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Abstract
& Key message In mixed forest plantations in sub-boreal
forests with high levels of natural regeneration ingrowth,
competition must be quantified differently for each spe-
cies, with distant-independent indices working better for
the planted species and distant-dependent indices for in-
grown balsam fir. Although broadleaved competition hin-
ders growth of coniferous species more than coniferous
competition, the differentiation between clades is not im-
portant enough to improve growth predictions.
& Context The use of ecosystem-based forest management has
changed how forest stands are tended. This shift in the man-
agement paradigm has led to a higher tolerance in natural
ingrowth regeneration in plantations. The correct way of
quantifying competition must thus be assessed to develop
growth simulators.
& Aims An individual tree relative basal area increment
(RBAI) growth model for white spruce, balsam fir and other
coniferous and broadleaved species was calibrated.

& Methods Using data obtained from 94 sample plots in 48
white spruce plantations from Eastern Quebec, we considered
both linear and nonlinear models of RBAI as a function of site
index, tree size and tree competition. The tested distance-
dependent and distance-independent indices were also dis-
criminated according to competitor clade (conifers or
broadleaves).
& Results The best competition index for balsam fir was
distance-dependent whereas a distant-independent one was
retained for the other species groups. Moreover, broadleaved
competitors had stronger effect on RBAI for white spruce
growth when compared to coniferous competitors.
& Conclusion Competition must be quantified depending on if
the species is planted or ingrown. However, dividing compe-
tition into clades (i.e. coniferous versus broadleaved) is not
necessary, at least in the present study.

Keywords Inter- and intra-specific competition . Tree
growth . Distance-independent and distance dependant
competition indices .Modelling

1 Introduction

Forest management in the province of Quebec was, for a long
time, based on harvesting natural forests and was character-
ized by large areas being harvested by clear-cuts (Del Degan
2010). These practices resulted in important changes in stand
structure and composition (Boucher et al. 2006; Boucher et al.
2009). A new Sustainable Forestry Act came into force in
2013 (Ministère des Forêts, de la Faune et des Parcs 2013),
and forest management must now be ecosystem-based. This
concept aims at maintaining biodiversity and ecosystem vari-
ability by reducing the differences between managed and un-
managed forests (Gauthier et al. 2008). As a consequence, 10
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to 20% of the plantations in Eastern Quebec will be converted
from even-aged stands to uneven-aged or irregular stands
(Gagné and Lavoie 2014). This conversion can be performed
by selection thinning in order to establish new age classes and
maintain tree vigour (Schütz 2001; Schütz 2002; Nyland
2003).

In the 1980s, the Government of Quebec implemented a
programme to reforest 300 million seedlings per year (Barrette
et al. 2014). Some 35 years later, some of these plantations are
now ready for a first commercial thinning, with some varia-
tions between the regions. For example, more than 36,000 ha
of white spruce (Picea glauca) plantations in Eastern Quebec
will be ready for a first commercial thinning in the next 5 years
(Gagné et al. 2012). These plantations are characterized by
important balsam fir (Abies balsamea) and broadleafed in-
growth. A compromise between maintaining the initial invest-
ment in white spruce and favouring the natural regeneration
must therefore be found. Moreover, the natural ingrowth can
help to reduce the differences between managed and unman-
aged stands (Gauthier et al. 2008), as prescribed by the new
Sustainable Forestry Act. Using growth and yield models can
help forest managers better plan their silvicultural treatments,
by determining the proportions of each species needed and
thinning patterns required to attain their objectives.

In Quebec, only a few models were developed to estimate
mixed stand growth. Among them, Artemis-2009 (Fortin and
Langevin 2010) and SaMARE (Fortin et al. 2009) are individ-
ual tree level models adapted respectively for naturally regen-
erated forests and for uneven-aged sugar maple (Acer
saccharum) stands. The stand level CroirePlant model was
developed for white spruce plantations (Prégent et al. 2010).
CroirePlant is, however, not calibrated for plantations with
large amounts of natural regeneration ingrowth. There is thus
a need to develop an individual tree growth model adapted to
mixed white spruce plantations which may be used to help
forecast stand growth after atypical thinning patterns.

Individual tree growth models can vary in complexity and
flexibility depending on their mathematical formulation (line-
ar versus nonlinear models) and how competition is quantified
(Schneider et al. 2016). Competition can be assessed using
either distance-independent or distance-dependent indices
(Daniels et al. 1986). Distance-independent competition
(DIC) indices have long been used to quantify the competition
within a forest stand (Reineke 1933). They usually perform
well in even-aged stands, where spatial variability is low
(Pretzsch 2009). Distance-dependent competition (DDC) in-
dices use tree position in order to characterize potential re-
source acquisition and thus integrate the within-stand structur-
al variation. These indices have also been shown to work well
in even-aged stands (Boivin et al. 2010); although, generally,
they are used for modelling tree growth in complex stands
(Prévosto 2005; Pretzsch 2009; Weiskittel et al. 2011).
Moreover, DDC is more suitable than DIC to simulate new

silvicultural treatments that aims to convert even-aged stands
to uneven-aged ones (Boivin et al. 2010).

Intra-specific competition is known to have a stronger ef-
fect on tree growth than inter-specific competition (Pretzsch
et al. 2013). In other words, when a tree is surrounded by other
species, its growth will be larger than when it is in competition
with trees of the same species (Getzin et al. 2006; Pretzsch
2009). This has been used to explain larger stem biomass
observed in mixed white spruce-trembling aspen (Populus
tremuloides) stands when compared to pure stands of either
white spruce or aspen (Wang et al. 1995).

