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Abstract

In the theory of approximation, linear operators play an important role. The exponential-type
operators were introduced four decades ago, since then no new exponential-type operator
was introduced by researchers, although several generalizations of existing exponential-type
operators were proposed and studied. Very recently, the concept of semi-exponential operators
was introduced and few semi-exponential operators were captured from the exponential-type
operators. It is more difficult to obtain semi-exponential operators than the corresponding
exponential-type operators. In this paper, we extend the studies and define semi-exponential
Bernstein, semi-exponential Baskakov operators, semi-exponential Ismail-May operators
related to 2x3/2 or x3. Furthermore, we present a new derivation for the semi-exponential
Post—Widder operators. In some examples, open problems are indicated.

Keywords Semi-exponential Bernstein polynomials - Semi-exponential Baskakov
operators - Semi-exponential Ismail-May operators - Semi-exponential Post—Widder

operators - Approximation by operators
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1 Introduction

The exponential-type operators are important in the field of approximation theory. They were
firstly considered by Ismail and May [4] in 1978. The exponential-type operators preserve
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the linear functions. Many generalizations of exponential-type operators are available in the
literature. Tyliba and Wachnicki [7] extended the definition of Ismail and May [4] by propos-
ing a more general family of operators. For a non-negative real number S, they introduced
the operators Lf . For g > 0, they are not of exponential type but similar to exponential-type
operators. Recently, Herzog [3] further extended the studies and termed such operators as
semi-exponential type operators. Actually, an operator of the form

(fo)(x)=f1W§ (hx,0) f (0)di

is called a semi-exponential operator if its kernel Wé“ (A, x, t) satisfies the differential equa-

tion

At —x)
p(x)

In particular, for 8 > 0, one has Lfel # ey, wheree, (t) =t" (r =0,1,2,...). In the case

9
—Wj (h,x,1) = ( - ,8) Wi (x.1). (1)

0x

B = 0, the operator szo is simply the exponential-type operator studied by Ismail and May
[4]. A collection of such operators may be found in the recent book [2,Ch. 1].

Choosing different functions p (x) several exponential-type operators were captured in
Ismail and May [4]. It is difficult to construct new exponential-type operators or the corre-
sponding semi-exponential operators by just taking different functions p (x). The essential
obstacle is to fulfill the normalization condition

/WﬂL Ax,ndt =1,
1

which means that Lf preserves constant functions. Tyliba and Wachnicki [7] captured the
semi-exponential operators of Weierstrass and Szdsz—Mirakyan operators, Herzog [3] got
success to define the semi-exponential Post—Widder operators. We represent below the tabular
form of known semi-exponential type operators available till date:

No. Exponential operator p(x)
[€))] Gauss—Weierstrass operators (W, f) (x) 1
n_ oo 7n(t7x)2 .
- Wn ) ) =/5= [ exp | === | f () dt Exponential
2
- (Wff) ) = /4% [T exp <M> f(tdt Semi-exponential
2) Post—Widder operators (P f) (x) x2
- (Pnf)(x) = #:x" fooo e~ m/xm=1 ¢ty dy Exponential
koo . .
- (Pff) (x) = x’?:ﬁ" pyady k!jf(’ilrk) I e~ m/xntk=1 £ 1y gy Semi-exponential
3) Szasz—Mirakyan operators (S, f) (x) X
Ak
- Snf)x) =Y pe ™ %f (%) Exponential
k
- (Sf ) =32 e A %f (%) Semi-exponential

As pointed out earlier, one can obtain the exponential-type operator as the special
B = 0 from semi-exponential operators, but the converse is not analogous. Here we cap-
ture some more semi-exponential operators viz. semi-exponential Bernstein polynomials,
semi-exponential Baskakov operators, etc.
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2 New semi-exponential operators

In this section, we establish some new exponential-type operators. In all listed cases it is
possible to solve the differential equation (1) in the form Wff (n,x,t) = Ar (n,t,B)y, but
it is difficult to find the normalization, i.e., the factor Ay (n, t, B) of the solution y such that

fWﬁL(n,x,t)drzl
1

or, in the discrete case,
[o¢]
D Wg(nx k/n) =1,
k=0

respectively. Below we list some instances of p (x), which were considered for well-known
exponential-type operators.

