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Abstract
Purpose of Review This review evaluates cow milk’s impact on breast carcinogenesis by linking recent epidemiological 
evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis.
Recent Findings Recent prospective cohort studies support the association between cow’s milk consumption and the risk of 
estrogen receptor-α-positive  (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 
(IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components 
of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, 
bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 
gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced  ER+ BCa.
Summary Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a 
critical risk factor of  ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from 
dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing 
of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations 
in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow’s 
milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland 
morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulner-
able periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption 
may have to be reconsidered.
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Introduction

In 2020, 2.3 million women were diagnosed with breast 
cancer (BCa) with 685,000 deaths globally. At the end of 
2020, 7.8 million were diagnosed with BCa in the past 5 
years, making BCa the world’s most prevalent cancer [1]. 
The estimated new total BCa cases in the United States 
(US) for 2022 are 287,750 for females and 2710 for males, 
respectively [2]. BCa prevalence is high in industrialized 
countries, where cow’s milk and dairy consumption are 
major dietary components. From 1947 to 1997, the age-
standardized death rate of BCa in Japan increased about 
2-fold, and the respective intake of milk increased 20-fold 
[3]. This review aims to interpret the latest epidemiology 
in context with recent insights into the molecular signal-
ing of milk linking cow’s milk consumption and BCa risk.

Milk is not a simple dietary food, but a growth-promoting 
endocrine system enhancing the synthesis of insulin-like 
growth factor-1 (IGF-1) [4], which activates the nutrient- 
and growth factor-sensitive kinase mechanistic target of 
rapamycin complex 1 (mTORC1) [5]. Physiologically, milk 
signaling is restricted to the period of lactation in all mam-
mals except Neolithic and modern humans, who may be per-
sistently exposed to cow’s milk. And even in societies who 
adopted dairy early on, milk was preferentially consumed 
in fermented forms until the widespread implementation of 
pasteurization and refrigeration technology [6]. In industri-
alized countries, cow’s milk intake in non-fermented forms 
may be an exposure over lifetime, beginning with maternal 
cow’s milk consumption during pregnancy, continued by 
cow’s milk intake in infancy, childhood, adolescence, and 
pre- and postmenopausal life [7•], which, as it will be dis-
cussed below, may influence BCa risk, particularly during 
certain vulnerable periods involved in breast carcinogenesis.

Search Strategy and Selection Criteria

PubMed was searched for original research articles, retro-
spective and prospective cohort studies, case-control stud-
ies, and meta-analyses/systematic reviews conducted in 
humans over the last 5 years relating cow’s milk consump-
tion to the risk of BCa in humans. Search terms included 
“cow milk,” “dairy,” “diet,” “milk,” “non-fermented milk,” 
“fermented milk,” “breast cancer,” “mammary tumor,” 
and “breast cancer risk.” Milk-related compounds like 
“insulin-like growth factor 1,” “estrogens,” “bovine meat 
and milk factors,” “aflatoxins,” “bisphenol A,” “pesti-
cides,” “microplastics,” and “nanoplastics” were linked 
to known pathogenic pathways in breast carcinogenesis. 
Factors associated with BCa risk including “birthweight,” 

“menarche,” “body mass index” “juvenile myopia,” “acne 
vulgaris,” and “linear growth” were also considered.

Increased Fetal Growth and Birthweight

Humans are the only mammalian species consuming the 
milk of another mammal during pregnancy, recommended 
by health professionals and dietary guidelines because 
milk is a rich source of calcium and vitamin D, the latter in 
countries with vitamin D fortification schemes. Milk con-
tains a moderate amount of protein composed of essential 
branched-chain amino acids (BCAAs) thought to have ben-
eficial effects for nutrition during pregnancy. The Genera-
tion R Study, a population-based prospective cohort study 
from fetal life until young adulthood in Rotterdam, investi-
gated 3405 mothers during pregnancy [8]. Maternal cow’s 
milk consumption of > 3 glasses (450 ml of milk) per day 
was associated with greater fetal weight gain in the third 
trimester of pregnancy [8]. Worldwide studies confirmed 
an increase in fetal growth and birthweight in relation to 
milk consumption during pregnancy [9, 10]. Compared 
to women who had a normal birthweight (2500–3999 g), 
women who weighed ≥ 4000 g at birth had a 20 percent to 
fivefold increased risk of premenopausal BCa [11]. Birth-
weight is positively associated with BCa risk [12] as well 
as mammographic density among postmenopausal and less 
among premenopausal women [13].

Cow’s milk consumption enhances growth hormone 
(GH) levels in children and peak GH levels in adults [14, 
15], as well as circulating IGF-1 levels in children and adults 
[4, 14–18, 19••, 20•]. There are two mechanisms leading 
to milk-mediated elevations of circulatory IGF-1 levels of 
the milk recipient: (1) uncertain proportions of bovine milk 
IGF-1, which shares an identical amino acid sequence with 
human IGF-1 [21], may be absorbed in the human intestine. 
(2) milk components, especially milk protein-derived amino 
acids (Trp, Arg, Met), may induce the synthesis and secretion 
of pituitary GH and hepatic IGF-1 into the circulation [5, 7•].

Of note, the administration of IGF-1 to pregnant mice 
resulted in significantly heavier birth and postnatal body-
weights of the offspring when compared to untreated con-
trols. Morphometric analyses revealed that a prenatal dose of 
5 μg IGF-1 resulted in significantly longer ductal elongation 
and higher breast density in the offspring. Furthermore, 5 μg 
IGF-1 also resulted in the highest number of breast stem/
progenitor cells in the offspring when compared to controls 
whose mothers were not treated with IGF-1 during preg-
nancy [22]. These findings provide evidence for a prenatal 
IGF-1-mediated modulation of breast stem cell composition 
and breast density in the offspring [22]. Thus, the GH/IGF-1 
axis may play an important role in regulating breast stem 
cell numbers during a prenatal developmental window [23].
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Breastfeeding Versus Artificial Formula 
Feeding

