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Abstract Modified effective range theory formulated as a
Bayesian statistical model through the combination with
Markov Chain Monte Carlo integration and fitting tech-
niques is used to check the compatibility of different
e−−Xe scattering data such as the total cross-sections,
the momentum transfer cross-sections, and the differential
cross-sections that were determined experimentally in the
region of Ramsauer-Townsend minimum. On the basis of
this predictive approach, the most probable value of the
scattering length, (−6.51 ± 0.05)a0, is proposed. The
present analysis suggests that the non-relativistic spinless
effective range theory is suitable for the description of angu-
lar and energy dependencies of e−−Xe elastic scattering
cross-sections below the threshold for first inelastic process.

Keywords Electron elastic scattering · Xenon · Modified
effective range theory

1 Introduction

The modified effective range theory (MERT) for electron
and positron scattering, originally proposed by O’Malley
et al. [1], is frequently used to extrapolate measured cross
sections down to zero energy, the region hardly accessible
experimentally. However, the applicability of the original
approach is limited to the very low energies (below 1 eV in
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noble gases as shown by Buckman and Mitroy [2]) where
rare experimental data are subject to large errors making the
MERT extrapolation unreliable.

To overcome this problem, Idziaszek and Karwasz pro-
posed [3, 4] a different approach to MERT: the expression
describing the scattering phase shifts of angular momen-
tum partial waves as a function of incident electron energy
is obtained exactly using Mathieu’s functions, i.e., analyt-
ical solutions of the radial Schrödinger equation with an
adiabatic long-range dipole polarization potential (∼ r−4).
The effective range approximations are introduced into the
analytical solution exclusively for a short-range part of the
interaction potential. We showed in a series of papers that
such approach allows to extend the applicability of MERT
almost to the threshold for the first inelastic process in many
simple targets, including He, Ar and H2 [5], Ne [6], Kr [7],
and CH4 [8].

One disadvantage of MERT analysis of scattering data
is related to multiparameter nature of the effective range
expansions (approximating the energy dependence of short-
range effects). The multiterm fit to experimental data is
always characterized by a certain portion of ambiguity since
a large number of independent parameters can sometimes
prevent their unique determination. Therefore, recently [9],
we proposed to combine MERT with Markov Chain Monte
Carlo (MCMC) fitting procedures (see [10]) in order to give
the model a more statistical nature (in the terms of Bayesian
statistics [10]) and to determine the uncertainties related to
the fitting parameters.

MERT has been extensively used to analyze different
cross-sections for all noble gasses; however, it has been
rarely applied for Xenon atom. To the best of our knowl-
edge, only O’Malley [11], Guskov et al. [12], Weyhreter
et al. [13], and Kurokawa et al. [14, 15] used the original
approach to MERT in order to extrapolate some low-energy
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e−−Xe experimental data down to zero energy. However,
except the last paper, these analysis were done long time
ago, when few datasets were available. Generally, it is
expected that an important source of uncertainty in MERT
analysis of Xe cross-sections will come from neglecting
spin-orbit interactions which cause the phase shifts for l > 0
to be different for the different spin orientations of the inci-
dent electron. Elaborated relativistic calculations [16–19]
including spin-orbit interactions show that the phase-shift
splitting due to the spin polarization is indeed noticeable
for e−−Xe collisions; however, this effect is energy depen-
dent and it is not very important in low-energy range (E <

10 eV), particularly in the region of Ramsauer-Townsend
minimum.

This work shows that MERT model is suitable for the
description of low-energy e−−Xe scattering data even if
spin-orbit interaction is neglected. In particular, it is proved
that both the angular and the energy dependencies of scat-
tering cross-sections can be well modeled within the frame-
work of this non-relativistic model if the correct value of the
static dipole polarizability is used an input parameter. The
latter quantity intrinsically contains the contribution of rela-
tivistic effects which are necessary in order to theoretically
describe such a heavy atom as Xenon. To further validate
the present approach, MCMC-MERT is employed to check
the compatibility of total cross-sections (TCSs) measured
in the region of Ramsauer-Townsed minimum with exper-
imentally determined differential and momentum transfer
cross-sections (DCSs and MTCSs, respectively) available
for the same energy range. On the basis of this predictive
analysis, the most probable value of the scattering length
and the effective range parameters are proposed. Finally,
MERT-derived dependence of the s-wave electron scatter-
ing length for rare-gas atoms on the dipole polarizability is
discussed.

