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Abstract
We prove that, under a suitable rescaling of the integrable kernel defining the nonlocal diffu-
sion terms, the corresponding sequence of solutions of the Shigesada–Kawasaki–Teramoto
nonlocal cross-diffusion problem converges to a solution of the usual problem with local
diffusion. In particular, the result may be regarded as a new proof of existence of solutions
for the local diffusion problem.
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1 Introduction

Evolution nonlocal diffusion escalar problems with integrable kernels have been extensively
investigated in recent years, see themonograph byAndreu et al. [3] and the references therein.
The paradigmatic problem is the evolution nonlocal p−Laplacian, which is expressed as:
given T > 0 and � ⊂ R

N (N ≥ 1) an open set, find u : [0, T ] × � → R+ such that

∂t u(t, x) =
∫

�

J (x − y) |u(t, y)) − u(t, x)|p−2 (
u(t, y) − u(t, x)

)
dy, (1)

u(0, x) = u0(x), (2)

for (t, x) ∈ QT = (0, T ) × �, and for some u0 : � → R+. Here, R+ = [0,∞), and
the diffusion kernel, J : RN → R+, is usually assumed to be continuous, radial, radially
non-increasing, and with unitary norm in L1(RN ).

Terming the equation (1) as the evolution nonlocal p−Laplacian equation has its reasons.
Firstly, because it arises as the gradient descent of the Euler-Lagrange equation of the energy
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functional Enl
p (v) = ∫

�

∫
�

J (x − y) |v(y)) − v(x)|p dxdy, in analogy to the usual evolution
p−Laplacian equation, for which the energy is given by E p(v) = ∫

�
|∇v|p . Secondly,

and most importantly, because under the rescaling Jn(x) = nN+p J (nx), the corresponding
sequence of solutions, un , of problem (1)–(2) converges to the usual weak solution of the
local p−Laplacian problem

∂tv = div
( |∇v|p−2 ∇v

)
,

with the same initial datum v(0, ·) = u0 and with homogeneous Neumann boundary condi-
tions.

The main idea behind the choice of the rescaling is that, being nN J (nx) an approximation
of theDirac delta, the factorn p plays the role of the denominator of the continuous incremental
spatial ratio

∣∣∣v(t, x + 1
n z) − v(t, x)

1/n

∣∣∣p
,

so that one expects that, for all w ∈ W 1,p(�),

Enl
p,n(w) =

∫ ∫
Jn(x − y) |w(y)) − w(x)|p dxdy

=
∫ ∫

J (z)
∣∣∣w(x + 1

n z) − w(x)

1/n

∣∣∣p
dzdx →

∫
|∇w(x)|p dx = E p(w),

as n → ∞.
In fact, Andreu et al. [3, Theorem 6.12] show, among other properties, that the sequence

{un} of solutions of the nonlocal rescaled problems converge to v, the solution of the local
problem, strongly in L∞(0, T ; L p(�)). There are two main ingredients in their proof. The
first is the precompactness result [3, Theorem 6.11] based on previous results by Bourgain et
al. [4, Theorem 4], which shows that ifwn⇀wweakly in L p(QT ) and Enl

p,n(wn) is uniformly
bounded then wn → w strongly in L p(�) and w ∈ W 1,p(�). The second ingredient is the
monotonocity of |s|p−2 s, which plays an important role both in the theory of existence of
solutions and in the identification of the limit of the solutions of the rescaled problems.

The objective of this article is to show that the same convergence property is true for a class
of evolution nonlocal cross-diffusion systems. In [16] (see also [12] for related work), we
introduced and proved the existence of solutions of the nonlocal version of the paradigmatic
Shigesada–Kawasaki–Teramoto (SKT) population model [22]. The nonlocal version of this
model is the following: for i = 1, 2, find ui : [0, T ] × � → R+ such that

∂t ui (t, x) =
∫

�

J (x − y)
(

pi (u(t, y)) − pi (u(t, x))
)
dy + fi (u(t, x)), (3)

ui (0, x) = u0i (x), (4)

where u = (u1, u2) and, for i, j = 1, 2, i �= j , the diffusion and reaction functions are given
by

pi (u) = ui (ci + ai ui + u j ), fi (u) = ui
(
αi − (βi1u1 + βi2u2)

)
,

for some non-negative constant coefficients ci , ai , αi , βi j .
The local diffusion problem, i.e., the original version of the SKT model, is to find, for

i = 1, 2, functions vi : [0, T ] × � → R+ such that
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∂tvi = �pi (v) + fi (v) in QT , (5)

∇ pi (v) · n = 0 on (0, T ) × ∂�, (6)

vi (0, ·) = u0i in �. (7)

The existence of solutions of evolution cross-diffusion problems like (5)–(7) has been
addressed for a variety of problems [2, 5, 9, 14, 15, 17], for which one can define an appro-
priate Lyapunov functional, also known as entropy functional, which in the case of the SKT
model is given by

Ev(t) =
2∑

i=1

∫
�

(
vi (t, ·)(ln(vi (t, ·)) − 1) + 1) ≥ 0. (8)

Formally testing (5) with ln(vi ) yields the estimate

Ev(t) +
2∑

i=1

ai

∫
Qt

|∇vi |2 ≤ Ev(0) + C, (9)

which is the first step for a compactness argument for a sequence of solutions of regularized
problems. The second step, with the horizon of applying Aubin–Lion’s type compactness
arguments, is to deduce suitable uniform estimates for the time derivatives ∂tvi . For the local
SKT problem, the fundamental tool to obtain these estimates is the Gagliardo–Niremberg
inequality, although other approaches (for other cross–diffusion problems), like global reg-
ularity in Hölder spaces [2] or duality estimates [9], are also fruitful.

