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Abstract Let Sg denote a closed non-orientable surface of genus g ≥ 3. At the beginning of
1980s E. Bujalance showed that the maximum order of a periodic self-homeomorphism of
Sg is equal to 2g or 2(g − 1) for g odd or even respectively, and this upper bound is attained
for all g ≥ 3. In this paper we enumerate, up to topological conjugation, actions on Sg of a
cyclic group ZN of order N > g − 2 with prescribed type of the quotient orbifold Sg/ZN .
We also compute, for a fixed g and N ranging between max{g, 3(g − 2)/2} and 2g, the total
numbers of different topological types of action of ZN on Sg .

Keywords Closed non-orientable surfaces · Topological classification of periodic
self-homeomorphisms · Mapping class group · Klein surfaces
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1 Introduction

By an effective action of a finite group G on a closed surface S we understand an embedding
of G into the group Homeo(S) of homeomorphisms of S. Two such actions are topologically
equivalent, or of the same topological type, if the images of G are conjugate in Homeo(S).
The topological classification of finite group actions on closed surfaces is a classical problem
going back to Nielsen [16].
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LetMg denote themoduli space of complex algebraic curves of genus g ≥ 2 and consider
its subsetMg(G) consisting of points representing curves with a finite group G of birational
automorphisms. It is intuitively plausible, and Teichmüller-Royden theory provides a more
precise justification, that Mg(G) is smaller for bigger G. In other words, a curve is better
described by its group of automorphims when this group is bigger. By the famous Hurwitz
bound its order does not exceed 84(g − 1).

Particularly interesting are the cases when a curve X is determined, up to birational
equivalence, by the topological type of the action of G, or only by its ramification data,
by which we understand the genus of the orbit space X/G and the branching indices of
the projection X → X/G, or even only by the order of G. More specifically, when |G| >

12(g−1), then by theHurwitz-Riemann formula and elementary Teichmüller theory,Mg(G)

is finite and topological and birational types of the action coincide, see [9,12,17,18]. For
example, the main discovery of Nakagawa from [15], independently proved also by Hirose
in [13] using less explicit methods which are closer to our appproach, asserts that with a few
exceptions, a complex curve of genus g ≥ 2 having an automorphism of order N ≥ 3g is
determined (up to birational equivalence) by N . The condition N ≥ 3g turns out to be quite
restrictive, as it forces N to be one of 4g +2, 4g, 3g +3 or 3g for g > 12. On the other hand,
there are infinitely many rational numbers q and r , such that for infinitely many g ≥ 2 there
is a homeomorphism of a closed orientable surface of genus g having order N = qg + r
satisfying 2(g − 1) < N < 3g. In [1] a more general situation is studied, when the order
of a cyclic group of automorphisms of a compact Riemann surface of genus g ≥ 2, or the
ramification data of the action, determine its topological type. Importance of such results
follows from their connection with topology of the singular locus of the moduli space of
complex algebraic curves, see [11].

Motivated by [1,13], in this paper we consider analogous problems for purely imaginary
real curves, which can also be seen as compact, unbordered, non-orientable surfaces with
dianalitic structure (see [5] for a definition). The study of dianalitic automorphisms of such
surfaces is equivalent to the study of their periodic self-homeomorphisms, because every
periodic homeomorphism of a surface Sg of topological genus g ≥ 3 is a dianalitic automor-
phism with respect to some dianalitic structure on Sg . Bujalance showed in [2] (see also later
paper of S. Wang [19]) that the maximal order of such automorphism of a non-orientable
surface of genus g ≥ 3 is equal to 2g or 2(g − 1) for g odd or even respectively, and this
upper bound is attained for all g ≥ 3. The case g = 3 is well understood, as the mapping
class group of S3 is isomorphic to GL2(Z) (see [8]), and the classification of conjugacy
classes of torsion elements in the latter group is known. Another interesting problem con-
cerning cyclic periodic actions on non-orientable surfaces was considered in recent paper
[3], where the authors investigated such actions which can not be extended to any bigger
group.

Throughout the whole paper we denote by S or Sg a closed (i.e. compact and without
boundary) non-orientable surface of genus g ≥ 3. In this paper we study the extent to which
the order N or the ramification data of a cyclic groupG acting on Sg determine the topological
type of the action, which is important in virtue of the connection with topological properties
of moduli spaces of purely imaginary real algebraic curves, similar as in the case of orientable
surfaces. More specifically, in Sect. 3 we investigate rigidity of topological type of cyclic
group actions of order N > g − 2 with prescribed ramification data. We consider a quite
large family of actions, where the order N has the form N = qg + r , for infinitely many
rational q and r . Furthermore, for each such pair q, r , there is an action of ZN on Sg for
infinitely many genera g. As an application, in Sect. 4 we calculate, for a fixed g and all N
between max{g, 3

2 (g − 2)} and 2g, the numbers of topological types of action on Sg of a
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cyclic group of order N . This should be seen as an analogue, for a non-orientable surface, of
the main result of [13].

2 Preliminaries

2.1 Principal definitions

Our approach is based on algebraic properties of discrete subgroups of isometries of the
hyperbolic plane H, called NEC-groups. We refer the reader to the monograph [5] for an
extensive exposition of the theory.

Suppose that a finite group G acts effectively by homeomorphisms on a closed non-
orientable surface S = Sg of genus g ≥ 3. Fix a dinanalitic structure on S, with respect to
which G acts by dianalitic automorphisms. Then S is conformally isomorphic to the orbit
space H/� for a torsion-free NEC group � isomorphic to π1(S). Such � is called non-
orientable surface group. Furthermore, G is isomorphic to the quotient�/�, for some other
NEC-group �, a subgroup of the normalizer of � in the group of all isometries of H (�
is equal to that normaliser if and only if G is the full group of dianalitic automorphisms of
S). Equivalently, there is an epimorphism θ : � → G with kernel �, usually called smooth
epimorphism to underline the fact that its kernel is torsion-free. This motivates the following
definition.

Definition 2.1 Suppose that � is an NEC group, G is a finite group, and θ : � → G is an
epimorphism. We say that θ is an NSK-map (non-orientable-surface-kernel-map) if and only
if ker θ is a non-orientable surface group.

Two effective actions of G on Sg are topologically conjugate (by a homeomorphism of Sg)
if and only if the associated NSK-maps are equivalent in the sense of the next definition (see
[4, Proposition 2.2] and its proof; the same argument applies to closed surfaces).

Definition 2.2 We say that two NSK-maps θi : �i → G, i = 1, 2, are equivalent if and only
if there exist isomorphisms φ : �1 → �2 and α : G → G such that the following diagram
is commutative.