For infants and nursing women, breastfeeding provides pro-
tection against BCa [24–26]. An inverse association was 
found between an increase in body mass index (BMI) and 
the duration of exclusive breastfeeding (EXBF) among car-
riers of the risk allele of the fat mass and obesity-associated 
gene (FTO) rs9939609 [27]. EXBF antagonizes the FTO 
rs9939609 risk allele and by the age of 15 years, the pre-
dicted reduction in BMI after 5 months of EXBF was 0.56 
kg/m2 (95% CI: 0.11–1.01; p = 0.003) and 1.14 kg/m2 (95% 
CI: 0.67–1.62; p < 0.0001) in boys and girls, respectively 
[28]. Compared to infants, who received EXBF, FTO levels 
in blood mononuclear cells of infants fed artificial formula 
were excessively overexpressed [29••]. Notably, infant for-
mula is deficient in human milk exosomes and microRNAs 
(miRs) including miR-30b [30••], which targets and sup-
presses FTO expression [31]. FTO is an N6-methyladenosine 
(m6A) demethylase and participates in the epigenetic regula-
tion of adipogenesis and tumorigenesis thus changing mRNA 
expression networks and through interaction with mTORC1 
[32, 33]. Similar molecular mechanisms play a role in the 
development of obesity and BCa [34, 35•], which exhibit 
overexpression of FTO [36]. Thus, the nutrigenomic and epi-
genetic regulation of FTO during postnatal life appears to be 
a critical window for breast carcinogenesis.

Early‑Life BMI, Menarche, and Thelarche

BMI is critically related to the initiation of puberty. In con-
cordance with total and percentage body fat, all pubertal stages 
began earlier in females with BMI ≥ 85th percentile compa-
rable to females with average BMI [37]. The National Health 
and Nutrition Examination Survey (NHANES) observed 
that among children 5–10 years of age, those in the highest 
quartile (Q-IV) for milk intake had higher BMIs than those 
in lower Q-II [38]. Of note, milk had more consistent posi-
tive associations with BMI than did any other dairy product 
[38]. Every 5 kg/m2 increase in early-life BMI was associated 
with an elevated risk of BCa in a recent dose–response meta-
analysis [39]. A recent systematic review and meta-analysis 
of cross-sectional and prospective cohort studies assessed the 
associations between total dairy consumption and its differ-
ent subtypes with the prevalence and incidence of overweight, 
obesity, and overweight/obesity in children and adolescents 
[40]. Regarding prospective studies, total milk consumption 
was positively associated with overweight prevalence (OR 
(95% CI): 1.13 (1.01–1.26)) and incidence (RR (95%CI): 1.17 
(1.01–1.35)) risk [40].

The NHANES and the Tehran Lipid and Glucose Study 
reported an association between cow’s milk consumption 

and early onset of menarche [41, 42], a further recognized 
risk factor for BCa [43], which correlates with breast den-
sity [44]. When considering early thelarche (< 10 years) 
and early menarche (< 12 years) together, women with both 
had a 30% higher risk of BCa compared with women with 
neither risk factor [45]. IGF-1 plays a crucial role in hypo-
thalamic-pituitary-ovarian hormone-controlled metabolic 
processes that influence the onset of menarche [46]. In fact, 
serum levels of IGF-1 increase with age and pubertal devel-
opment [47]. Noticeably, a more frequent consumption of 
milk-based drinks, which may increase circulating IGF-1 
levels [4], was associated with a higher percentage of fibrog-
landular volume (FGV) measured at Tanner stage 4, whereas 
higher yogurt intake was associated with a lower FGV and 
delayed age at menarche in Chilean girls [48]. Earlier age 
of menarche promoted by cow’s milk consumption but not 
fermented dairy products may thus enhance the susceptibil-
ity to breast carcinogenesis during prepuberty and puberty.

Longitudinal Growth During Puberty

There is a well-established relationship between cow’s milk 
consumption during childhood and linear growth-enhancing 
height [49–51]. The consumption of milk, but not other dairy 
products, was associated with height among US preschool 
children in the NHANES 1999–2002 [49], whereas cow’s 
milk consumption was a significant predictor of the height 
of 12–18-year old adolescents [50]. The mitogen IGF-1 is 
the major inducer of bone growth [51–54]. During puberty, 
circulating IGF-1 promotes bone periosteal apposition [53]. 
Girls with higher serum IGF-1 levels in childhood enter 
puberty earlier [54]. Pubertal timing is influenced by IGF-1 
promoting longitudinal growth earlier in childhood [54].

Biro et al. [55••] demonstrated that peak height veloc-
ity (PHV) was greatest in early, and least in late-maturing 
girls. The length of the pubertal growth spurt was longest 
in early, and shortest in late-maturing girls. Earlier onset of 
menarche was related to greater PHV. IGF-1 concentrations 
were tracked significantly during puberty and higher IGF-1 
was related to earlier age of PHV, earlier age of menarche, 
greater PHV, and taller adult height [55••].

Acne and Juvenile‑Onset Myopia–Indicators 
of Excessive IGF‑1 Signaling

A visible indicator disease of exaggerated IGF-1 signaling 
is acne vulgaris, the most common inflammatory skin dis-
ease in industrialized countries, which is associated with 
increased height and BMI during puberty [56–58]. The 
consumption of dairy foods, particularly milk, and high 
glycemic carbohydrates, a common dietary pattern seen in 
acne patients of Westernized populations [59], increases 
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circulatory levels of IGF-1 and insulin [60–63]. These find-
ings point to accelerated IGF-1-mediated growth trajecto-
ries in acne pathogenesis leading to the hyperproliferation of 
sebaceous glands promoted by milk consumption [64–66]. 
In contrast, individuals with Laron syndrome exhibiting 
severe congenital IGF-1 deficiency do not develop acne 
vulgaris and are of small stature [67]. They are protected 
from common cancers including BCa [68]. Remarkably, the 
Sister Study recently showed that ever being diagnosed with 
severe acne before the age of 18 years was associated with 
a higher risk of BCa [69•].

Juvenile-onset myopia caused by increased vitreal cham-
ber growth is another IGF-1-induced condition also related 
to increased height and BMI during adolescence [70]. 
According to a cross-sectional study of children 6–12 years 
in China, breastfeeding was associated with a decreased risk 
of myopia [71].

