ORIGINAL PAPER

Maximal classes for families of lower and upper semicontinuous functions with a closed graph

Jolanta Kosman¹

Received: 12 February 2016 / Accepted: 23 August 2016 / Published online: 22 September 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper we characterize the following maximal classes for families of lower and upper semicontinuous functions with a closed graph: the maximal additive class, the maximal multiplicative class and the maximal classes with respect to maximum and minimum.

Keywords Functions with a closed graph \cdot Lower semicontinuous functions \cdot Upper semicontinuous functions \cdot Sum of functions

Mathematics Subject Classification Primary 26A15; Secondary 54C08

1 Introduction

The letters \mathbb{R} , \mathbb{Q} and \mathbb{N} denote the real line, the set of rationals and the set of positive integers, respectively. The family of all functions from a set *X* into *Y* is denoted by Y^X . For each set $A \subset X$ its characteristic function is denoted by χ_A . In particular, χ_{\emptyset} stands for the zero constant function.

Let X be a topological space. The symbol X^d denotes the set of all accumulation points of X. For each set $A \subset X$ the symbols int A and cl A denote the interior and the closure of A, respectively. The spaces \mathbb{R} and $X \times \mathbb{R}$ are considered with their standard topologies. We say that a function $f: X \to \mathbb{R}$ has a *closed graph*, if the graph of f, i.e., the set $\{(x, f(x)) : x \in X\}$ is a closed subset of the product $X \times \mathbb{R}$. We say that a function $f: X \to \mathbb{R}$ is lower (upper) semicontinuous at a point $x \in X$, if for each $\varepsilon > 0$ there is an open neighborhood U of x such that $f(z) > f(x) - \varepsilon$ ($f(z) < f(x) + \varepsilon$, respectively) for each $z \in U$. If $f: X \to \mathbb{R}$ is lower (upper) semicontinuous at each point $x \in X$, then we say that the function f is lower (upper, respectively) semicontinuous. Let $\mathscr{Const}(X)$, $\mathcal{C}(X)$,

☑ Jolanta Kosman jola.kosman@wp.pl

¹ Institute of Mathematics, Kazimirz Wielki University, pl. Weyssenhoffa 11, 85–072 Bydgoszcz, Poland

 $\mathcal{U}(X)$, lsc(X), usc(X) denote the class of all real-valued functions on X that are constant, continuous, have a closed graph, are lower and upper semicontinuous, respectively. Obviously $\mathcal{C}(X) \subset \mathcal{U}(X)$ (see also e.g. [5]) and $C(X) = lsc(X) \cap usc(X)$. For $\mathcal{F}(X)$ and $\mathcal{G}(X)$ nonempty subsets of \mathbb{R}^X the symbol $\mathcal{FG}(X)$ denotes the class $\mathcal{F}(X) \cap \mathcal{G}(X)$. Further denote by $\mathcal{F}^+(X)$ the family of all nonnegative functions from $\mathcal{F}(X)$. Let $f \in \mathbb{R}^X$. The symbol G(f) denotes the graph of f and the symbols C(f) and D(f) denote the sets of points of continuity and discontinuity of f, respectively. For each $y \in \mathbb{R}$ let $[f = y] = \{x \in X : f(x) = y\}$. Similarly we define the symbols [f > y], [f < y].

If $\mathcal{F} \subset \mathbb{R}^X$ is a family of functions, denote by

$$\mathcal{F} + \mathcal{F} \stackrel{\mathrm{df}}{=} \{ f \in \mathbb{R}^X : f = g + h \text{ for some } g, h \in \mathcal{F} \},$$

$$\mathcal{M}_a(\mathcal{F}) \stackrel{\mathrm{df}}{=} \{ f \in \mathbb{R}^X : (\forall_{g \in \mathcal{F}}) \ f + g \in \mathcal{F} \},$$

$$\mathcal{M}_m(\mathcal{F}) \stackrel{\mathrm{df}}{=} \{ f \in \mathbb{R}^X : (\forall_{g \in \mathcal{F}}) \ f \cdot g \in \mathcal{F} \},$$

$$\mathcal{M}_{\max}(\mathcal{F}) \stackrel{\mathrm{df}}{=} \{ f \in \mathbb{R}^X : (\forall_{g \in \mathcal{F}}) \ \max(f, g) \in \mathcal{F} \},$$

$$\mathcal{M}_{\min}(\mathcal{F}) \stackrel{\mathrm{df}}{=} \{ f \in \mathbb{R}^X : (\forall_{g \in \mathcal{F}}) \ \min(f, g) \in \mathcal{F} \}.$$

