178

@ Springer

http://dx.doi.org/10.1287/ijoc.1120.0503

	Restrict-and-relax search for 0-1 mixed-integer programs
	Abstract
	Introduction
	Restrict-and-relax search
	Implementation
	Computational study
	Final remarks
	References

