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Abstract
Objective and methods This study reviewed the concept of in silico prediction of chemical toxicity for prevention of occu-
pational cancer and future prospects in workers’ health. In this review, a new approach to determine the credibility of in 
silico predictions with raw data is explored, and the method of determining the confidence level of evaluation based on the 
credibility of data is discussed. I searched various papers and books related to the in silico prediction of chemical toxicity 
and carcinogenicity. The intention was to utilize the most recent reports after 2015 regarding in silico prediction.
Results and conclusion The application of in silico methods is increasing with the prediction of toxic risks to human and 
the environment. The various toxic effects of industrial chemicals have triggered the recognition of the importance of using 
a combination of in silico models in the risk assessments. In silico occupational exposure models, industrial accidents, and 
occupational cancers are effectively managed and chemicals evaluated. It is important to identify and manage hazardous 
substances proactively through the rigorous evaluation of chemicals.

Keywords Chemical toxicity · In silico · Prediction · Review · Workers’ health

Introduction

The method of identifying the hazards of chemicals has been 
almost entirely dependent on animal tests. Obtaining all the 
toxicological results for a single chemical using laboratory 
animals requires the sacrifice of at least thousands of ani-
mals. The tremendous cost and time required for animal test-
ing are also major barriers to evaluating chemicals known to 
be commercially available at home and abroad [1].

The EU has established a new chemical assessment 
paradigm (REACH, enacted in 2007) to evaluate chemicals 
globally, including the staged registration and evaluation 
of all existing chemicals that have been manufactured and 
imported without safety information [2]. In the USA, quan-
titative structure–activity relationships (QSARs) predictions 
are used to evaluate two to three thousand chemicals each 
year and to assess a significant portion of the toxicity infor-
mation [3]. Due to the uncertainty in the predictions, their 

use is extremely limited. While the EU and other countries 
have been very passive in introducing QSARs, they are now 
actively investing in the development and expansion of 
QSARs programs with the introduction of the REACH sys-
tem that declares ‘No Data, No Market’ for all chemicals. In 
addition, institutional support has been established to require 
that non-testing methods, such as QSARs, be identified first, 
before conducting a new toxicity test for REACH registra-
tion [2]. In Korea, the enactment of the Law on the Registra-
tion and Evaluation of Chemical Substances (the K-REACH 
Act, enacted in 2015) has strengthened the EU’s obligation 
to evaluate not only new chemicals, but also existing chemi-
cals that are manufactured or imported of over 1 ton quan-
tity [4]. In order to improve the evaluation of chemicals to 
the level of developed countries, this law was introduced 
to strengthen the responsibility for demonstrating the haz-
ards and risks of industries. As a result of this institutional 
strengthening, the enacted law also allows the submission 
of data by non-testing methods, such as QSARs as defined 
in EU REACH. In addition, the K-REACH Act stipulates 
omission of the toxicity test data for small quantities (less 
than 1 tonne per year) of new chemicals with a small amount 
of manufacture or import, which means that it must be abso-
lutely dependent on the results of QSARs for the evaluation 
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of small quantities of new scientific substances [4]. In this 
respect, many efforts have been made to collect, interpret, 
and link large amounts of known chemicals to each other, 
and to link chemicals to evaluations.

QSAR correlates proportionally with the structure of the 
chemicals and their physiological activity, starting with the 
premise that similar chemicals have similar physical proper-
ties or toxicity. The QSARs program, which can predict the 
toxicity of other chemicals based on the molecular structure 
of existing chemicals that are already known to be toxic, 
can save more time and money than performing the test to 
determine the hazards of the chemical [1, 2]. This review 
examines several applications of in silico toxicological 
approaches that many industries and institutions are taking, 
reviewing the examples of in silico tools they are using for 
their predictions. When the in silico toxicology (IST) proto-
col is fully developed and implemented, the IST assessment 
will be able to be used to evaluate the chemicals in the work-
place and the regulatory body. The development of the IST 
protocol is an initiative developed in collaboration between 
international consortia and reflects the latest in silico toxi-
cology for risk identification and characterization. In this 
review, a new approach to determine the credibility of in 
silico predictions with raw data is explored, and the method 
of determining the confidence level of evaluation based on 
the credibility of data is discussed.

