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Abstract
Sorghum is an important food and feed crop in the dry lowland areas of Ethiopia. Farmers grow both early-sown long-duration 
landraces and late-sown short-duration improved varieties. Because timing and intensity of drought stress can vary in space 
and time, an understanding of major traits (G), environments (E), management (M), and their interactions (G×E×M) is needed 
to optimize grain and forage yield given the limited available resources. Crop simulation modeling can provide insights into 
these complex G×E×M interactions and be used to identify possible avenues for adaptation to prevalent drought patterns in 
Ethiopia. In a previous study predictive phenology models were developed for a range of Ethiopian germplasm. In this study, 
the aims were to (1) further parameterize and validate the APSIM-sorghum model for crop growth and yield of Ethiopian 
germplasm, and (2) quantify by simulation the productivity-risk trade-offs associated with early vs late sowing strategies 
in the dry lowlands of Ethiopia. Field experiments involving Ethiopian germplasm with contrasting phenology and height 
were conducted under well-watered (Melkassa) and water-limited (Miesso) conditions and crop development, growth and 
yield measured. Soil characterization and weather records at the experimental sites, combined with model parameteriza-
tion, enabled testing of the APSIM-sorghum model, which showed good correspondence between simulated and observed 
data. The simulated productivity for the Ethiopian dry lowlands environments showed trade-offs between biomass and grain 
yield for early and late sowing strategies. The late sowing strategy tended to produce less biomass except in poor seasons, 
whereas it tended to produce greater grain yield except in very good seasons. This study exemplified the systems approach to 
identifying traits and management options needed to quantify the production-risk trade-offs associated with crop adaptation 
in the Ethiopian dry lowlands and further exemplifies the general robustness of the sorghum model in APSIM for this task.
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1 Introduction

Sorghum remains an important food security crop in Ethiopia, 
covering an area of 1.8 million hectares of land, with pro-
duction of 4.7 million tons of grain (CSA 2017). In the dry 

lowland sorghum growing areas of Ethiopia (Fig. 1), sorghum 
production is mainly rainfed and farmers depend entirely on 
sorghum for both grain and stover in these crop-livestock 
mixed farming systems. Sorghum grain is mostly produced for 
household consumption and only a small portion of produc-
tion is marketed and sold. In the rural areas of Ethiopia, the 
stover is used for diverse purposes including fuel for cooking 
and heating, animal feed, and construction materials.

Although the multipurpose sorghum landraces play a sig-
nificant role in the crop-livestock mixed farming system, the 
crop faces considerable challenges, particularly from drought 
stress associated with delay in on-set of rains, dry spells after 
sowing, and drought stress during critical crop stages. Hence, 
sorghum production is at risk in many instances and crop fail-
ure is a common phenomenon. In some parts of the dry low-
lands, there are two distinct planting opportunities depend-
ing on the timing of rain (Fig. 2). Most farmers traditionally 
plant late-maturing landraces in April after 3–4 rain showers, 
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depending on the on-set of the rain, and harvest in November. 
However, after planting on early rains, dry spells may occur 
in May and June and the landraces are often exposed to water 
limitation. If the dry spell is severe, the crop will completely 
fail. In such circumstances, depending on the availability 
of improved seeds of early-maturing varieties, farmers will 
replant with early-maturing genotypes in July and harvest in 
November. While there is also the option to forgo the risky 

early sowing and just plant early-maturing genotypes later in 
the season, this is rarely practiced.

The use of crop modeling as a tool to support crop manage-
ment decisions has been discussed in many previous studies 
(Hammer et al. 2002; Stephens and Middleton 2002; Meinke 
et al. 2001). Furthermore, Hammer et al. (2019) and Whish 
et al. (2005) have also discussed the use of crop modeling 
as a technology for assessing production-risk trade-offs for 
management and adaptive trait options in the water-limited 

Fig. 1  a Map showing dry 
lowland sorghum growing 
areas (shaded green) and the 
major administrative regions 
in Ethiopia. Most dry lowland 
sorghum is grown in the four 
regions—Tigray, Amhara, 
Oromia, and Southern (SNNP). 
Locations of key weather sta-
tions are indicated by blue dots. 
b Traditional farmhouse in the 
cropping region. c Sorghum 
field near Miesso, Oromia.