Inter-specific competition was demonstrated to change
with stand developmental stage. According to Simard et al.
(2004), white birch (Betula papyrifera) competition is stron-
ger in young stands while conifer competition is more impor-
tant in older ones. Indeed, young white spruce and sub-alpine
fir (Abies lasiocarpa) growth and survival are hindered by
white birch and trembling aspen (Comeau et al. 2003). Early
successional species and shade-intolerant species such as
white birch and trembling aspen have higher light use efficien-
cy when compared to late successional species (Valladares
and Pearcy 1998; Valladares and Niinemets 2008). These re-
lationships are similar when considering conifers: shade-
intolerant conifers like lodgepole pine (Pinus contorta) or jack
pine (Pinus banksiana) have higher growth following thin-
ning when compared to shade-tolerant conifers such as
Douglas fir (Pseudotsuga menziesii) or black spruce (Simard
et al. 2005; Goudiaby et al. 2012). However, the competitive
abilities of early successional species decline as mixed stands
develop (Simard et al. 2004).

Considering the advent of ecosystem-based forest manage-
ment, the main objective of the present study is to model the
individual tree growth of the main species found in the white
spruce plantations of Eastern Quebec. The first sub-objective
is to determine the competition index that will best represent
the effect of competition on tree growth (e.g. DIC versus
DDC). The second sub-objective is to determine which math-
ematical form (linear versus nonlinear) ought to be used to
model tree growth. The third sub-objective is to determine
whether the discrimination between conifer and broadleaf
competition improves the model performance. To achieve
these sub-objectives, three hypotheses were made. The first
hypothesis is that distance-dependent competition indices will
present better model fit statistics than distance-independent
competition indices. As Eastern Quebec white spruce planta-
tions have important natural regeneration ingrowth, stand dy-
namics and tree interactions are more complex than in mono-
specific, even-aged plantations. Tree diameter increment is
non-linear with tree size, as smaller trees will have larger
increments than large ones. Therefore, the second hypothesis
is that a linear model will not be able to describe growth as
well as non-linear one. Finally, competition in the studied
plantations can be grouped by clade (e.g. broadleaf versus
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conifer) because, in the study area, broadleaved species are
mainly shade-intolerant species and conifers mainly white
spruce and balsam fir, which have similar crown characteris-
tics. The third hypothesis is thus that discriminating conifers
and broadleaves competition will significantly improve model
performance.

2 Material and methods

2.1 Study area and sites

A permanent sample plot network of 94 plots within 48 white
spruce plantations was established in 2013 in the Bas-Saint-
Laurent region of Eastern Quebec, Canada (Fig. 1). This re-
gion is in the eastern balsam fir-yellow birch bioclimatic sub-
domain of the boreal mixedwood forest zone. The mean an-
nual temperature and precipitations are 3.1 °C and 929 mm,
respectively (Robitaille and Saucier 1998).

The plantations were chosen with a stratified random sam-
pling scheme based on three criteria available from the provin-
cial ecoforest maps: (i) ecological type, (ii) stand density and
(iii) stand height. The four ecological types with the highest
proportion of white spruce plantations were retained: sugar
maple-yellow birch, balsam fir-yellow birch, balsam fir-white
birch and balsam fir-eastern white cedar ecotypes. Within each
ecotype, plantations with high (crown cover >80%), moderate
(crown cover between 60 and 80%) and low densities (crown
cover between 40 and 60%) were then selected. Finally, we
retained two classes of dominant height: (i) height between 7
and 12 m (ii) height between 4 and 7 m. A total of 24 combi-
nations (four ecotypes, three stand densities and two dominant
stand height classes) were possible. Two plantations per com-
bination were randomly selected, and within each plantation,
two plots were established for a total of 96 permanent sample
plots (24 stand types × 2 plantations × 2 sample plots). Two
sample plots were discarded as no white spruce trees were
found in the plot, yielding a total of 94 plots.

Fig. 1 Permanent sample plot network established in the Bas-Saint-Laurent region of Eastern Quebec (Canada)
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2.2 Data collection

Each plot had a radius of 5.64 m (area of 100 m2). All living
trees with a diameter at breast height (DBH) greater than 5 cm
were numbered and measured using a diameter tape. An ap-
proximate tree mapwas also sketched in the field. In each plot,
height of two randomly selected dominant trees for each spe-
cies was measured using a Vertex IV Hypsometer. The DBH
of the closest trees outside the plot was also measured. The
trees were chosen with the following criteria: an outside tree
was measured if its crown was in interaction with a tree inside
the plot. Interactions were either the crowns touching or the
outside tree overshadowed a plot tree. An increment core was
extracted on each tree within the plot, with the borer orientated
towards the centre of the plot. The cores were sanded, and the
5-year increment was then measured using an electronic cali-
per. No increment core was extracted in the closest trees out-
side the plot. Their DBH 5 years ago was predicted with a
linear regression calibrated with the increment core data:
DBHt − 5 = −1.25 + 0.09 DBHt = 0 (R

2 = 0.93). Site indices
(SI), defined as plantation dominant height at age 25, were
then calculated for each plantation according the method de-
scribed in Prégent et al. (2010)

SI ¼ 34:6683 1− 1−
HD

34:6683

� � 1
1:5077

" # 25
AGE

2
4

3
5
1:5077

ð1Þ

where HD is the average height of the 100 largest stems ha−1

and AGE the age of the plantation. SI ranged between 6.7 and
14.9 m at 25 years. A summary of the dataset is given in
Table 1.