2.1 Semi-exponential Bernstein operators

If we take p (x) = x (1 — x), then for a kernel Wé? (n,x,k/n) = Ap (n,k, B) y, we have

k —nx
- T _
Y= ia-n’ By

where the derivative of y is with respect to the variable x. We conclude that

y 1 1 n
7=k + — _ _,B’
y 1—x x 1—x

n—k +10g)€k _ ﬂx,

logy = log(1 —x)

implying
y =xk (1 —x)" ke Px,

In order to have normalization

o o0
S WE (nox k/n)y =) Ap (n.k, B)xF (1 —x)"re P =1
k=0 k=0

we evaluate Ap (n, k, B) from the equation

% k
> Ap(n. k. p) (%) =P (1 —x)™.
k=0 —X

For0 <x < 1,putz =x/(1 —x). Then x = z/ (1 + z), and for any positive integer n, the
generating function of the sequence (Ap (1, k, B))z=

o0
3 Ap (n.k, B = F/HD (1 42y
k=0
is analytic, for |z| < 1, with an essential singularity at z = —1. Hence, it can be developed
as a power series in the disk |z| < 1. The series
. .
J .
P (142" =" (ﬂ.z.) (1+2)"
— J!
Jj=
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is convergent for all complex z different from —1. It follows that, for |z] < 1,

eﬁz/(l+z) (1+Z) Z(ﬂz) Z(n_j> ZZ Z (I’l—j)fij,
j=0 =0

JjHl=k

where the binomial coefficient is to be read as ("Bj )=1 and (”;j) = @H~! I—[ﬁ;%)
(n— j —v), for £ € N. We have

(BLf) () =e Py " Ap(nk, By x*(1 —x)"* f (S) (0 <x< %) :

k=0
where

k ) j
Ap (k. B) =Z(Z_;>’i.

|
=0 I°

Thus the semi-exponential Bernstein polynomials Bf map a function f on [0, +00) to a
function B,’,3 f defined on [0, 1/2), whenever the sum is convergent. It can be shown that
the operators B,’? apply to all polynomials. In the special case 8 = 0 we have j = 0 and
£ =k suchthat Ap (n, k, B) = (Z) Hence, the sum defining szof is finite, and we get the
Bernstein polynomials.

The operators B,f,} can be rewritten in the alternative form

i S £ )5 ()

(0 <x< %) The latter representation immediately reveals the special case g = 0.

2.2 Semi-exponential Baskakov operators

If we take p (x) = x (1 + x), then for a kernel W/;/ (n,x,k/n)y = Ay (n, k, B) y, we have

, k —nx

where the derivative of y is with respect to the variable x. We conclude that

y 1 1
2kl == — B,
y x l4+x 1—|—x

logy = —klog (1 4+ x) + klogx —nlog (1 + x) — Bx,

implying
k
X
— —Bx
=——¢
y a +x)n+k
In order to have normalization
00 ok
> Wy (. x k/n) = ZAV (n, k, ﬂ)im e P =1.
k=0 k=0 (I+x)
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Put, forx >0,z = x/ (1 + x). Then x = z/ (1 — z). We obtain

o0
S Av @k pyzt = 0 (1 - g

k=0

(Bz)!
< !

B2 o (n+j—14+¢\,
S ()
=0

. (n +k— 1) B/
Z ; TR
jHl=k J:

Thus, the semi-exponential Baskakov operators can be defined by

(VEF) () = Zbﬁk(X)f< )

k —/Sx k
- avok B T f(ﬁ)’

k=0

k—1\ B/
Avk By =3 (”*Z >i: 5 (n:;)zoﬁj

j!
jte=k Jj+t=k

(11—~

tnqg

~.
Il

M

j=0

~
I

M

k

Il
=]

where

In special case B = 0 we have j = 0 and ¢ = k such that we get the Baskakov operators.

2.3 Semi-exponential Ismail-May operators related to 2x3/2

32,

If we take p (x) = 2x°/4, then for a kernel Wé] (n,x,t) = Ay (n,t, B) y, we have

,  n(t—x)
Y =—a7 V" By,

where the derivative of y is with respect to the variable x. We conclude that

y ot n B
y 232 2k

—nt
logy = 7 — nv/x — Bx,

implying
—nt
y:exp<ﬁ—nf—ﬂx>.