�1
φ �� �2

G
α ��

��
θ1

G
��
θ2

(2.1)

The ramification data of G is encoded in the signature σ(�) of �, which in our case has the
form

(h;±; [m1, . . . , mr ]; {( ), k. . . , ( )}), (2.2)

where k > 0 if the sign is “+” (see [2]). The orbit space S/G = H/� has genus h and k
boundary components, and it is orientable if and only if the sign is “+”. From the signature
one can also read a presentation of � in terms of canonical generators and defining relations
as follows. The generators are:

xi for 1 ≤ i ≤ r
c j , e j for 1 ≤ j ≤ k
al , bl for 1 ≤ l ≤ h if the sign is “ + ”
dl for 1 ≤ l ≤ h if the sign is “ − ”



306 G. Gromadzki, B. Szepietowski

The defining relations are:

xmi
i = 1 for 1 ≤ i ≤ r

c2j = 1, [e j , c j ] = 1 for 1 ≤ j ≤ k
x1 · · · xr e1 · · · ek[a1, b1] · · · [ah, bh] = 1 if the sign is “ + ”
x1 · · · xr e1 · · · ekd2

1 · · · d2
h = 1 if the sign is “ − ”

Note that � is a proper NEC group, i.e. it contains orientation-reversing isometries.
Among the canonical generators, c j and dl are orientation-reversing, the remaining ones
are orientation-preserving. We denote by �+ the canonical Fuchsian subgroup of �, con-
sisting of all orientation-preserving elements of �. Finally, we have the Hurwitz–Riemann
ramification formula

g − 2 = |G|μ(σ),

where

μ(σ) = αh − 2 + k +
r∑

i=1

(
1 − 1

mi

)

is the normalized hyperbolic area of a (arbitrary) fundamental region for �. Here α = 2 if
the sign of the signature is “+” and α = 1 otherwise.

The following lemma, which is a special case of [2, Proposition 3.2], provides an effective
criterion for an NSK-map.

Lemma 2.3 Suppose that � is an NEC group with signature (2.2). A group homomorphism
θ : � → G is an NSK-map if and only if

1. θ(xi ) has order mi for 1 ≤ i ≤ r ,
2. θ(c j ) has order 2 for 1 ≤ i ≤ k,
3. θ(�+) = G.

In this paper we are interested in the case where G is a cyclic group ZN .

Definition 2.4 Suppose that σ is an NEC signature (2.2) and N is a positive integer. We say
that the pair (σ, N ) is admissible if there exists a NSK-map θ : � → ZN with σ(�) = σ .
If, furthermore, such θ is unique up to equivalence, then we say that (σ, N ) is rigid.

2.2 Automorphisms of NEC-groups vs mapping class groups

In this subsection we recall the relationship between the outer automorphism group of an
NEC-group� and the mapping class group of the orbit spaceH/�. The outer automorphism
group Out(�) is the quotient Aut(�)/Inn(�) of the group of all automorphisms of � by the
subgroup of inner automorphisms. For simplicity we assume that the signature of � has the
form

(h;−; [m1, . . . , mr ]; {−}),
where the periods mi are all different. For a discussion of the general case see [4, Section 4].

Set S = H/� and note that S is a non-orientable surface of genus h with r distinguished
points, over which the projection p : H → S is ramified. LetP denote the set of distinguished
points, U = H\p−1(P) and S0 = S\P . Then p : U → S0 is a regular covering and � is
its deck group isomorphic to π1(S0)/p∗(π1(U)). The canonical generators x1, . . . , xr and
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d1, . . . , dh of � correspond to standard generators of π1(S0) and p∗(π1(U)) is normally
generated by xmi

i for i = 1, . . . , r .
We denote by Mod(S,P) the mapping class group of S relative to P , defined as the group

of isotopy classes of homomorphism of S preserving P . The pure mapping class group is
the subgroup PMod(S,P) of Mod(S,P) consisting of the isotopy classes of homomorphism
fixing each element of P . The groups PMod(S,P) and Out(�) are isomorphic by a gener-
alisation, for non-orientable S, of [12, Theorem 1] (see [7, Section 3]). Given an element
of PMod(S,P) one can find its image in Out(�) as follows. Represent this element by a
homeomorphism f : S0 → S0 fixing some base point. Then f∗ : π1(S0) → π1(S0) preserves
p∗(π1(U)), hence it induces an automorphism of the quotient π1(S0)/p∗(π1(U)) ∼= �.

2.3 Some elementary algebra

In this paper we use additive notation for cyclic groups. For two integers a, b we denote by
(a, b) their greatest common divisor, ϕ denotes the Euler’s totient function. We will use the
following version of Chinese Remainder Theorem.

Lemma 2.5 Given integers a, b, the system of congruences
{

x ≡ a (m)

x ≡ b (n)

has a solution if and only if a ≡ b (d), where d = (m, n) and this solution is unique up to
lcm(m, n).

By abuse of language we will write a ∈ ZN = Z/NZ for a non-negative integer a < N .
Given positive integers x and m we denote by [x]m the reduction of x modulo m.

3 Topological type of actions of big order

Suppose that ZN acts on a closed non-orientable surface Sg of genus g ≥ 3. Then there is
an NEC group � and an NSK-map θ : � → ZN such that g − 2 = Nμ(σ), where σ is the
signature of �. In particular, N > g − 2 if and only if μ(σ) < 1. The next lemma follows
by inspection.

Lemma 3.1 If N > g − 2 then � has one of the following signatures:

(2;−; [m]; {−}), (0;+; [m]; {( ), ( )}), (1;−; [m]; {( )}),
(0;+; [m1, m2]; {( )}), (1;−; [m1, m2]; {−}),
(0;+; [2, p, q]; {( )}), (1;−; [2, p, q]; {−}),

where p = 2 and q arbitrary or p = 3 and q = 3, 4, 5.

Corollary 3.2 Suppose that ZN acts on a closed non-orientable surface Sg of genus g ≥ 3.
If N > g − 2 then Sg/ZN is one of the following orbifolds:

• Klein bottle with 1 cone point,
• annulus with 1 cone point,
• Möbius strip with 1 cone point,
• disc with 2 or 3 cone points,
• projective plane with 2 or 3 cone points.
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In this section we determine some rigid pairs (σ, N ) for the signatures listed in Lemma 3.1
and compute the numbers of equivalence classes of NSK-maps. The results presented here
are of three types. The first type concerns necessary and sufficient conditions for (σ, N ) to be
admissible -most of them follow from amore general result in [10], where such conditions are
given for an arbitrary NEC signature σ . The second type of results concerns automorphisms
of NEC-groups, which are related to mappings class groups of surfaces from Corollary 3.2.
Some of these results are borrowed from [4] and some are new. Finally we state, in the form
of corollaries, topological consequences of our results, which will play a key role in Sect. 4,
and we believe that they are of independent interest.

3.1 Actions with a 1-punctured Klein bottle as the quotient orbifold

In this subsection we fix � with signature (2;−; [m]; {−}). We also fix canonical generators
d1, d2 of �, satisfying single defining relation (d2

1d2
2 )m = 1.

Lemma 3.3 Let y = d1, z = d1d2. Out(�) is generated by classes of automorphisms α, β,
γ defined by

α :
{

y 	→ yz

z 	→ z
β :

{
y 	→ y−1

z 	→ z
γ :

{
y 	→ y

z 	→ z−1

Proof Recall from Sect. 2.2 that Out(�) is isomorphic to the mapping class group
Mod(S, {P}), where S = H/� is a Klein bottle with one distinguished point P ∈ S. This sur-
face is represented on Fig. 1 as a sphere with two crosscaps, which means that the interiors of
the shaded discs should be removed, and then antipodals points in each of the resulting bound-
ary components should be identified. We have an isomorphism � ∼= π1(S\{P})/〈〈xm〉〉,
where 〈〈xm〉〉 denotes the normal closure of xm = (d2