This study examines the concept of in silico prediction 
of chemical toxicity on workers’ exposure and future pros-
pects in occupational health. This review summarizes arti-
cles and books on the concept of in silico and the predic-
tion of chemical toxicity and carcinogenicity. I searched the 
major Web sites used in most reviews for the necessary data 
search, specifically Google Scholar (https ://schol ar.googl 
e.com), ScienceDirect (www.scien cedir ect.com), Scopus 
(www.scopu s.com), NDSL (https ://www.ndsl.kr/index .do), 
and PubMed (https ://www.ncbi.nlm.nih.gov/pubme d). The 
search was performed using the key terms “in silico,” “pre-
diction,” “chemical toxicity,” and “workers’ health.” Among 
the literature items searched through this process, the litera-
ture concerning in silico prediction was intended to utilize 
the most recent reports (after 2010), and the data on the 
research process and basic concepts are presented for ease of 
explanation date not only from 2010, but also include some 
data from before 2010.

Alternative tools for chemical toxic tests

Predictive toxicology is used in in silico and in vitro models, 
and in computational and other tools, in a more cost-effec-
tive manner than conventional tools. Here is a brief review of 
the issues involved in using predictive toxicology in regula-
tory alternative analysis (AA). It is good practice to use case 
studies to integrate predictive toxicology with AA, to start 

with prioritization of chemicals of interest, and to leverage 
existing resources to integrate predictive toxicology into AA 
practices using existing resources. Incorporating predictive 
toxicity into AA will enhance the ability of workplaces and 
regulators to choose alternatives to hazardous components 
and further increase the use of toxicity prediction in regula-
tion [5]. Computational toxicology, also known as “in silico 
toxicology,” is based on knowledge gained from various 
scientific disciplines, and its activity is known due to the 
premise that the toxicity of chemicals is predictable in the 
molecular structure, and can be inferred from the properties. 
In order to provide a faster, more economic, and animal-
free tool for predicting the toxicity of analogous compounds, 
structure–activity relationships (SARs) play an important 
role as the application of chemical genotoxicity and carci-
nogenicity assessments increases. The development of SAR 
algorithms is an ongoing process, and new models, as well 
as new versions of applications, are constantly being made 
available [6].

Research and development (R&D) for new chemicals are 
long and expensive processes, with efforts going on for dec-
ades; but safety issues (especially cardiac and liver toxicity) 
are a major challenge for chemical industries. To this end, 
the development of predictive toxicity assays and models 
has become a strategic problem for these companies, and 
an integrated approach to in vitro and in vivo experimental 
data and knowledge-based data sources should be under-
taken [7]. As the size and diversity of biological data have 
increased over the decades, computerized predictions of tox-
icity have reached new levels. Emerging theories of machine 
learning for chemistry allow chemical structures, toxicol-
ogy, simulation, and physical data to be integrated when 
predicting health risks and other toxicological information 
[8]. The developed in silico model has been fully validated 
and released online via the Enalos Cloud platform, which 
can be accessed at https ://enalo s.insil icoto x.com/Mouse 
Tox/. This ready-to-use Web service provides free use of 
model results through a user-friendly interface, which can 
serve as a toxicity prediction tool for the risk assessment 
of new compounds, without special requirements or prior 
programming skills [9].

In silico prediction for chemical toxicity

The goal of in silico toxicity is to predict chemical toxicity 
through computational modeling, QSARs, and to predict 
algorithms with toxicity data. It is considered to be one of 
the alternatives to animal testing, which, in broad terms, 
utilizes a variety of computational techniques that corre-
late the toxicity or efficacy of a chemical with its structure. 
Computational techniques make it possible to quantitatively 
and qualitatively predict the toxicity of chemicals, mixtures, 
nanomaterials, and so on. The methods have strengths and 
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limitations, specifics of scope and interpretation, so it is 
important to find the most effective method for each prob-
lem. Chemicals are toxic by interacting with other sub-
stances, and risk assessments can overlook the side effects 
of the mixture. For example, although adding other metals 
together increases lead (Pb) toxicity and reports accumu-
lative risk assessment, there is a lack of raw data on the 
toxicity of the mixture, due to chemical exposure types and 
complex interactions, and it is not possible to test all com-
binations of these elements [10].