2.3 Tree maps

Tree maps of each plot were obtained from terrestrial laser
scanner (TLS) data. Each plot was scanned with a FARO
Focus 3D from three to four scanning points, in order to re-
duce occlusion. First, Faro Scene 5.0 (FARO technologies)
was used to assemble the multiple scans from each plot to
produce a three-dimensional point cloud. Computree
(Othmani et al. 2011) was then used to extract a 10 cm slice
centred on 1.30 m above the digital terrain model. Cloud
points belonging to the branches were manually removed
from the 10 cm slice, and the cleaned point cloud was used
to determine the XY tree coordinates. This last step was per-
formed using the functions contained in the ‘fpc’ (Martin et al.
1996) and ‘pracma’ packages (Gander et al. 1994) of the R
statistical software (R Development Core Team 2011). The
coordinates of each tree within the plot and the first row of
trees bordering the plot were thus obtained. Finally, each co-
ordinate was attributed a tree number obtained from the ex-
traction process from the first step. Unidentified tree numbers

were manually marked in R using maps drawn during the
forest inventory. To ensure concordance between tree numbers
assigned automatically and those given manually, the DBH
obtained from the cloud point and the DBH measured in the
field was compared.

2.4 Competition indices

Competition was quantified with both distance-independent
and distance-dependent competition indices, and their mathe-
matical definitions are given in Table 2. Three distance-
independent competition indices were computed: (i) the diam-
eter squared ratio (DRS) (Glover and Hool 1979), (ii) the
standardized stand density (SSD) (Reineke 1933) and (iii)
the basal area of trees larger than the target tree (BAL)
(Wykoff et al. 1982). Four distance-dependent indices were
computed: (i) two variants of Hegyi’s index (HI1 and HI2)
(Hegyi 1974), (ii) the Martin-Ek index (MEI) (Martin and Ek
1984) and (iii) Spurr’s point density index (SPDI) (Spurr
1962). For these latter competition indices, competitors of a
specific tree were identified using the Voronoi method of the
‘tripack’ package (Renka et al. 2013) implemented in R
(Fig. 2). AVoronoi tessellation partitions the plot into convex
polygons. Each polygon is associated to a tree, and every
location within a polygon is closer to the tree of that polygon
than any other tree in a plot (Voronoï 1908). Specifically, two
trees were considered as competitors when they share a com-
mon line segment of their Voronoi polygon. In other words,
the competitor trees are trees which potentially have touching
crowns. As trees outside the plot that had crowns touching, or
that overshadowed trees within the plot, were also measured
and located with XY coordinates, no correction for edge ef-
fects was required. All competition indices were calculated for
competitor species pooled together as well as the competitor
species separated according to their clades, i.e. conifers and
broadleaves. The DRS per clade could not be calculated, since
the absence of a clade would lead to a division by 0.
Furthermore, the inverse of the DRS was tested to overcome
this pitfall but led to fit statistics which were not as good as
those obtained with the DRS (e.g. Akaike’s and Bayesian
information criterion), and thus 1/DRS was not further
considered.

2.5 Growth models

Linear (Eq. 2) and nonlinear (Eq. 3) mixed effects models
were developed to predict the relative basal area annual incre-
ment (RBAI, in m2 m−2 year−1), defined as the basal area
increment (m2 year−1) to basal area (m2) ratio, for white
spruce, balsam fir, other conifers species and broadleaves spe-
cies, independently. Random effects were applied on the in-
tercepts for the plantation and plot within plantation hierarchi-
cal levels.
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RBAIijk ¼ b20 þ b21⋅SIij þ b22⋅ln DBHijk
� �þ f CIijk

� �
þ uk þ vjk þ eijk ð2Þ

RBAIijk ¼ b30 þ g SIij
� �

⋅h DBHijk
� �

⋅ f CIijk
� �þ uk þ vjk

þ eijk ð3Þ

Where:

– b20, b21, b22, b23 and b30 are fixed effect parameters esti-
mated by the regressions.

– SI is the site index (in m),
– DBH is the diameter at breast height (in mm).
– f(CIijk) is the competition function using the indices listed

in Table 2 (see competition effect section below).

Table 1 Descriptive statistics of dataset with standard deviations in parenthesis

Species DBH (cm) Ring width
(mm)

Dominant
height (m)

Number of
individuals

Basal area
(m2 ha−1)

Stand density
(nbstems ha−1)

White spruce (Picea glauca) 13.6 (4.3) 2.7 (1.3) 11.4 (2.8) 1048 13.4 (7.2) 1272.3 (668.3)

Balsam fir (Abies balsamea) 13.0 (5.6) 2.8 (1.6) 12.0 (3.2) 365 4.5 (6.2) 453.0 (591.5)

Other conifers

Black spruce (Picea mariana) 11.6 (3.8) 1.8 (1.1) 10.2 (2.5) 150 1.6 (4.7) 180.7 (506.7)

Eastern larch (Larix laricina) 18.8 (6.6) 2.8 (1.5) 16.1 (4.7) 15 0.4 (3.1) 18.1 (118.1)