1d2
2 )m and d1, d2 are the standard

generators of π1(S\{P}) shown on Fig. 1 (right). Let us briefly describe the generators of
Mod(S, {P}) given in [14]. Consider the simple closed curve a on S shown on Fig. 1 (left).
Observe that z = d1d2 is represented by a simple loop freely homotopic to a. This curve
is two-sided, which means that its regular neighbourhood is an annulus. Cutting S along a,
twisting one of the sides by 360◦ in the direction indicated by the small arrows on the figure
and gluing back gives a self-homeomorphism of S, whose isotopy class is denoted by Ta

and called a Dehn twist along a (see [6] for a precise definition). For i = 1, 2 we denote
by Vi the isotopy class of a self-homeomorphism of S obtained by sliding the puncture P
once along the loop vi shown on Fig. 1 (middle). These mapping classes are called punc-
ture slides. Finally, we denote by Y the crosscap slide defined to be the isotopy class of a
self-homeomorphism of S obtained by sliding the left crosscap once along a (see [14] for

a

P
v1 v2 d1

d2

Fig. 1 Klein bottle with a puncture, the curve a (left), the loops of the puncture slides (middle) and the
generators of π1(S\{P}) (right)
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a precise definition). By [14, Theorem 4.9] Mod(S, {P}) is generated by {Ta, V1, V2, Y }.
Since Ta(v1) = v−1

2 up to isotopy fixing P , we have V1 = T −1
a V −1

2 Ta and the generator V1

is redundant. By computing the automorphisms of π1(S\{P}) induced by Ta , Y and V2 we
find that they represent the same elements of Out(�) as respectively α, β and γ . �

The following lemma is a particular case of Lemma 5.9 in [10] for r = 1.

Lemma 3.4 (σ, N ) is admissible if and only if either m divides N and N is odd, or 2m
divides N and N

2m is odd.

Proposition 3.5 Suppose that (σ, N ) is admissible, and let d = (k, N
k ), where k = m if N is

odd or k = 2m if N is even. Then there are exactly �ϕ(d)
2 � equivalence classes of NSK-maps

θ : � → ZN .

Proof Let y and z be the generators of � from Lemma 3.3 and suppose that θ : � → ZN

is an NSK-map. Let k denote the order of θ(z). We will see that k = m for odd N , and
k = 2m for even N . By post-composing θ with an automorphism of ZN we may assume
θ(z) = N/k. Set a = θ(y) and note that a and N/k must be coprime, because θ is an
epimorphism. Furthermore, by pre-composing θ with a power of the automorphism α from
Lemma 3.3, we may assume a < N/k, that is a ∈ Z

∗
N/k . Since 2θ(z) = θ(d2

1d2
2 ) has order

m, k = m or k = 2m. Indeed, if N is odd then k = m. If N is even then k = 2m for even
m, whereas for odd m either k = m or k = 2m. Since �+ is generated by z, yzy−1 and y2,
θ(�+) is generated by N/k and 2a. By (3) of Lemma 2.3 these elements generate ZN , and
thus N/k is odd if N is even, hence k = 2m.

Conversely, for any a ∈ Z
∗
N/k , the mapping θa : � → ZN defined as θa(z) = N/k and

θa(y) = a is an NSK-map. To finish the proof it suffices to show that for a, b ∈ Z
∗
N/k , θa

and θb are equivalent if and only if a ≡ ±b (d).
Suppose that a ≡ εb (d), where ε ∈ {1,−1} and a, b ∈ Z

∗
N/k . Let b′ be the inverse

of b modulo N/k. Then εb′a ≡ 1 (d), and by Lemma 2.5, there exists c ∈ ZN such that
c ≡ 1 (k) and c ≡ εb′a (N/k). Observe that c ∈ Z

∗
N and we have cθb(z) = N/k and

cθb(y) = εa + l N/k for some l. Then cθb = θa ◦ αεl ◦ β i , where i = 0 or i = 1 if ε = 1 or
ε = −1 respectively.

Suppose conversely, that θa and θb are equivalent, that is cθb = θa ◦φ for some c ∈ Z
∗
N and

φ ∈ Aut(�). By Lemma 3.3we have θaφ(y) = ±a+l N
k for some l ∈ Zk and θaφ(z) = ± N

k .
From the former equality we have cb = ±a (N/k) and from the latter one c = ±1 (k) and
it follows that b = ±a (d). �
Corollary 3.6 There exists an action of G = ZN on S with S/G being a Klein bottle with
a single cone point of order m if and only if m and N satisfy the conditions from Lemma
3.4, and then the number of topological types of such action is �ϕ(d)

2 �, where d is as in
Proposition 3.5. In particular, such action is unique up to topological conjugation if and only
if d ∈ {1, 3}.
3.2 Actions with 1-punctured annulus or Möbius band as the quotient orbifold

HerewefixNECgroups�1 and�2 with signatures (0;+; [m]; {( ), ( )}) and (1;−; [m]; {( )}),
denoted respectively by σ1 and σ2. We also fix canonical generators x , e, c1, c2 of �1, satis-
fying the following defining relations:

xm = c21 = c22 = 1, ec1 = c1e, xec2 = c2xe,
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and canonical generators x , d , c, of �2, satisfying the following defining relations:

xm = c2 = 1, d2xc = cd2x .

The following two lemmas are proved in [4, Lemma 4.6, Proposition 4.10 and Proposition
4.12].

Lemma 3.7 Out(�1) is isomorphic to the Klein four-group and is generated by classes of
automorphisms α, β defined by

α :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x 	→ e−1x−1e

e 	→ e−1

c1 	→ c1
c2 	→ c2

β :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x 	→ e−1xe

e 	→ (xe)−1

c1 	→ c2
c2 	→ c1

Lemma 3.8 Out(�2) is isomorphic to the Klein four-group and is generated by classes of
automorphisms γ , δ defined by

γ :

⎧
⎪⎨

⎪⎩

x 	→ x−1

d 	→ x−1d−1x

c 	→ c

δ :

⎧
⎪⎨

⎪⎩

x 	→ x

d 	→ (dx)−1

c 	→ (dx)−1c(dx)

Lemma 3.9 For i = 1, 2, (σi , N ) is admissible if and only if N is even and m divides N.

Proof The “only if” part follows immediately for Lemma 2.3. For the “if” part, assume that
2 divides N , m divides N and define θi : �i → ZN for i = 1, 2 by

θ1(x) = N

m
, θ1(e) = 1, θ(c j ) = N

2
for j = 1, 2

θ2(x) = N

m
, θ2(d) = 1 + N

2
, θ(c) = N

2

Note that �+
i is generated by conjugates of x , e and c1c2 if i = 1, and by conjugates of x

and cd if i = 2. It follows from Lemma 2.3 that θi are NSK-maps. �
Remark 3.10 Similarly as a few other signatures consider in this section, the above signature
σ2 is a special case of the one from Lemma 5.14 in [10] for r = 1. Unfortunately however,
there is an error in the statement of that lemma, and we take the opportunity to correct it
here: namely, the condition “and some of N/2, m1, . . . , mr is even” must be deleted. In the
proof, the authors failed to observe that c0d ∈ �+ at the very end of page 182. Consequently,
assertion (iv) of Theorem 6.4 in [10] also has to be modified. Its final part should read “where
α = 0 if lcm(N/N1, . . . , N/Nr ) = N , and α = 1 otherwise.”

The next lemma will be crucial for the proof of Proposition 3.12.

Lemma 3.11 Suppose that m divides N and d = (m, N/m). Let X be the subset of ZN

consisting of elements relatively prime to N/m, and let

H = {c ∈ Z
∗
N : c ≡ 1 (m)}.