Prediction of the in silico toxicity of chemicals using 
machine learning and structural alert is a major issue, 
including the various toxicity and adverse effects that should 
be assessed in toxicology. In addition to predictive models 
made for various toxicological predictions, a database was 
presented, and Web server that can be used [11]. Efforts 
have been made to develop in silico models, such as compu-
tational tools that are efficient, fast, inexpensive, and accu-
rate, and more than anything, that can be performed before 
the compound is synthesized [12]. In recent years, chemical 
toxicity prediction models have been developed in the field 
of chemical risk assessment, along with an admetSAR Web 
server with machine learning methods and structural alerts 
that have been developed for public use at no cost [13]. In 
order to model chemical carcinogenesis, several papers have 
shared protocols, and the authors have recently developed 
CarcinoPred-EL, a Web server that can predict carcino-
genicity online [14]. More than 8000 compounds with Ames 
mutagens are currently known, and in recent years, these 
toxicity data have been used to extend predictive models 
and structural alerts [15]. Acute oral toxicity is the most 
widely studied in computational predictions, and several 
models were developed to predict acute oral toxicity. Sev-
eral machine learning methods were developed and applied 
to construct classification and regression models to predict 
 LD50 or its toxicity categories [16].

Quantitative structure–activity relationship (QSAR)

QSAR is an important tool in bioinformatics and chemistry 
information and is based primarily on data generated from 
molecular modeling and computational chemistry to predict 
the toxicities of chemicals [17]. With the help of QSAR, a 
correlation is established between the experiment and the 
biological activity of the molecules obtained by various 
molecular properties [18, 19]. The fundamental approach 
to developing, validating, and using QSAR models to predict 
toxicity is medium consistency. Since mathematical models 
are used to develop the equations, the quantification of vari-
ous properties of the molecular set is also easily performed. 
These models work with new technologies to build mod-
els related to structure, activity, and toxicity. QSAR-based 
research shows application in a variety of fields, including 

ecotoxicity, antitumor, biotoxicity, and biochemical action, 
as well as occupational toxicology [20–22].

Structural alert (SA)

Structural alert (SA) is the molecular structure of the mol-
ecule that is associated with one of the adverse consequences 
or toxicological endpoints. SA for mutagenicity is a group 
of molecular functions or substructures associated with the 
mutagenic activity of chemical compounds. The SA used in 
the QSAR model has demonstrated the potential to predict 
various endpoints, including mutagenicity. Derek and Tox-
tree are software that use SAs to predict mutagenicity [23]. 
The Toxicity Forecaster (ToxCast) project uses quantitative 
high-efficiency screening to predict the chemical toxicity of 
several biological pathways that follow the NTP guidelines 
[24].

In silico prediction for nanotoxicology

First of all, in in silico modeling methods in the field of 
nanotoxicity, quantitative structure–nanotoxicity relation-
ships (also known as quantitative structure–nanotoxic-
ity relationships (QSNR), or nano-QSAR) are specific to 
nanomaterials, such as the size, shape, surface area, and 
solubility of nanomaterials. A linear QSNR model has been 
provided to predict  EC50 (effective concentration for 50% 
enzymatic inhibition) for silver nanoparticles from size 
and surface charge, and a QSNR model using a quantum 
chemical descriptor is a fullerene  C60 derivative. Integrat-
ing high-throughput screening methods with biosafety and 
in silico modeling emphasizes a system biology approach 
that ensures quality in nanosafety research, bridges the 
mechanical gap in fundamental research, and makes recom-
mendations for predictive biological responses in nanotoxi-
cology. In particular, “nano-QSAR” should be systematic 
and standardized as information collected in consideration 
of nano-characteristics. When developing toxicity predic-
tion models, system interactions should be considered, and 
the EU NanoPUZZLES project was one of the global col-
laborations that improved the data availability and modeling 
approach to support the evaluation of nanomaterials [25]. 
Strategic development that combines multiple alternative 
tests can be useful for NM risk assessment and can assist 
decision-making [26].