For the nonlocal SKT problem a nonlocal entropy estimate analogous to (9) is deduced
by similar procedures than in the local case, obtaining an estimate which is independent of
the kernel J , see (11). A fundamental difference between the local and the nonlocal models
is that, in the latter, the L∞(QT ) regularity of solutions is proven, although with a bound
depending on J . As a consequence, the time derivative bound is simpler to achieve than in
the local case, and moreover, other important properties, like the uniqueness of solutions, are
deduced based on this regularity.

Turning to the rescaled problems, the entropy estimate is again deduced as in the proof
of existence of solutions, since this estimate is independent of the kernel. However, the
estimation of the time derivative is more problematic. In the proof of our main theorem, and
in view of the lack of a suitable nonlocal Gagliardo–Nirenberg inequality, we have resorted
to the use of duality estimates, see e.g. [9, 20], which allow us to show an improved regularity
of the sequence of rescaled solutions (with respect to that implied by the entropy estimate).

Finally, to close this introduction, let us notice that an interesting by-product of the main
result of this article is to regard it as a new proof of the existence of solutions of the usual
local diffusion SKT problem. Besides, since the solutions of the approximating problems
do not need to have Sobolev regularity, our approach opens the possibility of approximating
numerically the solutions of the local SKT problem by alternative methods [7, 8, 10, 13, 19].

2 Hypothesis andmain result

We always assume, at least, the following hypothesis on the data, that we shall refer to as
(H):

1. The final time, T > 0, is arbitrarily fixed. The spatial domain, � ⊂ R
N (N ≥ 1), is an

open, bounded and Lipschitz set.
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2. The kernel function J : R
N → R is a non-negative, continuous, radial, radially non-

increasing function with compact support and such that∫
RN

J (x)dx = 1.

3. The initial data u0i ∈ L∞(�) ∩ BV (�) are non-negative, for i = 1, 2.
4. For i, j = 1, 2, the constants ci , ai , αi , βi j are non-negative.

We recall here the result on existence and uniqueness of solution of problem (3)–(4) proven
in [16]. Notice that Hypothesis (H)2, needed for the result on convergence of the rescaled
problems, is more restrictive than the corresponding assumption in [16] used to prove the
existence and uniqueness of solution. We merged both conditions for the sake of brevity. In
particular, this assumption implies the existence of some r > 0 such that

supp(J ) = Br (0). (10)

Regarding the restriction u0i ∈ BV (�), unusual for the local diffusion problem, we must
include it since it is needed for the compactness argument employed in the proof of the
existence of solutions of the nonlocal diffusion model.

Theorem A (Existence and uniqueness of solution [16]) . Assume (H) and

ai + βi i > 0, for i = 1, 2.

Then, there exists a unique strong solution (u1, u2) of problem (3)–(4) with ui ≥ 0 a.e. in
QT and such that, for i = 1, 2 and t ∈ [0, T ],

ui ∈ W 1,∞(0, T ; L∞(�)) ∩ C([0, T ]; L∞(�) ∩ BV (�)),

Eu(t) +
2∑

i=1

ai

∫
Qt

∫
�

J (x − y)
(
ui (s, x) − ui (s, y)

)2
dydxds ≤ Eu(0) + C, (11)

with Eu(t) defined by (8), and for some constant C > 0 independent of J .

Although not mentioned in the above theorem, integrating (3) in (0, t)×� yields the uniform
estimate

‖ui‖L∞(0,T ;L1(�)) ≤ C‖u0i‖L1(�), (12)

where, here and in what follows, C denotes a generic positive constant independent of J .
For stating the main result contained in this article, we introduce the rescaled kernel

Jn(x) = C1n2+N J (nx), with C−1
1 = 1

2

∫
RN

J (x)x2N dx . (13)

The kernel Jn satisfies the conditions of Theorem A and, therefore, there exists a unique
solution, un , of (3)–(4), corresponding to Jn . We also introduce here, for later reference, the
approximation to the Dirac delta

J̃n(x) = nN J (nx) = 1

C1n2 Jn(x). (14)

Theorem 1 Assume (H) and suppose that ai > 0 for i = 1, 2. Let q = 3 − δ, with δ > 0 a
small number, and r = 2q/(q + 2). Let un be the solution of problem (3)–(4) corresponding
to the kernel Jn and consider the sequence {un}. There exists a subsequence {un j } such that
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un j → u strongly in Lq(QT ), where u ∈ W 1,6/5(0, T ; (W 1,6(�))′) ∩ L2(0, T ; H1(�)) ∩
Lq(QT ) is a weak solution of problem (5)–(7) in the following weak sense:

∫ T

0
< ∂t ui , ξ > +

∫
QT

∇ pi (u) · ∇ξ =
∫

QT

fi (u)ξ,

for all ξ ∈ Lr ′
(0, T ; W 1,r ′

(�)), where < ·, · > denotes the duality product of (W 1,r ′
(�))′ ×

W 1,r ′
(�), and

∫ T

0
< ∂t ui , ψ > +

∫
QT

(ui − ui0)∂tψ = 0, (15)

for all ψ ∈ L6(0, T ; W 1,6(�)) ∩ W 1,q ′
(0, T ; Lq ′

(�)). In addition, u satisfies the entropy
estimate (9).

Notice that the regularity implied by the definition of the exponents q and p is independent
of the spatial dimension, N . Regarding Theorem 1 as a proof of existence of solutions of
problem (1)–(2), our result improves that of [5] for N ≥ 3. For N = 1, 2, the regularity
proven in [5, 15] may be also recovered in our solution by using the Sobolev imbbeding
theorem (N = 1) or the Gagliardo-Niremberg inequality (N = 2).

Due to the lack of knowledge concerning the uniqueness of solution of the local diffusion
problem (1)–(2), the convergence of the full sequence of rescaled problems may not be
ensured, but only that of a subsequence to some solution of (1)–(2).

