Skip to main content
Log in

In vitro protective effects of Hoveniae Semen cum Fructus extracts against oxidative stress

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

We evaluated the in vitro cytoprotective effects of Hoveniae Semen cum Fructus (HSCF) extracts against oxidative stress-mediated cell damage using HepG2 cells. Cytotoxic effects of HSCF extracts were observed in HepG2 cells, and the 50% inhibitory concentration was determined. Cytoprotective effects of sublethal doses of HSCF extracts were evaluated using a tert-butyl hydroperoxide (tBHP)-induced cellular damage model. We also assessed whether NFE2-related factor-2 (Nrf2) was transactivated by HSCF extracts. The antioxidant capacity of HSCF extracts was evaluated with superoxide dismutase (SOD) and catalase (CAT) activities and the expression of the antioxidant genes glutamate cysteine ligase catalytic subunit (GCLC), hemeoxygenase-1 (HO1), and NAD (P)H dehydrogenase quinone 1 (NQO1). HSCF extracts up to 1,000 μg/mL showed no cytotoxic effect in HepG2 cells. Indeed, 300 and 1,000 μg/mL of HSCF extracts significantly protected HepG2 cells from oxidative stress-mediated cell death by tBHP. As a molecular mechanism, HSCF extracts at 1,000 μg/mL significantly increased Nrf2 transactivation and induced expression of its target genes (GCLC, HO1, NQO1). Furthermore, 1,000 μg/mL of HSCF extracts enhanced SOD activity. Although treatment with 300 and 1,000 μg/mL of HSCF extracts tended to slightly increase CAT activity, the increases were not statistically significant. These findings provide direct evident that HSCF extracts have favorable hepatoprotective effects against oxidative stress through Nrf2-mediated antioxidant gene induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponnappa, B. C. & Rubin, E. Modeling alcohol’s effects on organs in animal models. Alcohol Res. Health 24, 93–104 (2000).

    CAS  PubMed  Google Scholar 

  2. Nordmann, R. Alcohol and antioxidant systems. Alcohol 29, 513–522 (1994).

    CAS  Google Scholar 

  3. Kurose, I. et al. Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol. Gastroenterology 112, 1331–1343 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Rouach, H. et al. Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology 25, 351–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bondy, S. C. & Orozco, J. Effects of ethanol treatment upon sources of reactive oxygen species in brain and liver. Alcohol 29, 375–383 (1994).

    CAS  Google Scholar 

  6. DeLeve, L. D. & Kaplowitz, N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol. Ther. 52, 287–305 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Somani, S. M. in Exercise, drugs and tissue specific antioxidant system (eds Somani, S. M. Pharmacology in Exercise and Sports) 57–95 (CRC Press, Boca Raton, FL, USA, 1996).

  8. Jenkins, R. R. & Goldfarb, A. Introduction: oxidant stress, aging, and exercise. Med. Sci. Sports Exerc. 25, 210–212 (1993).

    CAS  PubMed  Google Scholar 

  9. Song, Z. et al. Silymarin protects against acute ethanolinduced hepatotoxicity in mice. Alcohol Clin. Exp. Res. 30, 407–413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, T. et al. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice. Toxicology 314, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, Y., Zhuge, J., Wang, X., Bai, J. & Cederbaum, A. I. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47, 1483–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi, M. & Yamamoto, M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. An, S. W., Kim, Y. G., Kim, M. H. & Lee, B. I. Comparison of hepatic detoxification activity and reducing serum alcohol concentration of Hovenia dulcis Thunb and Alnus japonica Steud. Korean J. Med. Crop. Sci. 7, 263–268 (1999).

    Google Scholar 

  14. Hyun, T. K., Eom, S. H., Yu, C. Y. & Roitsch, T. Hovenia dulcis -an Asian traditional herb. Planta Med. 76, 943–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Gadelha, A. P. R. et al. Susceptibility of Giardia lamblia to Hovenia dulcis extracts. Parasitol Res. 97, 399–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Guo, J. et al. Myricetin derived from Hovenia dulcis Thunb. ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct. 6, 1620–1634 (2015).

    CAS  PubMed  Google Scholar 

  17. Lim, S. J., Kim, M., Randy, A. & Nho, C. W. Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food Funct. 6, 1361–1370 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. L. et al. The AMPK pathway mediates an anti-adipogenic effect of fruits of Hovenia dulcis Thunb. Food Funct. 5, 2961–2968 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Cha, P. H. et al. Hovenia dulcis Thunb extract and its ingredient methyl vanillate activate Wnt/ß-catenin pathway and increase bone mass in growing or ovariectomized mice. PLoS One 9, e85546 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoshikawa, M. et al. Bioactive constituents of Chinese natural medicines. III. Absolute stereostructures of new dihydroflavonols, hovenitins I, II, and III, isolated from hoveniae semen seu fructus, the seed and fruit of Hovenia dulcis THUNB. (Rhamnaceae): inhibitory effect on alcohol-induced muscular relaxation and hepatoprotective activity. Yakugaku Zasshi 117, 108–118 (1997).