Then

(a) H acts freely on X;
(b) the number of orbits is mϕ(d)

d ;
(c) a, b ∈ X belong to the same orbit if and only if a ≡ b (m).
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Proof (a) Note that a ∈ X if and only if a and N/m generate ZN . For a ∈ X and c ∈ H we
have ca ∈ X , because c N

m = N
m . To see that the action is free, suppose that ca = a for a ∈ X

and c ∈ H . Write c = 1+ km. We have that N divides a(c − 1), hence N
m divides ak. Since

N
m is relatively prime to a, it must divide k, hence c = 1.

(b) Every element of X is of the form b + k N
m for b ∈ Z

∗
N
m

and k ∈ Zm . It follows

that X has mϕ(N/m) elements. The group H is the kernel of the reduction epimorphism
Z

∗
N → Z

∗
m , hence |H | = ϕ(N )/ϕ(m). Since the action of H on X is free, the number of

orbits is mϕ(N/m)ϕ(m)
ϕ(N )

= mϕ(d)
d .

(c) If a, b ∈ X are in the same orbit, then clearly a ≡ b (m). To prove the converse, it
suffices to show that the set

Y = {b ∈ Zm : ∃a∈X b = [a]m}
has at least mϕ(d)

d elements. Fix z ∈ Z
∗
d , and choose c ∈ Z

∗
N/m such that z = [c]d , and any

b ∈ Zm such that z = [b]d . By Lemma 2.5, there is a ∈ X such that a ≡ c (N/m) and
a ≡ b (m). Since there are ϕ(d) choices for z and m/d choices for b, the assertion follows.

�
Proposition 3.12 Let i ∈ {1, 2} and suppose that (σi , N ) is admissible and d = (m, N/m).
The number of equivalence classes of NSK-maps �i → ZN is

⌈
mϕ(d)
2d

⌉
i f d �= 2 or 4 � m,

m
4 + 1 i f d = 2 and 4 | m.

Proof Let X and H be as in Lemma 3.11. For a ∈ X we denote by [a] the orbit of a with
respect to the action of H .

Case i = 1. Every NSK-map �1 → ZN is equivalent, by multiplication by an element of
Z

∗
N , to θa : �1 → ZN defined by θa(x) = N

m , θa(c j ) = N
2 for j = 1, 2, and θa(e) = a for

some a ∈ X .
For a, b ∈ X , θa is equivalent to θb if and only if cθb = θa ◦ φ for some c ∈ Z

∗
N and

φ ∈ Aut(�1). By Lemma 3.7 we may assume φ ∈ {1, α, β, αβ}. Then, after replacing c by
−c if necessary, we have c N

m = N
m and either cb = a or cb = −(a + N

m ). It follows that θa

and θb are equivalent if and only if either [b] = [a] or [b] = [−a − N
m ].

For a ∈ X we say that the orbits [a] and [−a − N
m ] are conjugate. If [a] = [−a − N

m ]
then we say that [a] is self-conjugate. Let S denote the number of self-conjugate orbits, T the
total number of orbits given in (b) of Lemma 3.11, and E the number of equivalence classes
of NSK-maps. It follows from the previous paragraph that E = (T + S)/2. Our next task is
to compute S. By (c) of Lemma 3.11, S is equal to the number of different x ∈ Zm satisfying

2x ≡ − N

m
(m) (3.1)

and such that x = [a]m for some a ∈ X . Evidently S ≤ 2. We consider three cases.

Case d > 2. Then S = 0. For suppose that x satisfies (3.1) and x = [a]m for some a ∈ X .
Then 2x ≡ 0 (d) and since a ∈ X , x is relatively prime to d , hence d divides 2 which is a
contradiction. In this case we have E = T/2 = mϕ(d)

2d .

Case d = 1. Then E = (m + S)/2. If m is even then N
m must be odd and (3.1) has no solution,

hence S = 0. If m is odd then (3.1) has unique solution and S = 1.
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Case d = 2. Then (3.1) has two solutions, namely x = [− N
2m

]
m and x = [− N

2m + m
2

]
m . Note,

however, that x = [a]m for a ∈ X if and only if x is odd. If 4 divides m then both solutions
are odd, otherwise only one of them is odd. Thus, if 4 � m then S = 1 and E = m+2

4 = �m
4 �,

while if 4 divides m then S = 2 and E = m
4 + 1.

Case i = 2. Set y = cd . Every NSK-map �2 → ZN is equivalent, by multiplication by an
element of Z

∗
N , to θa : �2 → ZN defined by θa(x) = N

m , θa(c) = N
2 and θa(d) = a for some

a ∈ X (note that θa(�+
2 ) is generated by N

m and a, hence the condition a ∈ X is equivalent
to (3) of Lemma 2.3).

For a, b ∈ X , θa is equivalent to θb if and only if cθb = θa ◦ φ for some c ∈ Z
∗
N and

φ ∈ Aut(�2). By Lemma 3.7 we may assume φ ∈ {1, γ, δ, γ δ}. Then, after replacing c by
−c if necessary, we have c N

m = N
m and either cb = a or cb = −(a + N

m ). As in the case
i = 1, the number of equivalence classes of NSK-maps �2 → ZN is equal to the number of
conjugacy classes of orbits of the action of H on X . �
Corollary 3.13 Let X be either an annulus or a Möbius strip, with a single cone point of
order m ≥ 2. There exists an action of G = ZN on S with S/G ≈ X if and only if N is even
and m divides N, and then the number of topological types of such action is

⌈
mϕ(d)
2d

⌉
if d �= 2 or 4 � m,

m
4 + 1 if d = 2 and 4 | m,

where d = (m, N/m). In particular, such action is unique up to topological conjugation if
and only if m ∈ {2, 3, 4, 6} and if m > 2 then m2|N.

3.3 Actions with a 2-punctured disc as the quotient orbifold

We fix an NEC group � with signature (0;+; [m1, m2]; {( )}) and generators x1, x2, c,
satisfying the following defining relations:

xm1
1 = xm2

2 = c2 = 1, x1x2c = cx1x2.

The following lemma is proved in [4, Proposition 4.10]

Lemma 3.14 If m1 �= m2 then Out(�) has order 2 and is generated by the class of auto-
morphism α, defined by

α :

⎧
⎪⎨

⎪⎩

x1 	→ x−1
1

x2 	→ x1x−1
2 x−1

1

c 	→ c

The next one is proved in [2, Theorem 3.5 and Corollary 3.3] and it is also particular case
of Lemma 5.16 in [10] for r = 2.

Lemma 3.15 (σ, N ) is admissible if and only if N = lcm(m1, m2) and N is even.

Proposition 3.16 Suppose that (σ, N ) is admissible, m1 �= m2 and k = (m1, m2). There
are exactly ϕ(k) equivalence classes of NSK-maps � → ZN .

Proof Every NSK-map θ : � → ZN is equivalent (by multiplication by an element of Z
∗
N )

to θa defined by θa(c) = N
2 , θa(x1) = N

m1
and θa(x2) = a N

m2
for some a ∈ Z

∗
m2

. We are
going to show that θa is equivalent to θa′ if and only if a ≡ a′ (k).
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Suppose that θa is equivalent to θa′ . Then θa = bθa′φ for some b ∈ Z
∗
N and φ ∈ Aut(�).

