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Abstract
In the theory of approximation, linear operators play an important role. The exponential-type
operators were introduced four decades ago, since then no new exponential-type operator
was introduced by researchers, although several generalizations of existing exponential-type
operatorswere proposed and studied.Very recently, the concept of semi-exponential operators
was introduced and few semi-exponential operators were captured from the exponential-type
operators. It is more difficult to obtain semi-exponential operators than the corresponding
exponential-type operators. In this paper, we extend the studies and define semi-exponential
Bernstein, semi-exponential Baskakov operators, semi-exponential Ismail–May operators
related to 2x3/2 or x3. Furthermore, we present a new derivation for the semi-exponential
Post–Widder operators. In some examples, open problems are indicated.

Keywords Semi-exponential Bernstein polynomials · Semi-exponential Baskakov
operators · Semi-exponential Ismail–May operators · Semi-exponential Post–Widder
operators · Approximation by operators

Mathematics Subject Classification 41A35

1 Introduction

The exponential-type operators are important in the field of approximation theory. They were
firstly considered by Ismail and May [4] in 1978. The exponential-type operators preserve
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the linear functions. Many generalizations of exponential-type operators are available in the
literature. Tyliba andWachnicki [7] extended the definition of Ismail andMay [4] by propos-
ing a more general family of operators. For a non-negative real number β, they introduced
the operators Lβ

λ . For β > 0, they are not of exponential type but similar to exponential-type
operators. Recently, Herzog [3] further extended the studies and termed such operators as
semi-exponential type operators. Actually, an operator of the form

(Lλ f )(x) =
∫
I
W L

β (λ, x, t) f (t) dt

is called a semi-exponential operator if its kernel WL
β (λ, x, t) satisfies the differential equa-

tion

∂

∂x
W L

β (λ, x, t) =
(

λ(t − x)

p(x)
− β

)
WL

β (λ, x, t) . (1)

In particular, for β > 0, one has Lβ
λe1 �= e1, where er (t) = tr (r = 0, 1, 2, . . .). In the case

β = 0, the operator Lβ=0
λ is simply the exponential-type operator studied by Ismail and May

[4]. A collection of such operators may be found in the recent book [2,Ch. 1].
Choosing different functions p (x) several exponential-type operators were captured in

Ismail and May [4]. It is difficult to construct new exponential-type operators or the corre-
sponding semi-exponential operators by just taking different functions p (x). The essential
obstacle is to fulfill the normalization condition∫

I
W L

β (λ, x, t) dt = 1,

which means that Lβ
λ preserves constant functions. Tyliba and Wachnicki [7] captured the

semi-exponential operators of Weierstrass and Szász–Mirakyan operators, Herzog [3] got
success to define the semi-exponential Post–Widder operators.We represent below the tabular
form of known semi-exponential type operators available till date:

No. Exponential operator p (x)

(1) Gauss–Weierstrass operators (Wn f ) (x) 1

– (Wn f ) (x) =
√

n
2π

∫ ∞
−∞ exp

(
−n(t−x)2

2

)
f (t) dt Exponential

– (Wβ
n f ) (x) =

√
n
2π

∫ ∞
−∞ exp

(
−n(t−x−β/n)2

2

)
f (t) dt Semi-exponential

(2) Post–Widder operators (Pn f ) (x) x2

– (Pn f ) (x) = nn
Γ (n)xn

∫ ∞
0 e−nt/x tn−1 f (t) dt Exponential

– (Pβ
n f ) (x) = nn

xneβx
∑∞

k=0
(nβ)k

k!Γ (n+k)

∫ ∞
0 e−nt/x tn+k−1 f (t) dt Semi-exponential

(3) Szász–Mirakyan operators (Sn f ) (x) x

– (Sn f ) (x) = ∑∞
k=0 e

−nx (nx)k

k! f
(
k
n

)
Exponential

– (Sβ
n f ) (x) = ∑∞

k=0 e
−(n+β)x ((n+β)x)k

k! f
(
k
n

)
Semi-exponential

As pointed out earlier, one can obtain the exponential-type operator as the special
β = 0 from semi-exponential operators, but the converse is not analogous. Here we cap-
ture some more semi-exponential operators viz. semi-exponential Bernstein polynomials,
semi-exponential Baskakov operators, etc.
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2 New semi-exponential operators

In this section, we establish some new exponential-type operators. In all listed cases it is
possible to solve the differential equation (1) in the form WL

β (n, x, t) = AL (n, t, β) y, but
it is difficult to find the normalization, i.e., the factor AL (n, t, β) of the solution y such that∫

I
W L

β (n, x, t) dt = 1

or, in the discrete case,
∞∑
k=0

WL
β (n, x, k/n) = 1,

respectively. Below we list some instances of p (x), which were considered for well-known
exponential-type operators.