    CAS  PubMed  Google Scholar 

  21. Hase, K. et al. Hepatoprotective effect of Hovenia dulcis THUNB. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Biol. Pharm. Bull. 20, 381–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Na, C. S. et al. Hepatoprotective and blood alcohol lowering effects of fruit peduncle extract of Hovenia dulcis var. Koreana in the in vitro animal models. Yakhak Hoeji 48, 34–40 (2004).

    CAS  Google Scholar 

  23. Ji, Y., Li, J. & Yang, P. Effects of fruits of Hovenia dulcis Thunb on acute alcohol toxicity in mice. Zhong Yao Cai. 24, 126–128 (2001).

    CAS  PubMed  Google Scholar 

  24. Lee, H. Y., Kim, H. S. & Park, Y. S. Hovenodulinol, an active compound extracted from Hovenia dulcis Thunb., a process for preparing the same, and an alcohol decomposing agent or an agent for alleviating lingering intoxication containing the same. Korean patent WO/2002/024678 (2002).

    Google Scholar 

  25. Na, C. S. et al. Anti-fatigue activity of Hovenia dulcis on a swimming mouse model through the inhibition of stress hormone expression and antioxidation. Am. J. Chin. Med. 41, 945–955 (2013).

    Article  PubMed  Google Scholar 

  26. Li, G. et al. Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Arch. Pharm. Res. 28, 804–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, M. et al. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem. Toxicol. 50, 2964–2970 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Xing, W. W. et al. Interleukin-22 protects against acute alcohol-induced hepatotoxicity in mice. Biosci. Biotechnol. Biochem. 75, 1290–1294 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, P. et al. Endogenous A1 adenosine receptor protects mice from acute ethanol-induced hepatotoxicity. Toxicology 309, 100–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Cooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, J. M. et al. Nrf2, a multi-organ protector? FASEB J. 19, 1061–1066 (2005).

    Article  PubMed  Google Scholar 

  32. Itoh, K., Tong, K. I. & Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 36, 1208–1213 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ishii, T., Itoh, K. & Yamamoto, M. Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol. 348, 182–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kensler, T. W., Wakabayashi, N. & Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Abraham, N. G. & Kappas, A. Pharmacological and clinical aspects of hemeoxygenase. Pharmacol. Rev. 60, 79–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Franklin, C. C. et al. Structure, function, and posttranslational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 30, 86–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. & Forman, H. J. Acrolein induces heme oxygenase-1 through PKC-delta and PI3K in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 38, 483–490 (2008).

    Article  PubMed  Google Scholar 

  38. Apopa, P. L., He, X. & Ma, Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J. Biochem. Mol. Toxicol. 22, 63–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Rushworth, S. A., Ogborne, R. M., Charalambos, C. A. & O’Connell, M. A. Role of protein kinase Cdelta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem. Biophys. Res. Commun. 341, 1007–1016 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zimmermann, K. et al. Activated AMPK boosts the Nrf2/HO-1 signalling axis-a role for the unfolded protein response. Free Radic. Biol. Med. 88, 417–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinberg, G. R. & Kemp, B. E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Moon, S. Y. et al. Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracelluarl signal-regulated kinase/NF-E2-related factor 2 pathway. Biol. Pharm. Bull. 37, 1633–1640 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Park, S. H., Chang, E. Y., Chang, J. S. & Yoon K. Y. Protective Effect of Hovenia dulcis Thumb Leaves Extract on Hepatic Injury Induced by Benzo(a)pyrene in Mice. J. Korean Soc. Food. Sci. Nutri. 38, 569–573 (2009).

    Article  CAS  Google Scholar 

  44. Joo, S. Y. Antioxidant Activities of Medicinal Plant Extracts. J. Korean Soc. Food. Sci. Nutri. 42, 512–519 (2013).

    Article  Google Scholar 

  45. Gau, J. et al. Myricetin derived from Hovenia dulcis Thunb. ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct. 6, 1620–1634 (2015).

    Article  Google Scholar 

  46. Iwase, T. et al. A simple assay for measuring catalase activity: a visual approach. Sci. Rep. 3, 3081 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Levene, A. Pathological factors influencing excision of tumours in the head and neck. Part I. Clin. Otolaryngol. Allied. Sci. 6, 145–151 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Ludbrook, J. Update: microcomputer statistics packages. A personal view. Clin. Exp. Pharmacol. Physiol. 24, 294–296 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sae Kwang Ku or Jae-Suk Choi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, I.J., Kim, J.W., Jung, J.J. et al. In vitro protective effects of Hoveniae Semen cum Fructus extracts against oxidative stress. Toxicol. Environ. Health Sci. 8, 19–27 (2016). https://doi.org/10.1007/s13530-016-0258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0258-0

Keywords

Navigation