Fig. 2  Average monthly rainfall 
(filled bars) and maximum and 
minimum temperatures (red and 
blue symbols) in representative 
dry lowland sorghum growing 
areas of Ethiopia: a Kobo in 
Amhara region, and b Babile in 
Oromia Region.
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sorghum growing areas of NE Australia. In a situation like 
the dry lowland areas of Ethiopia, crop simulation modeling 
has the potential to play a critical support role for assessing 
production-risk trade-offs confronted by sorghum farm-
ers with sowing decision options. Hence, in this study, the 
objectives are to (i) parameterize and validate the APSIM-
sorghum model for the prediction of growth and yield of 
Ethiopian germplasm, and (ii) use the model in simulation 
studies to quantify productivity-risk trade-offs associated with 
early planting of late-maturing landraces and late planting 
of early-maturing lines in the dry lowland sorghum growing 
areas of Ethiopia. The generality of the biological functional-
ity underpinning the APSIM-sorghum model (Hammer et al. 
2019; Holzworth et al. 2014) is discussed in relation to how 
it facilitates studies of this nature.

2  Materials and methods

2.1  Experiments to characterize growth and yield 
of Ethiopian germplasm

Developmental responses of key Ethiopian sorghum germ-
plasm have been quantified for modeling (Tirfessa et al. 
2020), however, no information is available for param-
eterizing and testing models of growth and yield for that 
germplasm. To generate this information, growth analy-
sis experiments were conducted at Melkassa under non-
limiting (water and nitrogen) conditions in 2014 and at 
Miesso for water-limited dryland conditions in 2016. Data 
from analysis of previous phenology experiments (Tirfessa 
et al. 2020) were used to derive canopy development coef-
ficients (Tirfessa et al. 2022), whereas crop growth coeffi-
cients were derived from the growth analysis experiments 

of this study. The genotypes used in the growth analysis 
experiments represented a subset of those used in the phe-
nology experiments (see Table 1).

2.1.1  Experimental details

Five genotypes representing landraces (ESH2, Gam-
bella1107, Jigurti), an improved hybrid (Teshale), and an 
improved variety (Meko), were planted in a randomized com-
plete block design with three replications under non-limiting 
(water and nitrogen) conditions at Melkassa on 9 June 2014. 
The recommended rate of phosphorus fertilizer (46 kg/ha 
 P2O5) in the form of Di-Ammonium Phosphate (DAP) and 
nitrogen fertilizer (23 kg/ha nitrogen in the form of urea) was 
applied at planting and at 35 days after planting. The experi-
mental plots were irrigated every 5 days using furrow irriga-
tion to ensure water was not limiting. Additional nitrogen 
fertilizer (at rate of 23 kg/ha nitrogen in the form of urea) was 
applied at 50 days after planting in order to ensure nitrogen 
was not limiting. The same genotypes were planted with four 
replications in Miesso on 8 July 2016 under dry land condi-
tions. The recommended rate of phosphorus fertilizer (46 kg/
ha P2O5) in the form of Di-Ammonium Phosphate (DAP) 
and nitrogen fertilizer (23 kg/ha nitrogen in the form of urea) 
was applied at planting and at 35 days after planting respec-
tively for the experiment at Miesso. For both experiments, 
each genotype was planted in a plot of 10 rows of 5 m length 
with 0.75 m row spacing and 0.15 m between plants, giving 
a planting density of 8.9 plants per  m2. Seeds were manually 
drilled into the rows and at about 20 days after emergence, 
plants were thinned to 0.15 m distance between plants.

Table 1  Phenology, canopy development and crop growth param-
eters used in the APSIM-sorghum crop model for the two reference 
genotypes, Meko and Jigurti. After anthesis the rate of development 

reaches a plateau at Topt and does not decline at higher tempera-
tures as is the case for development prior to anthesis (Hammer and 
Muchow 1994).