2 MCMC–MERT

A semi-analytical approach to MERT, originally introduced
by O’Malley et al. [1], has been discussed in details in
our previous papers [3–5]. The combination of MERT with
Markov Chain Monte Carlo fitting techniques (MCMC-
MERT) was introduced in ref. [9]. Therefore, only a brief
description will be given here.

MERT analytical expression for partial wave scatter-
ing phase-shift induced by the spherical part of the long-
range dipole polarization potential is given by the following
expression (in atomic units) [1]:

tan ηl = m2
l − tan δ2l + B̃l tan δl

(
m2

l − 1
)

tan δl

(
1 − m2

l

) + B̃l

(
1 − m2

l tan
2 δl

) , (1)

where l is the angular momentum quantum number and

δl = π
2

(
νl − l − 1

2

)
. Here, ml and νl denote the energy-

dependent parameters which have to be determined numer-
ically for each partial wave using the procedures described
in refs. [3–5]. Parameter B̃l is related to the additional phase
shift that is induced by the unknown short-range potential
(static, exchange, and short-range correlation interactions).
This parameter is approximated by the quadratic effective
range expansion [3–5]:

B̃l = Bl(0) + 1

2
R∗Rlk

2 + . . . , (2)

where k is a wavenumber, Bl is the zero energy contri-
bution, Rl can be interpreted as the effective range for a
given partial wave, and R∗ = α1/2 with α being the dipole
polarizability. In the particular case of l = 0, B0 can be
expressed in terms of A, the s-wave scattering length, as
B0 = −R∗/A.

Using this semi-analytical model, we verified below that
in the regime of energies for elastic e−+Xe scattering
(<10 eV), the leading contributions come from s, p, and
d partial waves (l = 0, 1, 2) while the contributions of
higher partial waves are small and they are not modified by
the short-ranges forces due to very high centrifugal barriers
associated with large l numbers. Therefore, the phase shifts
for 3 ≤ l ≤ 100 partial waves have been estimated using
Eqs. 12–14 from paper by Ali and Fraser [20]:

tan ηl = k2αal + k4(α2bl + βcl), forl ≥ 3, (3)

where al , bl and cl are given by

al = π

(2l + 3)(2l + 1)(2l − 1)
,

bl = π [15(2l + 14) − 140(2l + 1)2 + 128]
[(2l + 3)(2l + 1)(2l − 1)]3(2l + 5)(2l − 3)

,

cl = 3π

(2l + 5)(2l + 5)(2l + 1)(2l − 1)(2l − 3)
. (4)

These analytical expressions describes the energy depen-
dencies of elastic scattering phase shifts that arise from pure
long-range inverse power forces including spherical dipole
(α) and quadrupole (β) polarizabilities.

Integral elastic (σIE), momentum transfer (σMT ), and
differential elastic ( dσ

dω
) cross sections are calculated using

the standard partial wave expansions:

σIE = 4π

k2

∞∑

l=0

(2l + 1) sin2 ηl(k) (5)

σMT = 4π

k2

∞∑

l=0

(l + 1) sin2[ηl(k) − ηl+1(k)] (6)

dσ

dω
= 1

k2
|

∞∑

l=0

(2l + 1) exp ηl sin ηl(k)Pl(cos θ)|2 (7)
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where θ is the scattering angle and Pl(x) are the Legendre
polynomials.

Classically, one can use nonlinear least-square regression
procedures in order to fit MERT to chosen experimental data
and determine unknown parameters in the effective range
expansions given by (2). However, due to a multiparam-
eter nature of the model, it is more appropriate to use a
Bayesian inference for parameter estimation [10]. In con-
trast to the classical fitting, the Bayesian inference does
not provide single point estimation in parameter space but
rather the probability density functions (PDFs) of model
parameters that are shaped by observational data. Once a
posteriori PDFs for each parameter are known, it is use-
ful to provide a point estimation representing “best-fit”
values together with an estimate of its errors. It can be
done using either the mode or the mean value of PDF
with the variance of distribution representing its uncer-
tainty [10]. Alternatively, one can give a credible region
representing predictive probability limit of the model due
to parameters uncertainties (see ref. [9] for definition of
this quantity). Bayesian parameter estimation requires the
computation of multi-dimensional integrals and a good
solution for this computational problem consists of imple-
menting Markov chain Monte Carlo (MCMC) methods
[10]. For our calculations, we adapt MCMCMatlab toolbox
by Laine (http://helios.fmi.fi/∼lainema/mcmc/) containing
Delayed Rejection and Adaptive Metropolis (DRAM) sam-
pling algorithm with multivariate Gaussian proposal distri-
butions introduced by Haario et al. [21]. See ref. [9] for
more details.