The above classes $\mathcal{M}_a(\mathcal{F})$, $\mathcal{M}_m(\mathcal{F})$, $\mathcal{M}_{max}(\mathcal{F})$ and $\mathcal{M}_{min}(\mathcal{F})$ are called the maximal additive class for \mathcal{F} , the maximal multiplicative class for \mathcal{F} , the maximal class with respect to maximum and minimum for \mathcal{F} , respectively.

In 1987 Menkyna [7] characterized the maximal additive and multiplicative classes for the family of functions with a closed graph. He proved that $\mathcal{M}_{a}(\mathcal{U}(X)) = \mathcal{C}(X)$ for a topological space X [7, Theorem 1] and $\mathcal{M}_m(\mathcal{U}(X)) = \{f \in \mathcal{C}(X) : [f = 0] \text{ is an open set}\}$ for a locally compact normal topological space X [7, Theorem 2]. Let Q(X) denote the family of all quasi-continuous functions from a topological space X to \mathbb{R} . Recall that $f \in \mathcal{Q}(X)$ if and only if for each $x \in X$, $\varepsilon > 0$ and for each neighbourhood U of x there is a nonempty open set $V \subset U$ such that $|f(x) - f(y)| < \varepsilon$ for each $y \in V$. In 2008 Sieg [8] considered real functions defined on \mathbb{R} and showed that $\mathcal{M}_a(\mathcal{QU}(\mathbb{R})) = \mathcal{C}(\mathbb{R}), \mathcal{M}_m(\mathcal{QU}(\mathbb{R})) = \{f \in \mathcal{U}\}$ $\mathcal{C}(\mathbb{R})$: $f = \chi_{\emptyset}$ or $f(x) \neq 0$ for all $x \in \mathbb{R}$ and $\mathcal{M}_{\max}(\mathcal{QU}(\mathbb{R})) = \mathcal{M}_{\min}(\mathcal{QU}(\mathbb{R})) = \emptyset$. In 2014 Szczuka (see [9,10]) characterized the following maximal classes for lower and upper semicontinuous strong Świątkowski functions and lower and upper semicontinuous extra strong Świątkowski functions: the maximal additive class, the maximal multiplicative class and the maximal classes with respect to maximum. She proved, among others, that if $\mathcal F$ denotes the family of lower semicontinuous strong Świątkowski real functions defined on \mathbb{R} , then $\mathcal{M}_a(\mathcal{F}) = \mathscr{C}onst$ [9, Theorems 3.1], $\mathcal{M}_m(\mathcal{F}) = \mathscr{C}onst^+$ [9, Theorem 3.2] and $\mathcal{M}_{\max}(\mathcal{F}) = \mathscr{C}onst \ [9, \text{ Theorem 3.3}].$

In this paper we deal with the families of lower and upper semicontinuous functions with a closed graph. We obtain the following results:

- $\mathcal{M}_a(\mathcal{U}lsc(X)) = \mathcal{U}lsc(X)$, where X is a topological space (Theorem 2.5),
- $\mathcal{M}_a(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$, where X is a topological space (Theorem 3.3),
- $\mathcal{M}_m(\mathcal{U}lsc(X)) = \{f \in \mathcal{C}(X) : [f = 0] \text{ is an open set and } f(x) \ge 0 \text{ for all } x \in X\} = \mathcal{M}_m(\mathcal{U}usc(X)), \text{ where } X \text{ is a perfectly normal topological space such that } X = X^d$ (Theorems 2.7, 3.4),
- $\mathcal{M}_{\max}(\mathcal{U}lsc(X)) = \mathcal{U}lsc(X)$, where X is a topological space (Theorem 2.10),
- $\mathcal{M}_{\min}(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$, where X is a topological space (Theorem 3.5),
- $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) = \mathcal{M}_{\max}(\mathcal{U}usc(X)) = \emptyset$, where X is a perfectly normal topological space such that $X^d \neq \emptyset$ (Corollary 2.15, Theorems 3.6).

2 Lower semicontinuous functions with a closed graph

We start with a following proposition.