By Lemma 3.14, for every φ ∈ Aut(�) either φ(xi ) is conjugate to xi for i = 1, 2, or φ(xi )

is conjugate to x−1
i for i = 1, 2. It follows that θa(xi ) = b′θa′(xi ) for i = 1, 2, where b′ = b

or b′ = −b. We have b′ ≡ 1 (m1) and b′a′ ≡ a (m2), hence a′ ≡ a (k).
Conversely, suppose that a′ ≡ a (k). By Lemma 2.5, there exists unique b ∈ Z

∗
N such

that b ≡ 1 (m1) and b ≡ (a′)−1a (m2), where (a′)−1 is the inverse of a′ in Z
∗
m2

. We have
θa = bθa′ .

To finish the proof it suffices to note that for each d ∈ Z
∗
k there exists a ∈ Z

∗
m2

such
that d ≡ a (k). Hence, equivalence classes of NSK-maps � → ZN are in one to one
correspondence with elements of Z

∗
k . �

Remark 3.17 If m1 = m2 = N then there exists φ ∈ Aut(�) which swaps the conjugacy
classes of x1 and x2. Consequently, θa and θa′ are equivalent if and only if either a = a′ or
aa′ = 1. Hence, the number of equivalence classes of NSK-maps � → ZN is ϕ(N )

2 + z,
where z is the number of square roots of 1 in Z

∗
N . Note that z depends on the number of

different prime divisors of N .

Corollary 3.18 There exists an action of G = ZN on S with S/G being a disc with 2 cone
points of distinct orders m1, m2 if and only if N = lcm(m1, m2) and N is even, and then the
number of topological types of such action is ϕ(k), where k = (m1, m2). In particular, such
action is unique up to topological conjugation if and only if k ≤ 2.

3.4 Actions with a 2-punctured projective plane as the quotient orbifold

In this subsection we fix � with signature (1;−; [m1, m2]; {−}) and canonical generators
x1, x2, d of �, satisfying the following defining relations:

xm1
1 = xm2

2 = 1, x1x2d2 = 1.

Lemma 3.19 If m1 �= m2, then Out(�) is isomorphic to the Klein four-group and is gener-
ated by classes of automorphisms α, β defined by

α :

⎧
⎪⎨

⎪⎩

x1 	→ x1
x2 	→ (x2d)x−1

2 (x2d)−1

d 	→ x2d

β :

⎧
⎪⎨

⎪⎩

x1 	→ (x2d)−1x−1
1 (x2d)

x2 	→ x2
d 	→ (dx2)−1

Proof Recall from Sect. 2.2 that Out(�) is isomorphic to the pure mapping class group
PMod(S, {P1, P2}), where S = H/� a projective plane with 2 distinguished points P1, P2 ∈
S (Fig. 2). For i = 1, 2 let Vi denote the isotopy class of the self-homeomorphism of S
obtained by sliding the puncture Pi once along the loop vi on Fig. 2. By [14, Corollary 4.6]
PMod(S, {P1, P2}) is generated by V1 and V2 and is isomorphic to Z2 × Z2. By computing

Fig. 2 Projective plane with 2
punctures, the loops of the
puncture slides (left) and the
generators of π1(S\{P1, P2})
(right) v2

v1

P1 P2

x1

x2
d
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the automorphisms of π1(S\{P1, P2}) induced by V1 and V2 we find that they represent the
same elements of Out(�) as respectively β and α. �

The next lemma is a special case of [10, Lemma 5.8] for r = 2.

Lemma 3.20 (σ, N ) is admissible if and only if N = lcm(m1, m2) and N
mi

are odd for
i = 1, 2.

Proposition 3.21 Suppose that (σ, N ) is admissible, N is odd, m1 �= m2 and k = (m1, m2).

There are exactly
⌈

ϕ(k)
2

⌉
equivalence classes of NSK-maps � → ZN .

Proof Every NSK-map θ : � → ZN is equivalent (by multiplication by an element of Z
∗
N )

to θa such that θa(x1) = N
m1

and θa(x2) = a N
m2

for some a ∈ Z
∗
m2

. Since N is odd, θa(d)

is determined by the relation 2θa(d) = −(θa(x1) + θa(x2)). Similarly as in the proof of
Proposition 3.16 it can be shown that θa is equivalent to θa′ if and only if a ≡ ±a′ (k) (the
only difference is that now � admits an automorphism, e.g. α from Lemma 3.19, such that
α(x1) and α(x2) are conjugate respectively to x1 and x−1

2 ). If k > 1, then it is impossible

that a ≡ −a (k) for a ∈ Z
∗
m2

, because k is odd. Hence, there are ϕ(k)
2 equivalence classes of

NSK-maps if k > 1, and one class if k = 1. �

Proposition 3.22 Suppose that (σ, N ) is admissible, N is even, m1 �= m2 and k = (m1, m2).
There are exactly ϕ(k) equivalence classes of NSK-maps � → ZN .

Proof Let θ : � → ZN be a NSK-map. After multiplication by an element of Z
∗
N we may

assume that θ(x1) = N
m1

and θ(x2) = a N
m2

for some a ∈ Z
∗
m2

. We have 2θ(d) + θ(x1) +
θ(x2) = 0, and since N is even, θ(d) is determined by θ(x1) and θ(x2) only modulo N

2 .
Suppose that θ ′ : � → ZN is another NSK-map, such that θ ′(x1) = N

m1
and θ ′(x2) = a′ N

m2

for some a′ ∈ Z
∗
m2

. We claim that θ and θ ′ are equivalent if and only if either

1. a ≡ a′ (k) and θ ′(d) = bθ(d), where b is the unique element ofZ
∗
N satisfying b ≡ 1 (m1)

and ba ≡ a′ (m2), or
2. a ≡ −a′ (k) and θ ′(d) = b(θ(d)+θ(x1)), where b is the unique element ofZ

∗
N satisfying

b ≡ −1 (m1) and ba ≡ a′ (m2).

To prove the claim we note θ and θ ′ are equivalent if and only if θ ′ = bθφ for some b ∈ Z
∗
N

and φ ∈ Aut(�). By Lemma 3.19 we may suppose that φ ∈ {1, α, β, αβ}. If φ = 1 or
φ = αβ, then after replacing b by −b in the latter case, we have θ ′(xi ) = bθ(xi ) for
i = 1, 2 and θ ′(d) = bθ(d). Thus b satisfies b ≡ 1 (m1) and ba ≡ a′ (m2). By Lemma
2.5, such (unique) b exists if and only if a′a−1 ≡ 1 (k) which is equivalent to a ≡ a′ (k).
Similarly, if φ = β or φ = α, then after replacing b by −b in the latter case, we have
θ ′(x1) = −bθ(x1), θ ′(x2) = bθ(x2) and θ ′(d) = b(θ(d) + θ(x1)). Such (unique) b exists if
and only if a ≡ −a′ (k). This completes the proof of the claim.

Suppose k > 2. It follows from the previous paragraph that there is a surjection ρ from
the set of equivalence classes of NSK-maps onto Z

∗
k/{−1, 1}, defined by ρ([θ ]) = [[a]k],

where θ is as above, [θ ] is its equivalence class. We note that ρ is 2-to-1. Indeed, take θ and
θ ′ as above and suppose that they are not equivalent, but ρ[θ ] = ρ[θ ′]. Then either
(1’) a ≡ a′ (k) and θ ′(d) = bθ(d) + N

2 , where b is as in (1) above, or
(2’) a ≡ −a′ (k) and θ ′(d) = b(θ(d) + θ(x1)) + N

2 , where b is as in (2) above.
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In case (1′), θ ′ is equivalent (by multiplication by b−1) to θ1 defined by θ1(x1) = N
m1

,

θ1(x2) = a N
m2

, θ1(d) = θ(d) + N
2 . In case (2′) θ ′ is equivalent (by multiplication by −b−1)

to θ2 defined by θ2(x1) = N
m1

, θ2(x2) = −a N
m2

, θ2(d) = −θ(d) − N
m1

+ N
2 . Observe that

θ1 and θ2 are equivalent [by (2) with b = −1], hence they represent the unique class [θ1],
such that [θ1] �= [θ ] and ρ[θ1] = ρ[θ ]. It follows that the number of equivalence classes of
NSK-maps � → ZN is 2

∣∣Z∗
k/{−1, 1}∣∣ = ϕ(k).