In all present calculations, the following theoretical value
α = 27.66a30 of dipole static polarizability was used [22].
This value is consistent with other theoretical and experi-
mental determinations [23]. Moreover, it was checked that
outcome of MERT fits is very weakly sensitive to the
changes of dipole polarizability within the range of 27 −
−27.8a30 where most of the literature data are reported. In
addition, it was found (see next section) that the inclusion
of the quadrupole polarizability β = 209.85a50 [22] in Ali
and Fraser expressions [20] for the scattering phase-shifts
of higher partial waves (l > 2) is necessary in order to
improve the agreement with more sophisticated theoretical
calculations of ηl at higher energies.

3 Analysis

3.1 Total Cross Sections

In spite of the fact that less measurements are available
for Xe than for other noble gases, a pretty good agree-
ment exists for TCS, see Fig. 1. In the region of the
Ramsauer-Townsend (R-T) minimum, discrepancies in TCS
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Fig. 1 aMCMC-MERT fit to total cross-sections by Ferch et al. [30].
The solid line is calculated using the posterior means of the parameters.
The mean contributions of s, p, and d partial waves are also shown.
The grey area in the plot (clearly visible only near R-T minimum)
corresponds to 50 % credibility region due to uncertainties of MERT
parameters. The fit is compared with experimental data by: Guskov
et al. [25], Dababneh et al. [26], Jost et al. [27], Nickiel et al. [28],
Subramanian et al. [29], Alle et al. [31], Szmytkowski et al. [32], and
Kurokawa et al. [14, 15]

are smaller than for Kr (see extensive review of scatter-
ing cross-sections in ref. [24]). Moreover, all TCSs are
measured in absolute way, and in low-energy range, they
correspond to the elastic integral cross-sections. Therefore,
the most accurate scattering phase-shifts can be derived
by fitting MERT to available experimental TCSs. Benefit-
ing from good agreement between experimental TCSs, the
scattering phase shifts were first determined by perform-
ing simultaneous robust fit of (5) to large collection of
TCS data sets (using MATLAB routine for nonlinear least-
square regression of multiple data sets) similarly as it was
done in analogous analysis for neon [6]. For present analy-
sis, only those experimental TCSs were chosen that extend
well below the energy corresponding to the R-T minimum:
Guskov et al. [25], Jost et al. [27], Ferch et al. [30], Alle
et al. [31], and Szmytkowski et al. [32]. The most recent
experimental data of Kurokawa et al. [14, 15] has not been
included in the analysis because these cross-sections are
much lower in low energy limit than other experiments (see
Fig. 1). Moreover, MERT fit to this dataset alone is not
able to reproduce R-T minimum (i.e., the derived s-wave
phase-shift does not change the sign in considered energy
range).

In addition, to check the compatibility between avail-
able experimental TCSs, MTCSs, and DCSs measured in
the region of R-T minimum in different laboratories with
different techniques, the scattering phase-shifts were also
derived via Bayesian predictive analysis. It has been done
using Markov Chain Monte Carlo (MCMC) fitting methods
separately applied to all single TCSs. Figure 1 presents an
exemplary MCMC fit to TCS by Ferch et al. [30]. Both the

http://helios.fmi.fi/~lainema/mcmc/
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mean posterior curve (solid line) together with the region
of 50 % credibility (grey area) are illustrated. Parameters
of the effective range expansions derived from simultane-
ous robust fit to several TCSs and from MCMC analysis of
single datasets are given in Table 1.