Norway spruce (Picea abies) 9.5 (3.5) 3.3 (1.1) 9.6 (0.4) 8 0.0 (0.3) 9.6 (87.8)

Eastern white cedar (Thuja occidentalis) 6.9 (2.6) 0.9 (1.0) 4.4 (0.0) 2 0.0 (0.1) 2.4 (15.4)

Broadleaves

Trembling aspen (Populus tremuloides) 10.1 (5.1) 2.7 (1.6) 12.2 (3.4) 66 0.5 (1.5) 80.7 (192.2)

Paper birch (Betula papyrifera) 8.8 (3.7) 1.9 (0.9) 9.9 (1.3) 32 0.2 (0.6) 41.0 (125.0)

Sugar maple (Acer saccharum) 9.9 (6.3) 1.5 (0.5) 12.1 (3.9) 11 0.1 (0.8) 13.3 (58.0)

Red maple (Acer rubrum) 7.5 2.5 7.6 1 0.1 32.5

Bold characters indicate species groups for which models were calibrated

Table 2 Tested distance-independent and distance-dependent competition indices

Equations References

Distance-independent competition indices Diameter squared ratio (DRS) CI ¼ D2
i

D
2 Glover and Hool (1979)

Standardized stand density (SSD) CI ¼ 1
500 ∙N ∙ D

10

h i1:605
Reineke (1933)

Basal area of larger trees (BAL) CI ¼ ∑ j π ∙ D j

200

� �2
� �

∙ 10 000
Plot area

For Dj ≥Di

Wykoff et al. (1982)

Distance-dependent competition indices Hegyi’s competition index (HI1) CI ¼ ∑
i≠ j

D j

Di∙Distij
Hegyi (1974)

Hegyi’s competition index (HI2) CI ¼ ∑
i≠ j

D j

Di∙ Distij þ 1
� � Hegyi (1974)

Martin-Ek index (MEI) CI ¼ ∑
i≠ j

Dj

Di
∙e

16∙Distij
DiþD j

� �" #
Martin and Ek (1984)

Spurr’s point density index (SPDI) CI ¼ 75:625
n ∙ ∑

i≠ j
jþ 1

2

� 	
D2

j

Dist2ji

" #
Spurr (1962)

Di DBH of tree i in cm, Dj DBH of tree competitor j in cm, D̄ average DBH of trees in the plot in cm, N number of tree per acre, n number of tree
competitors identified by the voronoï method, Distij distance between tree i and tree competitor j in meters, plot area in m2
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– g(SIij) is the site effect (see site effect section below).
– h(DBHijk) is the size effect (see size effect section below).
– uk is the plantation random effect, where uk∼N(0, σ2k).
– vjk is the plot within the plantation random effect, where

vjk∼N(0, σ2jk ).
– i, j and k are indices representing respectively the tree,

plot and plantation.
– e is the residual error, where e∼N(0, g(DBH) σ2) and

g(DBH) = |DBH|δ in order to account for the observed
heteroscedasticity.

For the additive models (Eq. 2), the natural logarithm of the
DBHwas used in order to describe the curvilinear relationship
between RBAI and DBH. All possible combinations of the
linear terms were tested. Each competition index presented in
Table 2 was subsequently compared. In all, seven combina-
tions were tested for each species.

For the nonlinear models, the different components of the
model are defined as follows.

Site effect The site effect was assumed to be linear with site
index, after visual inspection of the data

g SI ij
� � ¼ b31 þ b32SIij

� � ð4Þ

where b31 and b32 are fixed effect parameters estimated by the
regression.

Size effect Size effect is the change in RBAI with the size of
the tree. The effect of target tree on RBAI wasmodelled with a
lognormal function (Canham et al. 2006).

h DBHijk
� � ¼ e−0:5

ln DBHijk =b33ð Þ2
b34 ð5Þ

Both parameters are fixed effects estimated by the regres-
sion. For all the nonlinear models except for the one using the
clade-separated BAL, b34 was set to 1 in order to obtain model
convergence.

Competition effect The competition effect is the reduction in
RBAI of a tree due to the competition exerted on a tree. The
RBAI of a target tree is assumed to decrease with an increase
in competition. It is defined using the negative exponential
function proposed by Canham et al. (2006) for the non-
linear models (Eq. 3) whereas the linear models use f(CIijk)

f CIijk
� � ¼ e f CIijkð Þð Þb36 ð6Þ

f CIijk
� � ¼ f CIijk

� � ð7Þ

The fixed effect parameter b36 was either estimated by the
regression or set to 1 in order to obtain model convergence for
the models using the pooledMEI for the other conifers and the
pooled BAL for balsam fir, other conifers and broadleaves.

Finally, both the pooled and clade-separated competition
indices were tested. The competition effect was thus expressed
as f (CIijk) = b23 ∙ CIpooledijk for the linear models and
f (CIijk) = − b35 ∙CIpooledijk for the nonlinear models, where
b23 and b35 are fixed effect parameters estimated by the re-
gression and CIpooledijk, the pooled competition index. For the
clade-separated competition indices, f(CIijk) was expressed as
f(CIijk) =b24 ∙CIBijk+b25 ∙CICijk for the linear models and as
f(CIijk) = − (b37 ∙CIBijk+b38 ∙CIFijk) for the nonlinear models,
where CIBijk and CIFijk are the competition indices calculated
from broadleaf or conifer competition, respectively, and b24,
b25, b37 and b38 fixed effect parameters were estimated by the
regression. We will hereafter refer to the pooled competition
index or the clade competition index to distinguish between
these two methods for quantifying the competition around a
given target tree.

