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Abstract In this paper we characterize the following maximal classes for families of lower
and upper semicontinuous functions with a closed graph: the maximal additive class, the
maximal multiplicative class and the maximal classes with respect to maximum and mini-
mum.

Keywords Functions with a closed graph · Lower semicontinuous functions · Upper
semicontinuous functions · Sum of functions

Mathematics Subject Classification Primary 26A15; Secondary 54C08

1 Introduction

The lettersR,Q andN denote the real line, the set of rationals and the set of positive integers,
respectively. The family of all functions from a set X into Y is denoted by Y X . For each
set A ⊂ X its characteristic function is denoted by χA. In particular, χ∅ stands for the zero
constant function.

Let X be a topological space. The symbol Xd denotes the set of all accumulation points
of X . For each set A ⊂ X the symbols int A and cl A denote the interior and the closure
of A, respectively. The spaces R and X × R are considered with their standard topologies.
We say that a function f : X → R has a closed graph, if the graph of f , i.e., the set
{(x, f (x)) : x ∈ X} is a closed subset of the product X × R. We say that a function
f : X → R is lower (upper) semicontinuous at a point x ∈ X , if for each ε > 0 there is an
open neighborhood U of x such that f (z) > f (x) − ε ( f (z) < f (x) + ε, respectively) for
each z ∈ U . If f : X → R is lower (upper) semicontinuous at each point x ∈ X , then we
say that the function f is lower (upper, respectively) semicontinuous. Let C onst(X), C(X),
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U(X), lsc(X), usc(X) denote the class of all real-valued functions on X that are constant,
continuous, have a closed graph, are lower and upper semicontinuous, respectively.Obviously
C(X) ⊂ U(X) (see also e.g. [5]) andC(X) = lsc(X)∩usc(X). ForF(X) andG(X)nonempty
subsets of RX the symbol FG(X) denotes the class F(X)∩G(X). Further denote by F+(X)

the family of all nonnegative functions from F(X). Let f ∈ R
X . The symbol G( f ) denotes

the graph of f and the symbols C( f ) and D( f ) denote the sets of points of continuity and
discontinuity of f , respectively. For each y ∈ R let [ f = y] = {

x ∈ X : f (x) = y
}
.

Similarly we define the symbols [ f > y], [ f < y].
If F ⊂ R

X is a family of functions, denote by

F + F df= {
f ∈ R

X : f = g + h for some g, h ∈ F}
,

Ma(F)
df= {

f ∈ R
X : (∀g∈F

)
f + g ∈ F}

,

Mm(F)
df= {

f ∈ R
X : (∀g∈F

)
f · g ∈ F}

,

Mmax(F)
df= {

f ∈ R
X : (∀g∈F

)
max( f, g) ∈ F}

,

Mmin(F)
df= {

f ∈ R
X : (∀g∈F

)
min( f, g) ∈ F}

.

The above classes Ma(F), Mm(F), Mmax(F) and Mmin(F) are called the maximal
additive class for F , the maximal multiplicative class for F , the maximal class with respect
to maximum and minimum for F , respectively.

In 1987Menkyna [7] characterized the maximal additive andmultiplicative classes for the
family of functions with a closed graph. He proved thatMa(U(X)) = C(X) for a topological
space X [7, Theorem 1] and Mm(U(X)) = { f ∈ C(X) : [ f = 0] is an open set} for a
locally compact normal topological space X [7, Theorem 2]. Let Q(X) denote the family
of all quasi-continuous functions from a topological space X to R. Recall that f ∈ Q(X) if
and only if for each x ∈ X , ε > 0 and for each neighbourhood U of x there is a nonempty
open set V ⊂ U such that | f (x) − f (y)| < ε for each y ∈ V . In 2008 Sieg [8] considered
real functions defined on R and showed that Ma(QU(R)) = C(R), Mm(QU(R)) = { f ∈
C(R) : f = χ∅ or f (x) �= 0 for all x ∈ R} and Mmax(QU(R)) = Mmin(QU(R)) = ∅. In
2014 Szczuka (see [9,10]) characterized the following maximal classes for lower and upper
semicontinuous strong Świa̧tkowski functions and lower and upper semicontinuous extra
strong Świa̧tkowski functions: the maximal additive class, the maximal multiplicative class
and the maximal classes with respect to maximum. She proved, among others, that if F
denotes the family of lower semicontinuous strong Świa̧tkowski real functions defined on
R, then Ma(F) = C onst [9, Theorems 3.1], Mm(F) = C onst+ [9, Theorem 3.2] and
Mmax(F) = C onst [9, Theorem 3.3].