It is clear from Table 1 that the s-wave scattering length
(A) together with parameters B1 and B2 determined from
MCMC analysis of TCS by Ferch et al. [30] are in the
best agreement with the corresponding parameters derived
from simultaneous fit to several TCSs. It implies that
the related scattering phase-shifts calculated using these
parameters also remain in the best accordance. These two
MERT-derived phase-shift datasets are presented in Fig. 2
(ηl derived from other TCSs are not shown for clarity of
figure) where they are compared with relativistic calcula-
tions of Sin Fai Lam [16], Sienkiewicz and Baylis [18],
and McEachran and Stauffer [17]. The latter data were
published only for high energies, E > 5 eV, therefore
the non-relativistic calculations of the same authors [33]
available at lower energies are also included for compari-
son. It has to be added that recently [34] the same authors
reported the results of relativistic calculations with com-
plex optical potential of elastic and momentum transfer
cross sections for electron scattering from zero to 1 keV.
They were able to obtain a consistent set of cross sec-
tions over this entire energy range. However, no information
about energy dependence of scattering phase-shifts has been
provided.

Both the s-wave phase shift (dotted line, Fig. 2) derived
from a simultaneous fit to several considered TCSs and from
MCMC analysis of TCS by Ferch et al. [30] (solid line,
Fig. 2) are in good agrement with the data by Sienkiewicz
and Baylis. The results of Sin Fai Lam and old data of
McEachran and Stauffer [17, 33] lie systematically lower
than the present estimates. On the other hand, MERT-
derived p-wave and d-wave phase shifts are generally in
much better agreement with all theories. The present results
lay more or less in-between relativistic calculations indi-
cating that the spin-polarization effects for p- and d-waves
are noticeable in considered energy range (E < 10 eV)
but still relatively small when compared to the dominant
contribution from a adiabatic long-range dipole polarization
interaction.

Figure 2 presents also the f -wave phase-shifts (η3) cal-
culated using expressions introduced by Ali and Fraser
[20] for scattering from pure long-range potentials (dipole
and quadrupole polarizabilities). For comparison purposes,
the calculations assuming non-zero quadrupole polariz-
ability are shown together with computations neglecting
this part of the long-range interaction. The latter corre-
sponds to the Born approximation for the scattering phase-
shifts induced by pure dipole polarization potential. It is
clear that the quadrupole polarizability starts to play a
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Fig. 2 MERT-derived s-, p-, and d-wave scattering phase shifts
obtained fromMCMC fits of the model to total cross-sections by Ferch
et al. [30]. The grey area in the plot corresponds to 50 % posterior
region due to uncertainties of MERT parameters. The dotted line rep-
resents phase-shifts derived from simultaneous classical robust fit to
several TCSs [27, 30–32]. The present results are compared with the

calculations of Sin Fai Lam [16], McEachran and Stauffer [17, 33],
and Sienkiewicz and Baylis [18]. The f -wave phase shifts (η3) calcu-
lated using expressions introduced by Ali and Fraser [20] (3, 4) with
and without (Born approximation) inclusion of quadrupole polarizabil-
ity are also shown for comparison. The latter results are multiply by 4
in order to match the scale on the vertical axis of d-wave plot

role at high energies, E > 1 eV, and thus it has to
be included within the MERT framework if we want to
describe scattering cross-sections up to the threshold for
the first inelastic process. The good agreement observed
(Fig. 2) between present results for f -wave and other the-
ories shows that at low-energy range (E < 10 eV),
for high l numbers, the rigorous treatment of short-range
effects (including relativistic ones) provides only minor
corrections to the phase-shifts induced by pure long-range
forces.

Comparing MERT-derived differential (DCS) and
momentum transfer (MTCS) cross-sections with differ-
ent experiments, it was found that the largest number of

experimental points lay in the 50 % credibility region
determined from TCS by Ferch et al. [30]. Moreover, the
MCMC analysis of this dataset gives the lowest uncer-
tainty for the scattering length. Similarly, low uncertainty
is seen in Guskov’s data [25], but the energy range of their
measurements (and of the fit in consequence) was much
narrower than that by Ferch et al. [30]. Moreover, this data
are lower in R-T minimum than other experimental TCSs.
Furthermore, we do not know details of their experimental
procedures and setup. On the other hand, experimental TCS
of Ferch was determined using well-described time of flight
(TOF) system purposely designed for very low-energy elec-
tron scattering [37]. In the subsequent subsections, only the