Suppose k = 2. By (1) every NSKmap is equivalent to θ : � → ZN such that θ(x1) = N
m1

and θ(x2) = N
m2

. Fix such θ and define θ ′ by θ ′(xi ) = θ(xi ) for i = 1, 2 and θ ′(d) =
θ(d)+ N

2 .Wehave to show that θ and θ ′ are equivalent. Let b be the unique element ofZ
∗
N such

that b ≡ −1 (m1) and b ≡ 1 (m2). By (2) it suffices to show that θ ′(d) = b(θ(d) + θ(x1)).
We have

2bθ(d) = −b(θ(x1) + θ(x2)) = θ(x1) − θ(x2) = 2(θ(x1) + θ(d))

Either bθ(d) = θ(d) + θ(x1) or bθ(d) = θ(d) + θ(x1) + N
2 . The former equality is not

possible, because θ(x1) = N
m1

is odd (by Lemma 3.20) and θ(d)(b − 1) is even. Hence

b(θ(d) + θ(x1)) = bθ(d) − θ(x1) = θ(d) + N

2
= θ ′(d)

It follows that all NSK-maps � → ZN are equivalent. �
Corollary 3.23 There exists an action of G = ZN on S with S/G being a projective plane
with 2 cone points of distinct orders m1, m2 if and only if m1, m2 and N satisfy the conditions
from Lemma 3.20, and then the number of topological types of such action is

⌈
ϕ(k)
2

⌉
i f 2 � N ,

ϕ(k) i f 2 | N ,

where k = (m1, m2). In particular, such action is unique up to topological conjugation if
and only if k ≤ 3.

3.5 Actions with 3-punctured disc or projective plane as the quotient orbifold

Here we assume that p ≤ q and 1
p + 1

q > 1
2 , which means that either p = 2 or (p, q) ∈

{(3, 3), (3, 4), (3, 5)}. We fix NEC groups �1 and �2 with signatures (0;+; [2, p, q]; {( )})
and (1;−; [2, p, q]; {−}), denoted respectively byσ1 andσ2.We alsofix canonical generators
x1, x2, x3, c of �1, satisfying the following defining relations:

x21 = x p
2 = xq

3 = c2 = 1, x1x2x3c = cx1x2x3,

and canonical generators x1, x2, x3, d , of �2, satisfying the following defining relations:

x21 = x p
2 = xq

3 = 1, x1x2x3d2 = 1.

The next lemma follows immediately form Lemma 2.3.

Lemma 3.24 (σ1, N ) is admissible if and only if N = lcm(2, p, q).

Proposition 3.25 Suppose that (σ1, N ) is admissible. If (p, q) �= (3, 3) then (σ1, N ) is rigid,
whereas for (p, q) = (3, 3) there are 2 equivalence classes of NSK-maps �1 → Z6.
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Proof Suppose that θ : �1 → ZN is an NSK-map.We have θ(x1) = θ(c) = N
2 , θ(x2) = k N

p

for some k ∈ Z
∗
p and θ(x3) = l N

q for some l ∈ Z
∗
q .

If p = 2 then θ(x2) = N
2 , and by post-composing θ with an automorphism of ZN wemay

assume θ(x3) = N
q . If (p, q) ∈ {(3, 4), (3, 5)}, then by using Chinese Remainder Theorem,

we can find c ∈ Z
∗
N such that cθ(x2) = N

p and cθ(x3) = N
q . Finally if (p, q) = (3, 3) and

N = 6, then by post-composing θ with an automorphism of Z6 we may assume θ(x2) = 2.
There are two possibilities for θ(x3): 2 and 4, leading to non-equivalent NSK-maps (for one
of them we have θ(x2) = θ(x3), whereas for the other one θ(x2) �= θ(x3)). �
Corollary 3.26 Let 1

p + 1
q > 1

2 . There exists an action of G = ZN on S with S/G being a
disc with 3 cone points of orders 2, p, q if and only if N = lcm(2, p, q), and such action is
unique up to topological conjugation if (p, q) �= (3, 3), whereas for (p, q) = (3, 3) there
are two topological types of such action.

Lemma 3.27 (σ2, N ) is admissible if and only if p = 2, q is odd and N = 2q.

Proof Suppose that θ : �2 → ZN is an NSK-map. Since �+ is generated by conjugates of
xi , condition (3) of Lemma 2.3 implies N = lcm(2, p, q). As in the proof of Proposition 3.25,
we may assume that θ(x1) = N

2 , θ(x2) = N
p , θ(x3) = N

q [or θ(x3) = 4 if (p, q) = (3, 3)].
Set z = θ(d) and note that it has to satisfy the equation

θ(x1) + θ(x2) + θ(x3) + 2z = 0

It is easy to check that such z exists if and only if p = 2 and q is odd. �
Proposition 3.28 If (σ2, N ) is admissible then it is rigid.

Proof By the proof of Lemma 3.27, any NSK-map �2 → ZN is equivalent to one of θi

defined for i = 1, 2 by θi (x1) = θi (x2) = q , θi (x3) = 2 and θ1(d) = −1, θ2(d) = q − 1.
These are equivalent, as θ1 = θ2 ◦ α, where α is the following automorphism of �2.

α :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 	→ (x2x3d)−1d−1(x2x3d)

x2 	→ x2
x3 	→ x3
d 	→ (dx2x3)−1

�
Corollary 3.29 Let 1

p + 1
q > 1

2 . There exists an action of G = ZN on S with S/G being
a projective plane with 3 cone points of orders 2, p, q if and only if p, q and N satisfy the
conditions from Lemma 3.27, and such action is unique up to topological conjugation.

4 Self-homeomorphisms with large periods

LetC(g, N )denote the number of topological types of actionofZN on a closednon-orientable
surface of genus g ≥ 3. It is proved in [2] that C(g, N ) = 0 for N > 2g, and if g is even
then C(g, N ) = 0 for N > 2(g − 1). In this section we compute C(g, N ), for all g ≥ 3 and
N > max{g, 3

2 (g − 2)}.
For an admissible pair (σ, N ), let c(σ, N ) denote the number of equivalence classes of

NSK-maps θ : � → ZN , where � is an NEC-group with σ(�) = σ (see Sect. 2 for
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definitions). Then C(g, N ) is the sum of all c(σ, N ) such that (σ, N ) is an admissible pair
satisfying Nμ(σ) = g − 2.

We begin by determining the possible signatures σ of the form (2.2) satisfying 0 <

μ(σ) < 2
3 . By a straightforward calculation we obtain the following list.