Our target is to obtain Ay (n, t, 8) in order to have normalization

o0
/ Ay (n,t, B) ydt = 1.
0
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If we put, for abbreviation, s = n//x, the normalization condition takes the form

o] n2 n2
/ Ay (n,1, B)e”*"dt = exp (— + ﬁ—z) (s > 0).
0 N N

Since
2 2 o0 k iﬂj
n n n n
ew(T+p%) =2 (4) X G 6#0
k=0 i,j>0,
i+2j=k
we obtain

00 kk—1 niﬂj
Av (1, 8) =80+ ) a0 > T 60,
k=1 i,j>0,
i+2j=k

where § (¢) denotes Dirac’s delta function. Hence, the operators are defined by

(UL f) (x) = e V5P £(0) 4 eV Px /0 ¥ Ay (ot Byexp (—"i) f @) dr

Jx
with
St k i+1pj
. (nt) n'*T B/
Avop=3 = > o 6>
k=0 i,j=0,

i+2j=k+1
Thus, the semi-exponential operator, related to 2x3/2, takes the form
o nk i+1gj
(UEF) (1) = e b ) penimr Sy L F

k! ilj!
k=0 ij>0. J

i+2j=k+1
/oot" ( m)f(t)dt
X exp | ———= .
0 Vx

In the special case 8 = 0, the definition reduces to the Ismail-May operator of exponential
type

ook k+2 00
/3:0 = 7”‘/} ! 7"‘/; i " / ’ <_ nt )
(UL f) () = e™VFF (0) + e L @i nih t* exp N f () dt

= {f ©0) +n /Ooe_m/ﬁfl/zh (2nv7) r @ dt} ’
0

where 7 (x) is modified Bessel function of the first kind. Further results on the operators
UP=° can be found in [1].

2.4 Semi-exponential Post-Widder operators

Although the semi-exponential Post—-Widder operators were captured in [3,Eq. (10)], using
Laplace transform, we provide an alternative approach that is shorter. We proceed as follows.
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If we take p(x) = x2, then for a kernel Wé’ (n,x,t) =Ap (n,t,B)y, we have

k) ;x)y — By,

X

y
/

Y nix 2 —nx~! — B.
y

logy = - —nlogx — Bx,
X

y = efnt/xxfnefﬂx'

For normalization, we look for a function Ap (n, t, 8) such that
oo oo
/ W; (n,x,t)dt = / Ap(n,t,B) e My Px gy — 1,
0 0

Putting
o
Ap (.1, B) =) art*+
k=0
we have to choose coefficients a; such that

S o)
Zak/ ftee=mt/x qp — x"ePx,
k=0 v0

This is equivalent to

o0 o0
S @l k+a+1) (%)HW -y BY ckn,

k=0 k=0

It follows that « = n — 1 and

k
ap = k+n137_
k'I" (k+n)
Hence, Ap (n, t, B) is given by
00 k
n (l’l,B) k4+n—1

A 1, = _—
plmtp)=n kgok!l"(k—kn)

Thus, semi-exponential Post—~Widder operators take the form

n S k 1 00
(Pff) (x) = eﬁ’)lcxn Z (nf!) Foi /0 k=T =nt )% £y

Observingthat Ap (n,t, 8) =n (m/,B)(”_l)/2 I, (2«/n/3t), where I, denotes the modified
Bessel function of the first kind, we obtain the alternative representation

o (n—=1)/2
(P11 w0 = o [ (%f) e e (2Vnpr) £ ).
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2.5 Semi-exponential Ismail-May operators related to x (1 + x)2

If we take p (x) = x (1 + x)2, then for a kernel Wée (n,x,k/n) = Ag (n,k, )y, we have

y = k—inxy_ﬂy
x (14 x)? ’

! 1 1 1
y7=k<7_ - 2)_ . 2_/37
y x l1+x (1+x) (I4+x)

k
IOgyZklogx—klog(l-f-x)_}_i_ﬂx’
1 +x

k
X n+k
= _— —Bx
y <1+x> exp(l+x>e .

If we put y = x/ (1 4+ x) the normalization condition reads

implying

> Ar .k ) (ve' ) =exp (ﬂ% —n(l - y)) .

k=0

Now we put z = ye! ™, so we have the inverse y = —W (—z/e), where W denotes the
Lambert W function, i.e., the inverse of z — ze®. Hence, Ag (n, k, B) are the coefficients of
the power series

o W _
> Ar (k. B)2F = exp <_51+v(l/7(z—/2e) —n(l+W (—z/e))) ,

k=0
which is convergent in a neighborhood of z = 0. Following Ismail and May [4,Eq. (3.13)]
we take advantage of the identity [6, p. 348]

