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Abstract
& Key message Cattle grazing and overstory cover restrict un-
derstory growth and interact in shaping the understory com-
munity structure in Mediterranean conifer plantations.
& Context Understanding how silvicultural manipulations
drive understory structure and function in Mediterranean pine
plantations is essential for their multifunctional management.
&Aims This paper aims to study the interactive effects of cattle
grazing and overstory thinning on understory structure and
function.
& Methods Ten plots (0.25 ha) were selected in East
Med i t e r r anean ma tu re Pinus bru t ia p lan ta t i on
(rainfall = 600 mm year−1) representing thinned
(≈100 trees ha−1, leaf area index (LAI) ≈ 1.6) and non-thinned

(≈230 trees ha−1, LAI ≈ 3.5) areas. Two subplots (100 m2) with-
in each plot were fenced in 2000 and 2006 while a third one
remained grazed. Understory growth and species composition
were measured in 2010.
& Results Thinning and grazing exclusion both positively in-
fluenced woody growth with their combined effect during
10 years leading to 20-fold increase in vegetation volume.
An increase (15-fold) in herbaceous biomass was recorded
4 years after grazing exclusion but disappeared 10 years after
exclusion due to increased woody cover. Species richness was
not influenced by grazing but was positively affected by thin-
ning. Understory composition was affected by grazing × thin-
ning interaction with herbaceous ephemerals and short woody
species being more frequent in grazed, thinned areas while
larger woody species were more associated with ungrazed,
non-thinned areas.
& Conclusion Grazing impacts on forest understories depend
on overstory cover. We propose variable grazing-thinning
combinations to meet multiple management objectives.

Keywords Pinus brutia . Overstory cover . Species richness .

Woody vegetation . Herbaceous vegetation . Exclosures

1 Introduction

Conifer forest plantations are widely distributed throughout
the Mediterranean (De Luis et al. 2013; Quezel 2000). In the
East Mediterranean, these plantations are composed of
drought-tolerant pine species of which the most common ones
are Pinus halepensis Mill. and Pinus brutia Ten .
Mediterranean pine forests are multifunctional (Osem et al.
2008; Perevolotsky and Sheffer 2009) and livestock grazing
is an important form of land use in these forests (Evlagon et al.
2010;Mancilla-Leytón et al. 2012).While forest areas provide
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forage and husbandry for livestock, grazing is useful as a
means for fuel load control and fire hazard reduction
(Evlagon et al. 2012; Ne’eman et al. 1997).

Conifer-based afforestation in the Mediterranean was fre-
quently associated with a degraded state of natural vegetation
communities (Osem et al. 2008). However, during the last
decades, the native vegetation slowly recovered and devel-
oped as an understory layer (Osem et al. 2009, 2012). The
pace of this process varies among forest sites depending on
habitat, disturbance, and silvicultural characteristics (Gómez-
Aparicio et al. 2009; Hernandez-Tecles et al. 2015; Maestre
and Cortina 2004).

The understory vegetation is increasingly recognized as an
important component of forest ecosystem structure and func-
tion (Barbier et al. 2008; Vanderschaaf et al. 2000, 2004). The
understory contains most of the plant diversity and provides
critical food and habitat for wildlife and livestock (Bakker
et al. 2010; Hegland et al. 2013; Kleintjes et al. 2004;
Mosquera-Losada et al. 2009). Moreover, this vegetation lay-
er, which developed in the conifer plantations, provides the
basis for the transition of these simply structured systems to-
ward a more diverse and complex state (Navarro-Cerrillo et al.
2013; Osem et al. 2008). However, the course of this process
and the ways by which it is driven by environmental and
silvicultural factors are still quite poorly understood
(Gómez-Aparicio et al. 2009; Maestre and Cortina 2004). In
particular, little is known about the impacts of livestock graz-
ing on understory structure in Mediterranean pine forests.