3 Proof of Theorem 1

We start recalling a fundamental result by Bourgain et al. [4, Theorem 4]. We use the variant
introduced by Andreu et al. [3, Theorem 6.11] and state a straightforward extension to deal
with time–dependent functions. First, we introduce the notation for the extension by zero of
a function ψ : � → R:

ψ̄(x) =
{

ψ(x) if x ∈ �,

0 if x ∈ �c.

Theorem B ([3, 4]). Let 1 ≤ p < ∞ and assume that � ⊂ R
N satisfies (H)1. Let ρ : RN →

R be a non-negative, continuous, radial, radially non-increasing function with compact
support, and set ρn(x) = nN ρ(nx). Let { fn} and {gn} be sequences in L p(�) and L p(QT ),
respectively, such that∫

�

∫
�

ρn(x − y)
(

fn(x) − fn(y)
)p

dydx ≤ C0

n p
,

∫
QT

∫
�

ρn(x − y)
(
gn(t, x) − gn(t, y)

)p
dydxdt ≤ C0

n p
. (16)

Let �δ = 1
|Bδ(0)|χBδ(0), for δ > 0. Then, there exists a constant C ≡ C(p,�, ρ) independent

of n, and a number nδ ∈ N such that, for n ≥ nδ ,

(a) ∫
�

| fn |p ≤ C
(

C0 +
∣∣∣
∫

�

fn

∣∣∣p)
, (17)
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∫
�

| fn − fn ∗ �δ|p ≤ CC0δ
p. (18)

In consequence, there exists a subsequence { fnk } and a function f ∈ W 1,p(�) (BV (�),
if p = 1) such that

fnk → f strongly in L p(�). (19)

(b) ∫
QT

|gn |p ≤ C
(

C0 +
∣∣∣
∫

QT

gn

∣∣∣p)
,

∫
QT

|gn(t, x) − (gn(t, ·) ∗ �δ)(x)|p dxdt ≤ CC0δ
p. (20)

In addition, if gn⇀g weakly in L p(QT ) for 1 < p < ∞, then

ρ(z)1/pχ�

(
x + z

n

) ḡn(t, x + 1
n z) − gn(t, x)

1/n
⇀ρ(z)1/p z · ∇g(t, x) (21)

weakly in L p(QT ) × L p(0, T ; L p(RN )).

Proof Estimates (17) and (18), as well as their consequence (19), are proven in [3, 4]. Their
extension to the time-dependent functions of (b) is straightforward once we notice that the
results of (a) are valid pointwise for a.e. t ∈ (0, T ). Finally, (21) is also a direct consequence
of [3, Theorem 6.11 (1)]. ��
Remark 1 The inequality (17) is a Poincaré’s type inequality, since the constant C0 may
be replaced by the nonlocal energy appearing in (16), see the proof of [4, Theorem 4] for
details. Thus, this provides an alternative (constructive) proof of the result stated in [3,
Proposition 6.19].

Step 1. Uniform bound in L3(QT ). The entropy inequality (11) and the L1(QT ) estimate
(12) together with (20) applied with p = 2, ρn = J̃n , and gn = uin imply that the sequences
{uin}, for i = 1, 2, are uniformly bounded in L2(QT ). However, this bound is not enough to
define the weak limit in an appropriate reflexive space of test functions since the nonlinear
parts of the limit diffusive term are expected to be of the form∫

QT

u j∇ui · ∇ϕ,

with the regularity ∇ui ∈ L2(QT ). Thus, we start improving the uniform bounds of {uin}
to the space L3(QT ). This bound is obtained using an estimate of the dual problem corre-
sponding to the nonlocal rescaled problem. The existence of solutions of this dual problem
is ensured by the following lemma.

Lemma 1 The problem: find φ : QT → R such that

∂tφ(t, x) − a(t, x)

∫
�

ρ(x − y)(φ(t, y) − φ(t, x))dy = b(t, x), (22)

φ(0, x) = c(x), (23)
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where ρ ∈ L∞(RN ), a, b ∈ L∞(QT ), and c ∈ L∞(�), has a unique solution such that

φ, �1,ρφ ∈ C([0, T ]; L∞(�)), and ∂tφ ∈ L∞(QT ), (24)

where �1,ρφ(t, x) = ∫
�

ρ(x − y)(φ(t, y) − φ(t, x))dy. In addition, if a, b and c are non-
negative then φ is non-negative.

The proof of this and the other lemmas used for proving Theorem 1 are given in Sect. 4. In
the following, we shall use the notation

�nϕ(t, x) =
∫

�

Jn(x − y)(ϕ(t, y) − ϕ(t, x))dy, for any ϕ ∈ L1(QT ),

p̃i (u) := pi (u)/ui = αi − (βi1u1 + βi2u2).

Corollary 1 Let ϕin(t, x) = e−λ(T −t)φ(T − t, x), where λ > 0 is a constant and φ is the non-
negative solution of (22)–(23) corresponding to ρ(x) = Jn(x), a(t, x) = p̃i (un(T − t, x)),
b(t, x) = −eλtψ(T − t, x)

√
p̃i (un(T − t, x)), and c = 0, being ψ ∈ L∞(QT ) a non-

positive arbitrary function. Then ϕin is a non-negative solution of

∂tϕin + p̃i (un)�nϕin − λϕin = √
p̃i (un)ψ in QT , (25)

ϕin(T , ·) = 0 on ∂�, (26)

with the same regularity than φ, see (24).

