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Abstract
The shift from additive to multiplicative thinking is challenging for students. A pro-
fessional learning program was developed that focused on an identified area of need 
by teachers, namely multiplicative thinking. Program content focused on concepts 
underpinning multiplicative thinking, pedagogical approaches, challenging tasks, 
and application to classroom practice. It was delivered via six 90-min modules in 13 
participating schools across terms 2–4, as part of regular after school professional 
learning. Whilst all staff participated, the research focus was year 3–4 teachers. Stu-
dents’ historical data were collected across four years (2016–2019) to determine 
mean growth over time, in participating and non-participating schools. National 
Assessment Program Literacy and Numeracy (NAPLAN) and Mathematics Assess-
ment Interview (MAI) data were used to determine the impact of the learning, as 
both assessments are administered annually. Analysis of year 4 students’ longitu-
dinal data showed greater mean growth in student learning over a 2-year period in 
schools involved in the learning and additional in-class coaching support, than stu-
dents in non-participating schools. Our findings showed that targeted school-based 
professional learning, with in-class support from a knowledgeable other, leads to 
teachers’ improved understanding of multiplicative thinking and subsequent peda-
gogical content knowledge to support student learning.

Keywords Multiplicative thinking · Practicing primary school teachers · 
Professional learning · Student achievement

Introduction

Learning to think multiplicatively is a key goal of mathematics teaching in the mid-
dle to upper primary years as it provides the foundation for understanding fractions, 
ratio, rate, percentage, and proportional reasoning in the middle years (Harel & 
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Confrey, 1994; Siemon et al., 2005). Yet, recent research by Siemon et al. (2018) 
found that at least 25% and up to 55% of year 8 students in Australia have not devel-
oped facility to think multiplicatively. International studies report similar findings of 
a reliance on additive thinking (AT) by students in the middle years (Kosko, 2019; 
Kosko & Singh, 2018).

Potential explanations for why students have difficulty progressing to multipli-
cative thinking (MT) have been reported in the literature. These include equipping 
teachers with a greater understanding of the pathway to MT, and the nature of expe-
riences that support younger students to develop it (Clark & Kamii, 1996). Others 
argue that the curriculum is placing too much emphasis on the traditional practice 
of MT beginning in the context of repeated addition, rather than reflecting a more 
holistic perspective that includes functional relations (Askew, 2018; Confrey, 1994). 
Another consideration is that teaching approaches used may be perpetuating a lim-
ited view of MT and limiting students’ exposure to different multiplicative structures 
(Askew, 2018; Greer, 1988). Overall, the development of MT is critical to students’ 
mathematical performance and teachers need to be equipped with the skills and 
expertise to support students’ development of MT (Zwanch & Wilkins, 2021).

This paper reports the impact of teachers’ professional learning (PL) on students’ 
development of MT as assessed by the Mathematics Assessment Interview (MAI—a 
refinement of the Early Numeracy Interview, Clarke et al., 2002) and the National 
Assessment Program-Literacy and Numeracy (NAPLAN)  (Australian Curriculum, 
Assessment and Reporting Authority, 2011). The aim of the PL was to support 
teachers’ knowledge of MT and their pedagogical content knowledge (PCK) related 
to the multiplicative semantic structures. The research question underpinning this 
study was as follows: What is the impact of an on-site, PL program on students’ 
development of MT?

Background

In this section, a review of the literature that informed this study is presented. Litera-
ture relating to MT, the pedagogical approaches that support students’ development 
of MT and different multiplicative structures, are examined. As the study involved 
teacher PL, a critique of the literature was needed to identify the most appropriate 
model.

Multiplicative thinking

Much has been written about students’ development of MT (e.g. Clark & Kamii, 
1996; Steffe, 1994; Sullivan et al., 2001); the strategies students use to solve multi-
plicative problems (e.g. Downton & Sullivan, 2017; Mulligan & Watson, 1998); and 
reasons why some students are reliant on AT into their middle years of schooling—
years 5 to 8 (e.g. Larsson et al., 2017; Siemon et al., 2005).

A key distinction between additive and MT is the level of abstraction required. 
Abstracting, in this context, is characterised by students moving beyond the need 
to create physical models, to forming mental images of a collection of objects as a 
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composite unit (Sullivan et al., 2001). Clark and Kamii (1996) stated that the key 
distinction between additive and MT is the number of levels of abstractions and the 
number of inclusive relations required simultaneously in MT. In the example 4 × 3, 
two kinds of relationships are evident. The many-to-one correspondence between 
the four units of one and the one unit of three, and inclusive relations such as seeing 
that in each unit of three are three ones, and that in the product of 12 are four units of 
three. In essence, to think multiplicatively, one needs to “coordinate two composite 
units in such a way that one of the composite units is distributed over the elements 
of the other composite unit” (Steffe, 1994, p. 19). The result of such an action is the 
product of a third composite unit (Tzur et al., 2010). This process is recognised as 
a major conceptual shift (Clark & Kamii, 1996; Clarke et  al., 2002; Singh, 2000; 
Steffe, 1994; Tzur et al., 2010). Making such a shift includes recognising the rela-
tionship between the composite units and the role they play in a situation and that 
a third composite unit (the product) is produced as a result of this action. Several 
scholars argued that MT is more complex than AT and may take years to achieve 
(Clark & Kamii, 1996; Clarke et al., 2002; Lamon, 2005; Steffe, 1994; Vergnaud, 
1983). Furthermore, teachers must understand the complexity involved to support 
students’ development of MT (Zwanch & Wilkins, 2021).