0 k—1
e Z n (n + k) weﬂ”)k (n #0),

which is an easy consequence of the Lagrange expansion theorem. With w = —W (—z/e)
we obtain
> k—1 o0 k—1 x
—nW(—zfe) _ N (1 + k) (_ B W(—z/e)) n(n + k) (7>
¢ = —— (W => ——F ()
k=0 k=0
It follows
s 00 k—1
W(—z/e nn+k Z\k
ZAR(n,k,,B)zkzexp —n—f (=z/¢) Z ( ) <7) ,
k=0 I+ Wi(=z/e)) = k! e

ie., Ag (n,k, B) is the coefficient of zX in the latter power series expansion. The semi-
exponential operators related to x (1 + x)2, take the form

k k k
= S () oo (122) ()

k=0
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In the special case § = 0 we have

n(n+k*! o~ (k)

Ar(nk p=0) = =

and the operators reduce to

00 k-1 k —k k
(Rnf)(X)—eXP<1jx>Zn(n:g) <1ix) exp<1+);)f<5>

k=0

[4,Eq. (3.14)]. As Ismail and May remarked, the substitution y = x/ (1 4 x) leads to the
operators

k<=1 k
RpHm) =™ nOED ey s (m) (ve @ 1)

k=0

It may be considered as an open problem to find a closed form of the coefficients Ag (n, k, ).

2.6 Semi-exponential Ismail-May operators related to x>
If we take p (x) = x3, then for a kernel WﬂQ (n,x,t) =Ap (n,t, B)y, we have

,  n(t—x)

y=—=3—y—5y
)C
y t 1
For(Ew)r
t 1
logy =n _ﬁ-‘_; — Bx.

n nt 5
=exp|——=— — .
Y P x  2x2 *

If we put s = n/ (2x?) the normalization condition reads

/oo AQ (.1, B) e Sdt = exp (IB\/Z— \/2715) s
0

such that Ag (n, t, B) is the inverse Laplace transform £ ! of exp (ﬁ«/n /(2s) —+/ 2ns>.
We have

Thus

1

{exp (1/4/s) =1} = Z ‘E_l {s—k/Z] Z = (k/z) k121

k=1 k=1

which implies

1
. {exp<ﬁ >}_5(t)+zk'F(k/2) (nﬂ ) kﬂ] @

where § (¢) denotes Dirac’s delta function. It is well known that

ot [exp (—«/M)} = \/gt_3/2e_”/(2’). 3)
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We will take advantage of the convolution formula

e lgl Ly =g *h,

where
t
(g*h)m:/o o (t —u)h () du.
Combining Egs. (2) and (3)

£ exp (8] @)~ V2us) |

t
= \/2z / w20 (t — u) du
T
k/2
\/72 / u 32 p—n/Qu) (t — u)k/Z—l du.
2 & KT (k/2) 0

Thus, semi-exponential operators related to p (x) = x> take the form

(QF f) (x) = em/*=Px /0 ” Ag(n.t, B)e ™) £ (1) dt,

1 ng*\"?
AQ(n,t,ﬂ)Z\/;<3/2 ’”/(”)+ZW< 2 )

1
% / M73/287”/(2u) (l _ M)k/Zfl du) )
0

In the special case f = 0 we have

n
Ag(n,1,=0)= \/;ﬁ/zeﬂ/@,)

and the operators reduce to

(051 = o / exp( = —%)f(t)dt

[4,Eq. 3.11)].

where

2.7 Semi-exponential Ismail-May operators related to 1 + x>

If we take p (x) =1 + x2, then for a kernel WﬁT (n,x,t) =Ar (n,t, B)y, we have

,  n(t—x)
Y =T e — By,
y nt nx

YT Tre P

n 2
logy = nt arctan x — Elog (14 x%) — B,
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implying
y = entarctanx—ﬁx (1 +x2)—”/2 )

The operators related to 1 4 x? take the form

—Bx o]
(Tnﬁf) (x) = (l—ix2)n/2 [m Ar (n,t, B) entarctanxf(t)dt

To have the normalization, we need

o n/2
/ Ar (n,t, B) ernrarctanx g eﬂx (1 +x2) )

—0o0

If we put s = n arctan x, this is equivalent to
o0 eBtan(s/m)
[m Ar (n,t, B) e'dt = W.
Using the identity [5, Section 9, p. 46] (see [4, Lemma 3.3])
/00 ‘F (A + it)
0o 2
Ismail and May [4, Eq. (3.10)] obtained in the special case 8 = 0,

1+t
I
(” 2 )

The main target to find a closed expression for A7 (n, t, B), for general 8 > 0, may be
considered as an open problem.

2
al" (A)
Mdt = ————
¢ 24=2 cos §

A>0,—7m/2 <s <m/2)

Ar tﬂ_o)_zn—Zn 2
T LP ==
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