Proof of Corollary 1 By Theorem A, we have that p̃i (un) ∈ L∞(QT ) is non-negative, so that
ρ, a, b, c ∈ L∞ are non-negative. By Lemma 1, there exists a unique non-negative solution
φ of problem (22)–(23) corresponding to this data. A simple calculation shows that ϕin is
then the non-negative solution of (25)–(26) inheriting the same regularity than φ. ��

Nowwe proceed to obtain the L3(QT ) uniform bound of the sequences {uin}, for i = 1, 2.
We multiply the equation (3) of uin by the solution ϕin of problem (25)–(26) and integrate
to get, for i = 1, 2,∫

�

ui0ϕin(0, ·) +
∫

QT

uin

(
∂tϕin + p̃i (un)�nϕin − λϕin

)

= −
∫

QT

(
λuin + fi (un)

)
ϕin .

Using the equation (25), the explicit expression of fi and the non-negativity of uin and ϕin ,
we obtain

−
∫

QT

uin

√
p̃i (un)ψ ≤

∫
�

ui0ϕin(0, ·) + (αi + λ)

∫
QT

uinϕin .

Noticing thatψ ≤ 0 and usingHölder’s inequality and the uniform estimate of uin in L2(QT ),
see Step 1, we obtain

∣∣∣
∫

QT

uin

√
p̃i (un)ψ

∣∣∣ ≤ C
(‖ϕin(0, ·)‖L2(�) + ‖ϕin‖L2(QT )

)
. (27)

Our objective is to estimate ‖ϕin(0, ·)‖L2(�) and ‖ϕin‖L2(QT ) in terms of ‖ψ‖L2(QT ) to

deduce, by duality, a uniform estimate of ‖uin
√

p̃i (un)‖L2(QT ).
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Multiplying the equation (25) of ϕin by �nϕin and using the nonlocal integration by parts
formula and Young’s inequality yields∫

QT

∂tϕin�nϕin +
∫

QT

p̃i (un)
∣∣�nϕin

∣∣2

+ λ

2

∫
QT

∫
�

Jn(x − y)(ϕin(t, y) − ϕin(t, x))2dydxdt

≤ 1

2

∫
QT

p̃i (un)
∣∣�nϕin

∣∣2 + 1

2

∫
QT

ψ2. (28)

We have∫
QT

∂tϕin�nϕin =
∫

QT

∂tϕin(t, x)

∫
�

Jn(x − y)(ϕin(t, y) − ϕin(t, x))dydxdt

= −1

4

∫
QT

∂t

∫
�

Jn(x − y)(ϕin(t, y) − ϕin(t, x))2dydxdt

= 1

4

∫
�

∫
�

Jn(x − y)(ϕin(0, y) − ϕin(0, x))2dydx,

so that from (28), we obtain

1

4

∫
�

∫
�

Jn(x − y)(ϕin(0, y) − ϕin(0, x))2dydx + 1

2

∫
QT

p̄i (un)
∣∣�nϕin

∣∣2

+ λ

2

∫
QT

∫
�

Jn(x − y)(ϕin(t, y) − ϕin(t, x))2dydxdt

≤ 1

2

∫
QT

ψ2. (29)

Therefore, using Theorem B (a) with fn = ϕin(0, ·) and (b) with gn = ϕin we deduce from
(29)

‖ϕin(0, ·)‖2L2(�)
≤ C

(
‖ψ‖2L2(QT )

+
∣∣∣
∫

�

ϕin(0, ·)
∣∣∣2

)
, (30)

‖ϕin‖2L2(QT )
≤ C

(
‖ψ‖2L2(QT )

+
∣∣∣
∫

QT

ϕin

∣∣∣2
)
. (31)

Integrating the equation (25) of ϕin in (t, T ) × � yields
∫

�

ϕin(t, ·) =
∫ T

t

∫
�

p̃i (un))�nϕin − λ

∫ T

t

∫
�

ϕin −
∫ T

t

∫
�

√
p̃i (un)ψ.

Observing that ϕin and λ are non-negative and using Hölder’s inequality, we get∫
�

ϕin(t, ·) ≤
( ∫

QT

p̃i (un)
)1/2[( ∫

QT

p̃i (un)
∣∣�nϕin

∣∣2 )1/2 +
( ∫

QT

ψ2
)1/2]

,

and, therefore, from (29), we deduce∫
�

ϕin(0, ·) ≤ 2
( ∫

QT

ψ2
)1/2( ∫

QT

p̃i (un)
)1/2

,

∫
QT

ϕin ≤ 2T
( ∫

QT

ψ2
)1/2( ∫

QT

p̃i (un)
)1/2

.
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Returning to (30)–(31) and taking into account the uniform L1(QT ) estimate (12), we deduce

‖ϕin(0, ·)‖L2(�) ≤ C‖ψ‖L2(QT ), ‖ϕin‖L2(QT ) ≤ C‖ψ‖L2(QT ).

Finally, (27) yields, by duality, an uniform estimate for ‖uin
√

p̃i (un)‖L2(QT ), or, in other
words, the estimate ∫

QT

u2
in(ci + ai uin + u jn) ≤ C .

In particular, if ai > 0, we obtain uniform estimates of uin in L3(QT ).
Step 2. Strong convergence. The following lemma is a consequence of two results concern-
ing compactness: the precompactness result of Bourgain et al. [4, Theorem 4] for sequences
defined on the spatial domain �, and the compensated compactness result of P.L. Lions [18,
Lemma 5.1] for the product of sequences defined in QT .