Category Parameter Meko Jigurti

Phenology—emergence to anthesis Tbase (°C) 6.0 6.6
Topt (°C) 27 27
Tmax (°C) 42 42

Phenology—emergence tofloral initiation Accumulated thermal time target (°Cd) 347 450
Phenology—flag leaf full expansion to anthesis Accumulated thermal time target (°Cd) 207 222
Phenology—anthesis to physiological maturity Tbase (°C) 5.7 5.7

Topt (°C) 23.5 23.5
Accumulated thermal time target (°Cd) 819 801

Canopy development Leaf appearance rate (LAR; °Cd  leaf−1)
Leaf initiation rate (LIR; °Cd  leaf−1)

63
31.5

58
29

Crop growth Leaf-stem partitioning factor
Grain number factor (g  grain−1)
Radiation Use Efficiency (RUE; g  MJ−1)

0.0073
0.00083
1.25

0.0106
0.00140
1.65
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2.1.2  Biomass sampling

Aboveground biomass was determined on four occasions 
by destructively sampling a quadrat of 1  m2 in each plot 
at the stages of eight leaves fully expanded (i.e., ligule of 
leaf 8 visible), flag leaf fully expanded, anthesis, and physi-
ological maturity. Due to unforeseen problems (i.e., local 
political instability), no biomass sample could be taken for 
the late-maturing genotype (Jigurti) at maturity in Miesso. 
Plants were cut at ground level and fresh weight for all the 
plants was measured. The fresh weight for a representa-
tive subsample of five plants was then taken. The five plant 
subsample was separated into the stem (including sheaths), 
green leaves, dead leaves, and panicles. The dry weight for 
each component was obtained after drying samples at 70 °C 
for at least 3 days. Green leaf area was measured by passing 
all green leaves from the subsampled plants through a leaf 
area meter (LICOR 3100, Lincoln, NE, USA).

2.1.3  Soil characterization
Plant available water content (PAWC) of the soil was deter-
mined from field measurements of drained upper limit 
(DUL), crop lower limit (CLL), and bulk density (BD) for 
the soils at Melkassa and Miesso experimental sites using 
the protocol of Burk and Dalgliesh (2008). To determine 
DUL and BD, a bunded 4m × 4m area adjacent to each 
experimental field was irrigated regularly for 4 weeks, cov-
ered with black plastic sheet, and allowed to drain for 1 to 2 
weeks before coring to a depth of 1.6 m at Melkassa and 1.8 
m at Miesso and extracting samples for each 15–30 cm depth 
increment. The wet weight of the soil sample was recorded, 
and the sample dried at 105 °C until a constant weight was 
attained. Using the sample volume (from tube diameter and 
length) and wet and dry weights, BD and DUL were calcu-
lated for each soil layer (Dalgliesh and Foale 1998) as:

To determine CLL at Miesso, we used an experiment 
that was severely affected by terminal stress around flow-
ering, to the extent the plants died. We assumed that 
those plants extracted all the water available in the soil, 
such that soil samples would provide a good estimate of 
CLL. At Melkassa, a site close to the enclosure used for 
determining DUL was identified and established for the 
measurement of CLL. Sorghum plants of the check variety 
Meko were sown in a 4m × 4m bunded area and irrigated 

Gravimetric water % at DUL

= ((wet wt of sample − dry wt of sample)∕dry wt of sample) × 100

BD
(

gcm−3
)

= dry soil wt (g)∕total volume of soil
(

cm3
)

DUL (volumetric water %) = Gravimetric water % at DUL × BD

throughout the first weeks of growth so that the soil was 
fully wet to depth. A transparent rain exclusion tent was 
then erected over the plot to allow the plants to fully dry 
the soil profile. Soil samples were taken at maturity of the 
crop to estimate CLL throughout the profile. Samples wet 
weights were recorded before being dried at 105 °C until a 
constant weight was reached and the gravimetric water % 
at CLL was calculated from sample weights as above for 
DUL. Using the BD determined from the DUL sampling, 
the volumetric water % at CLL was calculated as:

2.2  Canopy development characterization

The growth experiment at Melkessa was used to derive the 
leaf size—leaf number relationships needed for estimating 
potential plant leaf area development in the crop model. 
Fully expanded area of each leaf of each culm was esti-
mated by measurements of leaf blade length and maximal 
width on four tagged plants in each plot of the experiment 
(i.e., 12 plants per genotype). Blade length was measured 
from the ligule to the tip and blade width was measured at 
its maximal point. Blade area was then calculated as the 
product of leaf length, leaf width, and a correction factor 
(0.635 for flag leaves and 0.71 for all other leaves) (van 
Oosterom et al. 2011).