OECD toolbox for the prediction of chemical toxicity

OECD and ECHA provide the OECD Toolbox for predicting 
or assessing health and environmental hazards for chemi-
cals that have not been identified as toxic, using information 
from existing chemicals whose health and environmental 
hazards have been identified [27]. OECD Toolbox predicts 
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(evaluates) methods using read-across, trend analysis, and 
QSAR, assuming that chemicals with similar mechanisms 
and structural features have similar toxicity. Health and envi-
ronmental hazard information that is predictable through the 
OECD Toolbox includes carcinogenicity, germ cell muta-
genicity, developmental toxicity, skin and eye irritation, 
acute toxicity, and aquatic toxicity. To ensure the credibility 
of the forecast results, the OECD Toolbox report is prepared 
by applying five principles to ensure the credibility of the 
forecast program presented by the OECD. It is expected that 
this will be useful for collecting hazard and risk information 
of chemicals, and preparing new safety data sheets for not 
only researchers, but also companies that manufacture or 
import chemicals. In addition, it may be used to confirm the 
results of previous studies, when selecting candidate sub-
stances for inhalation toxic test [28].

In the future, it is considered that further develop-
ments are needed to transform the toolbox into a more 

comprehensive chemical management system [29]. This 
OECD toolbox can be used to calculate not only physico-
chemical properties, but also endpoints for environmental 
toxicity and human toxicity.

Other packages

QSARs are estimates of test results based on correlations or 
relationships between chemical structure, physicochemical 
properties, and toxic effects in vivo, and predictive values 
are derived through various algorithms. Programs based on 
professional rule-of-thumb include Derek, HarzardExpert, 
Toxtree, and OECD toolbox, while statistics-based pro-
grams include MultiCASE, TOPKAT, Lazar, CAESAR, and 
OASIS TIMES as a mixed model [30]. Many models that 
predict toxicity through the structure of compounds have 
been published. Table 1 summarizes the features for each 
packages.

Table 1  List of models to predict toxicity through the structure of chemicals

Models Features

Deductive estimate 
of risk from exist-
ing knowledge 
(Derek)

Developed by Lhasa Ltd., Derek is a type of QSAR model based on professional experience rules. Derek is a knowledge-
based toxicity prediction program that divides a series of categories based on chemical structure, predicts the correlation 
between structure and biological activity, and can predict various toxicity indicators, including genotoxicity. Toxicophore 
that causes toxicity in target chemicals is identified to predict toxicity [27]. At this time, the risk assessment is defined on 
the basis of the relevant literature, which ensures strong confidence in the prediction. Knowledge-based toxicity predic-
tion programs are used to determine the potential toxicity of a substance by obtaining information on the toxic functional 
groups [4]. In particular, the company is conducting research to improve the predictive power by applying multiple 
prediction programs, such as Sarah and Toxtree, and multiple applications [28]. Because in silico systems predict more 
complex phenomena that can use limited data, maximizing data accessibility is becoming increasingly important. In par-
ticular, the company is conducting research to improve the predictive power by applying multiple prediction programs, 
such as Sarah and Toxtree, and multiple applications [29]

EPA toxicity esti-
mation software 
tool (T.E.S.T.)

The Chemistry Development Kit Java open-source and chemical data interworking is characterized by validating results 
by applying eight characteristic QSAR methods. Input query uses chemical name, CAS No., structure text file, etc., and 
the range includes acute oral toxicity, gene mutations, and environmental toxicity. Software provided by the US EPA 
includes human rat  LD50 developmental toxicity and genotoxicity models

DanishQSAR This is a repository-based model with data of more than 600,000 chemicals, applicable to 200 QSAR models. Input query 
can be chemical name, structure, CAS No., SMILES form, Mol file, etc. The range of prediction is physicochemical 
characteristics, acute toxicity, skin corrosion/irritation, and environmental toxicity

VegaHubQSAR This provides prediction results optimized for REACH requirements and holds 40,000 kinds of chemical data, enabling the 
simultaneous batch prediction of a large number of substances and supporting the read-across approach. The input query 
uses the SMILES form, and the prediction range is mutagenic, carcinogenic, skin sensitized, BCF, logP, etc. Vega is a 
model for predicting human toxicity, which includes models for mutagenicity, carcinogenicity, developmental toxicity, 
endocrine binding, and skin sensitization, and physicochemical property prediction models. Vega implements and pro-
vides models to ensure that the in silico method is used correctly and that professionals use the in silico model