2.1 Semi-exponential Bernstein operators

If we take p (x) = x (1 − x), then for a kernel WB
β (n, x, k/n) = AB (n, k, β) y, we have

y′ = k − nx

x(1 − x)
y − β y,

where the derivative of y is with respect to the variable x . We conclude that

y′

y
= k

(
1

1 − x
+ 1

x

)
− n

1 − x
− β,

log y = log(1 − x)n−k + log xk − βx,

implying

y = xk (1 − x)n−k e−βx .

In order to have normalization
∞∑
k=0

WB
β (n, x, k/n) =

∞∑
k=0

AB (n, k, β) xk(1 − x)n−ke−βx = 1.

we evaluate AB (n, k, β) from the equation
∞∑
k=0

AB (n, k, β)

(
x

1 − x

)k

= eβx (1 − x)−n .

For 0 ≤ x < 1, put z = x/ (1 − x). Then x = z/ (1 + z), and for any positive integer n, the
generating function of the sequence (AB (n, k, β))∞k=0

∞∑
k=0

AB (n, k, β) zk = eβz/(1+z) (1 + z)n

is analytic, for |z| < 1, with an essential singularity at z = −1. Hence, it can be developed
as a power series in the disk |z| < 1. The series

eβz/(1+z) (1 + z)n =
∞∑
j=0

(βz) j

j ! (1 + z)n− j
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is convergent for all complex z different from −1. It follows that, for |z| < 1,

eβz/(1+z) (1 + z)n =
∞∑
j=0

(βz) j

j !
∞∑

�=0

(
n − j

�

)
z� =

∞∑
k=0

zk
∑
j+�=k

(
n − j

�

)
β j

j ! ,

where the binomial coefficient is to be read as
(n− j

0

) = 1 and
(n− j

�

) = (�!)−1 ∏�−1
ν=0

(n − j − ν), for � ∈ N. We have

(
Bβ
n f

)
(x) = e−βx

∞∑
k=0

AB (n, k, β) xk(1 − x)n−k f

(
k

n

) (
0 ≤ x <

1

2

)
,

where

AB (n, k, β) =
k∑
j=0

(
n − j

k − j

)
β j

j ! .

Thus the semi-exponential Bernstein polynomials Bβ
n map a function f on [0,+∞) to a

function Bβ
n f defined on [0, 1/2), whenever the sum is convergent. It can be shown that

the operators Bβ
n apply to all polynomials. In the special case β = 0 we have j = 0 and

� = k such that AB (n, k, β) = (n
k

)
. Hence, the sum defining Bβ=0

n f is finite, and we get the
Bernstein polynomials.

The operators Bβ
n can be rewritten in the alternative form

(
Bβ
n f

)
(x) = e−βx

∞∑
j=0

β j

j ! x
j (1 − x)n− j

∞∑
k=0

(
n − j

k

) (
x

1 − x

)k

f

(
j + k

n

)

(
0 ≤ x < 1

2

)
. The latter representation immediately reveals the special case β = 0.

2.2 Semi-exponential Baskakov operators

If we take p (x) = x (1 + x), then for a kernel WV
β (n, x, k/n) = AV (n, k, β) y, we have

y′ = k − nx

x(1 + x)
y − β y,

where the derivative of y is with respect to the variable x . We conclude that

y′

y
= k

(
1

x
− 1

1 + x

)
− n

1 + x
− β,

log y = −k log (1 + x) + k log x − n log (1 + x) − βx,

implying

y = xk

(1 + x)n+k
e−βx .

In order to have normalization
∞∑
k=0

WV
β (n, x, k/n) =

∞∑
k=0

AV (n, k, β)
xk

(1 + x)n+k
e−βx = 1.
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Put, for x ≥ 0, z = x/ (1 + x). Then x = z/ (1 − z). We obtain

∞∑
k=0

AV (n, k, β) zk = eβz/(1−z) (1 − z)−n

=
∞∑
j=0

(βz) j

j ! (1 − z)−n− j

=
∞∑
j=0

(βz) j

j !
∞∑

�=0

(
n + j − 1 + �

�

)
z�

=
∞∑
k=0

zk
∑
j+�=k

(
n + k − 1

�

)
β j

j ! .