The impacts of grazing in natural vegetation communi-
ties of the Mediterranean have been addressed quite exten-
sively (Gutman et al. 2000; Hadar et al. 1999; Noy-Meir
et al. 1989; Osem et al. 2004). Much less attention, however,
has been directed toward forest plantations. It is well
established that the survival and performance of plant spe-
cies may be affected differentially by grazing through con-
sumption and physical damage (Carmona et al. 2013;
Kuiters and Slim 2002), competition release (Darabant
et al. 2007; Khishigjargal et al. 2013), soil disturbance
(Hamza and Anderson 2005; Trimble and Mendel 1995),
nutrient redistribution (Bokdam and Gleichman 2000),
and seed dispersal (Cosyns et al. 2005; Mancilla-Leytón
et al. 2014). This and more, grazing effects, at the entire
community level, may diverge across vegetation, habitat,
and grazer characteristics (Ameztegui and Coll 2015;
Randall and Walters 2011; Tyler et al. 2008). In forested
sites, characteristics related to stand structure are particular-
ly interesting since they are bound to silvicultural manipu-
lation with major consequences on vegetation structure and
function (Osem et al. 2013; Prevosto et al. 2011). For ex-
ample, light penetration, determined through overstory cov-
er, is a crucial factor determining vegetation performance in
the forest understory (Jennings et al. 1999; Rodríguez-
Calcerrada et al. 2008). Furthermore, soil resources’

availability and use efficiency in the understory also depend
on competitive and microclimatic effects of the overstory
(Devine and Harrington 2008; Rodríguez-Calcerrada et al.
2008). It was previously proposed that consequences of
grazing on plant community structure are likely to vary
and may even reverse in low vs. high productivity habitats
(Cingolani et al. 2005; Proulx and Mazumder 1998). Thus,
grazing may be expected to interact with overstory cover
and related productivity variation, in shaping the understory
structure. Studying this type of interaction may contribute
largely to the understanding of plant diversity patterns in
forests worldwide (Fortuny et al. 2014). Furthermore, it
may assist foresters in managing the pine plantation to meet
multiple management objectives.

Previous studies looking at the understory in East
Mediterranean pine plantations have focused primarily on
natural regeneration of tree species (Osem et al. 2009, 2013,
2015). In this study we pursued a more comprehensive un-
derstanding of the ways by which understory structure and
function is driven by management factors. Specifically, we
investigated the interactive effects of twomajor silvicultural
and pasturing tools namely, overstory thinning and cattle
grazing, on understory productivity and community struc-
ture. These characteristics were compared in grazed vs.
ungrazed plots within thinned and non-thinned forest areas.
We hypothesized that overstory thinning (i.e., overstory
cover reduction) will increase understory productivity and,
therefore, grazing impact on understory structure will de-
pend on overstory cover. In our approach, we used woody
vegetation volume and herb biomass for understory produc-
tivity while species richness and composition were used for
community structure.

2 Materials and methods

2.1 Site

The study was performed in the Mount Horshan Forest area
located in the Ramat Menashe region (34° 59′ 58 E, 32° 35′
14 N) of Israel. The climate is typical east Mediterranean.
Average annual rainfall amount is about 600 mm concen-
trated mainly between December and March. The drought
season is long; typically 6 months with no rain. Daily aver-
age temperatures range between 11 °C in the winter and
26 °C in the summer. The elevation is 170 m a.s.l. Local
soils are bright mountain rendzines which developed on soft
chalk and marl. The typical native vegetation is sparse
woodland dominated by Quercus ithaburensis Decne. ac-
companied by Quercus calliprinos Webb., Pistacia
palaestina Boiss., Pistacia lentiscus L., and Styrax
officinalis L. The experiment was carried out in a mature
P. brutia (Calabrian pine) forest. Since the early 1970s, this
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pine species, exotic to Israel, has gradually replaced the
native P. halepensis (Aleppo pine) as the leading conifer
used for afforestation in Israel. According to forest service
documentation, the study area was subjected to controlled
cattle grazing since 1990. Based on local foresters’ knowl-
edge, this area was under livestock grazing of varying in-
tensity for decades prior to any documentation. Since 1990,
cattle stocking rate has increased gradually from about 2.5
animal units month (AUM) ha−1 to a level of 3 AUM ha−1

within the last 7 years including the study period. The herd,
a breed mixture of Charolais, Brahma, and Baladi, enters the
forest in the beginning of November and forages freely until
the end of April.