Toxtree Toxtree is the software that implements the decision tree (DT) proposed by Cramer. Cramer DT is classified into three 
classes according to the metabolism of the compound, information on toxicity data, and information on whether it is used 
as a component of traditional food. Class 1 substances are known for their metabolic information and are very toxic com-
pounds, and substances such as alcohols, ketones, and aldehydes belong to the first class. Class 2 is intermediate and is 
more toxic than class 1, but class 2 substances do not exhibit the same toxicity as class 3. Substances belonging to class 2 
fall into one of two categories, with functional groups similar to those of class 1, but with higher reactivity, or more com-
plex structure, than class 1. Class 3 is a highly toxic structure that contains compounds with highly reactive functional 
groups. Cramer’s method consists of 33 questions, and the answer to each question is yes or no. The compounds are clas-
sified according to the answers to these questions

PreADMET The PreADMET package provides carcinogenicity prediction models and genotoxicity prediction models. A carcinogenic-
ity prediction model was developed using data from mice administered with a chemical for two years, to determine 
whether cancer developed. A genotoxicity model was developed using data from the Ames test
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Applications of in silico prediction

Although chemical toxicity is an important reason for late-
stage failure in R&D, it is important to establish accurate 
predictive models for the compound’s toxicity profile. Accu-
rate predictive models can provide guidance for designing 
low-toxic chemicals [31]. In silico genotoxicity predictions 
have made significant progress over the past few years and 
are provided in the ICH M7 guideline for the assessment of 
reactive impurities in DNA as a major driver of these indus-
tries. This has been made possible by an increase in reliable 
Ames data, attempts to understand the active pathways, and 
subsequent development of computer-based prediction sys-
tems [32]. The new opportunity for “in silico environmental 
chemistry” goes beyond calculating specific chemical prop-
erties, to use statistical models to integrate in silico models, 
strain paths, product predictions, and environmental factors 
into model predictions, to make exposure assessments more 
comprehensive and efficient, and to extend to all applica-
tions [33].

Prediction of the acute toxicity of chemicals

To date, great advances have been made using the QSAR/
quantitative structure–toxicity relationship (QSTR) model 
to predict the acute toxicity of chemicals in laboratory ani-
mals. Taking into account the reliability of the conditions, 
the first multitasking (mtk)-QSTR model was developed to 
simultaneously predict the acute toxicity of a compound. 
The mtk-QSTR model can classify a compound’s toxicity 
based on artificial neural networks (ANNs) and make predic-
tions about various chemicals used in life and the workplace 
[34]. Toxic modeling has been a challenge for developers of 
QSAR models, due to the complexity of the endpoints; but 
recently, some new in silico methods have been developed 
that introduce the possibility of evaluating the integration 
of existing methods using various modeling perspectives. 
Model users should be aware of the considerations and 
assumptions made about these specific models as well as 
the assumptions made by evaluating the predictions on a 
case-by-case basis [35].

Prediction of the mutagenicity of chemicals

In the last decade or so, many companies have developed 
their own internal genotoxicity models built using chemical 
structure and bacterial mutagenicity data, but the analysis 
uses internal in-house compounds in the training model, and 
trains by combining in-house and public data [36]. The gen-
otoxic impurities play a critical role in carcinogenesis, and 
impurities that affect pharmaceutical, safety, efficacy, and 
drug quality are attracting increasing interest in regulatory 
agencies and related industries [37]. Toxicity is defined as a 

series of events resulting from exposure to, and the distribu-
tion and metabolism of chemicals, and ultimately, interac-
tions with other macromolecules in the cell, that is, interac-
tions with DNA or proteins with various toxicity endpoints 
[38]. Mutagenicity is a major toxic endpoint for chemical 
risk assessment. The nature of a chemical that alters DNA 
or RNA sequences is mutagenicity, and these mutations can 
actually be fixed or transmitted [39]. DNA can be affected 
by ultraviolet light and by a variety of chemicals, such as 
industrial chemicals, pesticides, and the combustion by-
products of fossil fuels [40]. The accurate identification of 
potentially toxic chemicals represents an important problem, 
and chemicals are proven to be mutagens mainly through 
battery experiments such as in vitro and in vivo. The elec-
trophilic theory of Miller and Miller’s chemical carcinogens 
suggests that most of the carcinogens are electrophilic or 
nucleic acids or proteins [41]. Further reacting with nucleo-
philic groups leads to the fact that electrophilic properties 
are common between mutations and carcinogens [42].