Thus, the semi-exponential Baskakov operators can be defined by

(
V β
n f

)
(x) =

∞∑
k=0

bβ
n,k (x) f

(
k

n

)

=
∞∑
k=0

AV (n, k, β)
xk

(1 + x)n+k
e−βx f

(
k

n

)
,

where

AV (n, k, β) =
∑
j+�=k

(
n + k − 1

�

)
β j

j ! =
∑
j+�=k

(n + j)�
k!

(
k

j

)
β j .

In special case β = 0 we have j = 0 and � = k such that we get the Baskakov operators.

2.3 Semi-exponential Ismail–May operators related to 2x3/2

If we take p (x) = 2x3/2, then for a kernel WU
β (n, x, t) = AU (n, t, β) y, we have

y′ = n(t − x)

2x3/2
y − β y,

where the derivative of y is with respect to the variable x . We conclude that

y′

y
= nt

2x3/2
− n

2
√
x

− β,

log y = −nt√
x

− n
√
x − βx,

implying

y = exp

(−nt√
x

− n
√
x − βx

)
.

Our target is to obtain AU (n, t, β) in order to have normalization
∫ ∞

0
AU (n, t, β) ydt = 1.
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If we put, for abbreviation, s = n/
√
x , the normalization condition takes the form

∫ ∞

0
AU (n, t, β) e−st dt = exp

(
n2

s
+ β

n2

s2

)
(s > 0) .

Since

exp

(
n2

s
+ β

n2

s2

)
=

∞∑
k=0

(n
s

)k ∑
i, j≥0,
i+2 j=k

niβ j

i ! j ! (s �= 0)

we obtain

AU (n, t, β) = δ (t) +
∞∑
k=1

nktk−1

Γ (k)

∑
i, j≥0,
i+2 j=k

niβ j

i ! j ! (s > 0) ,

where δ (t) denotes Dirac’s delta function. Hence, the operators are defined by

(
Uβ
n f

)
(x) = e−n

√
x−βx f (0) + e−n

√
x−βx

∫ ∞

0
ÂU (n, t, β) exp

(
− nt√

x

)
f (t) dt

with

ÂU (n, t, β) =
∞∑
k=0

(nt)k

k!
∑
i, j≥0,

i+2 j=k+1

ni+1β j

i ! j ! (s > 0) .

Thus, the semi-exponential operator, related to 2x3/2, takes the form

(
Uβ
n f

)
(x) = e−n

√
x−βx f (0) + e−n

√
x−βx

∞∑
k=0

nk

k!

⎛
⎜⎜⎝

∑
i, j≥0,

i+2 j=k+1

ni+1β j

i ! j !

⎞
⎟⎟⎠

×
∫ ∞

0
tk exp

(
− nt√

x

)
f (t) dt .

In the special case β = 0, the definition reduces to the Ismail–May operator of exponential
type

(
Uβ=0
n f

)
(x) = e−n

√
x f (0) + e−n

√
x

∞∑
k=0

nk

k!
nk+2

(k + 1)!
∫ ∞

0
tk exp

(
− nt√

x

)
f (t) dt

= e−n
√
x
{
f (0) + n

∫ ∞

0
e−nt/

√
x t−1/2 I1

(
2n

√
t
)
f (t) dt

}
,

where I1 (x) is modified Bessel function of the first kind. Further results on the operators
Uβ=0
n can be found in [1].

2.4 Semi-exponential Post–Widder operators

Although the semi-exponential Post–Widder operators were captured in [3,Eq. (10)], using
Laplace transform, we provide an alternative approach that is shorter. We proceed as follows.
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If we take p(x) = x2, then for a kernel WP
β (n, x, t) = AP (n, t, β) y, we have

y′ = n(t − x)

x2
y − β y,

y′

y
= ntx−2 − nx−1 − β,

log y = −nt

x
− n log x − βx,

y = e−nt/x x−ne−βx .

For normalization, we look for a function AP (n, t, β) such that
∫ ∞

0
WP

β (n, x, t) dt =
∫ ∞

0
AP (n, t, β) e−nt/x x−ne−βxdt = 1.

Putting

AP (n, t, β) =
∞∑
k=0

akt
k+α

we have to choose coefficients ak such that

∞∑
k=0

ak

∫ ∞

0
tk+αe−nt/xdt = xneβx .