σ0 = (0;+; [2, 2, 2]; {( )}), σ1 = (1;−; [2, 2, 2]; {−}),
σ2 = (0;+; [2, m]; {( )}), m > 2, σ3 = (1;−; [2, m]; {−}), m > 2,
σ4 = (0;+; [3, m]; {( )}), m > 2, σ5 = (1;−; [3, m]; {−}), m > 2,
σ6 = (0;+; [4, m]; {( )}), 11 ≥ m ≥ 4, σ7 = (1;−; [4, m]; {−}), 11 ≥ m ≥ 4,
σ8 = (0;+; [5, m]; {( )}), 7 ≥ m ≥ 5, σ9 = (1;−; [5, m]; {−}), 7 ≥ m ≥ 5,
σ10 = (0;+; [2]; {( ), ( )}), σ11 = (1;−; [2]; {( )}),
σ12 = (2;−; [2]; {−}).

In the cases where a signature σi depends on the parameter m, we will also denote it as
σi (m). Now, for each of the above signatures we determine all admissible pairs (σi , N ), such
that N > g, where g = Nμ(σi ) + 2.

Theorem 4.1 Let g ≥ 4 and suppose that (σ, N ) is an admissible pair, such that N >

max{g, 3
2 (g − 2)}, where g = Nμ(σ) + 2. Then σ , N and g are as in Table 1. Furthermore,

(σ, N ) is rigid except for the following two cases

c
(
σ4(3(g − 1)/2), 3(g − 1)/2

) = 2 for g ≡ 1 (4),

c(σ6(8), 8) = 2 for g = 7.

Table 1 All admissible pairs (σ, N ) such that N > max{g, 3(g − 2)/2}
Signature σ Parameter m Order N Genus g

σ2 g 2g Odd

σ2 2(g − 1) 2(g − 1) Arbitrary

σ3 2(g − 1) 2(g − 1) Even

σ4 3(g − 1)/2 3(g − 1)/2 g ≡ 1 mod 4

σ4 (g + 1)/2 3(g + 1)/2 g ≡ 3 or g ≡ 7 mod 12

σ5 3(g − 1)/2 3(g − 1)/2 g ≡ 3 mod 4

σ5 (g + 1)/2 3(g + 1)/2 g ≡ 1 or g ≡ 9 (12)

σ6 6 12 9

σ6 7 28 19

σ6 8 8 7

σ6 9 36 25

σ6 10 20 15

σ6 11 44 31

σ8 6 30 21

σ9 7 35 25

σ10 2(g − 2) g > 4

σ11 2(g − 2) g > 4

σ12 2(g − 2) g > 4 and 4 | g
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Proof For σ0 the only admissible pair is (σ0, 2) by Lemma 3.24, which does not satisfy
N > g as N = 2 and g = 3. For σ1 there are no admissible pairs by Lemma 3.27.

By Lemma 3.15 a pair (σ2, N ) is admissible if and only if N = lcm(2, m). Such pair is
rigid for every m by Proposition 3.16. We have μ(σ2) = 1

2 − 1
m . If m is odd then N = 2m

and g = Nμ(σ2) + 2 = m. If m is even then N = m = 2(g − 1).
By Lemma 3.20 a pair (σ3, N ) is admissible if and only if N = m is even and m/2 is odd.

Every such pair is rigid by Proposition 3.22. We have N = 2(g − 1) and g is even.
By Lemma 3.15 a pair (σ4, N ) is admissible if and only if N = lcm(3, m) and m is even.

We have μ(σ4) = 2
3 − 1

m . If 3 divides m then N = m = 3
2 (g − 1) and g ≡ 1 (4). In this case

we have c(σ4, N ) = ϕ(3) = 2 by Proposition 3.16. If 3 � m then N = 3m and g = 2m − 1.
We have g ≡ 3 or g ≡ 7 (12). In this case (σ4, N ) is rigid by Proposition 3.16.

By Lemma 3.20 a pair (σ5, N ) is admissible if and only if N = lcm(3, m) and m is odd.
For m = 3 we have N = g = 3, hence we assume m > 3. Every such pair is rigid by
Proposition 3.21. If 3 divides m then N = m = 3

2 (g − 1) and g ≡ 3 (4). If 3 � m then
N = 3m and g = 2m − 1. We have g ≡ 1 or g ≡ 9 (12).

By Lemma 3.15 a pair (σ6, N ) is admissible if and only if N = lcm(4, m). We have
μ(σ2) = 3

4 − 1
m . Form = 4we have N = g = 4which contradicts N > g. Form ∈ {7, 9, 11}

we have N = 4m and g = 3m − 2. For m ∈ {6, 10} we have N = 2m and g = 3
2m. For

m = 8 we have N = 8 and g = 7. By Proposition 3.16 we have c(σ6, 8) = ϕ(4) = 2 and
c(σ6, m) = 1 for m �= 8.

It follows from Lemma 3.20 that (σ7, N ) is admissible if and only if N = m, 4 divides m
and m

4 is odd. This holds only for m = 4, but then N = g = 4 which contradicts N > g.
By Lemma 3.15 a pair (σ8, N ) is admissible only for m = 6, N = 30 and g = 21. By

Proposition 3.16 this pair is rigid.
By Lemma 3.20 a pair (σ9, N ) is admissible only for m = N = 5 and (m, N ) = (7, 35).

In the former case we have g = 5 which contradicts the assumption N > g. In the letter case
we have g = 25 and the pair is rigid by Proposition 3.22.

By Lemma 3.9 for i ∈ {10, 11} a pair (σi , N ) is admissible if and only if N is even, and
such pair is rigid by Proposition 3.12. We have N = 2(g − 2). Note that N > g only for
g > 4.

By Lemma 3.4 a pair (σ12, N ) is admissible if and only if 4 divides N and 8 does not
divide N . Such pair is rigid by Proposition 3.5. We have N = 2(g − 2) and 4 divides g. �
Theorem 4.2 Suppose that g ≥ 11 is odd and g /∈ {15, 19, 21, 25, 31}. If N > 3

2 (g − 2)
and C(g, N ) > 0 then

N ∈
{
2g, 2(g − 1), 2(g − 2),

3

2
(g + 1),

3

2
(g − 1)

}
.

Furthermore, C(g, 2g) = C
(
g, 2(g − 1)

) = 1, C
(
g, 2(g − 2)

) = 2, and

C
(
g,

3

2
(g + 1)

) =
{
1 for [g]12 ∈ {1, 3, 7, 9}
0 for [g]12 ∈ {5, 11}, g �= 11

C
(
g,

3

2
(g − 1)

) =
{
2 for g ≡ 1 (4),

1 for g ≡ 3 (4).

Proof The assumptions about g guarantee that the numbers 2g, 2(g −1), 2(g −2), 3
2 (g +1)

and 3
2 (g −1) are all different (the only exception is g = 11, for which 2(g −2) = 3

2 (g +1)),
and also that there are no admissible pairs (σi , N ) for i ∈ {6, 8, 9} with such g in Table 1.
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Thus, the only possible values for N are those given in the theorem. For each of these values
we calculate C(g, N ) by adding up c(σ, N ) for all admissible pairs (σ, N ) from Table 1.

C(g, 2g) = c(σ2(g), 2g) = 1
C(g, 2(g − 1)) = c(σ2(2(g − 1)), 2(g − 1)) = 1
C(g, 2(g − 2)) = c(σ10, 2(g − 2)) + c(σ11, 2(g − 2)) = 2

For N = 3(g + 1)/2 we have

C(g, N ) = c(σ4(N/3), N ) = 1 for [g]12 ∈ {3, 7}
C(g, N ) = c(σ5(N/3), N ) = 1 for [g]12 ∈ {1, 9}

For N = 3(g − 1)/2 we have

C(g, N ) = c(σ4(N ), N ) = 2 for g ≡ 1 (4),
C(g, N ) = c(σ5(N ), N ) = 1 for g ≡ 3 (4).