There are various in silico approaches for identifying and 
predicting chemically induced mutagens [43]. Although the 
in vivo genotoxicity of a compound does not always corre-
late with its activity in an in vitro test system, there may be 
good overlap between two endpoints for certain compounds. 
However, the difficulty lies in selecting the most appropriate 
protocol to establish an example of this relationship and to 
highlight potential in vivo risks. With this in mind, a project 
has begun to assess the relevance of existing structural alerts 
for ex vivo chromosomal damage from expert system Derek 
Nexus to its in vivo activity, by assessing the predictability 
of in vivo chromosomal damage datasets. Detailed informa-
tion related to the in vivo activities and protocols added to 
the alert along with the mechanism information provided is 
useful for directing further testing of the compound of inter-
est [44]. Various software is currently available for mutagen-
esis prediction and mutagenesis analysis. Table 2 lists the 
available resources, and Fig. 1 shows the workflow involved 
in the search for mutagenicity.

Predictions for other toxicity

The assessment of eye irritation is an essential component of 
any risk assessment. This highlights the need for a reliable 
eye stimulation model that takes into account the mechanism 
of action and the individual structural classification, and the 
value of the profiling compound in relation to its chemical 
reactivity and physicochemical properties, which, together 
with the existing model, provide better prediction of severe 
stimulants [46]. Potential endocrine-disrupting chemicals 
present difficult regulatory challenges, and endocrine-
disrupting chemicals can interfere with hormonal recep-
tors associated with various health hazards. By integrating 
QSAR, docking, and systems biology approaches as virtual 
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screening tools for use in risk assessment, systems biology 
pathways and network analysis approaches will provide 
a means to more critically assess the potential impact of 
endocrine-disrupting chemicals [47]. QSARs can contribute 
to the assessment of chemicals under REACH, where appro-
priate, and in some cases can be applied instead of experi-
mental tests to fill in data gaps for information requirements. 
These results are similar to those of early QSAR and experi-
mental studies of chemicals and show how high-throughput 
virtual screening can be used to identify potential genotoxic 
carcinogens, mutagens, and developmental toxins using 
QSAR predictions [48]. The US EPA Endocrine Disorder 
Screening Program (EDSP) uses in vitro data sourced from 
ToxCast/Tox21 high-throughput screening assays to evaluate 
the endocrine activity of chemicals. The QSAR model esti-
mated more potent estrogen activity for most of the known 
estrogen metabolites compared to the parent chemical, and 
the method proposed in the in silico approach is an inexpen-
sive and fast strategy for the detection of chemicals using 
estrogen metabolites [45]. A rapid test strategy for reproduc-
tive toxicity testing, avoiding the use of animals, combines 
knowledge of important processes affected by reproductive 
toxicants with the knowledge of the mechanical basis of 
those effects. As an additional step, examples were gener-
ated of how to predict the reproductive toxicity of chemicals 
using available data, formal validation of panel components 
was performed, and mechanical approaches used to test and 
verify, using more innovative approaches [49].

In summary, any approach that provides the information 
needed to establish an in silico tool for the safety assessment 
of chemicals can identify and predict a variety of toxicities 
from chemicals. Early predictions for safety assessments 
are moving from experiments to in silico knowledge and 
information-based tools. However, these changes are com-
pletely dependent on the stability and success applied to 
the in silico tools, and despite the benefits provided by the 
computational approach, extensive corrections and improve-
ments are needed to extract accurate information on various 
toxicological endpoints in the near future.