2.2 Experimental structure

A 50-year-old P. brutia plantation (approx. 10 ha) was select-
ed for the study in 2000. Average tree stem diameter at breast
height (DBH) and tree height were 32.5 ± 5.8 cm and
19.1 ± 0.8 m, respectively. The plantation has undergone
two comprehensive thinning treatments, one at the age of
≈10 years and the other at the age of ≈20 years Since then, a
combination of natural mortality and limited silvicultural in-
tervention (sanitation thinning, i.e., removal of dead trees) has
resulted in the designated forest area exhibiting a patchy dis-
tribution of variable stand structure ranging in tree density: 4–
30 trees ha−1, stem basal area (BA) 4–23 m2 ha−1, overstory
leaf area index (LAI) 1–3.6 m2 m−2. and overstory canopy
cover 20–95%. Ten 50 × 50 m plots (0.25 ha) were randomly
selected, five of them from thinned forest areas (i.e., thinned
within the last 20 years, average tree density ≈100 trees ha−1

and canopy cover ≈55%) while the other five from non-
thinned areas (average tree density ≈ 230 trees ha−1 and
projected canopy cover ≈95%). In the center of each plot,
two 10 × 10 m subplots were situated; one of them fenced to
exclude grazing (ungrazed 10 years) while the other remained
open (grazed subplot). In 2006, five additional 10 × 10 m sub-
plots were fenced (ungrazed 4 years) three of which were
located in thinned plots and two located in non-thinned plots.
Thus, the experimental structure represented a split-plot de-
sign with thinned/non-thinned as the main plots and grazed,
ungrazed 10 and 4 years as subplots. An area of 10 × 10mwas
practically the largest subplot size that could be attained. This
was due to the limited area of thinned/non-thinned plots
(approx. 50 × 50 m) and the need to avoid marginal effects
by keeping a 15-m buffer zone around the subplots’ borders.
For the same reason, the inclusion of a third subplot (ungrazed
4 years) was only possible in the larger five out of the ten
research plots. Measurements of understory woody cover
and height and herb biomass were implemented in all of the
research plots during 2010. Understory species richness and
composition were surveyed during 2010 only in the ungrazed
10 years and grazed subplots.

2.3 Measurements

2.3.1 Overstory characteristics

Stand density, tree height, and DBHwere measured separately
in each of the ten study plots. Density was determined based
on total plot tree count while height and DBH were measured
in a sample of 20% or ten trees at least. Average tree density
was 233.3 ± 8.9 trees ha−1 in the non-thinned plots and
100.4 ± 13.0 trees ha−1 in the thinned plots. Average tree
height and stem diameter were similar among the thinned
(18.6 ± 1.18 and 33 ± 10.1 cm, respectively) and non-
thinned plots (19.6 ± 0.43 m and 32 ± 1.5 cm, respectively).
To account for possible within-plot variation, leaf area index
(LAI) and canopy cover were measured at the subplot level
over three evenly distributed 10-m transects. Leaf area index
was determined using the optical tracing radiation and archi-
tecture of canopies device (TRAC, Chen et al. 1997) while for
overstory canopy cover (projected canopy cover, %), a
sighting tube was used (Jennings et al. 1999). Average canopy
cover and LAI for the six different thinning-grazing combina-
tions are presented in Table 1. Canopy cover and LAI were
approximately twofold larger in the non-thinned than in the
thinned plots (P < 0.0001) but did not differ among the graz-
ing treatments.

2.3.2 Understory woody vegetation

Understory woody vegetation comprising dwarf shrubs (e.g.,
Cistus creticus L., Sarcopoterium spinosum L.); shrubs (e.g.,
Rhamnus lycioides L., P. lentiscus L.); vines (e.g., Ephedra
foeminea Forssk., Smilax aspera L.); and regenerating trees
(e.g.,Q. calliprinosWebb.,Q. ithaburensisDecne.), was mea-
sured during summer (July) 2010. The line intercept method
(Osem et al. 2012) was used in each subplot along five evenly
distributed transects of 10-m length (altogether, 125 transects).
Woody growth was quantified by the following three param-
eters: (1) surface cover—the proportion of surface covered by
vegetation; (2) average height (weighted by cover); and (3)
specific vegetation volume—the product of surface cover
[proportion] × area [m2] × average height. A woody vegeta-
tion patch was defined as a unit of continuous cover by a
single woody species, and by measuring all such patches sep-
arately, we could calculate surface cover for any single species
or species group, as well as for the total woody understory. For
further details, see Osem et al. (2012).

2.3.3 Understory herbaceous vegetation

Understory herb biomass which comprised a variety of
ephemeral species (mostly annuals) was measured during
spring (April) 2010. Four representative herbaceous samples
were taken in each subplot during peak standing crop (April)
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by clipping aboveground biomass within 400 cm2 quadrats.
Samples were oven dried (65 °C, 48 h) and weighed.