IGF‑1 and Pubertal Mammary Gland 
Morphogenesis

Mammary development occurs almost entirely during 
puberty [72]. IGF-1 activates the proliferation of the ductal 
tree of the mammary gland [72]. IGF-1 is considered to 
be central to the process of ductal morphogenesis because 
neither estradiol (E2) nor progesterone (P) can act in the 
absence of IGF-1 [72]. Formation of the ductal tree is 
orchestrated by a specialized structure called the terminal 
end bud (TEB), which is responsible for the production of 
mature cell types leading to the elongation of the subtend-
ing duct. The TEB is also the regulatory control point for 
basement membrane deposition, branching, angiogenesis, 
and pattern formation [73]. It has been demonstrated in 
murine models that the earliest phase of pubertal mammary 
development (formation of TEBs) requires IGF-1. No other 
hormones have been shown to stimulate the formation of 
TEBs unless GH or IGF-1 is present. GH-induced IGF-1 
is thus of major importance in ductal morphogenesis [74, 
75]. It has been shown in the prepubertal mammary glands 
of BK5.IGF-1 transgenic (Tg) mice that IGF-1 preferen-
tially activated the PI3K/AKT pathway via the formation 
of ERα/insulin receptor substrate 1 (IRS-1) complex [76]. 
Conversely, in postpubertal Tg glands, reduced ERα expres-
sion failed to stimulate the formation of the ERα/IRS-1 com-
plex, allowing signaling to proceed via the alternate RAS/
RAF/MAPK pathway [76]. Accordingly, changes in ERα 
expression at different stages of development direct IGF-1 
signaling and the resulting tissue responses. As ERα lev-
els are elevated during the prepubertal and postmenopausal 
stages, these may represent windows of susceptibility during 
which increased IGF-1 exposure maximally enhances BCa 
risk [76].

Elevations of plasma GH and IGF-1 concentrations by 
cow’s milk intake may thus enhance the physiological mag-
nitude of circulating GH/IGF-1 during puberty deviating 
sebaceous gland, eye growth, and bone homeostasis (dis-
playing acne, early-onset juvenile myopia, pubertal skeletal 
overgrowth) but indiscernibly disturbing mammary gland 
maturation and TEB formation potentially increasing the 
risk of BCa.

Epidemiological Evidence

Cow’s Milk Exposure in Pre‑ and Postmenopausal 
Women

There are controversial results with regard to the reported 
epidemiological study type, i.e., national cohort studies 
(retrospective versus prospective), case-control studies, and 
large multi-national meta-analyses including worldwide 
“umbrella” studies, concerning the outcomes of BCa risk 
among adult women consuming cow’s milk.

Cohort Studies

According to the prospective study of the Norwegian Cancer 
Registry (n = 25,892), daily intake of > 750 ml whole cow’s 
milk compared to < 150 ml daily enhanced the risk of BCa 
by a factor of 2.91 [77]. A retrospective hospital-based case-
control study (n = 1857 cases and 1202 controls) in the US 
found a positive association between cow’s milk intake and 
the risk of ER-negative BCa (OR: 1.58; 95% CI: 1.05–2.37) 
[78]. Fraser et al. [79••] recently reported an increase in BCa 
risk (HR = 1.50; 95% CI: 1.22–1.84) related to cow’s milk 
consumption independent from milk fat content in a Cali-
fornian prospective cohort study of 52,795 women recruited 
from the Adventist Health Study-2, a large cohort of North 
American Adventists followed for 7.9 years. They found a 
stronger association between cow’s milk consumption with 
 ER+ and  PR+ tumors. The daily intake of 158 ml of milk 
already enhanced BCa risk, whereas the consumption of 
cheese and yogurt did not affect BCa risk [79••]. In contrast, 
Nilsson et al. [80] assessed the consumption of fermented 
milk, non-fermented milk, cheese, and butter, estimated 
from semiquantitative food frequency questionnaires, in 
relation to prospective risk of breast, prostate, colorectal, 
smoking-, and obesity-related cancers in 101,235 subjects, 
including 1921 BCa cases in the population-based Northern 
Sweden Health and Disease Study. They observed no con-
sistent association between milk/dairy intake and BCa risk, 
whereas an increased BCa risk was observed for women in 
the third vs. lowest quintile of non-fermented milk intake 
[80]. Recently, Kaluza et al. [81••] presented the results of a 
population-based Swedish Mammography Cohort including 
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33,780 women (88.2% postmenopausal) and showed that 
high and continuous consumption of two daily servings of 
non-fermented milk compared to no milk consumption, sig-
nificantly increased the incidence of  ER+/PR+ BCa (HR = 
1.30; 95% CI: 1.02–1.65).

These studies were derived from populations known for 
high dietary exposure to cow’s milk and dairy products and 
a high frequency of adult lactase persistence alleles thus 
allowing the consumption of higher quantities of milk com-
pared to Asian populations, where lactase persistence is 
rare. A large cohort study including 22,788 subjects from 
the Swedish Cancer Registry with lactose intolerance (more 
common in individuals with an absence of lactase persis-
tence, which is the ancestral human genetic trait [82]), and 
thus a lower milk and dairy intake, has found a lower risk of 
BCa (standardized incidence ratio = 0.79) [83].

Cow’s milk consumption was traditionally low in China 
(high genetic prevalence of lactase non-persistence). How-
ever, cow’s milk consumption in China increased due to 
governmental promotion. To investigate BCa risk factors in 
Chinese women residing in urban and rural areas of eastern 
China, a large-scale cross-sectional survey, which included 
122,058 women, identified an increased risk of BCa associ-
ated with milk consumption in rural areas [84]. The pro-
spective China Kadoorie Biobank Study recruited ~500,000 
adults from ten diverse (five urban, five rural) areas across 
China during 2004–2008 with a mean follow-up of 10.8 
years. A significant positive association was found between 
BCa and dairy consumption (predominantly milk) with an 
adjusted HR per 50 g/day consumption of 1.19 (95% CI: 
1.01–1.41) (n = 2582) [85••].

Case‑control Studies

An Iranian population-based case-control study on 350 
BCa patients and 700 age-matched controls found a posi-
tive association between total milk intake (OR 1.76; 95% 
CI: 1.16–2.65) and BCa, whereas no significant associations 
between yogurt and cheese consumption and BCa risk were 
observed [86•]. In contrast, a case-control study from Poland 
including 823 BCa cases using a semiquantitative food fre-
quency questionnaire, which retrospectively evaluated the 
consumption of milk and dairy products for a time period 
of 10–15 years prior to BCa diagnosis, reported that high 
consumption of milk decreased the risk of BCa for both pre-
menopausal and postmenopausal women [87]. Conversely, 
a case-control study in a Western Mexican population (97 
BCa patients, 104 controls) showed that high milk con-
sumption increased the BCa risk by 7.2 times [88]. Another 
case-control study in Uruguay reported that a high intake 
of whole milk was associated with a significant increased 
risk of BCa, whereas ricotta cheese and skim yogurt were 
associated with significant decreased risks [89].