In this paper we deal with the families of lower and upper semicontinuous functions with
a closed graph. We obtain the following results:

• Ma(Ulsc(X)) = Ulsc(X), where X is a topological space (Theorem 2.5),
• Ma(Uusc(X)) = Uusc(X), where X is a topological space (Theorem 3.3),
• Mm(Ulsc(X)) = { f ∈ C(X) : [ f = 0] is an open set and f (x) ≥ 0 for all x ∈ X} =

Mm(Uusc(X)), where X is a perfectly normal topological space such that X = Xd

(Theorems 2.7, 3.4),
• Mmax(Ulsc(X)) = Ulsc(X), where X is a topological space (Theorem 2.10),
• Mmin(Uusc(X)) = Uusc(X), where X is a topological space (Theorem 3.5),
• Mmin(Ulsc(X)) = Mmax(Uusc(X)) = ∅, where X is a perfectly normal topological

space such that Xd �= ∅ (Corollary 2.15, Theorems 3.6).
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2 Lower semicontinuous functions with a closed graph

We start with a following proposition.

Proposition 2.1 Let X be a topological space. A function f : X → R has the closed graph
if and only if for each x ∈ X and for each m ∈ N there is a neighbourhood V of x such that
f (z) ∈ (−∞,−m) ∪ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) for each z ∈ V .

Proof The implication (⇐) we can find in [2] (see p. 118, lines 11–14). The implication (⇒)
immediately follows from [6] or [1, Proposition 1]: if f ∈ U(X), then for each x ∈ X and
each neighborhood U of f (x) such that Y\U is compact there is an neighborhood V of x
such that f (V ) ⊂ U . Now, it is sufficient to take U = (−∞,−m) ∪ ( f (x) − 1/m, f (x) +
1/m) ∪ (m,∞). Observe that, the equivalence of this proposition also immediately follows
from [1, Proposition 2]. ��
From above and the definitions of the class lsc we obtain:

Lemma 2.2 Let X be a topological space. A function f : X → R is lower semicontinuous
function with a closed graph if and only if for each x ∈ X and for each m ∈ N there is a
neighbourhood V of x such that f (z) ∈ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) for each
z ∈ V .

Proof First, assume that for each x ∈ X and for each m ∈ N there is a neighbourhood V
of x such that f (z) ∈ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) for each z ∈ V . Then, by
Proposition 2.1, f ∈ U(X). Now, we will show that f ∈ lsc(X). Let x ∈ X and ε > 0.
We choose m ∈ N such that m ≥ max{ 1

ε
, f (x) − ε}. There is a neighbourhood V of x such

that f (z) ∈ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) ⊂ ( f (x) − ε,∞) for each z ∈ V and
consequently f ∈ lsc(X).

Now, let f ∈ Ulsc(X). Fix x ∈ X andm ∈ N. Since f ∈ lsc(X), there is a neighbourhood
V1 of x such that f (z) ∈ ( f (x) − 1/m,∞) for each z ∈ V1. We consider two cases.

First, assume that f (x) ≥ 0. Since f ∈ U(X), there is a neighbourhood V2 of x such
that f (z) ∈ (−∞,−m) ∪ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) for each z ∈ V2 (see
Proposition 2.1). Let V = V1∩V2 and let z ∈ V . Then f (z) ∈ ( f (x)−1/m, f (x)+1/m)∪
(m,∞).

Now, assume that f (x) < 0. We choose k ∈ N such that k ≥ max{m,− f (x) + 1
m }.

Since f ∈ U(X), there is a neighbourhood V2 of x such that f (z) ∈ (−∞,−k) ∪ ( f (x) −
1/k, f (x) + 1/k) ∪ (k,∞) for each z ∈ V2. Let V = V1 ∩ V2 and let z ∈ V . Since k ≥ m,
−k ≤ f (x) − 1

m and 1
k ≤ 1

m , we have f (z) ∈ (
( f (x) − 1/k, f (x) + 1/k) ∪ (k,∞)

) ⊂(
( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞)

)
. This completes the proof. ��

The next lemma follows from Proposition 2.1 and Lemma 2.2.

Lemma 2.3 Let X be a topological space. Then U+(X) ⊂ Ulsc(X).

Now, we will characterize the class of the sums of lower semicontinuous functions with
a closed graph.

Lemma 2.4 Let X be a topological space. Then Ulsc(X) + Ulsc(X) = Ulsc(X).