A curvilinear, bell-shaped curve was fitted to the leaf 
size versus leaf number data based on functions used pre-
viously for sorghum (Muchow and Carberry 1990) and 
maize (Muchow and Carberry 1989; Birch et al. 1998).

where Y is the fully expanded leaf area of individual 
leaves, X is the leaf number,  Y0 is the fully expanded area 
of the largest leaf, X0 is the leaf number of the largest 
leaf, and a and b are empirical coefficients that control 
respectively the breadth and skewness of the leaf area 
profile. In the absence of extensive data in this study, 
estimates of the coefficients a and b reported in the com-
prehensive study of Birch et al. (1998) (equations 18 and 
19) were employed. As in the previous studies, estimates 
of Y0 and X0 were derived from linear regression on total 
leaf number (TLN).

2.3  Model parameterization and validation

Model parameterization and validation were focused 
on two widely grown check genotypes—Jigurti, a late-
maturing landrace commonly used for early sowing, and 
Meko, an early-maturing improved variety used for late 

CLL (volumetric water %) = Gravimetric water % at CLL × BD

Y = Y0 exp
(

a
(

X − X0

)2
+ b

(

X − X0

)3
)



Modeling adaptation of sorghum in Ethiopia with APSIM—opportunities with G×E×M  

1 3

Page 5 of 13 15

sowing. A focus on these two genotypes was relevant to 
underpin the subsequent simulation comparison of early 
sowing using a late-maturing type with late sowing using 
an early-maturing type for all regions in the Ethiopian 
dry lowland sorghum growing areas. Parameters of the 
phenology prediction models for these genotypes (Table 1) 
were reported by Tirfessa et al. (2020). Tbase represents 
the base temperature below which development ceases, 
Topt is the optimum temperature for development, and Tmax 
is the temperature above which development ceases. The 
fitted accumulated thermal time targets use these cardinal 
temperatures and daily temperature values between the 
two stages under consideration. There were no signifi-
cant photoperiod effects on the rate of development. The 
phenology models were developed only for emergence to 
flowering time as the timing of panicle initiation was not 
determined. The thermal time target from emergence to 
panicle initiation was estimated from the predicted ther-
mal time to flag leaf for the genotype, its leaf appearance 
rate, and anticipated total leaf number. Given that four 
leaf initials are present in the seed, and that leaf initiation 
rate (LIR) is approximately half the leaf appearance rate 
(LAR) (Ravi Kumar et al. 2009), it was possible to derive 
accumulated thermal time estimates from emergence to 
panicle initiation for Meko and Jigurti as 347 and 450 °Cd, 
respectively. Parameters for leaf appearance rate for these 
genotypes were set at values reported in the analysis of the 
phenology experiments (Tirfessa et al. 2022).

The growth analysis experiments conducted at 
Melkassa in 2014 with non-limiting (water and nitrogen) 
conditions were used to test these estimates of the crop 
growth parameters used in the APSIM model. The sor-
ghum model used was modified from the released ver-
sion by including a leaf canopy routine that estimates 
individual leaf size based on equations developed for 
maize by Birch et al. (1998) and uses that equation to 
determine crop leaf area from the estimated number of 
fully expanded leaves using the approach of Carberry et al. 
(1993) (APSIM version 7.10 r4171). Given the data avail-
able on leaf appearance and individual leaf size from asso-
ciated phenology experiments (Tirfessa et al. 2022), and 
the paucity of time series data on crop leaf area index, this 
approach was needed to enable the prediction of canopy 
leaf area development. In the first instance, parameter val-
ues for leaf-stem partitioning, grain number determina-
tion, and radiation use efficiency (RUE) found in previous 
studies (Hammer et al. 2010) for short and tall sorghum 
genotypes were used for Meko (short) and Jigurti (tall), 
based on their similar height and grain size characteristics 
(Table 1). The growth analysis experiments at Melkassa 
(8°24′ N 39°19′ E) and Miesso (9°13′ N 40°45′ E) were 
simulated using these parameter values as input to APSIM. 

Available soil water was determined by taking three soil 
cores across the experimental field at the time of sowing 
and determining gravimetric water content for soil pro-
file layers. Daily weather data was recorded at adjacent 
meteorological stations. Given the soil characterization, 
estimated growth and phenology parameters, initial soil 
water, and seasonal weather data, each experiment was 
simulated and the predicted leaf area, biomass, and yield, 
were compared graphically to observed experimental data 
throughout the crop season.