Lemma 2 Let ρ : RN → R be like in Theorem B, and let { fn} be a sequence in L3(QT )

such that

(i) ‖ fn‖L3(QT ) ≤ C, (32)

(i i)
∫

QT

∫
�

ρn(x − y)
∣∣ fn(t, x) − fn(t, y)

∣∣2dydxdt ≤ C

n2 , (33)

(i i i) ∂t fn is uniformly bounded in L1(0, T ; W −m,1(�)), (34)

for some m ≥ 0 independent of n. Then there exists a subsequence { fnk } and a function
f ∈ Lq(QT ) ∩ L2(0, T ; H1(�)) such that

fnk → f strongly in Lq(QT ) for any q < 3. (35)

Taking ρ = J and fn = uin for i = 1, 2, the uniform estimate of uin in L3(QT ) obtained
in Step 1 and the entropy inequality satisfied by these functions, see (11), imply (i) and (ii) of
Lemma 2. We now check that the uniform time estimate (iii) is also satisfied. For any smooth
function ξ : QT → R, we have∫

QT

∂t uinξ =
∫

QT

pi (un(t, x))

∫
�

Jn(x − y)(ξ(t, y) − ξ(t, x))dydxdt

+
∫

QT

fi (un)ξ ≤ c
(‖pi (un)‖L3/2(QT )‖�nξ‖L3(QT )

+ ‖ fi (un)‖L3/2(QT )‖ξ‖L3(QT )

)
. (36)

Lemma 3 Let ξ ∈ L p(0, T ; W 2,p
0 (�)), for 1 ≤ p < ∞. Then there exist a constant C

independent of n and a constant n J ∈ N such that if n > n J then

‖�nξ‖L p(QT ) ≤ C‖ξ‖
L p(0,T ;W 2,p

0 (�))
.

Using this lemma with p = 3 and noting that uin is uniformly bounded in L3(QT )we obtain
from (36), by duality,

‖∂t uin‖L3/2(0,T ;W−2,3/2(�)) ≤ C . (37)

Therefore, (iii) of Lemma 2 is satisfied and (35) follows, this is, there exist subsequences
(not relabeled) such that uin → ui strongly in Lq(QT ), for i = 1, 2 and for any 1 ≤ q < 3.
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Step 3. Time derivative estimate. Once we have proven the strong convergence of {uin}
in Lq(QT ), we may improve the uniform time estimate obtained in (37). For ξ smooth, we
have ∫

QT

∂t uinξ = −1

2

∫
QT

∫
�

Jn(x − y)(pi (un(t, y)) − pi (un(t, x)))

× (ξ(t, y) − ξ(t, x))dydxdt +
∫

QT

fi (un)ξ = I1 + I2. (38)

Clearly, |I2| ≤ C‖ξ‖L3(QT ), since fi is quadratic and {uin} is uniformly bounded in L3(QT ).
We examine the terms of pi (u) = ci ui + ai u2

i + ui u j separately. For the linear term, we
have, for i = 1, 2,

∣∣∣
∫

QT

∫
�

Jn(x − y)(uin(t, y) − uin(t, x))(ξ(t, y) − ξ(t, x))dydxdt
∣∣∣

≤
( ∫

QT

∫
�

Jn(x − y) |uin(t, y) − uin(t, x)|2 dydxdt
)1/2

×
( ∫

QT

∫
�

Jn(x − y) |ξ(t, y)) − ξ(t, x)|2 dydxdt
)1/2 ≤ C‖ξ‖L2(0,T ;H1(�)),

where we used the entropy estimate (11) and an straightforward modification of [4, Theo-
rem 1] for including the time variable. For the quadratic terms, we have, for i, j = 1, 2,

∣∣∣
∫

QT

∫
�

Jn(x − y)(uin(t, y)u jn(t, y) − uin(t, x)u jn(t, x))

× (ξ(t, y) − ξ(t, x))dydxdt
∣∣∣ ≤ I ji + Ii j , (39)

where, for k, � = 1, 2,

Ik� =
∣∣∣
∫

QT

∫
�

Jn(x − y)ukn(t, y)(u�n(t, y) − u�n(t, x))(ξ(t, y) − ξ(t, x))dydxdt
∣∣∣.

Since Jn(z) = C1n2 J̃n(z), being J̃n an approximation of the Dirac delta, we have

Ik� ≤C1

( ∫
QT

∫
�

J̃n(x − y) |ukn(t, y)|3 dydxdt
)1/3

×
( ∫

QT

∫
�

J̃n(x − y)
|u�n(t, y) − u�n(t, x)|2

1/n2 dydxdt
)1/2

×
( ∫

QT

∫
�

J̃n(x − y)
|ξ(t, y) − ξ(t, x)|6

1/n6 dydxdt
)1/6

.

The first factor is bounded due to the uniform L3(QT ) estimate found in Step 1. The second
factor is bounded due to the entropy estimate (11). Finally, a new use of [4, Theorem 1] yields
that the third factor is bounded by ‖ξ‖L6(0,T ;W 1,6(�)). This is, we obtain

Ik� ≤ C‖ξ‖L6(0,T ;W 1,6(�)).

Thus, by duality, we deduce from (38)

‖∂t uin‖L6/5(0,T ;(W 1,6(�))′) ≤ C . (40)
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Step 4. Identification of the limit. Since uin is a strong solution of (3)–(4), we have, for ξ

smooth,
∫ T

0
∂t uin(t, ·)ξ(t, ·)dt −

∫
QT

�n pi (un)ξ =
∫

QT

fi (un)ξ.

Using the strong convergence (35), we easily justify the passing to the limit n → ∞ for the
reaction terms if ξ ∈ Lq/(q−2)(QT ). In view of (40), the terms involving the time derivative
are well defined and some subsequences (not relabeled) pass to their corresponding limits
(weakly) if ξ ∈ L6(0, T ; W 1,6(�)). Regarding the diffusion term, we rewrite it as
∫

QT

�n pi (un)ξ

=
∫

QT

∫
�

Jn(x − y)
(

pi (un(t, y)) − pi (un(t, x))
)
dy ξ(t, x)dxdt

= 1

2

∫
QT

∫
�

Jn(x − y)
(

pi (un(t, y)) − pi (un(t, x))
)(

ξ(t, y) − ξ(t, x)
)
dydxdt

= C1

2
n2+N

∫
QT

∫
�

J (n(x − y))
(

pi (un(t, y)) − pi (un(t, x))
)(

ξ(t, y) − ξ(t, x)
)
dydxdt

= C1

2

∫
QT

∫
RN

J (z)χ�(x + εz)
pi (ūn(t, x + εz)) − pi (un(t, x))