2.3.4 Understory community structure

Plant species richness and composition were measured during
spring (April) 2010. In each subplot, four samples of 10 m2

were laid and all plant species occurring in each sample
(10 m2) and within the entire subplot area (100 m2) were
listed. Species richness for each treatment was determined
via the average number of species per subplot (100 m2).
Species abundance was determined via species incidence—
the number of samples in which a species occurred out of
the total number of samples (four) within a subplot.

2.4 Data analyses

Analyses of variance (ANOVA) were used to examine varia-
tion in vegetation parameters with respect to overstory thin-
ning (thinned, non-thinned) and grazing (grazed and ungrazed
10 and 4 years). In order to address the experimental design
(split-plot), a nested statistical model was used (grazing nested
within thinning). Assumptions for ANOVA were tested
through both the Levene and Bartlett tests for homogeneity
of variances and the Shapiro-Wilk test for normal distribution
of error. Mathematical transformations of data were used
when necessary to correct deviations from normality and/or
homogeneity of variances. If assumptions for ANOVA were
still not met, analyses of variance were conducted using rank-
transformed data, as outlined by Conover and Iman (1981).
The Tukey-Kramer HSD test was used for post hoc compar-
isons. Figures throughout the text indicate the average and
standard error (A ± SE).

Ordination analyses were applied to examine the variation
in the species composition as affected by grazing (grazed,
ungrazed 10 years) and overstory canopy cover (measured

for each subplot). Linear models were chosen according to
the protocol described by Braak ter and Smilauer (2012).
Redundancy analysis (RDA) was applied to investigate the
relationship between grazing treatment and overstory canopy
cover on the one hand, and species composition on the other.
The significance of these effects was determined by means of
the Monte Carlo permutation tests. The statistical packages
used were JMP 9 (SAS Institute, Cary, NC, US) and Canoco
v5 (Braak ter and Smilauer 2012).

3 Results

3.1 Woody understory growth

Woody understory cover was significantly affected by grazing
with higher cover found in the ungrazed subplots (non-thinned
ungrazed 10 years = 70.0 ± 10.4%; non-thinned ungrazed
4 y e a r s = 4 0 . 5 ± 1 6 . 2% ; t h i n n e d u n g r a z e d
10 yea r s = 103 . 4 ± 13 .3%; t h i nned ung r a z ed
4 years = 70.9 ± 4.7%) than in the grazed ones (non-thinned
grazed = 15.1 ± 3.3%, thinned grazed = 13.6 ± 5.3%) but no
significant difference was detected between the two ungrazed
treatments (Table 2). No significant effect of overstory thin-
ning was found on woody understory cover. When looking at
woody vegetation volume, a positive effect of both thinning
and grazing exclusion was found with a significant positive
effect of time since grazing exclusion (i.e., ungrazed 10 vs.
4 years, Table 2, Fig. 1).

3.2 Herbaceous understory biomass

Herb biomass during peak standing crop (early spring) was
significantly affected by grazing treatment while no signifi-
cant effect of overstory thinning was detected (Table 3, Fig. 2).
Average herb biomass was approx. 15-fold larger in subplots
ungrazed since 2006 (ungrazed 4 years) than those under con-
tinuous grazing (grazed). However, in the subplots ungrazed
since 2000 (ungrazed 10 years) herbaceous biomass was low
and did not differ significantly from the grazed plots.

3.3 Understory community structure

Altogether, 95 plant species were found in the forest under-
story within the research area. Of these, ten species were trees,
nine shrubs and dwarf shrubs, five vines, 19 geophytes and
hemicryptophytes, and 52 therophytes. Species richness was
significantly influenced by thinning. It was found higher (by
more than 30%) in thinned than in non-thinned areas (Table 4,
Fig. 3). No significant effect of grazing exclusion on species
richness was found. When looking at species composition
through ordination analysis (RDA) significant changes in spe-
cies composition were found across grazing and thinning

Table 1 Average projected canopy cover (PCC, %) and leaf area index
(LAI) for six combinations of overstory thinning and cattle grazing
treatments. Mount Horshan