Proposition 2.1 Let X be a topological space. A function $f : X \to \mathbb{R}$ has the closed graph if and only if for each $x \in X$ and for each $m \in \mathbb{N}$ there is a neighbourhood V of x such that $f(z) \in (-\infty, -m) \cup (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$ for each $z \in V$.

Proof The implication (\Leftarrow) we can find in [2] (see p. 118, lines 11–14). The implication (\Rightarrow) immediately follows from [6] or [1, Proposition 1]: if $f \in \mathcal{U}(X)$, then for each $x \in X$ and each neighborhood U of f(x) such that $Y \setminus U$ is compact there is an neighborhood V of x such that $f(V) \subset U$. Now, it is sufficient to take $U = (-\infty, -m) \cup (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$. Observe that, the equivalence of this proposition also immediately follows from [1, Proposition 2].

From above and the definitions of the class *lsc* we obtain:

Lemma 2.2 Let X be a topological space. A function $f : X \to \mathbb{R}$ is lower semicontinuous function with a closed graph if and only if for each $x \in X$ and for each $m \in \mathbb{N}$ there is a neighbourhood V of x such that $f(z) \in (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$ for each $z \in V$.

Proof First, assume that for each $x \in X$ and for each $m \in \mathbb{N}$ there is a neighbourhood V of x such that $f(z) \in (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$ for each $z \in V$. Then, by Proposition 2.1, $f \in \mathcal{U}(X)$. Now, we will show that $f \in lsc(X)$. Let $x \in X$ and $\varepsilon > 0$. We choose $m \in \mathbb{N}$ such that $m \ge \max\{\frac{1}{\varepsilon}, f(x) - \varepsilon\}$. There is a neighbourhood V of x such that $f(z) \in (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty) \subset (f(x) - \varepsilon, \infty)$ for each $z \in V$ and consequently $f \in lsc(X)$.

Now, let $f \in \mathcal{U}lsc(X)$. Fix $x \in X$ and $m \in \mathbb{N}$. Since $f \in lsc(X)$, there is a neighbourhood V_1 of x such that $f(z) \in (f(x) - 1/m, \infty)$ for each $z \in V_1$. We consider two cases.

First, assume that $f(x) \ge 0$. Since $f \in \mathcal{U}(X)$, there is a neighbourhood V_2 of x such that $f(z) \in (-\infty, -m) \cup (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$ for each $z \in V_2$ (see Proposition 2.1). Let $V = V_1 \cap V_2$ and let $z \in V$. Then $f(z) \in (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$.

Now, assume that f(x) < 0. We choose $k \in \mathbb{N}$ such that $k \ge \max\{m, -f(x) + \frac{1}{m}\}$. Since $f \in \mathcal{U}(X)$, there is a neighbourhood V_2 of x such that $f(z) \in (-\infty, -k) \cup (f(x) - 1/k, f(x) + 1/k) \cup (k, \infty)$ for each $z \in V_2$. Let $V = V_1 \cap V_2$ and let $z \in V$. Since $k \ge m$, $-k \le f(x) - \frac{1}{m}$ and $\frac{1}{k} \le \frac{1}{m}$, we have $f(z) \in ((f(x) - 1/k, f(x) + 1/k) \cup (k, \infty)) \subset ((f(x) - 1/m, f(x) + 1/m) \cup (m, \infty))$. This completes the proof.

The next lemma follows from Proposition 2.1 and Lemma 2.2.

Lemma 2.3 Let X be a topological space. Then $U^+(X) \subset Ulsc(X)$.

Now, we will characterize the class of the sums of lower semicontinuous functions with a closed graph.

Lemma 2.4 Let X be a topological space. Then Ulsc(X) + Ulsc(X) = Ulsc(X).

Proof Let $f, g \in Ulsc(X)$. Fix $x \in X$ and $m \in \mathbb{N}$. Let $k \in \mathbb{N}$ be such that 1/k < 1/(2m + |f(x)| + |g(x)|). By Lemma 2.2, there exists a neighbourhood V of x such that $f(z) \in V$

 $(f(x) - 1/k, f(x) + 1/k) \cup (k, \infty)$ and $g(z) \in (g(x) - 1/k, g(x) + 1/k) \cup (k, \infty)$ for each $z \in V$. Let $z \in V$. We consider four cases.