2.4  Simulation study

Long-term simulations were conducted using available soil 
and weather data for both early sowing with a late-matur-
ing type and late sowing with an early-maturing type for all 
regions in the Ethiopian dry lowland sorghum growing areas. 
For early sowing, the standard late-maturing landrace was 
planted in April after initial rains had occurred, which resulted 
in harvesting in November. For late sowing, the standard 
early-maturing variety was planted in early July after a plant-
ing rain, which resulted in harvesting in October. Long-term 
meteorological data were obtained from the National Metro-
logical Agency of Ethiopia and NASA-Power (NASA 2015) 
for selected stations in the growing regions (Table 2). Long-
term average meteorological data is presented for two charac-
teristic sites in Fig. 2. Detailed soil data were obtained from 
the FAO soils portal and world soil information (FAO 2018; 
Leenaars et al. 2014) for each site (Table 2) except Melkassa, 
and Miesso, where soil characterization for DUL, BD, and 
CLL was conducted as part of this study.

3  Results and discussion

3.1  Soil characterization

Soils at Melkassa and Miesso were characterized for plant 
available water capacity (PAWC) through field measure-
ment of drained upper limit (DUL), crop lower limit 
(CLL), and bulk density (BD) (Table 3). In general, the 
heavy clay soil at Miesso had higher water-holding capac-
ity than the silty clay loam at Melkassa. The potential 
plant available water in the top two layers in Miesso (46 
and 45 mm) was nearly double that of Melkassa (28 and 
21 mm). The total plant available water capacity for the 
depth of the profile was 504 mm at Miesso and 244 mm 
at Melkassa. Measured soil moisture at the times of sow-
ing amounted to 185 and 232 mm of available water for 
Miesso and Melkessa experiments respectively.
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3.2  Canopy development

The curvilinear functions fitted for each genotype to quan-
tify the leaf size distribution for plants with a given TLN 
fitted the observed data well for both Meko and Jigurti, 
although there was an underestimation around the larg-
est leaf for the 19-leaf Jigurti (Fig. 3). Area of individual 
leaves increased with leaf number up to the leaf with the 

maximum area, which was leaf 13 for Meko (15 leaf plant) 
and leaf 14 (19 leaf plant) for the later-maturing Jigurti. 
An example for a 16-leaf plant of Jigurti is also included 
in Fig. 3. The linear regressions fitted on average TLN 
for the coefficients X 0 (leaf number of largest leaf) and 
Y  0 (area of largest leaf) were X 0 = 0.83TLN (n = 4;  R2 
= 0.99) for Meko, X 0 = 0.74TLN (n = 4;  R2 = 0.99) for 
Jigurti, Y  0 = 36.9TLN – 95.2 (n = 4;  R2 = 0.99) for Meko, 

Table 2  Latitude (Lat), 
longitude (Long), number of 
years of daily weather data, 
soil group (FAO 2018; Ali 
et al 2022), soil depth (cm), 
and plant available soil water 
capacity (PAWC mm) for 
locations used in the long-term 
simulation study. SNNPR is 
Southern Nations Nationalities 
and Peoples’ Region.

Region Station name Lat Long No. of years Soil Group Soil 
Depth 
(cm)

PAWC (mm)

Tigray Humera 14°01′N 36o52′E 16 Vertisol 100 120
Axum 14°11′N 38°73′E 19 Leptosol 100 133
Shiraro 14°04′N 37°78′E 7 Vertisol 100 120

Amahara Debarik 13°15′N 37°89′E 30 Vertisol 100 106
Shoa Robit 10°00′N 40°00′E 5 Leptosol 100 144
Kobo 12°16′N 39o63′E 30 Leptosol 100 113
Sirinka 11°75′N 39°61′E 21 Leptosol 100 144

Somali Jijiga 9°35′N 42°79′E 33 Vertisol 100 132
Oromia Babile 9°22′N 43o32′E 41 Vertisol 100 132

Miesso 9o13′N 40°45′E 30 Vertisol 180 365
Metehara 12°72′N 36°41′E 19 Leptosol 100 148
Melkassa 8°24′N 39°19′E 30 Vertisol 180 272

SNNPR Konso 9°22′N 40°75′E 27 Leptosol 100 153
Gato 5°47′N 37°45′E 30 Leptosol 100 153
Kayafer 5°52′N 36°72′E 20 Leptosol 100 153

Table 3  Bulk density, 
volumetric drained upper limit 
(DUL), volumetric crop lower 
limit (CLL), and volumetric soil 
water at sowing (ASW) for soil 
profiles at experimental sites in 
(a) Melkassa and (b) Miesso.