Proof Let f, g ∈ Ulsc(X). Fix x ∈ X and m ∈ N. Let k ∈ N be such that 1/k < 1/(2m +
| f (x)| + |g(x)|). By Lemma 2.2, there exists a neighbourhood V of x such that f (z) ∈
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( f (x)−1/k, f (x)+1/k)∪ (k,∞) and g(z) ∈ (g(x)−1/k, g(x)+1/k)∪ (k,∞) for each
z ∈ V . Let z ∈ V . We consider four cases.

If f (z) > k and g(z) > k, then evidently ( f + g)(z) > m.
If f (z) > k and g(z) ∈ (g(x) − 1/k, g(x) + 1/k), then

( f + g)(z) > k + g(x) − 1/k > 2m + | f (x)| + |g(x)| + g(x) − 1/k > m.

Similarly, g(z) > k and f (z) ∈ ( f (x) − 1/k, f (x) + 1/k), implies ( f + g)(z) > m.
Now, let f (z) ∈ ( f (x) − 1/k, f (x) + 1/k) and g(z) ∈ (g(x) − 1/k, g(x) + 1/k). Then,

we have

|( f + g)(z) − ( f + g)(x)| ≤ | f (z) − f (x)| + |g(z) − g(x)| < 2/k < 1/m.

It follows that f + g ∈ Ulsc(X). ��
Theorem 2.5 Let X be a topological space. Then Ma(Ulsc(X)) = Ulsc(X).

Proof Since χ∅ ∈ Ulsc(X), we conclude that Ma(Ulsc(X)) ⊂ Ulsc(X). The inclusion
Ulsc(X) ⊂ Ma(Ulsc(X)) follows from Lemma 2.4. ��

Now, recall the following lemma [7, Lemma 2], which will be applied in this paper.

Proposition 2.6 Let X be a topological space and let f ∈ C(X). Then the function g : X →
R defined by the formula

g(x) =
{

1
f (x) , if x ∈ [f �= 0],
0, if x ∈ [f = 0].

has the closed graph.

Theorem 2.7 Let X be a normal topological space such that each singleton is Gδ-set. Then

Mm(Ulsc(X)) = { f ∈ C(X) : [ f = 0] is an open set and [ f < 0]d = ∅}.
Proof We will prove this theorem in four parts. First, we will show that Mm(Ulsc(X)) ⊂
C(X). Let f ∈ Mm(Ulsc(X)). Since χR,−χR ∈ Ulsc(X), we have f ∈ lsc(X) and
− f ∈ lsc(X). Consequently f ∈ lsc(X) ∩ usc(X) = C(X).

Now, we assume that the function f ∈ C(X) and the set [ f = 0] is not open. We will
show that f /∈ Mm(Ulsc(X)) (The proof of this part is similar to the second part of the proof
of [7, Theorem 2]). Define the function g : X → R by the formula

g(x) =
{

1
| f (x)| , if x ∈ [f �= 0],
0, if x ∈ [f = 0].

By Proposition 2.6 the function g has the closed graph. Moreover g is non-negative function
and consequently, by Lemma 2.3, g ∈ Ulsc(X). Now, we will show that f · g /∈ Ulsc(X).

Since the set [ f = 0] is not open, there is x0 ∈ [ f = 0] such that for each open
neighbourhood V of x0 there is xV ∈ V ∩ [ f �= 0]. Notice that ( f · g)(xV ) ∈ {−1, 1} for
each neighbourhood V of x0 and ( f · g)(x0) = 0. By Proposition 2.1, f · g /∈ U(X).

In the third part of the proof, suppose that f ∈ C(X), the set [ f = 0] is open and
[ f < 0]d �= ∅. We will prove that f /∈ Mm(Ulsc(X)). Let x0 ∈ [ f < 0]d . Then there is a
net (xγ )γ∈� of elements of X such that xγ → x0, xγ �= x0 and f (xγ ) < 0 for every γ ∈ �.
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Notice that, since f ∈ C(X) and the set [ f = 0] is open, we have f (x0) < 0. By Urysohn
Lemma there is a continuous function h : X → [0, 1] such that [h = 0] = {x0}.

Define the function g : X → R by the formula

g(x) =
{

1
h(x) , if x �= x0,

0, if x = x0.

Observe that, by Proposition 2.6 and Lemma 2.3, g ∈ Ulsc(X). Moreover f · g /∈ lsc(X),
because the net (( f · g)(xγ ))γ∈� diverges to −∞ (recall that f (xγ ) → f (x0) < 0).