Models were calibrated with the ‘nlme’ package in R
(Pinheiro et al. 2015). Akaike’s information criterion (AIC)
was used for model comparison (Pinheiro and Bates 2000).
Model evaluation was also carried out through inspection of
the residuals versus the predicted values and the different var-
iables used in the models. Normality and homoscedasticity
were checked visually.

Tree inside plot

Tree outside plot

A 1

23
4

5
6

Fig. 2 Voronoi tessilation of plot 4-1. Trees with solid points correspond
to trees within the plot, while trees with open points correspond to
competitor trees outside the plot that were measured. Tree A has trees 1
to 6 as competitors, where trees 1 and 2 are trees outside the plot

26 Page 6 of 15 Annals of Forest Science (2017) 74: 26



3 Results

For all species and mathematical forms, the best distance-
independent competition index was the BAL (at least 100
AIC points difference, not shown) while the best distance-
dependent competition index was the MEI (at least 60 AIC
points difference, not shown). The pooled competition index
was always better than the clade competition index for the
linear models (Table 3). In the case of the nonlinear models,
the pooled competition index also had the lowest AIC except
for white spruce for which the best AIC was obtained for the
clade competition index. Furthermore, the nonlinear models
generally had the lowest AIC. These results are supported by
plots of the residuals, where trends can be observed for the
linear models and not for the nonlinear ones (Figs. 3 and 4).

3.1 Parameter estimates of linear models

The parameters associated to the site index (b01) were found to
be significantly positive for white spruce and broadleaves
(Tables 4, 5, 6 and 7). However, for the other species (i.e.
balsam fir and other conifers), site index was not found to
have a significant effect on the RBAI. The parameters associ-
ated to DBH (b22) were found to be significantly negative for
all models constructed and for all species (Tables 4, 5, 6 and
7).

For the pooled competition indices (b23), MEI and BAL
were found to be negatively related to white spruce and bal-
sam fir RBAI (Tables 4 and 5 ). The parameter estimate asso-
ciated to broadleaved competition was greater (b24 = −0.162
for MEI, b24 = −0.0030 for BAL) than the parameter estimate
associated to coniferous competition (b24 = −0.143 for MEI,
b24 = −0.0010 for BAL), when clade competition indices was
used for white spruce. Such a difference was also observed for
balsam fir when the MEI is used (Table 7).

3.2 Parameter estimates of nonlinear models

The nonlinear models evidenced that white spruce RBAI was
always proportional to site index (b32) while balsam fir RBAI
was never found to vary with site index (Tables 8, 9, 10 and
11). Furthermore, RBAI was found to decrease with DBH for
all species (Fig. 5). RBAI was also found to decrease with
increasing competition when using either MEI (Table 8) or
BAL (Table 9). As with the linear models, the clade competi-
tion indices (Tables 10 and 11) revealed that broadleaves com-
petition (b37 = 1.4262 for MEI, b37 = 0.3326 for BAL) is more
important than coniferous competition (b39 = 0.8886 for MEI,
b39 = 0.0457 for BAL) for white spruce. The same trend was
observed in the case of the balsam fir (b37 = 0.9996 for MEI,
b37 = 0.1321 for BAL versus b39 = 0.9020 for MEI,
b39 = 0.0798 for BAL).

4 Discussion

Our results demonstrated that nonlinear models had better fit
statistics than linear models for all species. The discussion
will, however, focus on white spruce (n = 1048) and balsam
fir (n = 365), as the number of trees of the two remaining
species groups (n = 175 for other conifers and n = 110 for
broadleaves) is too small. The best competition index varies
between species and model forms. Indeed, for white spruce,
the best competition index was the BAL in the nonlinear form
and MEI in the linear form. Moreover, we were able to dem-
onstrate that white spruce growth is more negatively affected
by broadleaved competition than from conifer competition.

White spruce and balsam fir are coniferous species with
similar productivities (Burns et al. 1990). Their shade toler-
ances are, however, slightly different, as balsam fir is shade-
tolerant and white spruce is intermediate (Humbert et al.
2007). Most of the present broadleaved species are both

Table 3 Akaike’s information
criterion (AIC) for the null, linear
and nonlinear models

White spruce Balsam fir Other conifers Broadleaves

Null model

−5310.0 −1486.4 −884.7 −368.6
Linear models

MEI Pooled competition index −5449.7 −1561.1 −874.3 −376.7
Clade competition index −5438.7 −1552.6 −875.2 −376.7

BAL Pooled competition index −5411.5 −1519.0 −875.6 −367.8
Clade competition index −5402.2 −1526.3 −875.3 −366.5

Nonlinear mixed models

MEI Pooled competition index −5523.2 −1623.1 −937.4 −396.0
Clade competition index −5515.5 −1608.3 −939.2 −394.2

BAL Pooled competition index −5526.8 −1602.4 −950.0 −398.7
Clade competition index −5539.1 −1601.4 −949.0 −397.2

Lowest AIC for each species and mathematical forms are in italics
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pioneer species and shade intolerant (Humbert et al. 2007),
thus showing strong juvenile growth (Franceschini and
Schneider 2014). Grouping the coniferous and broadleaved
species to quantify competition is thus relevant, given our
data.