a Melkassa
Depth (cm) Bulk density (g/cm3) DUL(mm/mm) CLL (mm/mm) ASW (mm/mm)
0–15 1.22 0.27 0.08 0.23
15–30 1.20 0.26 0.12 0.23
30–45 1.07 0.25 0.11 0.24
45–60 1.03 0.24 0.13 0.24
60–75 1.10 0.28 0.11 0.27
75–90 1.13 0.30 0.13 0.30
90–105 0.99 0.26 0.14 0.26
105–120 1.01 0.27 0.17 0.27
120–140 1.11 0.31 0.20 0.31
140–160 1.03 0.28 0.15 0.28
b Miesso
Depth (cm) Bulk density (g/cm3) DUL (mm/mm) CLL (mm/mm) ASW (mm/mm)
0–15 1.13 0.39 0.08 0.36
15–30 1.11 0.48 0.17 0.35
30–60 1.21 0.50 0.22 0.33
60–90 1.22 0.53 0.24 0.31
90–120 1.24 0.48 0.26 0.32
120–150 1.25 0.51 0.23 0.31
150–180 1.21 0.52 0.22 0.29
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and Y  0 = 13.2TLN + 318 (n = 4;  R2 = 0.05) for Jigurti. 
There was a limited range in TLN among the plants sam-
pled (4–5 leaves) and greater variability in leaf size for 
Jigurti, which influenced the adequacy of fit. However, 
the robustness of these leaf size distribution functions was 
consistent with findings in previous studies on sorghum 
(Muchow and Carberry 1990) and maize (Muchow and 

Carberry 1989; Birch et al. 1998). The fitted relationships 
between the area of individual leaves and leaf number 
were used to parametrize the APSIM model for predict-
ing canopy leaf area development for Meko and Jigurti.

3.3  Model parameterization and validation

The growth analysis experiment at Melkassa, which was 
conducted under non-limiting water and nutrient condi-
tions, was used initially to test estimate model coeffi-
cients, before examining the data for the dryland experi-
ment at Miesso, which included the effects of water 
limitation. In the absence of measured values, the grain 
number coefficient used in the model, which relates 
grain number to biomass accumulated during the period 
between panicle initiation and the start of grain filling 
(Rosenthal et al. 1989; Heiniger et al. 1997), was set to 
values previously reported (Hammer et al. 2010) for a 
short Australian hybrid (0.00083 g/grain) and a tall Indian 
landrace (0.0014 g/grain), for Meko and Jigurti respec-
tively (Table 1). These values reflected the lower grain set 
per unit of crop growth by the taller Jigurti, an association 
also observed by van Oosterom and Hammer (2008). Val-
ues of coefficients for the stem-leaf partitioning function 
and RUE (Table 1) were similarly estimated from values 
reported for short and tall genotypes in the detailed study 
of Hammer et al. (2010).

The daily maximum and minimum temperatures, incident 
solar radiation, and rainfall (plus irrigation at Melkessa) dur-
ing the experiment reflected normal seasonal conditions for 
these sites (Fig. 4).

3.3.1  Experiment simulation

The overall fit of the model was tested by comparing 
the simulated with observed total biomass, leaf area, 
and yield for the two genotypes in the two experimen-
tal conditions (Fig. 5 and Fig. 6). The APSIM-sorghum 
model simulated crop growth well for the different plant 
attributes including biomass, yield, and LAI for Meko 
and Jigurti under the non-limiting (water and nitrogen) 
conditions at Melkassa (Fig. 5) with simulated values of 
total biomass within the error of measurement. The vari-
ation between the two genotypes, Meko a shorter stature 
and early-maturing variety relative to the taller and late 
Jigurti, was also simulated well in this experiment. The 
greater LAI for Jigurti was associated with its later matu-
rity and greater leaf number and size (Fig. 3). When com-
bined with its greater RUE, Jigurti was thus predicted to 
accumulate more total biomass and yield higher. It also 
had greater stem mass due to its enhanced partitioning 
associated with its height. However, it also accumulated 

Fig. 3  Individual leaf area versus leaf number for a Meko (with a 
total leaf number of 15) and b, c Jigurti (with a total leaf number of 
16 or 19).
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significant stem mass after anthesis due to the reduced 
grain set relative to its growth rate generating a grain sink 
limitation, leading to a lower harvest index than Meko. 
These findings indicated the adequacy of the coefficients 
estimated from previous studies on structurally similar 
genotypes for this potential growth experiment.