ε

× ξ̄ (t, x + εz) − ξ(t, x)

ε
dzdxdt,

where ε = 1/n. We, again, examine the terms of pi (u) = ci ui + ai u2
i + ui u j separately. For

the linear term, we have, using (21),

C1

2

∫
QT

∫
RN

J (z)χ�(x + εz)
ūin(t, x + εz) − uin(t, x))

ε

ξ̄ (t, x + εz) − ξ(t, x)

ε
dzdxdt

→ C1

2

∫
QT

∫
RN

J (z) z · ∇ui (t, x) z · ∇ξ(t, x)dzdxdt

=
∫ T

0

∫
�

a(∇ui (t, x)) · ∇ξ(t, x)dxdt, (41)

where we defined, for v ∈ R
N ,

a j (v) = C1

2

∫
RN

J (z) z · v z j dz = v, (42)

according to [3, Lemma6.16].Observe that the convergence (41)maybe extended, by density,
to ξ ∈ L2(0, T ; H1(�)). Similarly, for ui u j we use, in addition to the weak convergence
(21), the strong convergence deduced in Step 2. Splitting this term as in (39), we only have
to examine, by symmetry, the following expression

Ii j = C1

2

∫
QT

∫
RN

J (z)χ�(x + εz)ū jn(t, x + εz)
ūin(t, x + εz) − uin(t, x)

ε

× ξ̄ (t, x + εz) − ξ(t, x)

ε
dzdxdt .
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Since r ′ = 2q/(q − 2), we have

Ii j = C1

2

∫
QT

∫
RN

χ�(x + εz)J (z)1/q ū jn(t, x + εz)

× J (z)1/2
ūin(t, x + εz) − uin(t, x)

ε

× J (z)1/r ′ ξ̄ (t, x + εz) − ξ(t, x)

ε
dzdxdt

→ C1

2

∫
QT

u j (t, x)

∫
RN

J (z) z · ∇ui (t, x) z · ∇ξ(t, x)dzdxdt

=
∫

QT

u j∇ui · ∇ξ,

where we used (42) and (21). Observe that, in this case, we may extend the functional space
of test functions, by density, to ξ ∈ Lr ′

(0, T ; W 1,r ′
(�)), and that, in relation to the weak

convergence of the time derivatives, see (40), we have r ′ > 6.
Finally, a new and straightforward duality calculation shows that the initial data may be

interpreted in the sense of (15). This finishes the proof of Theorem 1.

4 Proofs of the lemmas

Proof of Lemma 1 The proof is similar to that of [3, Lemma 3.8]. Fix t0 > 0 and consider the
Banach space Xt0 = C([0, t0]; L∞(�)). Consider the operator

T (w)(t, x) = c(x) +
∫ t

0

(
a(s, x)

∫
�

ρ(x − y)(w(s, y) − w(s, x))dy + b(s, x)
)

ds.

To apply Banach’s fixed point theorem we must check: (i) T : Xt0 → Xt0 , and (ii) T is
contractive. We start with (i). For 0 ≤ t1 < t2 ≤ t0, we have

‖T (w)(t2, ·) − T (w)(t1, ·)‖L∞(�) ≤k(t2 − t1),

where k = |�| ‖a‖L∞(Qt0 )

(
2‖J‖L∞(RN )‖w‖L∞(Qt0 ) + ‖b‖L∞(Qt0 )

)
. Similarly,

‖T (w)(t, ·) − c‖L∞(�) ≤ kt .

These two estimates give that T (w) ∈ XT0 . To prove (ii), letw, z ∈ Xt0 . Then, for t ∈ (0, t0),

‖T (w)(t, ·) − T (z)(t, ·)‖L∞(�) ≤ 2t‖a‖L∞(Qt0 )‖ρ‖L∞(RN )‖w − z‖C([0,T ];L∞(�)).

Thus, choosing t0 < (2‖a‖L∞(QT )‖ρ‖L∞(RN ))
−1 we deduce that T is a strict contraction.

Banach’s fixed point theorem allows to deduce the existence of a unique solution, φ1, of (22)–
(23) for t ∈ [0, t0]. Replacing (23) by φ(t0, x) = φ1(t0, x) and the time interval [0, t0] by
[t0, 2t0]we again deduce the existence of a unique solution, φ2, of (22)–(23) for t ∈ [t0, 2t0].
Continuing this procedure we obtain a solution of (22)–(23) defined on [0, T ].

Regarding the regularity of the solution, since φ ∈ C([0, T ]; L∞(�)) and ρ ∈ L∞(RN ),
we deduce that ρ ∗φ(t, ·) ∈ L∞(�) for all t ∈ [0, T ]. Therefore�1,ρφ = ρ ∗φ−φ

∫
�

ρ(·−
y)dy ∈ C([0, T ]; L∞(�)), and then, from the equation (22), we deduce that ∂tφ ∈ L∞(QT ).