If f(z) > k and g(z) > k, then evidently (f + g)(z) > m.

If f(z) > k and $g(z) \in (g(x) - 1/k, g(x) + 1/k)$, then

$$(f+g)(z) > k + g(x) - 1/k > 2m + |f(x)| + |g(x)| + g(x) - 1/k > m.$$

Similarly, g(z) > k and $f(z) \in (f(x) - 1/k, f(x) + 1/k)$, implies (f + g)(z) > m.

Now, let $f(z) \in (f(x) - 1/k, f(x) + 1/k)$ and $g(z) \in (g(x) - 1/k, g(x) + 1/k)$. Then, we have

$$|(f+g)(z) - (f+g)(x)| \le |f(z) - f(x)| + |g(z) - g(x)| < 2/k < 1/m.$$

It follows that $f + g \in \mathcal{U}lsc(X)$.

Theorem 2.5 Let X be a topological space. Then $\mathcal{M}_a(\mathcal{U}lsc(X)) = \mathcal{U}lsc(X)$.

Proof Since $\chi_{\emptyset} \in \mathcal{U}lsc(X)$, we conclude that $\mathcal{M}_a(\mathcal{U}lsc(X)) \subset \mathcal{U}lsc(X)$. The inclusion $\mathcal{U}lsc(X) \subset \mathcal{M}_a(\mathcal{U}lsc(X))$ follows from Lemma 2.4.

Now, recall the following lemma [7, Lemma 2], which will be applied in this paper.

Proposition 2.6 Let X be a topological space and let $f \in C(X)$. Then the function $g : X \to \mathbb{R}$ defined by the formula

$$g(x) = \begin{cases} \frac{1}{f(x)}, & \text{if } x \in [f \neq 0], \\ 0, & \text{if } x \in [f = 0]. \end{cases}$$

has the closed graph.

Theorem 2.7 Let X be a normal topological space such that each singleton is G_{δ} -set. Then

 $\mathcal{M}_m(\mathcal{U}lsc(X)) = \{ f \in \mathcal{C}(X) : [f = 0] \text{ is an open set and } [f < 0]^d = \emptyset \}.$

Proof We will prove this theorem in four parts. First, we will show that $\mathcal{M}_m(\mathcal{U}lsc(X)) \subset \mathcal{C}(X)$. Let $f \in \mathcal{M}_m(\mathcal{U}lsc(X))$. Since $\chi_{\mathbb{R}}, -\chi_{\mathbb{R}} \in \mathcal{U}lsc(X)$, we have $f \in lsc(X)$ and $-f \in lsc(X)$. Consequently $f \in lsc(X) \cap usc(X) = \mathcal{C}(X)$.

Now, we assume that the function $f \in C(X)$ and the set [f = 0] is not open. We will show that $f \notin \mathcal{M}_m(\mathcal{U}lsc(X))$ (The proof of this part is similar to the second part of the proof of [7, Theorem 2]). Define the function $g: X \to \mathbb{R}$ by the formula

 $g(x) = \begin{cases} \frac{1}{|f(x)|}, & \text{if } x \in [f \neq 0], \\ 0, & \text{if } x \in [f = 0]. \end{cases}$

By Proposition 2.6 the function g has the closed graph. Moreover g is non-negative function and consequently, by Lemma 2.3, $g \in Ulsc(X)$. Now, we will show that $f \cdot g \notin Ulsc(X)$.

Since the set [f = 0] is not open, there is $x_0 \in [f = 0]$ such that for each open neighbourhood V of x_0 there is $x_V \in V \cap [f \neq 0]$. Notice that $(f \cdot g)(x_V) \in \{-1, 1\}$ for each neighbourhood V of x_0 and $(f \cdot g)(x_0) = 0$. By Proposition 2.1, $f \cdot g \notin \mathcal{U}(X)$.

In the third part of the proof, suppose that $f \in C(X)$, the set [f = 0] is open and $[f < 0]^d \neq \emptyset$. We will prove that $f \notin \mathcal{M}_m(\mathcal{U}lsc(X))$. Let $x_0 \in [f < 0]^d$. Then there is a net $(x_{\gamma})_{\gamma \in \Gamma}$ of elements of X such that $x_{\gamma} \to x_0, x_{\gamma} \neq x_0$ and $f(x_{\gamma}) < 0$ for every $\gamma \in \Gamma$.