Under the dry land conditions in the experiment at 
Miesso, the APSIM-sorghum model also simulated crop 
growth well for the different plant attributes (Fig. 6) with 
simulated values of total biomass within the error of 
measurement. Both Meko and Jigurti showed enhanced 
senescence and reduced growth in the latter part of the 
season compared to the results for the well-watered 
experiment at Melkessa, due to the depletion of available 
water. However, this effect was much more pronounced 
for the late-maturing Jigurti, which had fully senesced 
by maturity. While the simulation captured these effects 
in general, they also showed the potential for increased 
yield of the early-maturing Meko in these circumstances, 
as the early maturity and lower leaf area enabled some 
escape from the terminal water limitation. However, 
Jigurti still produced more total biomass than Meko. 
The results indicate that the APSIM-sorghum model 

parameterized for Ethiopian germplasm demonstrated a 
credible predictive capability for genotype-environment 
interactions across these diverse situations. While more 
detailed validation data would be desirable, and the ina-
bility to obtain the final biomass and yield harvest for 
Jigurti at Miesso due to civil unrest was unfortunate, the 
results provide sufficient confidence in the parameteriza-
tion and predictive capability of the model to pursue the 
proposed simulation study.

3.4  Simulation study

3.4.1  Production risks associated with early and late 
plantings

The long-term simulation study revealed that when viewed 
across all regions (Oromia, Amhara, Tigray, and Southern), 
there was a trade-off between total biomass and grain yield 
associated with the two production systems of early sowing 
with a late-maturing tall landrace type, and late sowing with 
an early-maturing short variety. The late sowing strategy 
tended to produce greater grain yield except in very good 
seasons (Fig. 7a), whereas it tended to produce less total 
biomass except in poor seasons (Fig. 7b). Hence, there was 
considerably reduced risk associated with the late sowing 
strategy in poor seasons as it tended to produce both more 
total biomass and grain yield in those situations.

This overall outcome reflects the interaction of these two 
production systems with growing season duration and water 
available to the crops across the production region. The tra-
ditional system of early planted late-maturing landrace had 
a much longer growing season resulting in greater biomass 
production in most seasons. However, this often resulted in 
reduced water availability during grain filling and hence, 
reduced grain yield when compared to the late-planted 
early-maturing cultivar system. This dominant interaction 
associated with effects on the water balance would likely 
also occur with other cultivars with similar maturity char-
acteristics when considered for the entire production region.

However, considering only the regions of Oromia and 
Tigray, which show contrasting seasonal patterns of rainfall 
from unimodal (Tigray) to bimodal (Oromia) (Fig. 8) that 
are a common features of other locations, the long-term sim-
ulation studies showed that there were regional differences in 
effects on total biomass and yield for the early and late sow-
ing strategies (Fig. 8). Early sowing with the late- maturing 
variety had better yield and biomass than late sowing with 
the early-maturing variety in more favorable rainfall envi-
ronments, such as Tigray. However, the late sowing strategy 
had better grain yield outcomes in regions with a reduced 
and bi-modal rainfall pattern (e.g., Oromia) but there was a 
trade-off with biomass. While the early sowing strategy in 
the Oromia region gave increased chance of higher biomass 

Fig. 4  Daily maximum and minimum temperatures, incident solar 
radiation, and rainfall (plus irrigation at Melkassa) during the field 
experiments at a Melkassa and b Miesso.
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than the late sowing strategy, the opposite occurred for grain 
yield. The long-term simulation studies revealed the produc-
tion risk trade-offs associated with the late sowing strategy 
in environments such as Oromia. This type of analysis pro-
vides a robust basis for considering the choice among these 
two systems, or the appropriate mix of the two that might 
provide some risk reduction.

The simulation analysis quantified the production risk 
trade-offs associated with early planting with a late- matur-
ing type vs late planting with an early-maturing type in the 
dry lowland sorghum environments of Ethiopia in a manner 
not previously done. The sorghum model adapted to Ethio-
pian conditions could now be used to manipulate/explore 
the adaptation landscape to better integrate genotype (G), 
environment (E characterization), management practice (M), 
and their interactions (G×E×M) as described initially by 
Cooper and Hammer (1996) to pursue potential sustainable 

improvements in dry lowland sorghum growing areas of 
Ethiopia.