This is equivalent to

∞∑
k=0

akΓ (k + α + 1)
( x
n

)k+α+1 =
∞∑
k=0

βk

k! x
k+n .

It follows that α = n − 1 and

ak = nk+n βk

k!Γ (k + n)
.

Hence, AP (n, t, β) is given by

AP (n, t, β) = nn
∞∑
k=0

(nβ)k

k!Γ (k + n)
tk+n−1.

Thus, semi-exponential Post–Widder operators take the form

(
Pβ
n f

)
(x) = nn

eβx xn

∞∑
k=0

(nβ)k

k!
1

Γ (n + k)

∫ ∞

0
tn+k−1e−nt/x f (t)dt .

Observing that AP (n, t, β) = n (nt/β)(n−1)/2 In−1
(
2
√
nβt

)
, where In denotes themodified

Bessel function of the first kind, we obtain the alternative representation

(
Pβ
n f

)
(x) = n

xneβx

∫ ∞

0

(
nt

β

)(n−1)/2

e−nt/x In−1

(
2
√
nβt

)
f (t) dt .
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2.5 Semi-exponential Ismail–May operators related to x (1+ x)2

If we take p (x) = x (1 + x)2, then for a kernel WR
β (n, x, k/n) = AR (n, k, β) y, we have

y′ = k − nx

x (1 + x)2
y − β y,

y′

y
= k

(
1

x
− 1

1 + x
− 1

(1 + x)2

)
− n

(1 + x)2
− β,

log y = k log x − k log (1 + x) + n + k

1 + x
− βx,

implying

y =
(

x

1 + x

)k

exp

(
n + k

1 + x

)
e−βx .

If we put y = x/ (1 + x) the normalization condition reads

∞∑
k=0

AR (n, k, β)
(
ye1−y)k = exp

(
β

y

1 − y
− n (1 − y)

)
.

Now we put z = ye1−y , so we have the inverse y = −W (−z/e), where W denotes the
LambertW function, i.e., the inverse of z 	→ zez . Hence, AR (n, k, β) are the coefficients of
the power series

∞∑
k=0

AR (n, k, β) zk = exp

(
−β

W (−z/e)

1 + W (−z/e)
− n (1 + W (−z/e))

)
,

which is convergent in a neighborhood of z = 0. Following Ismail and May [4,Eq. (3.13)]
we take advantage of the identity [6, p. 348]

enw =
∞∑
k=0

n (n + k)k−1

k!
(
we−w

)k
(n �= 0) ,

which is an easy consequence of the Lagrange expansion theorem. With w = −W (−z/e)
we obtain

e−nW (−z/e) =
∞∑
k=0

n (n + k)k−1

k!
(
−W (−z/e) eW (−z/e)

)k =
∞∑
k=0

n (n + k)k−1

k!
( z
e

)k
.

It follows

∞∑
k=0

AR (n, k, β) zk = exp

(
−n − β

W (−z/e)

1 + W (−z/e)

) ∞∑
k=0

n (n + k)k−1

k!
( z
e

)k
,

i.e., AR (n, k, β) is the coefficient of zk in the latter power series expansion. The semi-
exponential operators related to x(1 + x)2, take the form

(
Rβ
n f

)
(x) = e−βx

∞∑
k=0

AR (n, k, β)

(
x

1 + x

)k

exp

(
n + k

1 + x

)
f

(
k

n

)
.

123
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In the special case β = 0 we have

AR (n, k, β = 0) = n (n + k)k−1

k! e−(n+k)

and the operators reduce to

(Rn f ) (x) = exp

( −nx

1 + x

) ∞∑
k=0

n (n + k)k−1

k!
(

x

1 + x

)k

exp

( −kx

1 + x

)
f

(
k

n

)

[4,Eq. (3.14)]. As Ismail and May remarked, the substitution y = x/ (1 + x) leads to the
operators

(R∗
n f )(y) = e−ny

∞∑
k=0

n (n + k)k−1

k!
(
ye−y)k f

(
k

n + k

)
(y ∈ (0, 1))

It may be considered as an open problem to find a closed form of the coefficients AR (n, k, β).