Notice that, since $f \in C(X)$ and the set [f = 0] is open, we have $f(x_0) < 0$. By Urysohn Lemma there is a continuous function $h : X \to [0, 1]$ such that $[h = 0] = \{x_0\}$.

Define the function $g: X \to \mathbb{R}$ by the formula

$$g(x) = \begin{cases} \frac{1}{h(x)}, & \text{if } x \neq x_0, \\ 0, & \text{if } x = x_0. \end{cases}$$

Observe that, by Proposition 2.6 and Lemma 2.3, $g \in \mathcal{U}lsc(X)$. Moreover $f \cdot g \notin lsc(X)$, because the net $((f \cdot g)(x_{Y}))_{Y \in \Gamma}$ diverges to $-\infty$ (recall that $f(x_{Y}) \rightarrow f(x_{0}) < 0$).

In the last part suppose that $f \in C(X)$, the set [f = 0] is open, $[f < 0]^d = \emptyset$ and $g \in \mathcal{U}lsc(X)$. Then, by [7, Theorem 2], $(f \cdot g) \in \mathcal{U}(X)$ (see also the third part of the proof of [7, Theorem 2]). It is enough to show that $(f \cdot g) \in lsc(X)$. Let $x_0 \in X$. If $f(x_0) \leq 0$, then the function $f \cdot g$ is continuous at x_0 and consequently $f \cdot g$ is a lower semicontinuous at this point. Indeed, if $f(x_0) = 0$, then by the assumption [f = 0] = int[f = 0], we have $x_0 \in int[f = 0] \subset int[f \cdot g = 0]$ and if $f(x_0) < 0$, then x_0 is a isolated point of X. Finally, assume that $f(x_0) > 0$. Since $f \in C(X)$, there is an open neighborhood U of x_0 such that $U \subset [f > 0]$. Since $g \in lsc(X)$, f is continuous and positive function on U, the function $f \cdot g$ is a lower semicontinuous at x_0 . The proof is complete.

It is easy to see that from above for $X = \mathbb{R}$ we have the following corollary.

Corollary 2.8 $\mathcal{M}_m(\mathcal{U}lsc(\mathbb{R})) = \{ f \in \mathcal{C}(\mathbb{R}) : f = \chi_{\emptyset} \text{ or } f(x) > 0 \text{ for all } x \in \mathbb{R} \}.$

Lemma 2.9 Let X be a topological space and let $f, g \in Ulsc(X)$. Then the real function $h = \max\{f, g\}$ defined on X is a lower semicontinuous function with a closed graph.

Proof Let $f, g \in Ulsc(X)$. We will use Lemma 2.2. Fix $x \in X$ and $m \in \mathbb{N}$. Then there exists a neighbourhood V of x such that $f(z) \in (f(x) - 1/m, f(x) + 1/m) \cup (m, \infty)$ and $g(z) \in (g(x) - 1/m, g(x) + 1/m) \cup (m, \infty)$ for each $z \in V$. We assume that $f(x) \ge g(x)$ (The case f(x) < g(x) is analogous). Then h(x) = f(x) and it is easy to see that $h(z) \in (h(x) - 1/m, h(x) + 1/m) \cup (m, \infty)$ for each $z \in V$. So, $h \in Ulsc(X)$.

Theorem 2.10 Let X be a topological space. Then $\mathcal{M}_{max}(\mathcal{U}lsc(X)) = \mathcal{U}lsc(X)$.

