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ABSTRACT

Introduction: Merkel cell carcinoma is a

neuroendocrine malignancy. Suppressor of

fused (SUFU) is a tumor suppressor oncogene

that participates in the Hedgehog (Hh)

signaling pathway. The aim of the study was

to describe a patient whose Merkel cell

carcinoma demonstrated a SUFU genomic

alteration.

Case Study: The Hh signaling pathway is

involved in the pathogenesis of several

tumors, including nevoid basal cell carcinoma

syndrome that is associated with an alteration

of the patched-1 (PTCH1) gene. Targeted

molecular therapy against smoothened (SMO)

with vismodegib has been shown to be an

effective therapeutic intervention for patients

with PTCH-1 mutation. The reported patient

was presented with metastatic Merkel cell

carcinoma. Analysis of his tumor, using a

next-generation sequencing-based assay,

demonstrated a genomic aberration of SUFU

protein, a component of the Hh signaling

pathway that acts downstream to SMO and,

therefore, is unlikely to be responsive to

vismodegib. Of interest, arsenic trioxide or

bromo and extra C-terminal inhibitors impact

signals downstream to SUFU, making this

aberration conceivably druggable. His tumor

has initially been managed with chemotherapy

(carboplatin and etoposide) and subsequent

radiation therapy is planned.

Conclusion: The pathogenesis of Merkel cell

carcinoma is multifactorial, and related to

ultraviolet radiation exposure,

immunosuppression, and Merkel cell

polyomavirus. We report a patient with a

mutation in SUFU, a potentially actionable

component of the Hh signaling pathway.
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INTRODUCTION

Merkel cell carcinoma is an aggressive

neuroendocrine cancer of the skin [1].

Suppressor of fused (SUFU), an integral

component of the Hedgehog (Hh) signaling

pathway, functions as a tumor suppressor gene

[2]. A man with metastatic Merkel cell

carcinoma is described whose tumor was

associated with a SUFU genomic aberration.

Potential therapeutic interventions based upon

this unique abnormality of his tumor are

postulated.

CASE REPORT

A 66-year-old Caucasian man was referred for an

evaluation of an asymptomatic left buttock

mass that he had noticed 6 months earlier. His

past medical history was significant for prostate

cancer at age 64 years (stage T1c Gleason grade

3 ? 3) that was successfully treated with

intensity-modulated radiation therapy. His

pretreatment and posttreatment nadir

prostate-specific antigen were 4.5 and 0.88

nanograms per milliliter, respectively.

A month prior to his skin evaluation, he was

being worked up for a possible left inguinal

hernia repair. His computerized axial

tomographic scan showed enlargement of the

left inguinal, left pelvic sidewall and

retroperitoneal lymph nodes and a soft tissue

nodule in his left buttock. His surgeon

performed a superficial inguinal lymph node

biopsy that showed a high-grade

neuroendocrine carcinoma; the tumor cells

stained positive for CD56 (neural cell adhesion

molecule), chromogranin, cytokeratin 20,

cytokeratin AE1/AE3, and synaptophysin. The

tumor cells were negative for CD45 (leukocyte

common antigen), GATA3 (trans-acting T cell-

specific transcription factor) and prostate-

specific antigen. The morphologic and

immunohistochemical features indicated a

metastatic Merkel cell carcinoma.

He also had a history of multiple lipomas. He

had considered the left buttock nodule, which

he initially noticed 6 months earlier, to be

another lipoma; however, it continued to

increase in size. A positron emission

tomography (PET)/computed tomography (CT)

scan, which was performed after receiving the

lymph node biopsy pathology report of

metastatic Merkel cell carcinoma,

demonstrated intense fluorodeoxyglucose

uptake from the soft tissue density in the

subcutaneous tissue of the left buttock. This

was suspicious for a primary tumor.

Fig. 1 Distant (a) and closer (b) views with ink
demarcating the borders of the primary Merkel cell
carcinoma on the left buttock nodule of a 66-year-old
man
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Cutaneous examination (1 month after the

lymph node biopsy and 6 months after the

patient’s discovery of a left buttock mass)

showed a painless flesh-colored 3 9 3 cm

subcutaneous nodule with central erythema

on his left buttock (Fig. 1). The nodule was

firmly grasped and pushed toward the skin

surface as a punch biopsy using a 4-mm

circular blade was performed into its center. A

cylindrical core specimen of tissue, extending

from the epidermis to beyond the deep dermis,

was obtained. The nodule was then firmly

squeezed and additional aggregates of tumor

(appearing yellowish-white and blood tinged)

that extruded through the biopsy wound were

collected (Fig. 2).