Finally, assume that a, b, c are non-negative and suppose that φ is negative somewhere.
Let ξ(t, x) = φ(t, x) + εt , with ε > 0 small enough so that ξ is negative somewhere. Let
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(t0, x0) be a point where ξ attains its negative minimum. Then, t0 > 0 and

∂tξ(t0, x0) = ∂tφ(t0, x0) + ε

> a(t0, x0)
∫

�

ρ(x0 − y)(φ(t0, y) − φ(t0, x0))dy + b(t0, x0)

= a(t0, x0)
∫

�

ρ(x0 − y)(ξ(t0, y) − ξ(t0, x0))dy + b(t0, x0) ≥ 0,

which is a contradiction. Therefore, φ ≥ 0 in QT . ��

Proof of Lemma 2 From Theorem B, (33) yields
∫

QT

| fn(t, x) − ( fn(t, ·) ∗ �δ)(x)|2 dxdt ≤ C

n2 . (43)

Estimate (32) implies the existence of a subsequence { fnk } ⊂ L3(QT ) and a function f ∈
L3(QT ) such that fnk ⇀ f weakly in L3(QT ). Moreover, estimates (34) and (43) ensure, see
[18, Lemma 5.1], the convergence f 2nk

→ f 2 in the sense of distributions in QT (we take
gn = hn = fn in [18, Lemma 5.1]). This is,

∫
QT

f 2nk
ζ →

∫
QT

f 2ζ for all ζ ∈ C∞
c (QT ).

Since fnk ⇀ f weakly in L3(QT ), we have
∫

QT

f 2nk
ζ ≤ ‖ fnk ‖2L3(QT )

‖ζ‖L3(QT ) ≤ C‖ζ‖L3(QT ),

so that, passing to a new subsequence if required, we have f 2nk
⇀ f 2 weakly in L3/2(QT ), by

density. As a consequence, we deduce that
∫

QT

∣∣ fnk − f
∣∣2 =

∫
QT

f 2nk
− 2

∫
QT

fnk f +
∫

QT

f 2 → 0,

since 1 ∈ L3(QT ) and f ∈ L3/2(QT ). Then, the uniform bound (32) allows to obtain (35).
��

Proof of Lemma 3 We prove the result for a general power p, with 1 ≤ p < ∞. By density,
it is enough to show that ‖�nψ‖L p(�) ≤ C‖ψ‖

W 2,p
0 (�)

for ψ ∈ C∞
c (�).

Considering the extension of ψ to RN and splitting RN in terms of � and �c, we obtain,
using the triangle inequality,

∫
�

∣∣∣�nψ(x)

∣∣∣p
dx ≤ C

( ∫
RN

∣∣∣
∫
RN

Jn(x − y)(ψ̄(y) − ψ̄(x))dy
∣∣∣p

dx

+
∫

�

∣∣∣
∫

�c
Jn(x − y)(ψ̄(y) − ψ̄(x))dy

∣∣∣p
dx

)
. (44)

StepA.Weestimate the first term of the right hand side of (44). Using the changes n(y−x) =
z, n(y − x) = −z, and setting ε = 1/n, we get
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∫
RN

Jn(x − y)(ψ̄(y) − ψ̄(x))dy

= C1

2

∫
RN

J (z)
ψ̄(x + εz) − 2ψ̄(x) + ψ̄(x − εz)

ε2
dz. (45)

We define, for s ∈ [0, 1] and σ ∈ [−1, 1], the functions v(s) = ψ̄(x + sεz) + ψ̄(x − sεz)
and w(σ) = ∇ψ̄(x + σ sεz). We have

ψ̄(x + εz) − 2ψ̄(x) + ψ̄(x − εz) =
∫ 1

0
v′(s)ds

= ε

∫ 1

0
zT · (∇ψ̄(x + sεz) − ∇ψ̄(x − sεz))ds

= ε

∫ 1

0

∫ 1

−1
zT · w′(σ )dσds = ε2

∫ 1

0
s
∫ 1

−1
zT D2ψ̄(x + σ sεz)z dσds.

Then, Jensen’s inequality yields

∣∣∣ ψ̄(x + εz) − 2ψ̄(x) + ψ̄(x − εz)

ε2

∣∣∣p ≤ 2p−1
∫ 1

0

∫ 1

−1
|zT D2ψ̄(x + σ sεz)z|p dσds,

and on noting that σ sεz is independent of x , we deduce∫
RN

|zT D2ψ̄(x + σ sεz)z|p dσds ≤ |z|2p ‖ψ̄‖p
W 2,p(RN )

.

Therefore, taking into account that the integration in (45) may be limited to z ∈ Br , see (10),
and applying Hölders inequality in (45), we deduce∫

RN

∣∣∣
∫
RN

Jn(x − y)(ψ̄(y) − ψ̄(x))dy
∣∣∣p

dx

≤ C
( ∫

Br

J p′)p/p′ ∫
RN

∫
Br

∣∣∣ ψ̄(x + εz) − 2ψ̄(x) + ψ̄(x − εz)

ε2

∣∣∣p
dzdx

≤ C‖ψ̄‖p
W 2,p(RN )

. (46)

Step B. We estimate the second term of the right hand side of (44). The integration is
performed in a band enclosing ∂�. We define the bounded sets

Dε = {x ∈ � : x + εz ∈ �c, for z ∈ Br },
Fε = {y ∈ �c : y = x + εz, for x ∈ �, z ∈ Br }.

Observe that if x ∈ �\Dε and y ∈ �c or if x ∈ � and y ∈ �c\Fε then Jn(x − y) = 0, since
ε = 1/n. Therefore,∫

�

∣∣∣
∫

�c
Jn(x − y)(ψ̄(y) − ψ̄(x))dy

∣∣∣p
dx =

∫
�

|ψ(x)|p
∣∣∣
∫

�c
Jn(x − y)dy

∣∣∣p
dx

= C p
1 n2p

∫
Dε

|ψ(x)|p
∣∣∣
∫

Fε

J̃n(x − y)dy
∣∣∣p

dx

≤ C p
1 n2p

∫
Dε

|ψ(x)|p dx, (47)

because ‖ J̃‖L1(RN ) = 1, see (14).
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We recall here the uniform cone property, enjoyed by Lipschitz sets [6, Definition 6.3]:
For all x ∈ ∂�, there exist positive numbers h, ω and ρ such that for all y ∈ Bρ(x) ∩ �,
we have that the cone of vertex y, heigth h, and aperture ω, denoted by Cy(h, ω), satisfies
Cy(h, ω) ⊂ �. Symmetrically, for all z ∈ Bρ(x) ∩ �c, we have Cz(h, ω) ⊂ int(�c).