For all species, nonlinear models had lower AIC values
than linear models. Indeed, nonlinear models are more flexible
than the linear models, even when the transformation of the
predictor variables in the linear models was tested. The non-
linear model was designed to represent the observed relative
growth trend (Canham et al. 2006). This model structure takes
into account the important variables influencing tree growth,
such as site index, tree size and competition. Moreover, al-
though they are mathematically more complex than linear
models, they are more biologically meaningful.

Individual tree relative basal increment was chosen over
basal increment for several reasons. Preliminary analyses
showed that the effects of competition on tree growth were
better identified when RBAI was used (not shown). This is
consistent with previous studies that found that relative basal
area growth better quantifies the effects of competition
(Larocque and Marshall 1993; Larocque 2002). As the scope

of the present work was not to compare RBAI to absolute
basal area increment, a formal differentiation was not
undertaken.

It is well known that diameter growth is highest for small
trees and declines to an asymptote with increasing tree size as
the wood is distributed over a larger area (Canham et al.
2006). This was also observed for RBAI in the present work.
Our formulation of the nonlinear model included an additional
intercept, when compared to the formulation proposed by
Canham et al. (2006). This intercept corresponds to the rela-
tive growth of a very large tree. In other words, the minimum
relative growth for a large white spruce varies between 0.0255
and 0.0365, depending on the model.

There was a large between-plantation variability in en-
vironmental factors even if the sampling area was restrict-
ed to a region of Eastern Quebec. This variability was
quantified using the site index. White spruce relative
growth was thus found to increase with site quality (SI)
in accordance with previous results (Canham et al. 2006;
Prégent et al. 2010). Balsam fir growth was, however, not
related to site index in our models. The calculated SI is that
of white spruce and used in the balsam fir models, as a
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Fig. 3 Residuals against
predicted values for linear and
nonlinear growth models where
the effect of conifers and
broadleaves is discriminated.
First and second rows are the
linear models (with BAL: a–d;
withMartin-Ek: e–h). Second and
third rows are the nonlinear
models (with BAL: i–l; with
Martin-Ek:m–p). White spruce is
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(b, f, j, n), other conifers in the
third (c, g, k, o) and broadleaves
in the forth (d, h, l, p)
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specific balsam fir SI could not be estimated. This result
refutes our assumption that balsam fir SI is highly corre-
lated to white spruce SI. Balsam fir was naturally

regenerated and thus found in all of the social classes (from
understory to dominant). Consequently, it is likely that
other factors such as competition might be more important.
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Fig. 4 Residuals against
predicted values for linear and
nonlinear relative growth models
where the effect of conifers and
broadleaves is not discriminated.
First and second rows are the
linear models (with BAL: a–d;
withMartin-Ek: e–h). Second and
third rows are the nonlinear
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in the forth (d, h, l, p)

Table 4 Parameter estimation (standard errors in parentheses) for linear RBAI models using the pooled MEI competition index as described in Eq. 2

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b20 0.1517 (0.0204) 0.2629 (0.0191) 0.1470 (0.0238) 0.0687 (0.0410)

b21 0.0043 (0.0015) n.s. n.s. 0.0111 (0.0028)

b22 −0.0278 (0.0021) −0.0389 (0.0036) −0.0184 (0.0044) −0.0280 (0.0056)
b23 −0.0144 (0.0013) −0.0155 (0.0021) −0.0096 (0.0028) n.s.

Random effects σjk
a 0.0158 0.0090 0.0208 0.0000

σk
b 0.0107 0.0111 0.0064 0.0178

σ2c 4.4560 4.9708 3.3294 4.5534

δd −1.2252 −1.1848 −1.1889 −1.1880

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
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The dominant and codominant cover was composed main-
ly by the planted white spruce. The stands were even-aged and
the within-stand spatial variability low, explaining why DIC
performed better in the white spruce RBAI models (Prévosto
2005; Boivin et al. 2010). In the case of balsam fir, the MEI
was found to be the best competition index. As balsam fir was
ingrown, one could argue that the competition exerted on
balsam fir was more varied and thus similar to that what is
observed in mixed and/or heterogeneous stands. It was there-
fore expected that better fit statistics would be obtained using
DDC as they integrate the structural variation within the stand
(Pretzsch 2009). Furthermore, such indices should be better
when the objective is to simulate innovative thinnings in order

to convert even-aged stands into uneven-aged ones (Boivin
et al. 2010).

The effect of the conifer and broadleaved competition on
tree growth differs according to the target tree species. Indeed,
the reduction in white spruce relative growth is more impor-
tant when the competitors are broadleaves than when they are
conifers. For balsam fir, even though deciduous competition
reduces growth more than coniferous competition, model
comparison using the AIC indicates that distinguishing com-
petitor clades does not improve the model. This is in accor-
dance with previous results which demonstrated that balsam
fir was poorly affected by hardwood (especially trembling
aspen) competition (Boivin et al. 2010). Balsam fir is known

Table 6 Parameter estimation (standard errors in parentheses) for linear RBAI models using MEI where competition effect is discriminated as
described in Eq. 2

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b20 0.1523 (0.0203) 0.2623 (0.0191) 0.1493 (0.0236) 0.0687 (0.0410)

b21 0.0043 (0.0015) n.s. n.s. 0.0111 (0.0028)

b22 −0.0279 (0.0021) −0.0388 (0.0036) −0.0188 (0.0044) −0.0280 (0.0056)
b24 −0.0162 (0.0039) −0.0231 (0.0059) n.s. n.s.

b25 −0.0143 (0.0013) −0.0149 (0.0021) −0.0099 (0.0027) n.s.