In the last part suppose that f ∈ C(X), the set [ f = 0] is open, [ f < 0]d = ∅ and
g ∈ Ulsc(X). Then, by [7, Theorem 2], ( f · g) ∈ U(X) (see also the third part of the proof
of [7, Theorem 2]). It is enough to show that ( f · g) ∈ lsc(X). Let x0 ∈ X . If f (x0) ≤ 0,
then the function f · g is continuous at x0 and consequently f · g is a lower semicontinuous
at this point. Indeed, if f (x0) = 0, then by the assumption [ f = 0] = int[ f = 0], we have
x0 ∈ int[ f = 0] ⊂ int[ f · g = 0] and if f (x0) < 0, then x0 is a isolated point of X . Finally,
assume that f (x0) > 0. Since f ∈ C(X), there is an open neighborhood U of x0 such that
U ⊂ [ f > 0]. Since g ∈ lsc(X), f is continuous and positive function on U , the function
f · g is a lower semicontinuous at x0. The proof is complete. ��
It is easy to see that from above for X = R we have the following corollary.

Corollary 2.8 Mm(Ulsc(R)) = { f ∈ C(R) : f = χ∅ or f (x) > 0 for all x ∈ R}.
Lemma 2.9 Let X be a topological space and let f, g ∈ Ulsc(X). Then the real function
h = max{ f, g} defined on X is a lower semicontinuous function with a closed graph.

Proof Let f, g ∈ Ulsc(X). We will use Lemma 2.2. Fix x ∈ X and m ∈ N. Then there
exists a neighbourhood V of x such that f (z) ∈ ( f (x) − 1/m, f (x) + 1/m) ∪ (m,∞) and
g(z) ∈ (g(x) − 1/m, g(x) + 1/m) ∪ (m,∞) for each z ∈ V . We assume that f (x) ≥ g(x)
(The case f (x) < g(x) is analogous). Then h(x) = f (x) and it is easy to see that h(z) ∈
(h(x) − 1/m, h(x) + 1/m) ∪ (m,∞) for each z ∈ V . So, h ∈ Ulsc(X). ��
Theorem 2.10 Let X be a topological space. Then Mmax(Ulsc(X)) = Ulsc(X).

Proof The inclusionUlsc(X) ⊂ Mmax(Ulsc(X)) follows fromLemma 2.9. So, wewill only
prove thatMmax(Ulsc(X)) ⊂ Ulsc(X). Let f : X → Rbe a function such that f /∈ Ulsc(X).
We choose x0 ∈ X andm ∈ N, such thatm ≥ f (x0)+ 1

m and for each open neighborhood V
of x0 there is x ∈ V such that f (x) ≤ m and f (x) /∈ ( f (x0)− 1

m , f (x0)+ 1
m ). We will show

that f /∈ Mmax(Ulsc(X)). Let c = f (x0) − 1
m . Define the function g : X → R by g

df= c.
Clearly g ∈ Ulsc(X). Denote h = max{ f, g}. We will prove that h /∈ Ulsc(X). Notice that
h(x0) = f (x0). Observe that, for each open neighborhood V of x0 there is xV ∈ V such that
f (xV ) ∈ (−∞, c]∪[ f (x0)+ 1

m ,m] and consequently h(xV ) ∈ {h(x0)− 1
m }∪[h(x0)+ 1

m ,m].
By Proposition 2.1, h /∈ U(X). This completes the proof. ��
Theorem 2.11 Let X bea topological space such thatU(X) �= C(X). ThenMmin(Ulsc(X)) =
∅.
Proof Let f ∈ R

X . We will show that there is a function g ∈ Ulsc(X) such that the function
h = min{ f, g} /∈ Ulsc(X).

Let g1 : X → R be a function with a closed graph and let x0 ∈ D(g1). Put g2 = |g1|.
Then g2 ∈ Ulsc and there is a net (xγ )γ∈� of elements of X which converges to the point x0
and a net (g2(xγ ))γ∈� diverges to ∞. We consider two cases.
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If x0 ∈ C( f ), we define the function g : X → R by g(x)
df= g2(x) − g2(x0) + f (x0) − 1.

It is easy to see that g ∈ Ulsc(X). Let h = min{ f, g}. Then h(x0) = g(x0) = f (x0) − 1
and there is γ0 ∈ � such that h(xγ ) = f (xγ ) for each γ > γ0. Consequently (x0, f (x0)) ∈
clG(h)\G(h) and h /∈ U(X).