Thinning treatment Grazing treatment PCC [%] LAI

Non-thinned Ungrazed 10 years 95.56 ± 2.22 3.57 ± 0.17

Ungrazed 4 years 96.34 ± 3.21 3.63 ± 0.21

Grazed 94.45 ± 2.68 3.41 ± 0.38

Thinned Ungrazed 10 years 51 ± 6.7 1.61 ± 0.47

Ungrazed 4 years 44.15 ± 9.43 1.33 ± 0.33

Grazed 58.33 ± 4.20 1.78 ± 0.14

Non-thinned plots that were not thinned within the last 20 years, Thinned
plots that were thinned within the last 20 years, Ungrazed 10 years sub-
plots that were protected from grazing within the last 10 years, Ungrazed
4 years subplots that were protected from grazing within the last 4 years,
Grazed subplots unprotected from grazing
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treatments. This and more, a separate analysis revealed a sig-
nificant thinning × grazing interaction (Table 5). While some
species responded mainly to grazing and not to thinning, other
species were sensitive to thinning and hardly responded to
grazing. In addition, some species responded to both thinning
and grazing in various ways. Thus, species responses were
variables occurring in all directions of the ordination matrix,
reflecting shifts in species composition in response to different
combinations of thinning and grazing (Fig. 4, Tables 5 and 6).
Most (90%) of the species showing the strongest association
with grazed areas were ephemeral herbaceous species (eight
therophytes and one hemicryptophyte) in addition to one
(10%) aromatic dwarf shrub. Of the species most associated
with ungrazed areas, only 50% were ephemerals (four
therophytes and one hemicryptophyte) in addition to two
broadleaved trees (20%), two dwarf shrubs (20%), and one
vine species (10%). Across thinning treatments, mostly asso-
ciated with thinned areas were seven ephemerals (70%, six
therophytes and one hemicryptophyte) and three dwarf shrubs
(30%) while non-thinned areas attracted four ephemeral

species (40%, three geophytes and one hemicryptophyte) in
addition to three broadleaved tree species (30%), one vine
(10%), one dwarf shrub, and one shrub (10%) species.
When looking at treatment combinations, species clearly as-
sociated with grazed thinned areas were all therophytes while
those associated with grazed non-thinned areas were tree,
dwarf shrub, and hemicryptophyte species. Two therophytes
and two dwarf shrub species were associated with ungrazed-
thinned areas while tree, shrub, geophyte, and vine species
were associated with ungrazed non-thinned areas.

4 Discussion

4.1 Understory productivity

The effect of overstory thinning on understory woody growth
was substantial with a reduction of overstory light interception
(indexed through LAI) by ∼50% leading to the total understo-
ry woody volume of ungrazed plots being more than 2.5-fold
larger in the thinned as in the non-thinned areas. This support-
ed our basic assumption regarding overstory cover as a deter-
minant of understory productivity. In addition, grazing exclu-
sion for 10 years resulted in the woody vegetation volume
increasing by nearly tenfold in both thinned and non-thinned
areas. According to our observation, this effect was mostly
through the continuous consumption of developing young
shoots and leaves by the cattle (Gutman et al. 2000).
Altogether, the combined effect of increased growing space
(through thinning) and disturbance cease (grazing exclusion)
for 10 years resulted in the understory woody volume being as
much as 20-fold greater.

Unlike the woody understory, we found no significant ef-
fect of thinning on herb biomass in both grazed and ungrazed
areas. This was in opposition to what may have been expected
considering known effects of overstory cover on light and
water availability as demonstrated in numerous previous

Table 2 ANOVA (N = 25) of the
effect of grazing (grazed and
ungrazed 4 and 10 years) and
overstory thinning (thinned, non-
thinned) on understory woody
vegetation cover and volume.
Mount Horshan Forest, July 2010