Similar long-term simulation studies with relevantly locally 
adapted versions of the sorghum model in APSIM have quan-
tified the production-risk trade-offs associated with G×E×M 
interactions for sorghum crop adaptation studies in Australia 
(Hammer et al. 2014, 2020), the USA (Ojeda et al. 2022), India 
(Kholova et al. 2013), and Mali (Diancoumba et al. 2022). 
The basic crop growth and development framework underpin-
ning the APSIM sorghum model thus demonstrates a general 
robustness for predictions in diverse situations. A key lesson 
from this study is the ability to effectively utilize this mod-
eling framework for detailed adaptation analysis once some 
key studies to parameterize key equations for local genotypes 
have been undertaken and local soil, climate, and agronomic 
management information has been collated.

Fig. 5  Simulated total biomass 
and yield (a, d), biomass 
components (b, e), and leaf 
area index (LAI) (c, f) for the 
experiment planted on 10 June 
2014 at Melkassa for genotypes 
Meko (a, b, c) and Jigurti (d, 
e, f) using the APSIM sorghum 
model parameterized for those 
genotypes. Symbols show 
observed data and vertical bars 
indicate confidence interval (p 
= 0.10) for associated observa-
tions.
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Fig.6  Simulated total biomass 
and yield (a, d), biomass 
components (b, e), and leaf area 
index (LAI) (c, f) for the experi-
ment planted on 08 July 2016 at 
Miesso for genotypes Meko (a, 
b, c) and Jigurti (d, e, f) using 
the APSIM sorghum model 
parameterized for those geno-
types. Symbols show observed 
data and vertical bars indicate 
confidence interval (p = 0.10) 
for associated observations. 
There was no final biomass and 
yield harvest data for Jigurti due 
to inability to access the site at 
that time.

Fig. 7  Simulated grain yield (a) and total biomass (b) for late sowing 
strategy (late sown early-maturing type) versus early sowing strategy 
(early sown late-maturing type) for all individual year contrasts in all 
regions (Oromia, Amhara, Tigray, and Southern) of the Ethiopian dry 

lowlands. The solid black line is the 1:1 line and the red line the lin-
ear regression (a y = 0.552x + 2890  R2 = 0.32; b y = 0.349x + 6012 
 R2 = 0.33).
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4  Concluding remarks

The ability to predict biomass and yield across a range 
of key Ethiopian genotypes and growing/environmental 
conditions relevant to Ethiopia has generated a capacity 
not previously available in Ethiopia. While there remains 
room for improvement by further targeted studies, there is 
now a credible model for sorghum in Ethiopia that can be 
used to support more extensive G×E×M studies in crop 
improvement and adaptation. The quantification of the 
production risk trade-off presented here for early plant-
ing with a late-maturing type versus late planting with an 

early-maturing type provides information not previously 
available for farmers and the government about the choice 
of the system. There was a trade-off between biomass and 
grain yield across the two systems. In regions such as 
Oromia with a strong bi-modal rainfall pattern, and where 
sorghum grain and stover are equally important in the 
mixed crop-livestock farming system, this type of analy-
sis provides information of direct relevance to the risky 
decisions faced by farmers. The risk preference of farmers 
and other influencing factors, such as possible carryover 
of stored soil water from the previous year and seasonal 
drought forecasts, will all influence decision-making 

Fig. 8  Long-term average 
monthly rainfall and tem-
peratures (a, b) and simulated 
biomass (c, d) and yield (e, f) 
distributions for early and late 
sowing strategies under the 
differing rainfall scenarios of 
the two contrasting regions—
Tigray (unimodal—location 
Shiraro) (a, c, e) and Oromia 
(bimodal—location Babile) (b, 
d, f). Boxplots show the median 
(solid line), mean (dashed line), 
the 25th and 75th percentile 
(solid box), and 5th and 95th 
percentiles (whiskers).
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related to obtaining a target yield and biomass with a 
specified degree of risk.

The modeling framework and approach used in this 
study is relevant for sorghum crop adaptation analysis 
in general. It is particularly important for sorghum pro-
duction in the dry lowland areas of Ethiopia because the 
integration of G×E×M has not been explored to date for 
either broad or specific adaptation. Hence, this integrated 
systems approach provides relevant quantitative support to 
the Ethiopian sorghum improvement program to achieve 
productivity gains.
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