Now, let x0 ∈ D( f ). There is ε > 0 such that for each neighbourhood V of x0 there
is z ∈ V such that f (z) /∈ ( f (x0) − ε, f (x0) + ε). Define the function g : X → R by

g(x)
df= f (x0) + ε. Let h = min{ f, g}. Then h(x0) = f (x0) and for each neighbourhood V

of x0 there is z ∈ V such that h(z) ∈ (−∞, h(x0) − ε] ∪ {h(x0) + ε}. By Proposition 2.2,
h /∈ Ulsc(X) ��

It is easy to see that

Remark 1 Let X be a topological space such thatU(X) = C(X). ThenMmin(Ulsc(X)) = C.

Now, we recall the definition of a P-space [4, pp. 62–63] and two propositions given by
Wójtowicz and Sieg [11, Theorem 1 and Corollary 1].

Definition 1 We say that a completely regular (Tychonoff) space X is a P-space if every
Gδ-subset (Fσ -subset) of X is open (closed); equivalently, every co-zero subset of X is closed.

Proposition 2.12 Let X be a completely regular space. Then U(X) = C(X) if and only if X
is a P-space.

Proposition 2.13 Let X be a perfectly normal or first countable space, or a locally compact
space. Then U(X) �= C(X) if and only if X is non-discrete.

From Proposition 2.12, Theorem 2.11 and Remark 1 we obtain the following Corollary.

Corollary 2.14 Let X be a nonempty completely regular space. ThenMmin(Ulsc(X)) = ∅
if and only if X is not a P-space.

Moreover, using Proposition 2.13 and Theorem 2.11 we conclude that

Corollary 2.15 Let X be a non-discrete perfectly normal or first countable space, or a locally
compact space. Then Mmin(Ulsc(X)) = ∅.

Finally, observe that we can extend the lists (see e.g. [11, Theorem 1]) of equivalent
conditions for X to be a P-space as follows:

Corollary 2.16 Let X be a nonempty completely regular space. Then X is a P-space if and
only if Mmin(Ulsc(X)) �= ∅.

3 Upper semicontinuous functions with a closed graph

First, we recall some basic property of the functions with a closed graph [3, Proposition 2]

Proposition 3.1 Let X be a topological space. Let α be a real number. If f ∈ U(X), then
α · f ∈ U(X).

From above and the definitions of the classes lsc(X) and usc(X) we obtain:
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Proposition 3.2 Let X be a topological space. For each function f ∈ R
X we have f ∈

Uusc(X) if and only if (− f ) ∈ Ulsc(X).

Now, we will characterize the following maximal classes for the family of upper semicon-
tinuous functions with a closed graph: the maximal additive class, the maximal multiplicative
class and the maximal classes with respect to maximum and minimum.

Theorem 3.3 Let X be a topological space. Then Ma(Uusc(X)) = Uusc(X).

Proof Observe that, by Proposition 3.2, f ∈ Ma(Uusc(X)) if and only if
− f ∈ Ma(Ulsc(X)). Using Theorem 2.5 and again Proposition 3.2, we conclude that
Ma(Uusc(X)) = Uusc(X). ��

The next theorem follows from Proposition 3.2.

Theorem 3.4 Let X be a topological space. Then Mm(Uusc(X)) = Mm(Ulsc(X)).

Theorem 3.5 Let X be a topological space. Then Mmin(Uusc(X)) = Uusc(X).

Proof Since−min{ f, g} = max{− f,−g} for each functions f, g ∈ R
X , by Proposition 3.2,

we conclude that f ∈ Mmin(Uusc(X)) if and only if − f ∈ Mmax(Ulsc(X)). Now, using
Theorem 2.10 and again Proposition 3.2, we obtain that Mmin(Uusc(X)) = Uusc(X). ��

It is easy to see that using Theorem 2.11, Remark 1 and the equivalence f ∈
Mmax(Uusc(X)) if and only if − f ∈ Mmin(Ulsc(X)), we conclude that:

Theorem 3.6 Let X be a topological space. Then Mmax(Uusc(X)) = Mmin(Ulsc(X)).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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Świa̧tkowski functions. Math. Slovaca 64(5), 1153–1164 (2014)
11. Wójtowicz, M., Sieg, W.: P-spaces and an unconditional closed graph theorem. RACSAM 104, 13–18

(2010)

http://creativecommons.org/licenses/by/4.0/

	Maximal classes for families of lower and upper semicontinuous functions with a closed graph
	Abstract
	1 Introduction
	2 Lower semicontinuous functions with a closed graph
	3 Upper semicontinuous functions with a closed graph
	References