2.6 Semi-exponential Ismail–May operators related to x3

If we take p (x) = x3, then for a kernel WQ
β (n, x, t) = AQ (n, t, β) y, we have

y′ = n (t − x)

x3
y − β y,

y′

y
= n

(
t

x3
− 1

x2

)
− β,

log y = n

(
− t

2x2
+ 1

x

)
− βx .

Thus

y = exp

(
n

x
− nt

2x2
− βx

)
.

If we put s = n/
(
2x2

)
the normalization condition reads

∫ ∞

0
AQ (n, t, β) e−st dt = exp

(
β

√
n

2s
− √

2ns

)
,

such that AQ (n, t, β) is the inverse Laplace transform L−1 of exp
(
β
√
n/ (2s) − √

2ns
)
.

We have

L−1 {
exp

(
1/

√
s
) − 1

} =
∞∑
k=1

1

k!L
−1

{
s−k/2

}
=

∞∑
k=1

1

k!Γ (k/2)
tk/2−1,

which implies

L−1
{
exp

(
β

√
n

2s

)}
= δ (t) +

∞∑
k=1

1

k!Γ (k/2)

(
nβ2

2

)k/2

tk/2−1, (2)

where δ (t) denotes Dirac’s delta function. It is well known that

L−1
{
exp

(
−√

2ns
)}

=
√

n

2π
t−3/2e−n/(2t). (3)

123



87 Page 10 of 12 U. Abel et al.

We will take advantage of the convolution formula

L−1 {L {g}L {h}} = g ∗ h,

where

(g ∗ h) (t) =
∫ t

0
g (t − u) h (u) du.

Combining Eqs. (2) and (3)

L−1
{
exp

(
β
√
n/ (2s) − √

2ns
)}

=
√

n

2π

∫ t

0
u−3/2e−n/(2u)δ (t − u) du

+
√

n

2π

∞∑
k=1

1

k!Γ (k/2)

(
nβ2

2

)k/2 ∫ t

0
u−3/2e−n/(2u) (t − u)k/2−1 du.

Thus, semi-exponential operators related to p (x) = x3 take the form

(
Qβ

n f
)
(x) = en/x−βx

∫ ∞

0
AQ (n, t, β) e−nt/

(
2x2

)
f (t) dt,

where

AQ (n, t, β) =
√

n

2π

(
t−3/2e−n/(2t) +

∞∑
k=1

1

k!Γ (k/2)

(
nβ2

2

)k/2

×
∫ t

0
u−3/2e−n/(2u) (t − u)k/2−1 du

)
.

In the special case β = 0 we have

AQ (n, t, β = 0) =
√

n

2π
t−3/2e−n/(2t)

and the operators reduce to

(
Qβ=0

n f
)
(x) =

√
n

2π
en/x

∫ ∞

0
t−3/2 exp

(
− n

2t
− nt

2x2

)
f (t) dt

[4,Eq. (3.11)].

2.7 Semi-exponential Ismail–May operators related to 1+ x2

If we take p (x) = 1 + x2, then for a kernel WT
β (n, x, t) = AT (n, t, β) y, we have

y′ = n(t − x)

1 + x2
y − β y,

y′

y
= nt

1 + x2
− nx

1 + x2
− β,

log y = nt arctan x − n

2
log

(
1 + x2

) − βx,

123
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implying

y = ent arctan x−βx (
1 + x2

)−n/2
.

The operators related to 1 + x2 take the form

(
T β
n f

)
(x) = e−βx

(
1 + x2

)n/2

∫ ∞

−∞
AT (n, t, β) ent arctan x f (t)dt

To have the normalization, we need∫ ∞

−∞
AT (n, t, β) ent arctan xdt = eβx (

1 + x2
)n/2

.

If we put s = n arctan x, this is equivalent to
∫ ∞

−∞
AT (n, t, β) est dt = eβ tan(s/n)

cosn (s/n)
.

Using the identity [5,Section 9, p. 46] (see [4,Lemma 3.3])
∫ ∞

−∞

∣∣∣∣Γ
(

λ + i t

2

)∣∣∣∣
2

est dt = πΓ (λ)

2λ−2 cosλ s
(λ > 0,−π/2 < s < π/2)

Ismail and May [4,Eq. (3.10)] obtained in the special case β = 0,

AT (n, t, β = 0) = 2n−2n

πΓ (n)

∣∣∣∣Γ
(
n
1 + i t

2

)∣∣∣∣
2

.

The main target to find a closed expression for AT (n, t, β), for general β > 0, may be
considered as an open problem.
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