Proof The inclusion $\mathcal{U}lsc(X) \subset \mathcal{M}_{\max}(\mathcal{U}lsc(X))$ follows from Lemma 2.9. So, we will only prove that $\mathcal{M}_{\max}(\mathcal{U}lsc(X)) \subset \mathcal{U}lsc(X)$. Let $f: X \to \mathbb{R}$ be a function such that $f \notin \mathcal{U}lsc(X)$. We choose $x_0 \in X$ and $m \in \mathbb{N}$, such that $m \ge f(x_0) + \frac{1}{m}$ and for each open neighborhood V of x_0 there is $x \in V$ such that $f(x) \le m$ and $f(x) \notin (f(x_0) - \frac{1}{m}, f(x_0) + \frac{1}{m})$. We will show that $f \notin \mathcal{M}_{\max}(\mathcal{U}lsc(X))$. Let $c = f(x_0) - \frac{1}{m}$. Define the function $g: X \to \mathbb{R}$ by $g \stackrel{\text{df}}{=} c$. Clearly $g \in \mathcal{U}lsc(X)$. Denote $h = \max\{f, g\}$. We will prove that $h \notin \mathcal{U}lsc(X)$. Notice that $h(x_0) = f(x_0)$. Observe that, for each open neighborhood V of x_0 there is $x_V \in V$ such that $f(x_V) \in (-\infty, c] \cup [f(x_0) + \frac{1}{m}, m]$ and consequently $h(x_V) \in \{h(x_0) - \frac{1}{m}\} \cup [h(x_0) + \frac{1}{m}, m]$. By Proposition 2.1, $h \notin \mathcal{U}(X)$. This completes the proof.

Theorem 2.11 Let X be a topological space such that $\mathcal{U}(X) \neq \mathcal{C}(X)$. Then $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) = \emptyset$.

Proof Let $f \in \mathbb{R}^X$. We will show that there is a function $g \in \mathcal{U}lsc(X)$ such that the function $h = \min\{f, g\} \notin \mathcal{U}lsc(X)$.

Let $g_1 : X \to \mathbb{R}$ be a function with a closed graph and let $x_0 \in D(g_1)$. Put $g_2 = |g_1|$. Then $g_2 \in \mathcal{U}lsc$ and there is a net $(x_\gamma)_{\gamma \in \Gamma}$ of elements of X which converges to the point x_0 and a net $(g_2(x_\gamma))_{\gamma \in \Gamma}$ diverges to ∞ . We consider two cases. If $x_0 \in C(f)$, we define the function $g : X \to \mathbb{R}$ by $g(x) \stackrel{\text{df}}{=} g_2(x) - g_2(x_0) + f(x_0) - 1$. It is easy to see that $g \in \mathcal{U}lsc(X)$. Let $h = \min\{f, g\}$. Then $h(x_0) = g(x_0) = f(x_0) - 1$ and there is $\gamma_0 \in \Gamma$ such that $h(x_{\gamma}) = f(x_{\gamma})$ for each $\gamma > \gamma_0$. Consequently $(x_0, f(x_0)) \in cl G(h) \setminus G(h)$ and $h \notin \mathcal{U}(X)$.

Now, let $x_0 \in D(f)$. There is $\varepsilon > 0$ such that for each neighbourhood V of x_0 there is $z \in V$ such that $f(z) \notin (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$. Define the function $g : X \to \mathbb{R}$ by $g(x) \stackrel{\text{df}}{=} f(x_0) + \varepsilon$. Let $h = \min\{f, g\}$. Then $h(x_0) = f(x_0)$ and for each neighbourhood Vof x_0 there is $z \in V$ such that $h(z) \in (-\infty, h(x_0) - \varepsilon] \cup \{h(x_0) + \varepsilon\}$. By Proposition 2.2, $h \notin \mathcal{U}lsc(X)$

It is easy to see that

Remark 1 Let X be a topological space such that $\mathcal{U}(X) = \mathcal{C}(X)$. Then $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) = \mathcal{C}$.

Now, we recall the definition of a *P*-space [4, pp. 62–63] and two propositions given by Wójtowicz and Sieg [11, Theorem 1 and Corollary 1].

Definition 1 We say that a completely regular (Tychonoff) space X is a P-space if every G_{δ} -subset (F_{σ} -subset) of X is open (closed); equivalently, every co-zero subset of X is closed.

Proposition 2.12 Let X be a completely regular space. Then U(X) = C(X) if and only if X is a P-space.

Proposition 2.13 Let X be a perfectly normal or first countable space, or a locally compact space. Then $U(X) \neq C(X)$ if and only if X is non-discrete.

From Proposition 2.12, Theorem 2.11 and Remark 1 we obtain the following Corollary.

Corollary 2.14 Let X be a nonempty completely regular space. Then $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) = \emptyset$ if and only if X is not a P-space.

Moreover, using Proposition 2.13 and Theorem 2.11 we conclude that

Corollary 2.15 Let X be a non-discrete perfectly normal or first countable space, or a locally compact space. Then $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) = \emptyset$.