Factor DF F P value Post hoc

Woody cover Grazing 2 31.23 0.0001 Ungrazed 10 years A

R2 = 0.80 Ungrazed 4 years A

P = 0.0001 Grazed B

Thinning 1 1.359 0.0834

Graz. × Thin. 2 1.248 0.31

Woody volume Grazing 2 17.97 0.0001 Ungrazed 10 years A

R2 = 0.73 Ungrazed 4 years A

P = 0.0001 Grazed B

Thinning 1 10.18 0.0051 Thinned A

Non-thinned B

Graz. × Thin. 2 04.3 055.0
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Fig. 1 Understory woody vegetation volume in Mount Horshan Forest,
July 2010, as affected by cattle grazing and overstory thinning. Bars
indicate SE, N = 25
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studies in (Bakker and Moore 2016; Harrington et al. 2003;
Hernandez-Tecles et al. 2015; Kleintjes et al. 2004; Krzic et al.
2003; Sabo et al. 2009). However, when looking at the effect
of grazing, a dynamic pattern was revealed where a substantial
increase (15-fold) in herb biomass occurred in areas ungrazed
for 4 years while no significant difference was found between
areas ungrazed for 10 years vs. those under grazing. It should
be noted that the two grazing exclusion treatments were mea-
sured at the same time (spring 2010). We propose the follow-
ing explanation: Shortly after grazing exclusion, opportunistic
herb species enjoyed the combination of grazing cease with
available growing space due to undeveloped woody understo-
ry. This has led to a rapid increase in herb biomass. However,
at longer time span, as the woody understory developed, the
herbaceous vegetation was gradually forced back toward its
biomass levels prior to grazing exclusion.

In a study of a water-limited (precipitation ≈ 600mmyear−1)
Ponderosa pine (P. ponderosa) ecosystem in southwestern
USA, no effect was found following 90 years of livestock
(sheep and cattle) grazing exclusion on understory herb cover
(Bakker and Moore 2016). Looking at a more humid system
(1500 mm year−1), Brockway and Lewis (2003) reported no
effect on herb biomass following 4 years of cattle grazing ex-
clusion in a longleaf pine (Pinus palustris) ecosystem in south-
central Alabama, USA. In both cases, the minor grazing effect

was explained by low grazing pressure. In young lodgepole
pine (Pinus contorta) stands in south-central British-
Columbia (380–900 mm year−1), Sullivan et al. (2012) found
that cattle grazing exclusion, for 10 years, had no effect on herb
biomass in low productivity plots but increased it significantly
in fertilized plots. This variation was attributed to differences in
grazing intensity, i.e., grazing was more intense in the fertilized
plots were herb production was greater. In another study of
Himalayan conifer forest stands in western Bhutan
(620 mm year−1), Wangchuk et al. (2014) reported significant
increase in herb species abundance following 5 years of cattle
grazing exclusion.

With regard to the lack of overstory cover influence on herb
biomass in our system, we propose that grazing was respon-
sible for compensating overstory thinning effect on herba-
ceous understory through increased consumption rate in
thinned patches with higher herb productivity (Sullivan et al.
2012; Bakker and Moore 2016). In the ungrazed areas, how-
ever, it was the accelerated woody understory growth which
occurred in thinned areas that compensated for the lower over-
story cover, keeping the herbaceous vegetation under strong
competitive pressure (Harrington 2011). This was in addition
to the fact that an important portion of the herb biomass, fol-
lowing grazing exclusion, was contributed by two perennial
grasses namely Piptatherum blancheanum and Piptatherum
miliaceum which appeared to be unaffected by the range of
overstory cover levels presented in our system.

In young lodgepole pine stands, Sullivan et al. (2012) re-
ported no effect of thinning treatments on herb biomass attrib-
uted to relatively open canopy conditions in all stands. In a
study of Ponderosa pine ecosystem, Bakker andMoore (2016)
reported limited effect of thinning on understory herb biomass
attributed to increased woody understory growth following
thinning. Similarity, Harrington (2011) reported in longleaf
pine (P. palustris) plantations in South Carolina, USA
(1200 mm year−1) short-term positive effects of thinning on
herbaceous vegetation cover which gradually diminished over
14 years following thinning due to developing woody under-
story. The importance of woody-herbaceous vegetation inter-
action determining consequences of grazing in the forest un-
derstory was also demonstrated byRandall andWalters (2011)
who reported in aspen (Populus grandidentata) forests in

Table 3 ANOVA (N = 25) of the effect of grazing (grazed and ungrazed 4 and 10 years) and overstory thinning (thinned, non-thinned) on understory
herbaceous vegetation biomass. Mount Horshan Forest, April 2010

Factor DF F P value Post hoc

R2 = 0.54
P = 0.0101

Grazing 2 9.5355 0.0015 Ungrazed 4 years A

Ungrazed 10 years B

Grazed B

Thinning 1 0.2941 0.5941

Graz. × Thin. 2 0.0675 0.9349
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Fig. 2 Understory herbaceous vegetation biomass in Mount Horshan
Forest, April 2010, as affected by cattle grazing and overstory thinning.
Bars indicate SE, N = 25
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Michigan (1000 mm year−1) positive effects of deer browsing
on herb biomass attributed to reduction of competing woody
vegetation. The dynamic interaction of herbaceous vs. woody
understory following grazing exclusion and overstory thin-
ning as found in our system as well as in a variety of other
silvopastoral systems, highlights time as an important axes
along which consequences of overstory thinning and grazing
cession on understory structure and function may diverge con-
siderably (Mosquera-Losada et al. 2009).