Random effects σjk
a 0.0157 0.0094 0.0205 0.0000

σk
b 0.0107 0.0109 0.0063 0.0178

σ2c 4.4393 5.1239 3.2521 4.5534

δd −1.2243 −1.191969 −1.1840 −1.1880

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate

Table 5 Parameter estimation (standard errors in parentheses) for linear RBAI models using the pooled BAL competition index as described in Eq. 2

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b20 0.2206 (0.0217) 0.2715 (0.0229) 0.2304 (0.0356) 0.1924 (0.0602)

b21 0.0046 (0.0013) n.s. n.s. 0.0110 (0.0030)

b22 −0.0439 (0.0032) −0.0426 (0.0045) −0.0357 (0.0069) −0.0500 (0.0093)
b23 −0.0010 (0.0001) −0.0008 (0.0002) −0.0010 (0.0002) −0.0014 (0.0005)

Random effects σjk
a 0.0124 0.0129 0.0176 0.0085

σk
b 0.0104 0.0000 0.0072 0.0164

σ2c 4.1129 4.7621 3.5362 2.0249

δd −1.2021 −1.1570 −1.2048 −0.9985

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
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to be a very shade-tolerant species while white spruce is less
shade-tolerant (Humbert et al. 2007). Canham et al. (2006)
demonstrated that shade-tolerant trees are less sensitive to
competition whichmay be related to the observed insensitivity
of balsam fir to competitor species.

Our results indicate that broadleaves have a stronger effect
on white spruce growth and, to a lesser extent, balsam fir. This
may be related to the fact that broadleaves have larger crown
radii (Millet 2012) and thus exert more competition than co-
nifers (Canham et al. 2006; Dieler and Pretzsch 2013). The

main broadleaved species (e.g. white birch and trembling as-
pen) have stronger juvenile height growth (Franceschini and
Schneider 2014) and are likely to be in the same social class as
the dominant white spruce trees. Confirming this interpreta-
tion would require to take into account the light availability
and light use efficiency in the model. This could be achieved
by using light-tracing algorithms (Groot et al. 2014) with light
extinction coefficients (Duursma et al. 2010). Another way to
confirm this interpretation would be to separate competition
species by species and not only by clade in order to quantify

Table 8 Parameter estimation (standard errors in parentheses) for nonlinear RBAI models using the pooled MEI competition index as described in
Eq. 3

Parameters White spruce Balsam fir Other Conifers Broadleaves

Fixed part b30 0.0365 (0.0031) 0.0426 (0.0034) 0.0387 (0.0063) 0.0444 (0.0078)

b31 −0.0342 (0.0673) 2.4850 (1.4347) 0.3785 (0.1520) −0.2996 (0.2455)
b32 0.0184 (0.0072) n.s. n.s. 0.0447 (0.0306)

b33 −15.5588 (2.3740) −12.8471 (1.7331) −9.8028 (2.7813) −8.8537 (3.9482)
b34 1e 1e 1e 1e

b35 0.5435 (0.1143) 2.8134 (0.6927) 0.8016 (0.1719) n.s.

b36 2.1027 (0.4353) 0.2607 (0.0912) 1e n.s.

Random effects σjk
a 0.0153 0.0146 0.0213 0.0202

σk
b 0.0095 x x x

σ2c 4.5746 1.8034 1.3459 1.4208

δd −1.2340 −0.9661 −1.0103 −0.8980

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
e Fixed value to 1 (e.g. not estimated by the regression)

Table 7 Parameter estimation (standard errors in parentheses) for linear RBAI models using BAL index where competition effect is discriminated as
described in Eq. 2

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b20 0.2241 (0.0219) 0.2612 (0.0231) 0.2294 (0.0357) 0.1536 (0.0570)

b21 0.0045 (0.0013) n.s. n.s. 0.0112 (0.0031)

b22 −0.0441 (0.0032) −0.0407 (0.0045) −0.0356 (0.0069) −0.0428 (0.0083)
b24 −0.0030 (0.0009) n.s. n.s. n.s.

b25 −0.0010 (0.0001) −0.0007 (0.0002) −0.0010 (0.0002) −0.0013 (0.0006)
Random effects σjk

a 0.0122 0.0103 0.0179 0.0104

σk
b 0.0111 0.0097 0.0071 0.0169

σ2c 4.0353 5.3915 3.4848 3.0628

δd −1.1990 −1.1922 −1.2015 −1.1002

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
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the effects of intra-specific competition versus inter-specific
competition. This could not be undertaken with our dataset as
there were a limited number of trees for certain species.

In the province of Quebec, ecosystem-based management
must now be carried out, even in plantations (Barrette et al.

2014). This has brought forest managers to propose, among
other things, new thinning methods such as selective thinning
(Gagné et al. 2016). The final objective of this type of thinning
is to convert the stands into uneven-aged/irregular structures
(Schütz 2001; Schütz 2002). Moreover, the stand structure is

Table 10 Parameter estimation (standard errors in parentheses) for nonlinear RBAImodels usingMEI index where competition effect is discriminated
as described in Eq. 3

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b30 0.0350 (0.0031) 0.0431 (0.0032) 0.0381 (0.0062) 0.0510 (0.0076)

b31 −0.0545 (0.0776) 0.5828 (0.1155) 0.3629 (0.1363) 1.2712 (1.4528)

b32 0.0225 (0.0083) n.s. n.s. n.s.

b33 −18.0355 (2.5395) 10.4629 (1.3265) −10.2557 (2.7621) 3.1874 (1.5634)

b34 1e 1e 1e 1e

b37 1.4262 (0.4141) 0.9568 (0.3652) n.s. n.s.

b38 1e 1e n.s. n.s.

b39 0.8886 (0.1014) 0.9020 (0.1273) 0.8211 (0.1710) n.s.

b40 1e 1e 1e n.s.