Discussion

Efforts to efficiently predict chemical hazards

Since 2008, the US EPA has conducted a mid-to-long-term 
R&D project called “ToxCast” (Toxicity Forecaster), to 
use computers to target genomes and proteins in a short 
time. It has developed a method to evaluate and predict 
the harmful effects of chemicals, and Japan has announced 
that it will develop a method for evaluating the safety of 
artificial intelligence (AI) and big data-based chemicals in 
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stages starting from 2019. This review undertook a com-
prehensive overview of the properties of in silico models 
tools for prediction, and the characteristics of the compu-
tational tools, and examined the future prospects. The vari-
ous methods have their different strengths and weaknesses 
with varied scope of application, and each goal needs to 
find the most effective method among them. QSNRs (also 
known as nano QSARs) that use nanomaterial-specific 
descriptors are related to their structural and physicochem-
ical properties. A linear QSNR model was used to predict 
the effective concentration for  EC50 enzymatic inhibition 
of silver nanoparticles using size and surface charge. The 
toxicity of a chemical is related to its interaction with 
other chemicals. For example, it has been found that the 
toxicity of lead (Pb) increases with the coadministration 
of other metals, and a “cumulative risk assessment” has 
been developed to evaluate the toxicity of mixtures. But 
due to chemical exposure types and complex interactions, 
insufficient experimental data on the toxicity of mixtures 
are available, and it is not possible to test all combinations 
of these elements [50].

Advances in toxicology prediction for occupational 
health

Machine learning has been widely applied to classification 
and regression, and SA can be considered as alternative tools 
for optimization. These methods and models are areas where 
further development is expected for future chemical safety 
assessments. Recently, in vitro and in vivo tests have been 
performed to evaluate chemical safety and a variety of toxic 
side effects [11], to develop in vitro models, such as “in vivo 
organs.” Although efforts are being made, the process is still 
costly and time-consuming. Comparing the experimental 
methods, computational techniques show lots of advantages, 
because of their natural, fast, cheap, and accurate perfor-
mances before the compound of interest is synthesized [12].

Many software and Web servers can be used to predict 
chemical toxicity, and OECD Toolbox is a product for pre-
dicting and modeling toxicity using QSTR. The Web server 
is easy to use and favors toxicologists. Lazar can predict 
many toxic endpoints using a user interface to describe the 
chemical structure [51]. Toxtree is an open-source tool for 
using a decision tree (DT) approach to predict toxicity. In 

Fig. 1  Framework for the 
identification and analysis of 
mutagenicity/mutagenicity pre-
dictions. Sourced and  modified 
from Refs.[23, 32]. Adapted 
with permission
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silico toxicity predictions continue to evolve through the 
introduction of new methods, and improvements to cur-
rent methods. The future of chemical hazard assessment 
emphasizes the replacement of animal experiments with 
human-related assays in vitro or in silico, and intelligently 
combining and using information for toxicity assessment 
and decision-making through an increasing variety of alter-
native assays. Certainly, useful components in the process 
of evaluating in silico toxicology, and in the future, math-
ematical calculations, will be extended to include special 
new types of toxicology items and models for chemicals. 
Toxicity evaluation of chemicals is essential for workers’ 
health and safety. Regulations for assessing the toxicity of 
genotoxic impurities lead to the integration of genotoxicity 
and carcinogenicity in vivo, and in vitro assays are becoming 
integrated with computational predictions [52]. One of the 
ICH M7 guidelines focuses on the identification of muta-
gens using in silico prediction, instead of in vitro studies 
[53]. Good prediction depends on two main factors: sensi-
tivity and specificity. Sensitivity is the ability of a program 
to accurately identify true positive mutagens, which are 
chemicals that are likely to cause mutations, and specific-
ity is the ability to identify true negative mutagens, such as 
safe chemicals that are not likely to be mutagenic [54]. In 
silico screening techniques can be applied to the toxicity 
assessment of chemicals, and the number of chemicals can 
be filtered by evaluating large libraries of compounds. Vir-
tual screening is a cheminformatics tool applied using two 
categories of ligand-based and structure-based screening. 
The approach of virtual screening also utilizes target and 
ligand information to predict ADMET properties and other 
molecular characterization data [55].