4.2 Understory community structure

We found no effect on understory species richness following
10 years of grazing exclusion in both thinned and non-thinned
areas. However, while the total number of species was unaf-
fected, significant variations in species frequencies were
found across grazing treatments indicating that grazing was
important in controlling understory community structure. Our
analyses revealed a list of species, mostly ephemeral herbs
(90%), that were associated with grazed areas while a different
set of species comprising larger portion of woody species
(50%) was more associated with ungrazed areas.
Interestingly, plant traits that were associated with grazing
were mostly related to plant size (small) and life cycle

(annual) rather than to physical or chemical defense
mechanisms.

Differently than grazing exclusion, overstory thinning re-
sulted in a significant positive influence on species richness.
Increased species richness by thinning may indicate positive
resource availability-diversity relationship as previously
shown in various ecosystems (Liang et al. 2016; McClain
et al. 2015). When examining the variation in species frequen-
cies across thinning treatments, it became apparent that the
species associated with non-thinned plots were mostly woody
species (trees, shrubs, and vines, 60%) in addition to relatively
large hemicryptophytes and geophytes (40%). In contrast,
species associated with thinned areas were mostly therophytes
(60%) in addition to relatively short woody species (dwarf
shrubs, 30%). This may be partly explained by the fact that
thinned areas were more heavily grazed than non-thinned
ones. Indeed, when considering the combined effect of graz-
ing and thinning on species composition, it was evident that
the combination of grazing and thinning clearly favored small-
sized herbaceous ephemerals while larger-sized woody spe-
cies were more associated with the ungrazed non-thinned
areas.

The finding of woody species being more associated with
ungrazed vs. grazed areas is in agreement with our previously
discussed finding regarding understory woody volume.
However, the positive effect of thinning on woody volume
as found in our system seems to contradict the fact of woody
species being more associated with non-thinned areas as re-
vealed by our RDA analysis. In a previous study within the
same system, we found the effect of overstory thinning and
grazing on tree recruitment in the forest understory to depend
on sapling size. While smaller saplings (<20 cm in height)
were generally more abundant in grazed non-thinned areas,
larger saplings were more abundant in the ungrazed-thinned
areas (Osem et al. 2015). Higher frequency of tree and shrub
species in the understory of non-thinned plots may be related
to better seedling establishment of large seededwoody species
such as Q. calliprinos, S. officinalis, and Phillyrea latifolia
resulting from facilitative effects of the overstory (Alon and
Kadmon 1996) and related ground litter layer (Sayer 2006). It
should be noted, however, that while these woodland species
exhibit better regeneration in the understory of the pine for-
ests, their growth at later phases was shown to be restricted by
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Fig. 3 Understory plant species richness inMount Horshan Forest, April
2010, as affected by cattle grazing and overstory thinning. Bars indicate
SE, N = 20

Table 4 ANOVA (N = 20) of the effect of grazing (grazed and ungrazed 10 years) and overstory thinning (thinned, non-thinned) on understory plant
species richness. Mount Horshan Forest, April 2010

Factor DF F P value Post hoc

Number of species in 100 m2 Grazing 1 0.19 0.663

R2 = 0.41 Thinning 1 9.76 0.0065 Thinned A 33.66

P = 0.0308 Non-thinned B 25.28

Graz. × Thin. 1 1.68 0.213
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overstory shading (Cooper et al. 2014). This is supported by
the fact that woody vegetation volume as measured in our
study was much higher in thinned than in non-thinned plots.
Thus, while the frequencies of the larger woody species were
higher in non-thinned plots due to higher density of small-
sized individuals, the volume of these species was much great-
er in the thinned plots as a result of more developed
individuals.