Finally, observe that we can extend the lists (see e.g. [11, Theorem 1]) of equivalent conditions for X to be a *P*-space as follows:

Corollary 2.16 Let X be a nonempty completely regular space. Then X is a P-space if and only if $\mathcal{M}_{\min}(\mathcal{U}lsc(X)) \neq \emptyset$.

3 Upper semicontinuous functions with a closed graph

First, we recall some basic property of the functions with a closed graph [3, Proposition 2]

Proposition 3.1 Let X be a topological space. Let α be a real number. If $f \in U(X)$, then $\alpha \cdot f \in U(X)$.

From above and the definitions of the classes lsc(X) and usc(X) we obtain:

Proposition 3.2 Let X be a topological space. For each function $f \in \mathbb{R}^X$ we have $f \in Uusc(X)$ if and only if $(-f) \in Ulsc(X)$.

Now, we will characterize the following maximal classes for the family of upper semicontinuous functions with a closed graph: the maximal additive class, the maximal multiplicative class and the maximal classes with respect to maximum and minimum.

Theorem 3.3 Let X be a topological space. Then $\mathcal{M}_a(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$.

Proof Observe that, by Proposition 3.2, $f \in \mathcal{M}_a(\mathcal{U}usc(X))$ if and only if $-f \in \mathcal{M}_a(\mathcal{U}lsc(X))$. Using Theorem 2.5 and again Proposition 3.2, we conclude that $\mathcal{M}_a(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$.

The next theorem follows from Proposition 3.2.

Theorem 3.4 Let X be a topological space. Then $\mathcal{M}_m(\mathcal{U}usc(X)) = \mathcal{M}_m(\mathcal{U}lsc(X))$.

Theorem 3.5 Let X be a topological space. Then $\mathcal{M}_{\min}(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$.

Proof Since $-\min\{f, g\} = \max\{-f, -g\}$ for each functions $f, g \in \mathbb{R}^X$, by Proposition 3.2, we conclude that $f \in \mathcal{M}_{\min}(\mathcal{U}usc(X))$ if and only if $-f \in \mathcal{M}_{\max}(\mathcal{U}lsc(X))$. Now, using Theorem 2.10 and again Proposition 3.2, we obtain that $\mathcal{M}_{\min}(\mathcal{U}usc(X)) = \mathcal{U}usc(X)$. \Box

It is easy to see that using Theorem 2.11, Remark 1 and the equivalence $f \in \mathcal{M}_{\max}(\mathcal{U}usc(X))$ if and only if $-f \in \mathcal{M}_{\min}(\mathcal{U}lsc(X))$, we conclude that:

Theorem 3.6 Let X be a topological space. Then $\mathcal{M}_{\max}(\mathcal{U}usc(X)) = \mathcal{M}_{\min}(\mathcal{U}lsc(X))$.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Borsík, J.: Local characterization of functions with closed graphs. Demonstr. Math. 29(3), 643–650 (1996)
- Borsík, J.: Sums, differences, products and quotients of closed graph functions. Tatra Mt. Math. Publ. 24, 117–123 (2002)
- Doboš, J.: On the set of points o discontinuity for functions with closed graphs. Časopis Pěst. Mat. 110, 60–68 (1985)
- 4. Gillman, L., Jerison, M.: Rings of continuous functions. Springer, Berlin (1976)
- 5. Kostyrko, P.: A note on the functions with closed graphs. Časopis Pěst. Mat. 94, 202–205 (1969)
- 6. Long, P.E., Hendrix, M.D.: Properties of c-continuous functions. Yokohama Math. J. 22, 119–123 (1974)
- Menkyna, R.: The maximal additive and multiplikative families for functions with closed graph. Acta Math. Univ. Comen. 52(53), 149–153 (1987)
- Sieg, W.: Maximal classes for the family of quasi-continuous functions with closed graph. Demonstr. Math. 42(1), 41–45 (2009)
- Szczuka, P.: Maximal classes for lower and upper semicontinuous strong Świątkowski functions. Demonstr. Math. 47(1), 48–55 (2014)
- Szczuka, P.: The maximal class with respect to maximums for the family of upper semicontinuous strong Świątkowski functions. Math. Slovaca 64(5), 1153–1164 (2014)
- Wójtowicz, M., Sieg, W.: P-spaces and an unconditional closed graph theorem. RACSAM 104, 13–18 (2010)