Microscopic examination of the skin biopsy

specimen showed an infiltrate of small blue cells

with minimal cytoplasm in the deep portion of

the punch biopsy and all the pieces of

subcutaneous tissue (Fig. 3). The basophilic

cells were uniform in size with a vesicular

nucleus and small nucleoli. Numerous mitoses

were appreciated and there were large areas of

Fig. 2 Gross examination of the punch biopsy specimen
shows a cylindrical piece of tissue secured using the 4-mm
circular blade and several blood-tinged yellowish-white
lobules of tumor (morphologically mimicking adipose
tissue). These were expressed through the hole created
during the biopsy after applying firm pressure to the tumor

Fig. 3 Tumor is present at the base of the punch biopsy
specimen. It is in the deep dermis and extends into the
subcutaneous tissue [hematoxylin and eosin, 92]

Fig. 4 Distant (a) and closer (b) views of hematoxylin and
eosin stained sections show the blue small cell tumor that
extends from the deep dermis into the subcutaneous tissue
[hematoxylin and eosin; a = 94, b = 920]
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necrosis. The tumor invaded fascia in the deeper

specimens and focally grew in close

approximation to multiple blood vessels;

however, no intravascular or perineural

invasion was identified (Fig. 4).

Immunohistochemical studies showed that

the tumor cells stained positive for cytokeratin

20 (in a cytoplasmic and paranuclear dot-like

pattern), CD56 (neural cell adhesion molecule),

and synaptophysin (Fig. 5). The tumor cells

were negative for prostate-specific antigen and

thyroid transcription factor 1.

Correlation of the history, clinical

morphology, imaging studies, and pathology

was diagnostic for metastatic Merkel cell

carcinoma. The left buttock was the site of the

primary tumor. Metastases had spread to the

regional lymph nodes.

The biopsy tissue from the left buttock

tumor was also sent for genomic evaluation. A

next-generation sequencing-based assay was

performed. Genomic alterations of our

patient’s tumor, evaluated by next-generation

sequencing included base substitutions,

insertions, deletions, and copy number

alterations [3].

DNA was extracted from 40 micrometer of

formalin-fixed tissue (minimum 20% tumor

cells) using the Maxwell� 16 FFPE Plus LEV

DNA Purification kit (Promega, Wisconsin,

USA) and quantified using a standardized

PicoGreen fluorescence assay (Invitrogen).

Library construction was performed using

50-200 nanogram of DNA sheared by

sonication to approximately 100–400 base

pairs before end-repair, dA addition and

ligation of indexed Illumina sequencing

adaptors (Illumina, Inc., San Diego, CA, USA).

Enrichment of targeted sequences (including all

coding exons of 315 cancer related genes) plus

introns from 28 genes often rearranged or

altered in cancer (Table 1) [4] was achieved by

solution-based hybrid capture with custom

biotinylated oligonucleotide bases. Enriched

libraries were sequenced to an average median

depth of[5009 with 99% of bases

covering[1009 [Illumina HiSwq 2000

(Illumina, Inc.) platform using 49 9 49 paired-

end reads] and mapped to the reference human

genome (hg19) using the Burrows–Wheeler

Aligner and the publicly available SAMtools,

Picard, and Genome Analysis Toolkit. Point

mutations were identified by a Bayesian

algorithm; short insertions and deletions,

Fig. 5 The tumor shows positive staining for cytokeratin
20 (a), CD56 (b) and synaptophysin
(c) [immunoperoxidase: cytokeratin 20, a = 940; CD56,
b = 940; synaptophysin, c = 940]
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determined by focal assembly; gene copy

number alterations (amplification), by

comparison to process matched normal

controls; and gene fusions/rearrangements, by

clustering chimeric reads mapped to targeted

introns. Amplifications were called for C6

copies except for ErbB2 (C5 copies). Six to

seven copy numbers are called as equivocal

and C8 are definitive; for ErbB2, equivocal

amplification was 5–7 copies; all (equivocal or

definitively amplified) were designated as

positive for amplification in our patient.