We claim that

Dε ∪ Fε = {x ∈ R
N : dist(x, ∂�) < rε}.

Let us prove, for instance, that Fε = {x ∈ �c : dist(x, ∂�) < rε}. On one hand, suppose
that y ∈ Fε but dist(y, ∂�) ≥ rε. Then Brε(y) ∩ � = ∅ but |y − x | < rε, which is
a contradiction, since x ∈ �. On the other hand, let y ∈ �c and x0 ∈ ∂� be such that
|y − x0| = dist(y, ∂�) ≤ βrε, with β < 1. Notice that x0 does exist because ∂� is
closed. Then, due to the uniform cone property, there exists a cone Cx0(h, ω) ⊂ �, so that
|y − x | ≤ |y − x0| + |x0 − x | < βrε + (1 − β)rε for all x ∈ Cx0(h, ω) ∩ Bρ0(x0), for
ρ0 = (1 − β)rε. Thus, y = x + εz for some z ∈ Br . A similar proof stands for the identity
Dε = {x ∈ � : dist(x, ∂�) < rε}.

Consider the collection of openballsB = {B2rε(x)}x∈∂�. It is clear that Dε ∪ Fε is covered
by B. Since Dε ∪ Fε is closed and bounded, and hence compact, we may extract a finite
collection BK = {B2rε(xk)}K

k=1 covering Dε ∪ Fε. Moreover, applying Vitali’s covering
lemma (finite version, see [21, Theorem 8.5]), we may extract a sub-collection of disjoint
balls BK ′ = {B2rε(xk′)}K ′

k′=1 such that BV = {B6rε(xk′)}K ′
k′=1 covers Dε ∪ Fε.

In the following, we remove the primes from the indices and introduce the notation α =
6r and Bk

αε = B6rε(xk). It is easy to check that the collection BV satisfies the following
properties: (i)

∣∣Bk
αε ∩ Fε

∣∣ > 0, for all k = 1, . . . , K , and (ii) For all g ∈ L1(RN ), there
exists a constant C > 0 independent of ε such that

K∑
k=1

∫
Bk

αε

|g(x)| dx ≤ C‖g‖L1(RN ).

Property (i) is, again, a consequence of the uniform cone property, while property (ii) follows
from the collection {Bk

2rε}K
k=1 being disjoint and from the finite number of balls of radius 2rε

contained in a ball of radius 6rε. In particular, notice that
∣∣∪K

k=1Bk
6rε

∣∣ ≤ 3N
∣∣∪K

k=1Bk
2rε

∣∣, see
[21, Theorem 8.5]

Property (i) ensures that ψ̄ vanishes in the positive measure set Bk
αε ∩ Fε , so that the

Poincaré’s inequality yields

∫
Dε

|ψ(x)|p dx =
∫

Dε∪Fε

∣∣ψ̄(x)
∣∣p

dx ≤
K∑

k=1

∫
Bk

αε

∣∣ψ̄(x)
∣∣p

dx

≤ P p
αε

K∑
k=1

∫
Bk

αε

∣∣∇ψ̄(x)
∣∣p

dx,

where Pαε is the constant of Poincaré (for the p-Laplacian) corresponding to the open ball
Bαε . According to [11, Chapter 5, Theorem 2], Pαε = Cαε, where C only depends on N and
p. On noting that the function g(x) = ∣∣∇ψ̄(x)

∣∣ vanishes in Bk
αε ∩ Fε (because ψ ∈ C∞

c (�)

or, alternatively, ψ ∈ W 2,p
0 (�)), we may use again the Poincaré’s inequality to obtain, on

noting property (ii),
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∫
Dε

|ψ(x)|p dx ≤ C P2p
αε

K∑
k=1

∫
Bk

αε

∣∣D2ψ̄(x)
∣∣p

dx ≤ Cε2p‖ψ̄‖p
W 2,p(RN )

,

where we used that

|∇g| =
( N∑

j=1

∣∣∣ ∇ψ̄∣∣∇ψ̄
∣∣ · D2

j ψ̄

∣∣∣2
)1/2

.

Returning to (47) and noting that ε = 1/n, we obtain
∫

�

∣∣∣
∫

�c
Jn(x − y)(ψ̄(y) − ψ̄(x))dy

∣∣∣p
dx ≤ C‖ψ̄‖p

W 2,p(RN )
(48)

Step C. We finish the proof by replacing (46) and (48) in (44) and recalling that
‖ψ̄‖W 2,p(RN ) = ‖ψ‖

W 2,p
0 (�)

, see [1, Lemma 3.22]. ��

Remark 2 Taking the limit n → ∞ in (45), we obtain, for ψ : RN → R smooth

�nψ(x) →C1

2

∫
RN

J (z)zT D2ψ(x)zdz.

Since theHessian ofψ , D2ψ , is symmetric, there exists an orthogonal (rotation)matrix, R(x),
and a diagonal matrix Q(x) such that D2ψ(x) = R(x)T Q(x)R(x), with det(R(x)) = 1.
Thus∫

RN
J (z)zT D2ψ(x)zdz =

∫
RN

J (z)(R(x)z)T Q(x)R(x)zdz

=
∫
RN

J (Q−1(x)y)yT Q(x)ydy =
∫
RN

J (y)yT Q(x)ydy,

since J is radial. Thus,

C1

2

∫
RN

J (z)zT D2ψ(x)zdz =
N∑

i=1

Qii (x)
C1

2

∫
RN

J (y)y2i dy = tr(Q(x)),

where we used the normalization condition (13). Finally, since the trace is invariant under
diagonalization, we deduce �nψ(x) → �ψ(x) uniformly in R

N .
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