Random effects σjk
a 0.0146 0.0139 0.0208 0.0242

σk
b 0.0094 x x x

σ2c 4.4431 2.7921 1.3400 1.2093

δd −1.2263 −1.0582 −1.0101 −0.8599

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
e Fixed value to 1 (e.g. not estimated by the regression)

Table 9 Parameter estimation (standard errors in parentheses) for nonlinear RBAI models using the pooled BAL competition index as described in
Eq. 3

Parameters White spruce Balsam fir Other conifers Broadleaves

Fixed part b30 0.0255 (0.0029) 0.0487 (0.0032) 0.0336 (0.0064) 0.0179 (0.0132)

b31 −0.1302 (0.0972) 2.0527 (0.4851) −0.9071 (0.8982) −0.1552 (0.0933)
b32 0.0438 (0.0115) n.s. 0.1718 (0.1238) 0.0265 (0.0089)

b33 −14.1059 (1.5029) −4.8198 (0.6377) −8.0235 (2.1179) −28.2363 (6.9015)

b34 1e 1e 1e 1e

b35 0.0444 (0.0174) 0.0840 (0.0162) 0.0656 (0.0119) 0.0238 (0.0093)

b36 1.0997 (0.1250) 1e 1e 1e

Random effects σjk
a 0.0079 0.0149 0.0193 0.0140

σk
b 0.0088 x x x

σ2c 2.5953 1.2201 0.6286 2.6173

δd −1.1059 −0.8714 −0.8495 −1.0421

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
e Fixed value to 1 (e.g. not estimated by the regression)
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Fig. 5 Average relative basal
increment as a function of
diameter at breast height for each
species group modelled

Table 11 Parameter estimation (standard errors in parentheses) for nonlinear RBAImodels using BAL index where competition effect is discriminated
as described in Eq. 3

Parameters White spruce Balsam fir Other conifers Broadleaves

b30 0.0265 (0.0033) 0.0482 (0.0032) 0.0345 (0.0064) 0.0277 (0.0108)

b31 −0.2801 (0.1475) 1.8498 (0.4372) −1.2474 (1.1588) −0.1874 (0.1004)
b32 0.0663 (0.0237) n.s. 0.2176 (0.1598) 0.0281 (0.0104)

b33 −11.1794 (5.2466) −5.0813 (0.6626) −7.4898 (2.0537) −23.3101 (6.7866)

b34 1.0504 (0.1562) 1e 1e 1e

b37 0.3326 (0.0983) 0.1321 (0.0598) n.s. n.s.

b38 1e 1e n.s. n.s.

b39 0.0457 (0.0192) 0.0798 (0.0166) 0.0708 (0.0133) 0.0214 (0.0118)

b40 1.0826 (0.1293) 1e 1e 1e

Random effects σjk
a 0.0079 0.0147 0.0196 0.0158

σk
b 0.0081 x x x

σ2c 2.2881 1.2738 0.6273 2.3353

δd −1.0795 −0.8811 −0.8486 −1.0156

n.s. not significant parameter (p value >0.05)
a Plot random effect standard deviation
b Plantation random effect standard deviation
c Residual variance
dVariation function parameter estimate
e Fixed value to 1 (e.g. not estimated by the regression)
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influenced by disturbances. Among them, the most important
natural disturbance of these forests is the defoliation of the
spruce budworm, which defoliates both balsam fir and white
spruce. The effect of defoliation on tree mortality varies, how-
ever, by species, with balsam fir having higher mortality rates
than white spruce following budworm defoliation (Fortin et al.
2014). Predicting single tree growth in these plantations, with
varying complexity due to variations in mortality and thinning
types, is thus a challenge. The results presented in this work
are a first step in building a growth model for these plantations
as it explicitly differentiates the effect of competition on the
most important species present in such stands.

5 Conclusion

We developed relative basal area increment models at the
individual tree level for white spruce and balsam fir grow-
ing in Eastern Quebec white spruce plantations with em-
phasis put on the type of competition. Our results showed
that for the planted white spruce, the best competition
index was distance-independent as white spruce trees are
regularly spaced despite balsam fir and broadleaves in-
growth. Moreover, we demonstrated that white spruce
growth is more influenced by broadleaves than by coni-
fers. For the ingrown balsam fir, however, a distance-
dependent competition index performed better, indicating
that stand dynamics in the plantations of Eastern Canada
is complex. Such results pave the way to further studies
that explicitly separate competition species by species in
order to determine which broadleaved species reduces
white spruce growth and formulate silvicultural recom-
mendations. Indeed, the growth models we developed will
enable forest managers to explore different silviculture
options and their effects on tree growth. This would lead
to an estimation of stand growth dynamics in the planta-
tions which are being converted towards uneven-aged or
irregular structures. This, however, requires additional in-
growth and mortality modules to be developed and field
trials to validate the simulations.
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