In silico freeware models (OSIRIS v.2.0, LAZAR and 
Toxtree) have been presented for predicting the carcino-
genicity and mutagenicity of volatile organic compounds 
(VOCs) related to chemical risk assessment for occupational 
exposure, and the results found in other software. Increased 
importance with be attached to using a combination of in 
silico models in the risk assessment of industrial chemicals. 
Several occupational exposure models are recommended in 
accordance with EU REACH legislation, and the availabil-
ity of high-quality exposure data is limited, and verifica-
tion is underway. These can also be used in future studies to 
increase accuracy, along with occupational exposure meas-
urements. In developed countries, such as Japan, the USA, 
and Europe, industrial accidents and occupational diseases 
are effectively managed [3]. In recent years, with changes in 
regulations on industrial chemicals and cosmetics, signifi-
cant advances have been made in the development, applica-
tion, and evaluation of non-test approaches, such as QSAR. 
Much effort has been made to establish guidelines for con-
ducting assessments within this approach, with a view to the 
current state of non-test approaches taken in these sectors. 

High-throughput approaches, such as the potential relevance 
of adverse outcome pathway (AOP) and chemicals R&D 
stage, suggest a workflow that integrates non-test approaches 
into test and evaluation strategies in practice [56]. New 
approaches have been required to assess the health effects 
of inhaled substances, which are based on toxic mechanisms, 
in silico modeling, in vitro methods as well as AOP [57].

The introduction of the REACH legislation in the Euro-
pean Union (EU) adds a requirement for toxicity data on 
chemicals produced in or imported into the EU at levels 
above 1 tonne/year, which means the increase in in silico 
forecast for such data [58]. In the future, much effort will 
still be needed to better understand the biological mecha-
nisms of toxicity and to develop more accurate predictive 
models for screening compounds [59]. An essential ele-
ment for the successful use of non-animal and purified 
safety tests is to improve understanding of chemical expo-
sure and to determine the chemical concentrations meas-
ured during cell-based analysis and in vivo studies, and how 
the predicted human exposure relates to the tested levels. 
Approaches include understanding this and helping to design 
toxicology studies using existing information about human 
exposure [60].

In silico modeling applies to risk assessments for regula-
tory decisions and has developed due to industry pressure to 
enable government regulators to conduct risk assessments 
for chemicals. Understanding the development and appli-
ance of QSAR models is critical to the powerful uses of 
such tools [61]. Using computer models to accurately predict 
toxicological outcomes is an important task, but current in 
silico toxicology is now based on advances in mechanotox-
icity and predictive models that have grown remarkably in 
computing resources over the last decade. The integrated 
computer-aided discovery and redesign (CADRE) platform 
is used as a model for key molecular interactions in the toxic 
pathway [62]. CADRE offers distinct advantages over the 
primary screening of chemicals and suggests that it could be 
performed as an alternative in silico tool that is allowed in 
legislative programs [62]. In silico models are essential for 
identifying organ-level toxicity and developing integrated 
alternative methods for the replacement of animal experi-
ments. SA can be directly predictive of toxicity, can support 
the formation of categories to facilitate readability, and is 
particularly important in deciphering the myriad mecha-
nisms of action that cause organ-level toxicity [63].

Conclusion

Despite the obvious benefits that new chemicals bring to 
many industries, there are serious concerns about the poten-
tial health effects of these chemicals. As the number of 
workers or end users who use them for commercial purposes 
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and are exposed to these chemicals every day increases, the 
need to assess their potential side effects in a cost-effective 
manner is growing. These data-driven models can be used 
to accelerate the decision-making process by screening 
hazards, and making early identification and management 
of potential toxicity, and physicochemical properties; and 
maximizing the use of information that these models pro-
vide can also support the industrial, regulatory, and public 
needs for safer chemicals [64]. In addition, further research 
is needed on how to use the in silico programs to protect 
workers’ health in industries that manufacture, use, and 
distribute various chemicals. Since skin sensitization is a 
complex immune disease that has a significant impact on 
workers’ health, the computational QSARs provide a screen-
ing tool and provide useful information for chemical toxic-
ity assessment [65]. Carcinogenic substances are becoming 
increasingly problematic in the development of chemicals, 
because they have a serious impact on workers’ health. 
Cheminformatics provides a computer method for learning 
from chemistry data and for the modeling tasks facing chem-
ists. The development of methods for predicting toxicity and 
assessing risks can meet social concerns about the effects of 
chemicals on workers’ health. Together with bioinformatics, 
our understanding of events in living organisms can deepen, 
so that new strategies can be developed to treat diseases.
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