Table 2 Comparison of the
e−+Xe scattering lengths
obtained in previous studies

Source A(a0)

O’Malley [11] −6.9 ≤ A ≤ −5.6

MERT, Guskov et al. [25] −6.8

MERT, Weyhreter et al. [13] −6.527

MERT, Kurokawa et al. [14] −5.13

Swarm analysis, Hunter et al. [42] −6.08

Swarm analysis, Pack et al. [43] −7.072

Optical absorption, Rupnik et al. [38] −5.83

Theory, McEachran et al. [33] −5.232

Theory, Zatsarinny et al. [39] −6.79
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Fig. 3 MERT-derived momentum transfer cross-sections obtained
from a MCMC fit of model to total cross-sections by Ferch et al. [30].
The grey area in the plot corresponds to 50 % posterior regions due to
uncertainties of MERT parameters. The present results are compared
with the swarm-derived MTCS of , Koizumi et [41], Hunter et al. [42],
Pack et al. [43], Schmidt et al. [44], and Hayashi [45]. The theoreti-
cal calculations by S.F. Biagi’s FORTRAN code, MagBoltz 8.9 (http://
consult.cern.ch/writeup/magboltz), BSR quantum-mechanical calcu-
lations by Zatsarinny and Bartschat [39], and relativistic results of
McEachran and Stauffer [34] are also shown for comparison

results related to this fit will be presented though the results
obtained from MERT analysis of other datasets such as Jost
et al. [27] and Szmytkowski et al. [32] are of similar quality
(all stay within the range of combined errors of all available
experimental MTCS and DCS).

On the basis of this comparative study, it is also con-
cluded that the value of scattering length, (−6.51 ± 0.05)a0,
derived from time of flight data by Ferch et al. [30] is the

most probable. This result is in very good agreement with
the value of −6.527a0 obtained using original MERT anal-
ysis applied to very-low-energy elastic DCSs by Weyhreter
et al. [13]. Moreover, it is also consistent with A = −6.5a0
determined by O’Malley [11] from very old TCS by Ram-
sauer and Kollath [35]. The comparison of e−+Xe scatter-
ing lengths determined experimentally or theoretically by
different methods is given in Table 2. The relatively large
negative s-wave scattering length obtained in the present
and previous works supports the presence of virtual state
enhancing the scattering cross-sections in the limit of zero
energy [36].

3.2 Momentum Transfer Cross Sections

Swarm-derived momentum cross-sections are generally in
good agreement in the region of Ramsauer-Townsend min-
imum [40]. Except determinations of Hunter et al. [42] and
Schmidt et al. [44], other experimental results of Koizumi
et al. [41], Pack et al. [43] and Hayashi [45] are con-
sistent within few percent accuracy (see Fig. 3) giving
R-T minimum of (0.30–0.38)·10−20m2 at 0.6–0.7 eV. Most
of the recent theoretical calculations (http://consult.cern.
ch/writeup/magboltz) [34, 39] confirm these experimen-
tal determinations. Present MERT analysis also reproduces
very well experimental results, see Fig. 3, giving a minimum
of 0.35 · 10−20m2 at 0.68 eV.

3.3 Differential Cross Sections

The differential cross-sections (DCSs) calculated with the
MERT-derived phase shifts are compared with available

Fig. 4 Angular dependencies of
MERT-derived differential
cross-sections obtained from a
MCMC fit of model to total
cross-sections by Ferch et al.
[30]. The present results are
compared at 1, 5, 7.9, and 10 eV
with the experimental DCS of
Register et al. [46], Weyhreter et
al. [13], Gibson et al. [47], and
Linert et al. [48]
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Fig. 5 Energy dependencies of MERT-derived differential cross-
sections obtained from MCMC fit of model to total cross-sections
by Ferch et al. [30]. The present results are compared at 30, 60,
and 90◦ with the experimental DCS of Weyhreter et al. [13] and
Gibson et al. [47]

experimental DCS data [13, 46–48] in Figs. 4 and 5. The
agreement has to be judged as good, being at least at the
same level of consistency as more advanced calculations
(see for example refs. [47, 48] where the extensive com-
parison between experiments and theoretical calculations
is done). In particular, MERT is in quite good accordance
with high-angle-data measured by Linert et al. [48] with
magnetic angler changer in hardly accessible angular region
(> 150◦). Surprisingly, a good agreement is seen up to
10 eV.