Variable outcomes of grazing effects on understory rich-
ness and composition were reported from diverse forest eco-
systems. For example, positive effects of livestock grazing on
understory richness were reported in a long-term study of
Ponderosa pine ecosystem in southwestern USA (Bakker
et al. 2010) as well as in boreal Aspen (Populus tremuloides)

stands in BC Canada (Krzic et al. 2003), Savana woodlands in
south India (Mandle and Ticktin 2013), and in Himalayan mix
conifer forest (Wangchuk et al. 2014). While in one case in-
creased species richness under grazing was attributed to
higher prevalence of exotic species (Bakker et al. 2010), in
another system, it was explained by enhanced colonization of
endemic species (Krzic et al. 2003). On the other hand, no
effect of cattle grazing on understory diversity was reported
in a longleaf pine ecosystem (Brockway and Lewis 2003)
while negative effects of deer browsing on understory richness
were found in Aspen forests associated with the reduction of
understory woody cover (Randall and Walters 2011).

Similarly to our findings, several studies have found no or
minor effects of grazing on understory richness while
highlighting variations in species composition. For example,
cattle grazing increased the abundance and richness of annual
grasses but reduced those of perennial forbs in Eucalyptus
savanna in southwestern Australia (Fensham and Skull
2016). Deer browsing in old growth pine forest system in
Norway increased the richness of low-growing functional
groups as forbs, graminoids and mosses whereas the richness
of taller growing woody species of the forest understory de-
creased (Hegland et al. 2013). In a Mediterranean stone pine
(Pinus pinea) forest in southwestern Spain Mancilla-Leytón
andMartín Vicente (2012) reported significant effects of goats
browsing on the relative abundance of woody species.

Reported effects of overstory cover and thinning treatments
on understory species richness are also somewhat variable.
For example, positive effects of overstory openness on under-
story richness were reported in ponderosa pine ecosystem
(Bakker et al. 2010), savanna woodlands (Mandle and
Ticktin 2013), as well as in Mediterranean P. halepensis forest
(Navarro et al. 2010). In contrast, Sanchez-Jardn et al. (2014)
reported in lenga beech (N. pumilio) forests in Chilean
Patagonia reduced understory species richness with increased
canopy openness.

Several studies have highlighted the importance of spatial
and temporal scales regarding the effects of overstory thinning
and grazing on understory community structure. In a
ponderosa pine ecosystem, for example, negative effects of
overstory cover on understory richness were only apparent
at small spatial scales while positive effects of livestock graz-
ing were more substantial with increasing spatial scale
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within 100 m2 subplots. Mount Horshan Forest, April 2010. Species full
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Table 5 Redundancy analysis (RDA,N = 20) of the effect of grazing (grazed, ungrazed 10 years) and overstory canopy cover on understory vegetation
composition within 100 m2 subplots. Mount Horshan Forest, April 2010

Sum of all canonical eigenvalues F ratio P value Number of permutations

Grazing 8.2 1.599 0.022 499

Canopy cover 9.00 1.771 0.008 499

Graz. × Cover 17.4 1.784 0.004 499
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(Bakker et al. 2010). In longleaf pine plantations in South
Carolina, USA, positive effects of thinning on herbaceous
species richness were only apparent at the short-term and
gradually diminished over 14 years in association with in-
creasing understory woody cover (Harrington 2011). In
Himalayan mix conifer forest, Wangchuk et al. (2014) dem-
onstrated how effects of grazing on understory richness may
depend on the spatial scale of overstory logging.

5 Conclusions and management implications

Our findings supported the basic research hypothesis accord-
ing to which overstory cover and grazing interact in shaping
understory community structure. Our results highlight the im-
portance of woody vs. herbaceous vegetation dynamics fol-
lowing release from grazing and overstory thinning for under-
standing understory community structure. We propose that
variation in understory community structure was mainly de-
termined through differences in the combination of grazing
resistance and shade tolerance levels exhibited by different
species and/or functional groups within the plant community.
Integrating previous findings with those of our study, we come
up with the following management implications: Overstory
thinning and grazing should be regarded as complementary
management tools. Considering the multifunctionality of
Mediterranean forests, no single optimum of thinning-
grazing regime exists. Instead, grazing-thinning combinations
should be implemented according to well defined manage-
ment goals as may be illustrated through the following exam-
ples: Heavy thinning and continuous grazing to maintain fire
fuel breaks; grazing exclusion under high overstory cover to
encourage native broadleaved tree recruitment; grazing exclu-
sion and overstory thinning to encourage conifer recruitment
and tree growth; a dynamic mosaic of variable grazing and
thinning levels to enhance forest species diversity and struc-
tural complexity.
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