Meta‑analyses Including International Studies

In 2015, Zang et al. [90] analyzed 22 prospective cohort 
studies (1,566,940 participants) and five case-control studies 
(33,372 participants) published between 1989 and 2013. High 
milk consumption was not found to have a preventive effect 
on BCa compared to low milk consumption (RR, 0.94; 95% 
CI: 0.86–1.03) and there was no evidence of a linear or non-
linear relationship between milk consumption and risk of BCa. 
The meta-analysis of Chen et al. [91] was reported in 2019 
and selected data from 8 studies published between 1989 and 
2009, and thus dismissed studies of a whole successive decade 
during which increasingly positive associations between milk 
intake and BCa risk have been reported [78, 79••, 81••, 85••, 
86•, 88]. The authors concluded that all milk models and the 
“available epidemiologic evidence” do not support a strong 
association between the consumption of cow’s milk or milk 
products and BCa risk.

In 2021, He et al. [92]. performed a meta-analysis consider-
ing 36 articles with 1,019,232 participants including individu-
als of European and Asian populations. Although the authors 
did not present exclusive data for milk, non-fermented dairy 
product intake exhibited no significant associations for BCa in 
premenopausal (HR = 1.03; 95%CI: 0.97–1.09) and postmen-
opausal women (HR = 1.03; 95%CI: 0.98–1.08), respectively.

To evaluate the BCa risk of milk consumption during 
childhood and adolescence, Gil et al. [93] in 2022 provided 
summary RRs for the highest vs. lowest milk intake of 0.83 
(95% CI: 0.69–1.00; p = 0.05; I2 = 60%) involving 6 studies 
published between 2001 and 2010, which relied on differing 
retrospective food questionnaires reporting milk consumption 
during childhood and adolescence and their potential risk asso-
ciation with BCa in adult life. One study reported on dietary 
habits in adolescence and midlife and the risk of BCa in post-
menopausal women with a mean age of 77 years. Remarkably, 
milk intake during childhood and adolescence was evaluated 
retrospectively in these studies with nonuniform food question-
aires which occurred in the 1950s, and thus recall of dietary 
behavior dated back for several decades pointing to serious 
limitations of this recently presented meta-analysis [93].

Pathobiochemical Evidence

Milk Components with Carcinogenic Potential

Several components in commercial cow’s milk may foster 
malignant transformation and may promote BCa initiation 
and progression. These factors are milk-derived and milk-
induced IGF-1, estrogens, exosomal microRNAs, bovine 
meat and milk factors (BMMFs), and other contaminants 
like aflatoxins, bisphenol A, and micro- and nanoplastics as 
well as environmental pesticides [94•].
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Bovine Milk IGF‑1

IGF-1 is a component of bovine milk and is not destroyed 
by pasteurization [95]. The natural concentration of IGF-1 
in milk is 1.27–8.10 ng/ml [95], but IGF-1 concentration in 
5777 random milk samples from Bavarian dairy cows ranged 
from 1.0 to 83.0 ng/ml [96]. According to a recent study 
in the US, median bovine GH and IGF-1 concentrations 
in conventional milk were 9.8 and 3.5 ng/ml, respectively, 
twenty and three times that found in organic samples [97]. 
Treatment of dairy cows with bovine somatotropin (bST) 
(forbidden in the European Union) to increase milk yield 
enhances IGF-1 concentrations in milk [96]. Notably, masti-
tis, a common inflammatory disease of lactating dairy cows, 
increases IGF-1 levels in milk whey [98]. Single-nucleotide 
polymorphisms (SNPs) of the bovine IGF1 gene have been 
associated with milk yield [99]. IGF-1 is of pivotal impor-
tance for the maintenance of cow’s milk production dur-
ing lactation and thus milk yield [100]. Accordingly, the 
breeding selection of dairy cows for the enhancement of 
lactation performance may have increased milk IGF-1 levels 
over decades. The highest milk IGF-1 content was observed 
for whole milk, followed by reduced-fat and low-fat milk, 
respectively [101], indicating that the milk fat fraction also 
contributes to total milk IGF-1 levels. However, it is not the 
bovine milk-derived IGF-1 that increases circulatory IGF-1 
levels in human milk consumers but the milk-induced intrin-
sic synthesis and secretion of IGF-1 by the milk consumer 
[5, 7•] (Fig. 1).

Commercial Milk Estrogens

Between 1850 and 1910, milk production was highly sea-
sonal. Peak milk volumes occurred in the spring after calving 
and cows were not milked during the winter months [102]. 
Milk produced from “persistently” pregnant cows–the cur-
rent routine praxis of the dairy industry–to increase com-
mercial milk yield enhances milk estrogen concentrations. 
In pregnant cows, the predominant estrogen is estrone (E1) 
sulfate, which passes into milk. Heat treatment (70 °C and 
95 °C) does not affect E1 and E2 concentrations compared 
to unprocessed raw milk [103]. The concentration of E1 sul-
fate increases from 30 pg/ml in non-pregnant cows to 151 
pg/ml in pregnant cows at 40–60 days of gestation, and to a 
maximum level of 1000 pg/ml in cows at 220 days of gesta-
tion [104]. As milk of pregnant dairy cows is pooled, com-
mercial milk contains higher estrogen amounts compared to 
former times, when lactation of cows was synchronized and 
cows gave birth only in spring time. Maruyama et al. [105] 
analyzed the exposure to exogenous estrogen through the 
intake of commercial milk produced from pregnant cows in 
children and adults. Urine concentrations of E1, E2, E3, and 
pregnanediol significantly increased in all adults and children 

after intake of 600 ml/m2 of commercial cow’s milk. In pre-
pubertal children, urinary excretion volumes of estrogens and 
pregnanediol significantly increased within 1–3 h. The net 
increase of E2 excretion from the basal E2 levels in urine 
(before the intake) was 39–109 ng/4 h in this study. These 
data indicate that the intake of estrogens from cow’s milk 
corresponds to the daily estrogen production rate in prepu-
bertal boys. Maruyama et al. [105] concluded that the intake 
of cow’s milk may be one of the major causes of early sexual 
maturation in prepubertal children. Peaker of the Hannah 
Dairy Research Foundation [106] did not consider these 
pediatric concerns [105] and stated that “even in worst case 
scenarios, oestrogen consumption in milk is considerably less 
than regulatory bodies regard as entirely safe.” Nevertheless, 
BCa cells are able to convert E1 sulfate into the 10 times 
more biologically active E2 [107]. Additionally, it is well 
accepted that even low doses of estrogens can both initiate 
as well as promote the growth of existing BCa [108, 109].