4 Scattering Length for Noble Gases

This article completes our picture of MERT applicability
to noble gases [5–7]. Figure 6 shows an attempt to corre-
late the s-wave scattering lengths (A) for all noble gases

dipole static polarizability (a
0
3)
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Fig. 6 MERT-derived s-wave scattering lengths (dots) for rare gases
[5–7] plotted versus static dipole polarizability. The present result for
Xenon is given with 3σ error bar determined from Bayesian predic-
tive analysis. The linear fit (solid line) is presented to show a general
tendency in A(α) dependency

versus static dipole polarizability (α) as hypothesized by
Reisfeld and Asaf [49]. The values of the scattering length,
except the present result for Xenon, were determined in
our previous MERT studies [5–7] using “traditional” fitting
techniques. Figure 6 presents also the linear fit to A(α) in
order to show a general tendency in the relation between
these two quantities. The similar dependency has been
already predicted by Reisfeld and Asaf [49] who showed
that A(α) can be indeed approximately expressed by the
linear relationship if the electron-target interaction poten-
tial is approximated by the short-range hard-core repulsive
part plus the long-range dipole polarization potential. Our
MERT-computed scattering-lengths seem to partially con-
firm these results though the parametric dependence on the
size of the hard core does not seem to be so crucial as it is
postulated by the expression derived by Reisfeld and Asaf
(see Eq. 6 in ref. [49] .

In most cases, the scattering lengths for noble gases have
been determined by extrapolating experimental or theoret-
ical results using modified effective range theory. More
fundamental (ab initio) calculations are hardly ever car-
ried out in very low (near-to-zero) energy region due to
the tedious nature of computations. Moreover, the direct
experimental determinations of A are typically subject to
large errors. The advantage of present Markov Chain Monte
Carlo effective range analysis is the ability to predict
error bars for the theoretical estimates of model parame-
ters when compared to the traditional fitting methods. We
plan to apply Bayesian inference for other noble gases:
helium, neon, argon, and krypton, in order to estimate the
uncertainties of scattering lengths that were determined in
our previous “traditional” MERT studies [5–7]. We expect
that the inclusion of error bars for extrapolated values
can explain the small deviations from linear dependency
of A(α).
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5 Conclusions

This work shows that non-relativistic spinless model such as
modified effective range theory (MERT) is able to describe
cross-sections for low-energy electron (E < 10 eV) elastic
scattering from Xenon atom at the same level of consistency
with experiments as more advanced theoretical approaches.
This indicates that a long-range adiabatic dipole polariza-
tion potential (∼ r−4) is a dominant contribution to the
overall e−+Xe interaction in considered energy range. The
spin polarization effects in scattering events, important for
few lowest partial waves l > 0, can be considered only as
small corrections to non-relativistic case.

Bayesian predictive analysis of experimental total cross-
sections (TCS) in the region of Ramsauer-Townsend mini-
mum shows that the time of flight data by Ferch et al. [30]
stays in the best consistency with momentum transfer and
differential cross-sections measured in different laborato-
ries at the same energy range. As the result, the value of
the scattering length, A = (−6.51 ± 0.05)a0, predicted by
Bayesian inference technique from TCS of Ferch et al. [30]
is recommended in this work.

In final, this paper completes the picture of MERT appli-
cability for all noble gases [5–7] showing that the present
model can be used to describe the scattering cross-sections
from zero-energy up to the threshold for the first inelastic
process for He, Ne, Ar, Kr, and Xe. Moreover, in our ear-
lier works, [5, 8] we showed that MERT is also applicable
in relatively wide energy range for simple (almost spherical)
molecules such as H2 and CH4. The present model could be
also potentially used to describe cross-sections for electron
scattering from targets of general symmetry at very low-
impact energies when de Broglie wavelength of the electron
is much greater than the dimensions of the molecule. In
such a case, the anisotropy in electron–non-spherical target
interaction can be neglected preserving the validity of the
effective range theory. This work is in progress.
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