Aberrations, mutations or other alterations in

kinases that were presumed to be inactivating

based on wet lab experiments or structural

modeling were not included [5].

Alterationof the SUFUgene [SUFUR299Q(due

to nucleotide mutation at position 299, arginine

becomes glutamine in the SUFOprotein)] was the

only abnormality identified by the next-

generation sequencing-based assay (315 gene

panel; Foundation Medicine, Inc., Cambridge,

MA, USA) [4]. Treatment with systemic

chemotherapy was initiated with carboplatin

and etoposide. He is receiving treatment every

3 weeks and adjuvant radiotherapy is planned.

Follow-up evaluation shows decrease in the size

of the left buttock tumor and the previously

enlarged lymph nodes. Consideration to use

experimental agents that target the distal Hh

pathwaymaybeconsidered ifhis tumorprogresses.

Informed consent was obtained from the

patient for being included in the study and for

publication of the images.

DISCUSSION

Merkel Cell Carcinoma

Merkel cell carcinoma was initially described by

Toker in 1972 as trabecular carcinoma of the

skin [1]. It is a biologically aggressive tumor

with a poor prognostic outcome resulting from

local, regional and distant recurrences. Older

men are more commonly affected and the

primary tumor is usually located on sun-

exposed skin [1, 6, 7].

Merkel cell carcinoma usually presents as an

asymptomatic rapidly enlarging flesh-colored or

blue-red nodule [6, 8]. In our patient, the tumor

clinically appeared as a firm red nodule below

the skin surface. Its gross appearance, yellow-

white lobules, was similar in morphology to

adipose tissue.

Histologically, Merkel cell carcinoma is a

tumor composed of small monomorphous blue

cells, often arranged in strands (trabeculae),

which demonstrate numerous mitoses,

apoptotic cells and occasional necrosis. The

tumor shows a positive paranuclear dot-like

pattern of staining for cytokeratin 20. In

addition, the immunoperoxidase profile of the

tumor often includes positive staining for CD56

(neural cell adhesion molecule), chromogranin

A, gastrin, and somatostatin [6, 8, 9].

Non-invasive imaging methods (fluorine-18-

fluorodeoxyglucose PET and CT) are typically

used to assess the extent of disease in patients

with Merkel cell carcinoma. They may be

performed during the initial staging of the

patient when distant metastases are suspected

or when a cutaneous metastasis from a

noncutaneous primary neuroendocrine

carcinoma is considered [7, 10, 11]. Our

patient had a history of multiple lipomas and

presented with metastatic Merkel cell

carcinoma to his left inguinal lymph node. His

PET scan identified the primary tumor: a large

and rapidly growing deep dermal nodule of his

left buttock that had clinically been considered

to be a lipoma.

The treatment of primary cutaneous Merkel

cell carcinoma is a wide local surgical excision
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and sentinel lymph node biopsy. A positive

sentinel lymph node may be followed by a

complete lymph node dissection. Adjuvant

radiotherapy is often included for patients

with positive sentinel lymph nodes and

considered in patients with tumors of the head

and neck region that have a negative sentinel

lymph node because of the higher risk of a false-

negative result [1, 6–8].

The management of metastatic Merkel cell

carcinoma includes a variety of treatments.

Chemotherapy most often utilized platinum

with or without etoposide. Although the tumor

often initially responds to therapy, resistance

frequently develops after two or three cycles of

chemotherapy. Other treatments included

radiation therapy and experimental novel

approaches such as immunotherapy and

targeted molecular therapy [1, 7, 12].