Furthermore, the molecular crosstalk between IGF-1 and 
E2 has potentiating synergistic effects in breast carcinogen-
esis. IGF-1 is a key activator of mTORC1 [5, 7•]. mTORC1 
emerged as a critical node in estrogenic signaling in BCa 
cells. Estrogens rapidly and potently activate mTORC1, 
which is a crucial activator of ERα transcriptional activity 
[110]. mTORC1 and its downstream kinase S6K1 directly 
phosphorylate and activate ERα upon estrogen stimulation, 
which implicates activated mTORC1 signaling in the patho-
genesis of  ER+ BCa [111, 112]. There is a close interaction 
between ERα and insulin/IGF signaling in BCa [113, 114]. 
IGF-1 and IGF-2 are among the most potent mitogens for 
mammary epithelial cells and there is accumulating evidence 
that they interact with the E2 axis to regulate mitogenesis, 
apoptosis, adhesion, migration, and differentiation of mam-
mary epithelial cells. Such interactions are bi-directional and 
E2 has been shown to regulate the expression and activity 
of IGF genes with the general effect of sensitizing breast 
epithelial cells to the actions of IGFs and insulin [113].

Samoli et al. [115] provided evidence in support of an 
interaction of IGF-1 with the expression of ERα in the non-
malignant mammary tissue in the context of BCa pathogen-
esis. As shown in ovarian cancer cell lines, E2 induces gene 
expression of IGF-1 and c-myc and increases the binding of 
ERα to the promoters of IGF-1 and c-myc [116]. The activa-
tion of ERα in BCa upregulates the expression of IGF-1, IRS-
1, and IGF1R, which results in the amplification of IGF-1 
responses. Reciprocally, stimulation of IGF1R increases 
the phosphorylation and activity of ERα [117]. In  ER+ BCa 
cells (MCF-7 cells), E2 treatment significantly activated 
the IGF1R promoter [118] (Fig. 1). Unfortunately, IGF1R 
expression is not controlled in the routine pathology of BCa.

The association between fat mass and obesity (FTO) 
gene polymorphisms and BCa is influenced by the status of 
ERs. Estrogens may promote BCa cell proliferation through 
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upregulation of FTO gene expression and activation of the 
PI3K/AKT signaling pathway in  ER+ BCa patients [119•]. 
Translational evidence indicates that milk intake enhances 
FTO-mediated transcription [120]. There appears to be a 
significant difference in the magnitude of FTO induction 
between human and bovine milk [120].

Impact of BRCA1 on IGF‑1/IGF1R Signaling

BRCA1, the well-established susceptibility gene for BCa 
and ovarian cancer [121], increases intratumoral IGF-1 
protein expression in BRCA  mutation carriers suggesting an 
involvement of the IGF-1/IGF1R axis in BCa pathogenesis 

[122]. Kang et al. [123] showed that in human BCa cells, 
IGF1 gene expression is negatively regulated by BRCA1 
at the transcriptional level. The IGF1R gene is also under 
negative control by BRCA1 and p53, which both physically 
interact with the IGF1R promoter [124] (Fig. 1). Thus, the 
loss of BRCA1 function can overstimulate IGF-1/IGF1R/
PI3K/AKT/mTORC1 signaling, which significantly con-
tributes to an increase in cell survival and proliferation thus 
promoting BCa. Elevated circulatory IGF-1 levels via milk 
consumption may thus have potentiating effects on the initia-
tion and promotion of BCa. In fact, a recent observational 
and Mendelian randomization study confirmed a causal role 
of circulatory IGF-1 in BCa [125•].

Pasteurized cow´s milk consump�on
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Fig. 1  Synergistic interaction of milk-induced signaling pathways 
between branched-chain amino acids (BCAAs), insulin, insulin-like 
growth factor 1 (IGF-1), estrone sulfate (E1S), and milk exosome 
(MEX)–derived microRNAs (miRs) in breast cancer (BCa). Con-
sumption of pasteurized cow’s milk increases circulatory levels of 
BCAAs, IGF-1, E1S, miR-148a, and miR-21 that may reach mam-
mary gland epithelial and stromal cells. BCAAs and IGF-1 activate 
the mechanistic target of rapamycin complex 1 (mTORC1), which 
promotes the translation of estrogen receptor-α (ERα) and fat mass 
and obesity-associated gene (FTO). Phosphorylation of ERα by the 
kinase S6K1 and estradiol (E2) ligand binding activates ERα , which 
stimulates the expression of IGF-1 and IGF-1 receptor (IGF1R). BCa 
cells are able to convert E1S to E2 via the action of steroid sulfatase 

(STS) and 17β-hydroxysteroid dehydrogenase type 1 (17 � HSD1). 
Physiologically, BRCA1 via direct interaction with p53 inhibits gene 
expression of IGF1 and IGF1R. However, loss-of-function mutations 
of BRCA1* enhance IGF-1 and IGF1R expression. MiR-148a signal-
ing via suppression of p53 and DNA methyltransferase 1 (DNMT1) 
enhances the expression of IGF-1, ERα, and FTO, a m6A RNA dem-
ethylase, that further enhances ERα expression. In addition, E2 pro-
motes FTO expression. Individuals with adipogenic SNPs of FTO 
may exhibit increased susceptibility for milk-mediated FTO expres-
sion. MEX miR-148a-induced suppression of p53 and MEX miR-
183-mediated suppression of BRCA1 may further enhance IGF-1 
signaling in BCa
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Cow Milk’s Exosomal MicroRNAs with Oncogenic 
Activity

Cow´s milk contains abundant exosomes (nanoparticles of 
~100 nm diameter) carrying microRNAs (miRs) that survive 
pasteurization but not ultra-heat treatment (UHT) of milk 
[126•, 127•]. Abundant signature miRs of pasteurized cow’s 
milk, milk fat, and milk exosomes (MEX) are bovine miR-
148a-3p and miR-21-5p [128, 129]. These share identical 
nucleotide sequences with the corresponding human miRs. 
Notably, MIR148A is a domestication gene of dairy cattle, 
which increases milk yield [130, 131]. After oral adminis-
tration, bovine MEX stays bioavailable and reach the sys-
temic circulation and the tissues of mice and humans [132•, 
133•, 134•]. MEX miR-148a-3p targets the mRNA of DNA 
methyltransferase 1 (DNMT1) [129], thereby enhancing the 
expression of ERα in BCa cells [135] and stimulating IGF-1 
expression [136]. In addition, MEX miR-148a-3p attenu-
ates the expression of the tumor suppressor p53 [137•], 
which is a negative transcriptional regulator of IGF1R [138, 
139] (Fig. 1). Accordingly, increased serum levels of miR-
148a-3p in humans were positively correlated with the pres-
ence of BCa [140•].