Theorem 4.3 Suppose that g ≥ 4 is even. If N > 3
2 (g − 2), N > g and C(g, N ) > 0 then

either N = 2(g − 1) or N = 2(g − 2). Furthermore, C
(
g, 2(g − 1)

) = 2 and for g > 4

C
(
g, 2(g − 2)

) =
{
3 if 4 | g,

2 if 4 � g.

Proof As in the proof of Theorem 4.2, we use Table 1 to computeC(g, N ). For N = 2(g−1)
we have

C
(
g, N

) = c
(
σ2(N ), N

) + c
(
σ3(N ), N

) = 2

and for N = 2(g − 2) and g > 4

C
(
g, N

) = c
(
σ10, N

) + c
(
σ11, N

) = 2 if 4 � g,

C
(
g, N

) = c
(
σ10, N

) + c
(
σ11, N

) + c
(
σ12, N

) = 3 if 4 | g.

�
Theorem 4.4 The following is the complete list of values of C(g, N ) such that N > g ≥ 3,
N > 3

2 (g − 2) and C(g, N ) is not as in Theorem 4.2.

C(5, 6) = 4, C(7, 12) = 2, C(7, 8) = 2, C(9, 12) = 3, C(15, 20) = 1,
C(19, 28) = 1, C(21, 30) = 3, C(25, 35) = 1, C(25, 36) = 3, C(31, 44) = 1.

Proof We consider odd genera excluded by the assumption of Theorem 4.2. For g = 3 we
have only two admissible pairs with N > g, namely (σ2(3), 6) and (σ2(4), 4). Since each of
them is rigid by Proposition 3.16, we have C(3, 4) = C(3, 6) = 1, which agrees with Theo-
rem 4.2. For g = 5 we have 2(g −2) = 3

2 (g −1) = 6 and C(5, 6) = c(σ10, 6)+ c(σ11, 6)+
c(σ4(6), 6) = 1+1+2 = 4. For g = 7wehave 2(g−1) = 3

2 (g+1) = 12 and 8 < 3
2 (g−1) <

2(g − 2); C(7, 12) = c(σ2(12), 12) + c(σ4(4), 12) = 2 and C(7, 8) = c(σ6(8), 8) = 2. For
g = 9 we have 12 = 3

2 (g − 1) and C(9, 12) = c(σ4(12), 12) + c(σ6(6), 12) = 2 + 1 = 3
For g = 15 we have 20 < 3

2 (g − 1) and C(15, 20) = c(σ6(10), 20) = 1. For g = 19 we
have 3

2 (g − 1) < 28 < 3
2 (g + 1) and C(19, 28) = c(σ6(7), 28) = 1. For g = 21 we have

30 = 3
2 (g − 1) and C(21, 30) = c(σ4(30), 30) + c(σ8(6), 30) = 2+ 1 = 3. For g = 25 we

have 36 = 3
2 (g − 1) and C(25, 36) = c(σ4(36), 36) + c(σ6(9), 36) = 3 and C(25, 35) =

c(σ9(7), 35) = 1. For g = 31 we have 44 < 3
2 (g − 1) and C(31, 44) = c(σ6(11), 44) = 1.

�
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Corollary 4.5 Suppose that g ≥ 5 is odd and g �≡ 5 (12). Let N be the maximum odd
integer such that C(g, N ) > 0. Then

N =

⎧
⎪⎨

⎪⎩

3

2
(g + 1) for g ≡ 1 (4),

3

2
(g − 1) for g ≡ 3 (4).

Furthermore, C(g, N ) = 1.
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1. Bagiński, C., Carvacho, M., Gromadzki, G., Hidalgo, R.: On periodic self-homeomorphisms of closed
orientable surfaces determined by their orders. Collectanea Math. (2014, to appear)

2. Bujalance, E.: Cyclic groups of automorphisms of compact nonorientable Klein surfaces without bound-
ary. Pac. J. Math. 109, 279–289 (1983)

3. Bujalance, E., Cirre, F.J., Conder, M.D.E.: Extensions of finite cyclic group actions on non-orientable
surfaces. Trans. Am. Math. Soc. 365(8), 4209–4227 (2013)

4. Bujalance, E., Cirre, F.J., Conder, M.D.E., Szepietowski, B.: Finite group actions on bordered surfaces
of small genus. J. Pure Appl. Algebra 214, 2165–2185 (2010)

5. Bujalance, E., Etayo J.J., Gamboa, J. M., Gromadzki, G.: Automorphisms groups of compact bordered
Klein surfaces. A combinatorial approach. In: Lecture Notes in Mathematics, vol. 1439. Springer (1990)

6. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series 49, Princeton
University Press, Princeton (2012)

7. Fujiwara, K.: On the outer automorphism group of a hyperbolic group. Isr. J. Math. 131, 277–284 (2002)
8. González-Acuña, F.J., Márquez-Bobadilla, J.M.: On the homeotopy group of the non orientable surface

of genus three. Rev. Colombiana Mat. 40, 75–79 (2006)
9. Greenberg, L.: Maximal Fuchsian groups. Bull. Am. Math. Soc. 69, 569–573 (1963)

10. Gromadzki, G., Marzantowicz, W.: On conformal dynamics on orientable and nonorientable Riemann
surfaces. Fund. Math 213, 169–190 (2011)

11. Harvey, W.J.: On branch loci in Teichmüller space. Trans. Am. Math. Soc. 153, 387–399 (1971)
12. Harvey, W.J., Maclachlan, C.: On mapping-class groups and Teichmüller spaces. Proc. Lond. Math. Soc.

30, 496–512 (1975)
13. Hirose, S.: On periodic maps over surfaces with large periods. Tohoku Math. J. 62(1), 45–53 (2010)
14. Korkmaz, M.: Mapping class groups of nonorientable surfaces. Geom. Dedicata 89, 109–103 (2002)
15. Nakagawa, K.: On the orders of automorphisms of a closed Riemann surface. Pac. J. Math. 115, 435–443

(1984)
16. Nielsen, J.: Die Struktur periodischer Transformationen von Flächen. Math. -fys. Medd. Danske Vid.

Selsk 15(1) (1937); English translation in Jakob Nielsen collected works, 2, 65–102
17. Singerman, D.: Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210, 17–32

(1974)
18. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 6(2), 29–38 (1972)
19. Wang, S.: Maximum orders of periodic maps on closed surfaces. Topol. Appl. 41, 255–262 (1991)

http://creativecommons.org/licenses/by/4.0/

	On topological type of periodic self-homeomorphisms  of closed non-orientable surfaces
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Principal definitions
	2.2 Automorphisms of NEC-groups vs mapping class groups
	2.3 Some elementary algebra

	3 Topological type of actions of big order
	3.1 Actions with a 1-punctured Klein bottle as the quotient orbifold
	3.2 Actions with 1-punctured annulus or Möbius band as the quotient orbifold
	3.3 Actions with a 2-punctured disc as the quotient orbifold
	3.4 Actions with a 2-punctured projective plane as the quotient orbifold
	3.5 Actions with 3-punctured disc or projective plane as the quotient orbifold

	4 Self-homeomorphisms with large periods
	Acknowledgments
	References