Exposure to ultraviolet radiation (such as

psoriasis patients receiving psoralen and

ultraviolet A therapy), immunosuppression

(such as in AIDS patients, individuals with

chronic lymphocytic leukemia, and organ

transplant recipients) and Merkel cell

polyomavirus infection are risk factors for the

development of Merkel cell carcinoma [6, 12–

15]. Merkel cell polyomavirus was discovered in

2008 [9, 16]. The virus is present in

approximately 80 percent of Merkel cell

carcinomas [17]. Indeed, there is improved

survival for patients whose Merkel cell

carcinoma is virus-positive as compared

individuals with virus-negative tumors [14,

18]. However, the presence of Merkel cell

polyomavirus is not specific for Merkel cell

carcinoma. The virus has also been

demonstrated in other malignancies, including

cervical carcinoma [19], chronic lymphocytic

leukemia [20], cutaneous squamous cell

carcinoma [21], folliculotropic mycosis

fungoides [22, 23], Langerhans cell sarcoma

[24], and small cell carcinoma (extrapulmonary

[25] and parotid [26]). In addition, although

one group of researchers have found an

association between Merkel cell polyomavirus

infection and epidermal growth factor hotspot

mutations in non-small-cell lung cancer [27],

there is currently no evidence of an association

between the virus and any specific genomic

aberration—including a mutation in SUFU

protein—in Merkel cell carcinoma [28].

Mutational analysis of Merkel cell carcinoma

has revealed numerous abnormalities including

mutations in telomerase activation, tumor

suppressors, and tyrosine kinase signaling

(Table 2) [9, 29]. Chromosomal analysis,

utilizing comparative genomic hybridization

to define copy number abnormalities (such as

amplified or deleted regions) on chromosomes

but not specific genes, has also found several

chromosomal aberrations [9, 30]. A genomic

alteration in SUFU protein—an integral

Table 2 Mutations in telomerase activation, tumor
suppressors and tyrosine kinase signaling in Merkel cell
carcinoma

Telomerase activation mutations and amplifications

TERT (telomerase reverse transcriptase) promoter

Tumor suppressor mutations

RB1 (human retinoblastoma gene)

SUFU (suppressor of fused)

TP53 (tumor protein p53)

Tyrosine kinase signaling mutations

AKT (protein kinase B)

KIT (also known as CD117 or mast/stem cell growth

factor receptor)

PDGFRA (platelet-derived growth factor receptor,

alpha)

PIK3CA (phosphatidylinositol-4,5-bisphosphate

3-kinase, catalytic subunit alpha)

PTEN (phosphatase and tensin homolog)
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component of the Hh signaling pathway—was

identified in our patient’s Merkel cell carcinoma

using a next-generation sequencing-based

assay. Although one group of investigators

detected over expression of Hh signaling

pathway proteins in the Merkel cell

carcinomas they studied [31], to the best of

our knowledge, neither Merkel cell carcinoma

associated with a SUFU protein mutation nor

Merkel cell carcinoma related to a genomic

aberration of the Hh signaling pathway has

previously been described.

Hedgehog Signaling Pathway

The Hh signaling pathway has an essential role

in not only embryonic development but also

cell differentiation and proliferation. The term

‘hedgehog’ was introduced to describe the

appearance (similar to that of the spiky

hedgehog) of the mutated gene in the larva of

the fruit fly Drosophila melanogaster. The Hh

signaling pathway is suppressed in the majority

of normal human cells [2, 32, 33].

In mammals, the primary cilium of the cell

membrane contains a receptor and a signal

transducer. The twelve-pass transmembrane

receptor patched-1 (PTCH1) inhibits the seven-

pass transmembrane G-coupled receptor-like

protein smoothened (SMO). This allows for

the intracellular inhibition of the associated

oncogene glioma-1/2 transcription factor

function by (SUFU) protein [2, 32, 34, 35].

The binding of the Hh ligand to the PTCH1

receptor activates the Hh signaling pathway. In

humans, there are three Hh ligands: (1) sonic

hedgehog (named after the Sega videogame and

implicated in establishing left–right symmetry

and development of the central nervous system,

eyes and muscles), (2) desert hedgehog (named

after a real hedgehog species and implicated in

the development of male germ cells), and (3)

Indian hedgehog (named after a real hedgehog

species and implicated in the development of

cartilage and regulation of bone growth).

Binding of the Hh ligand to PTCH1 receptor

(or the presence of a mutation in either the

PTCH1 or SMO signal transducer) removes the

suppression of SMO by PTCH1. This results in

the inhibition of the regulation by SUFU

protein and the subsequent release of glioma

transcription activity in the nucleus [2, 32, 33,

36, 37].

The Hh signaling pathway plays a role in the

development and persistence of human cancers.