Regarding miR-21-5p, it is overexpressed in BCa com-
pared with normal breast tissue and can promote the prolifer-
ation and invasion of BCa cell lines, and suppresses its down-
stream target gene  phosphatase and tensin homolog (PTEN) 
[141] (Fig. 1). Via suppressing PTEN, miR-148a-3p and 
miR-21-5p enhance PI3K/AKT/mTORC1 signaling. Inter-
estingly, labeled bovine MEX and miR-21-5p accumulate in 
murine placenta and embryos following oral gavage [133•]. 
Notably, increased levels of miR-21-5p have been detected in 
the placenta of infants with increased birthweight [142, 143]. 
Additionally, placental miR-21 overexpression is associated 
with increased fetal growth [144•, 145]. Thus, bovine MEX 
miR signaling during pregnancy via cow’s milk intake may 
also affect fetal mammary gland growth trajectories.

MiR-21-5p is significantly upregulated in BCa tissue, 
cells, and exosomes [146•]. Notably, after the consumption 
of 1 L of commercial 1% fat cow’s milk, miR-21-5p plasma 
levels significantly increased by 147% in human volunteers 
for 3.2 h postprandially [134•]. Of importance, mastitis, a 
common inflammatory complication of lactating dairy cows, 
is associated with enhanced expression of miR-21 in the 
milk of affected cows [147], thus increasing the load of this 
oncogenic miR in milk [148].

Cancer cell metabolism is characterized by a shift from 
an oxidative to a glycolytic bioenergetic pathway, a process 
known as the Warburg effect. Both miR-148a-3p and miR-
21-5p promote hypoxia-inducible factor (HIF)–induced 
glycolysis via targeting hypoxia-inducible factor 1α inhibi-
tor (HIF1AN) and von Hippel-Lindau tumor suppressor 
(VHL), respectively. Of note, HIF-dependent hallmarks of 

cancer include angiogenesis and metabolic rewiring, which 
are well-established drivers of BCa aggressiveness, therapy 
resistance, and poor prognosis [149]. Furthermore, it has 
been reported in BCa that overexpression of miR-378* sup-
presses estrogen-related receptor-γ (ESRRG ) [150], a key 
transcription factor regulating mitochondrial oxidative phos-
phorylation. ESRRG  is also a target gene of miR-148a-3p 
(targetscan.org), which may thus synergize with miR-378* 
in promoting glycolysis-induced BCa cell proliferation 
[150]. Thus, bioactive oncogenic miRs of cow’s milk that 
survive pasteurization and are increased by breeding selec-
tion and bovine mastitis may epigenetically promote BCa 
carcinogenesis. Figure 1 illustrates the potential molecular 
crosstalk of milk-induced IGF-1, estrogen, and miR signal-
ing in the pathogenesis of BCa. Of importance, MEX miR-
183, which is overexpressed in the milk of cows with Staph-
ylococcus aureus–induced mastitis [151], has been shown to 
aggravate BCa [152•, 153, 154, 155•]. Furthermore, BRCA1 
is a predicted target gene of miR-183-5p.2 (targetscan.org). 
MiR-183-5p via targeting BRCA1 may thus increase IGF-1 
expression, which is in fact upregulated in the milk of cows 
suffering from mastitis [98].

Bovine Meat and Milk Factors

Uptake of dairy products of Bos taurus–derived dairy cows, 
particularly consumed at an early age, is suggested to repre-
sent one of the main risk factors for the development of BCa 
[156]. Virus-like circular DNAs of bovine meat and milk 
factors (BMMFs) have been recently isolated from com-
mercial milk [157] and BCa tissue [158•]. Transcriptome 
profiling upon BMMF expression identified host cellular 
gene expression changes related to cell cycle progression 
pointing to a potential pathogenic involvement of BMMFs in 
BCa [159•]. Interestingly, certain oncogenic viruses operate 
via the activation of IGF-1 signaling [160].

Milk Aflatoxins

Ruminants hydroxylate aflatoxin B1 (AFB1), ingested 
by contaminated food, to aflatoxin M1 (AFM1), which is 
excreted into cow’s milk [161]. AFM1 in milk is among 
the most carcinogenic compounds, especially when rela-
tively high levels are consumed in vulnerable age groups, 
i.e., infants and the elderly [161]. The increase of AFM1 
concentrations in the milk of maize-fed cows due to climate 
change is a recent matter of concern [162•]. Concentra-
tions of AFB1 and AFM1 of pasteurized and UHT milk 
were detected in the range of 0.7–1.5 μg/l [163]. High con-
centrations of AFM1 have recently been detected in human 
breast milk [164]. As shown in hepatocytes, AFB1 stimu-
lates PI3K/AKT signaling [165] and may thus converge with 
milk-induced IGF-1/PI3K/AKT signaling.
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Milk Contamination with Bisphenol A

Recently, the endocrine disruptor bisphenol A (BPA), a syn-
thetic compound with estrogenic activity, has been detected 
in raw and processed milk [166•, 167•]. The average con-
centration of bisphenol A found in milk from cartons (0.87 
ng/ml) was greater than in milk from plastic bottles (0.35 
ng/ml) [168•]. The maximal probable daily intake (PDI) of 
BPA by (ng/kg per capita) by milk consumption has been 
presented for Norway (0.73), Austria (3.21), France (7.75), 
Italy (7.87), and Belgium (15.16), respectively [169]. These 
PDI values are in the range for other BPA-contaminated 
foodstuffs like beverages, seafood, and meat [169]. A recent 
Nigerian study showed that in the category of dairy prod-
ucts, the highest daily intake of BPA was in canned evapo-
rated milk, followed by packaged cheese while raw cheese 
did not contribute to the total estimated daily intake [170]. 
Thus, milk consumption significantly contributes to the 
total estimated daily dietary BPA intake. This is relevant, 
because even low-dose BPA exposure is a matter of concern 
for BCa development and may affect vulnerable periods of 
breast development [171]. In mice, perinatal exposure to 
BPA increased the number of TEBs and the progesterone 
response of mammary epithelial cells [172]. In rats, peri-
natal exposure to BPA induced ductal hyperplasia, ductal 
carcinoma in situ, and malignant tumors [173, 174]. In rhe-
sus monkeys, fetal exposure to BPA increased the density 
of mammary buds and accelerated mammary epithelial 
development [175]. In ovarian cancer cells, BPA enhanced 

the crosstalk between ERα and IGF1R signaling pathways 
[176]. Thus, milk-derived estrogens and BPA in concert with 
further dietary BPA exposure may have potentiating effects 
in BCa carcinogenesis.

Milk Contamination with Xenobiotics, Pesticides, 
Microplastics, and Nanoplastics

Pesticides are among the most commonly found contami-
nants, not only in raw cow’s milk but also after milk pasteur-
ization and UHT processing [94•]. Oxidative stress caused 
by pesticides is an important mechanism through which 
pesticides exert their harmful effects. Many pesticides have 
been shown to modulate gene expression at the level of non-
coding RNAs, histone deacetylases, and DNA methylation 
patterns suggesting their role in epigenetic deviations [177]. 
It is impossible to oversee the impact and interaction of all 
pesticide and xenobiotic contaminations in commercial milk 
that may as well modulate the GH-IGF axis [178].

Humans are estimated to ingest tens of thousands to mil-
lions of microplastic (MP) particles annually, in the order of 
several milligrams daily [179]. Available information sug-
gests that inhalation of indoor air and ingestion of drinking 
water bottled in plastic are the major sources of MP expo-
sure. However, little is known about dietary MP exposure 
in humans. In newborns and infants, bottle feeding and 
medical devices can contribute to MP ingestion [179]. The 
detection of MP in seafood, honey, milk, beer, table salt, 
drinking water, and air is a recent matter of concern [180]. 

Table 1  Milk-derived potential carcinogenic compounds that vary in relation to genetic and environmental factors of dairy cows, milk process-
ing and distribution

Carcinogenic factors Potential effects on breast carcinogenesis

Dairy cow selection by IGF1 gene polymorphisms associated with 
increased lactation performance

Increased milk levels of IGF-1, which enhances mitogenic IGF-1 
signaling

Treatment of dairy cows with bovine somatotropin (bST) to increase 
milk yield

Increased milk levels of mitogenic IGF-1

Modification of milk compounds with oncogenic potential by infectious 
mastitis

Increased concentrations of IGF-1, miR-21 and miR-183 in milk thus 
promoting IGF-1/AKT/mTORC1 signaling

Whole milk compared to skim milk Higher milk levels of IGF-1 in whole milk
Increased MIR148A expression increasing milk yield Increased levels of miR-148a-3p in milk enhancing PI3K/AKT/

mTORC1 signaling, glycolysis, and IGF-1 and ERα expression via 
suppression of DNMT1

Dairy cow strains transfected with BMMFs Stimulatory effects on cell proliferation
Increased levels of aflatoxin M1 (AFM1) in maize-fed cows compared 

to grass-fed cows
Synergistic effects of AFM1 on PI3K/AKT/mTORC1 signaling

Milk contamination with bisphenol A (BPA) Synergistic effect of BPA on mitogenic IGF-1 and ERα signaling
Milk microplastics and nanoplastics Potential catalytic action on estrogen signaling
Variations in thermal milk processing Increased survival of oncogenic exosomal miRs by pasteurization 

compared to cooking and ultra-heat treatment (UHT)
Variations in microbial milk processing Bioactivity of exosomal miRs in non-fermented pasteurized milk 

compared to decreased bioactivity of oncogenic exosomal miRs by 
microbial fermentation
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The concentration of MPs identified in cow´s milk samples 
ranged from 204 to 1004 MPs per 100 ml exhibiting a surface 
area mainly ≤ 50 μm2 [181•]. The increased paraben-induced 
proliferation of estrogen-sensitive BCa cells was augmented 
in the presence of plastic nanoparticles. The mechanism 
may be related to the translocation and adsorption proper-
ties of nanoplastics acting as a Trojan horse to expose cells 
to parabens more efficiently [182•]. The frequently used 
microplastic-derived plasticizer organophosphate ester tri-
o-cresyl phosphate interacts with ERα in MCF-7 BCa cells 
promoting cancer cell growth [183•].

Table  1 summarizes the spectrum of potential milk-
derived carcinogenic compounds that may vary in relation 
to many genetic and environmental factors.

Conclusions

Two recent prospective cohort studies in California [79••] 
and Sweden [81••] identified cow’s milk consumption as 
a nutritional risk factor for  ER+ BCa in North American 
and European populations. Epidemiological evidence, albeit 
conflicting, is supported by pathobiochemical pathways of 
milk-derived signaling (Fig. 1). The molecular crosstalk 

between BRCA1, FTO, IGF-1, IGF1R, E2, MEX miRs, 
AFM1, BMMFs, BPA, and MP/nanoplastics may poten-
tiate oncogenic signal transduction pathways promoting 
BCa initiation and progression. According to NHANES III, 
adult IGF-1 levels and IGF-1/IGFBP-3 molar ratio had sig-
nificant inverse associations with adolescent milk intake in 
non-Hispanic White men, but not in men of other ethnicities 
or in women [184•]. The sequential impact of cow’s milk 
signaling during vulnerable periods of human life in the 
pathogenesis of BCa has never been investigated by epide-
miological research. The majority of epidemiological stud-
ies focus on pre- and/or postmenopausal women in relation 
to retrospectively estimated milk consumption missing the 
most critical periods of breast morphogenesis during fetal 
and puberty-associated breast tissue development and TEB 
formation (Table 2).