Constitutive activation of the Hh signaling

pathway is involved in tumorigenesis of

nevoid basal cell carcinoma syndrome (which

is also known as Gorlin–Goltz syndrome or

Gorlin syndrome) and associated with cancers

that have a mutation in the PTCH1 gene: basal

cell carcinoma, medulloblastoma, meningioma,

and rhabdomyoblastoma. Hyperactivity of the

Hh signaling pathway has also been linked to

the development of other cancers including

breast, colon, gastric, leukemias, lung, multiple

myeloma, pancreas and prostate. In addition,

aberrant activation of the Hh signaling pathway

has been demonstrated to contribute not only

to the maintenance and expression of leukemic

stem cells, but also to chemotherapy resistance

(in ovarian cancer, cervical cancer, and myeloid

leukemia cells) and radiotherapy resistance (in

pancreatic cancer and head and neck cancer) [2,

32, 38, 39].

Targeted therapy that affects the Hh

signaling pathway—specifically with

vismodegib that is an inhibitor of SMO—has

shown efficacy in the treatment of locally

advanced and metastatic basal cell carcinoma

and other tumors with patched-1 mutations

[34, 36, 40–45]. However, some patients’ basal

cell carcinomas have acquired resistance to

vismodegib [33, 46, 47]. Therefore, therapeutic
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agents that target downstream molecules in the

Hh signaling pathway, distal to SMO, are being

developed [38].

Suppressor of Fused Protein

SUFU is an intracellular negative regulator of

the Hh signaling pathway. It is a tumor

suppressor protein. SUFU functions by

modulating the activity of glioma

transcription factors [48–51]. SUFU mutation

(R299Q), as seen in our patient, has previously

been described in other cancers [52].

Mutations of SUFU have also been discerned

in patients with either idiopathic or nevoid

basal cell carcinoma syndrome-associated

medulloblastomas [53–61]. Less than one

percent (3/351) of cutaneous melanomas in

The Cancer Genome Atlas (TCGA) dataset

have a SUFU mutation [62]. To our knowledge,

our patient represents the initial observation of

this unique Hh signaling pathway aberration in

Merkel cell carcinoma.

The SUFU protein acts downstream of SMO

in the Hh signaling pathway. Therefore, it is

expected that targeted therapeutic

intervention using an inhibitor to SMO, such

as vismodegib, would not be effective for

individuals whose tumors were associated

with a SUFU mutation. Indeed, SMO

inhibitors failed to stop the growth of tumors

in SUFU-mutant mouse cancer models and

tumor-derived xenografts from a

medulloblastoma patient that harbored a

SUFU suppressor alteration [2, 56, 63].

Therapies that target the Hh signaling

pathway downstream of SUFU—affecting glial

transcription factors—may be appropriate for

individuals whose cancer harbors a SUFU

mutation, such as our patient’s Merkel cell

carcinoma [2, 36, 64–66]. These may include

agents such as arsenic trioxide that inhibits glial

transcription factors [67–69] and bromo and

extra C-terminal (BET) inhibitors that result in

downregulation of glial transcriptional activity

by inhibiting the BET bromodomain-containing

protein 4 [70–72]. Treatment with BET

inhibitors—such as JQ1 and OTX015—have

not only resulted in the inhibition SUFU-

mutant medulloblastoma growth but also have

shown clinical activity in the treatment of

patients with hematologic malignancies (such

as acute myelogenous leukemia and

lymphoma), respectively [70–72].

CONCLUSION

Merkel cell carcinoma is an aggressive

neuroendocrine tumor typically presenting on

sun-exposed skin of older men. In addition to

ultraviolet radiation, immunosuppression and

Merkel cell polyomavirus have been associated

with the development of Merkel cell carcinoma.

Chromosomal and mutational analysis of

Merkel cell carcinoma has demonstrated

several aberrations; however, neither a

unifying abnormality nor an alteration in the

Hh signaling pathway has been discovered. Our

patient’s metastatic Merkel cell carcinoma has a

unique, previously undescribed, genomic

aberration: a SUFU abnormality was the sole

alteration detected using a next-generation

sequencing-based assay. We hypothesize that

his tumor will not respond to inhibitors of

SMO, such as vismodegib, since these agents act

on the Hh signaling pathway upstream of the

patient’s SUFU abnormality. However, we

speculate that his Merkel cell carcinoma may

be successfully treated with therapy that targets

the Hh signaling pathway downstream to SUFU

protein—such as arsenic trioxide or BET

inhibitors—that result in downregulation of

glial transcription activity.
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