Milk is a highly complex bioactive fluid containing mul-
tiple biological and environmental effectors and thus is not 
a suitable single variable for epidemiological studies like 
blood pressure. Most published meta-analyses ignore the 
processing of milk, especially the thermal effects of pas-
teurization versus UHT, and thus do not provide informa-
tion on the presence or absence of oncogenic MEX miRs 
[185]. Genetic variations of domestic cows like SNPs of 

Table 2  Ethnic, individual and environmental factors modifying the susceptibility to milk’s nutrigenomic effects

Genetic and environmental predisposition factors of milk 
consumers

Nutrigenomic effects in milk consumers enhancing breast 
carcinogenesis

Lactase (LCT) persistence Tolerance to higher quantities of cow’s milk intake compared to 
individuals with lactase non-persistence (Asian populations)

IGF1 single nucleotide polymorphisms with enhanced IGF-1 
expression

Genetically predisposed IGF-1 hyper-responders may be at increased 
risk for milk-induced IGF-1 signal transduction

Variations in the prevalence of BRCA1 loss-of-function mutations Enhanced IGF-1 signaling compared to ethnic groups with lower 
prevalence of BRCA1 mutations

Variations in the frequency of adipogenic FTO gene polymorphism Synergism of milk-derived estrogen exposure and FTO-mediated 
estrogen signaling

Molecular heterogeneity of hormone receptor expression  (ER+,  ER−, 
 PR+,  PR−,  HER2+,  HER2−, triple negative BCa)

Milk signaling may preferentially promote ER-positive BCa

Variations in cow’s milk exposure during vulnerable periods of breast 
development, mammary branching morphogenesis, and tubular end 
bud formation

Enhanced risk of breast carcinogenesis by lifetime milk exposure 
including pregnancy (fetal overgrowth, increased birthweight), 
childhood and puberty (early menarche, increased longitudinal bone 
length), and pre- and postmenopausal periods

Variations in the dietary intake of high glycemic carbohydrates in 
combination with milk (milk + sugar); variations in the prevalence 
of type 2 diabetes

Western populations exposed to high glycemic load diets exhibit 
increased serum insulin and IGF-1 levels; diabetes type 2 is associated 
with increased risk of BCa

Quantitative and qualitative variations in protein intake High milk protein (yogurt, cheese) and animal protein (meat) intake 
further increase serum IGF-1 concentrations

Variations in frequency and duration of artificial estrogen 
administration

Synergism of milk-induced and iatrogenic estrogen exposure enhancing 
estrogen and IGF-1 signaling

Variations in breastfeeding versus artificial formula feeding Artificial formula feeding during the postnatal period may deviate 
postnatal breast morphogenesis via increased FTO expression

Variations in the mode and duration of breastfeeding Reduced risk of BCa by prolonged breastfeeding of the offspring
Maternal variations in the duration of breastfeeding Reduced risk of BCa in mothers who offer prolonged breastfeeding to 

their infants
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the bovine IGF1 gene, breeding selections for lactation per-
formance (enhanced bovine MIR148A expression), preva-
lence of mastitis, feeding procedures (grass versus corn), 
and environmental contaminations (aflatoxins, bisphenol A, 
pesticides, BMMFs, MPs, nanoplastics) are not and could 
never be taken into account by epidemiological studies, but 
may all have synergistic impacts on milk’s oncogenic signal-
ing capacity (Table 1).

On the side of the milk consumer, there is as well a great 
genetic and nutrigenomic heterogeneity. Genetic suscepti-
bility explains 5–10% of all BCa cases. BRCA1 and BRCA2 
genes are the most common cause of hereditary BCa exhib-
iting ethnic differences [186•]. A recent multicenter study 
comprehensively describes the characteristics of the 1650 
unique BRCA1 and 1731 unique BRCA2 deleterious (disease-
associated) mutations identified in the CIMBA database and 
observed substantial variation in mutation type and frequency 
by geographical region and race/ethnicity [187••]. Women 
with BRCA1 loss-of-function mutations in milk-consuming 
Western societies may thus exhibit increased susceptibility 
to milk-derived IGF-1 signaling as mutant BRCA1 exhibits 
less inhibitory activity on IGF-1 and IGF1R expression [123, 
124]. Furthermore, women with certain FTO and IGF1 gain-
of-function gene polymorphisms appear to be at increased 
risk for BCa [26–28, 188, 189] (Table 2).

There is mounting epidemiological evidence of a robust 
association between type 2 diabetes (T2D) and an increased 
risk of common cancers including BCa [190•]. Current 
understanding of the complex signaling pathways underly-
ing the obesity/T2D/BCa link focuses particularly on the 
insulin/IGF system [191, 192]. In fact, milk-induced insulin, 
IGF-1, and MEX miR-148a-3p/miR-21-5p-mediated signal-
ing pathways have recently been linked to the pathogenesis 
of T2D [7•, 193, 194••, 195, 196] relating milk consumption 
to the pathogenesis of both T2D and BCa.

Large meta-analyses include populations of different ethnic 
origins like Europeans exhibiting lactase persistence (allow-
ing high amounts of milk intake) and Asian populations with 
lactase non-persistence (naturally restricting milk consump-
tion). We conclude that multi-national meta-analyses intended 
to present extremely high proband numbers are less reliable 
for an adequate estimation of BCa risk as they do not con-
sider the genetic heterogeneity of BCa patients, i.e., preva-
lence of germline and somatic mutations in a milk-consuming 
population. In contrast, prospective studies including subjects 
derived from circumscribed homogenous ethnic populations 
with comparable genetic backgrounds as well as dairy cows of 
a given genetic background offer a more realistic evaluation of 
the potential carcinogenic effects of cow’s milk consumption.

In summary, available data from recent prospective cohort 
studies as well as pathobiochemical insights into synergies 

between milk and BCa signaling pathways identify com-
mercial cow’s milk consumption as a critical risk factor for 
ER-positive BCa in close analogy with milk’s impact on the 
pathogenesis of prostate cancer, the most common cancer 
in men [197–199].

In our opinion, current guidelines for dairy milk con-
sumption should be viewed with caution. They do not 
appropriately differentiate between the biological effects of 
pasteurized milk, UHT milk, and fermented dairy products 
[6]. They neglect the signaling effects induced by cow’s milk 
consumption during vulnerable periods on human mammary 
morphogenesis, especially during pregnancy [200], child-
hood and puberty (school milk programs) [201], and adult-
hood like US Dietary Guidelines 2015–2020 recommending 
a daily intake of ~ 300 ml of cow’s milk [202]. Even, the 
updated Dietary Guidelines for Americans 2020–2025 still 
recommend fat-free and low-fat milk as core elements of a 
healthy diet [203]. In contrast, Fraser et al. [79••] observed 
a significantly increased risk of BCa in US women by daily 
intake of ~ 160 ml milk independent of milk’s fat level. In 
accordance with Wehbe and Kreydiyyeh [204], it is time to 
reconsider dairy recommendations, especially milk intake.
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