The complexity of this transition is reflected in the findings of the Early Numer-
acy Research Project (Clarke et al., 2002). Reported findings indicated that 51% of 
year 2 children in trial schools (i.e. schools in which teachers received PL over a 
3-year period) and 63% of children in reference schools (control group) were unable 
to abstract (simultaneously coordinate two composite units mentally, without the use 
of perceptual models), when solving multiplication tasks. Furthermore, Kosko and 
Singh (2018) found that 54% of year 3 students were pre-multiplicative (could not 
coordinate composite units and relied on count by ones strategy).

Pathway to multiplicative thinking

Whilst there is general agreement that the acquisition of the composite unit struc-
ture is the basis of students’ development of MT (e.g. Anghileri & Johnson, 1992; 
Clark & Kamii, 1996; Steffe, 1994; Sullivan et al., 2001), there is less agreement 
as to how children develop MT. Some scholars (e.g. Anghileri, 1989; Mulligan & 
Mitchelmore, 1997) found that students either used modelling (physical objects, 
fingers, or drawings) or calculations, such as unitary counting, skip counting, and 
repeated addition, to known and derived multiplicative facts, whereas others (e.g. 
Askew, 2018; Confrey, 1994; Davydov, 1992; Steffe, 1994; Vergnaud, 1983) sug-
gested that this is only one pathway to MT.

Davydov (1992) proposed that an alternative way to conceptualise a multiplica-
tive situation was to think of something “taken so many times”. In doing so, students 
explore the meaning of the numbers as part of the process. Others have strongly 
argued that students in primary schools should experience functional relationships 
between two variables (Askew, 2018; Nunes & Bryant, 2009; Vergnaud, 1983). 
Moreover, Askew found that young children (aged 7–8  years) can successfully 



662 A. Downton et al.

1 3

engage with the functional aspect of MT, and consideration should be given to this 
in primary schools.

Confrey (1994) argued that the majority of the literature places too much empha-
sis on a repeated addition model of multiplication that has counting as its base. She 
claimed that counting or repeated addition–based models do not sufficiently explain 
“many of the actions of young children that can be seen as multiplicative” (p. 292). 
Confrey proposed the operation of splitting, defined as “an action of creating simul-
taneously multiple versions of an original” (p. 292). She argued that splitting is 
independent of counting and repeated addition and arises naturally in young chil-
dren’s thinking when sharing, halving, and doubling, and is a precursor to ratio.

More recent studies (Hackenberg & Tillema, 2009; Kosko, 2018, 2019; Tzur et al., 
2013; Zwanch & Wilkins, 2021) examined the specific aspects of Steffe’s (1988, 
1992, 1994) longitudinal study and his number sequence framework (Steffe, 2010) to 
gain a deeper sense of the stages involved in constructing MT in older students.

For example, Hackenberg and Tillema (2009) investigated how whole number 
multiplicative concepts are involved in year 6 students’ construction of fraction 
composition schemes. Informed by Steffe’s (1994) research, these authors identified 
the following conceptual framework for whole number multiplicative concepts.

First multiplicative concept (MC1): coordination of two levels of units, involves 
enacting the coordination of the situation.
Second multiplicative concept (MC2): the interiorization of two levels of units, 
involves anticipating two levels of units and coordinate three levels of units in 
activity (enacting with materials).
Third multiplicative concept (MC3): interiorization of three levels of units, 
involves coordinating all three levels of units as mental operations.

These authors found that MC2 is the basis for students’ construction of a unit 
fraction composite scheme, and MC3 is necessary for students’ construction of a 
general fraction composite scheme.

Their conceptual framework builds on Steffe’s (1994) work and shows the subtle 
development of the composite unit coordination from enactment of one composite 
unit through to mental disembedding a unit into units of units and mentally coordi-
nating three levels of units. Such insights can assist teachers to distinguish the level 
of MT evident in students’ responses, as well as being aware of students’ develop-
ment of the composite unit coordination, and its importance.

In order to develop a sense of multiplicative relationships (i.e. how the numbers 
relate and interact with each other), students need many experiences with differ-
ent multiplicative situations involving numbers for which counting alone will be 
inefficient (Callingham, 2003). Others not only concurred with this view, but also 
argued that part of a reliance on AT is attributed to students’ use of intuitive strate-
gies, and the nature of numbers involved in a problem rather than on the underlying 
situation (e.g. Greer, 1988; Harel & Confrey, 1994; Thompson & Saldanha, 2003). 
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Routinely incorporating more difficult numbers that cannot be intuitively grasped in 
word problems and providing multi-step word problems have been recommended to 
encourage students to think more deeply about which operations to use and move 
beyond superficial strategies (Greer, 1988). Size of numbers and choice of tasks 
were a consideration in selecting tasks the teachers would use with their students for 
the study reported here.

Multiplicative semantic structures

Different classification schemes for multiplication and division word problems 
evident in the research literature are commonly referred to as semantic structures. 
These include equal groups, allocation/rate, rectangular array/area, multiplica-
tive comparison (times-as-many/scale/multiplying factor), and Cartesian product 
(Anghileri & Johnson, 1992; Greer, 1992). Apart from Cartesian product, the other 
structures can be generalised to situations involving fractions and decimals. Greer 
argued that while the distinctions between models of situations are important peda-
gogically, the way in which a situation is interpreted depends on a student’s percep-
tion of it. Key differences between these structures are the role and interpretation 
of the multiplier and multiplicand, the representations, and whether the structure 
reflects the commutative aspect of multiplication. Such differences are important 
considerations for teaching.

In the equal groups conceptualisation, the two numbers have different roles, one 
being the multiplier (number of groups), the other the multiplicand (number in each 
group). A critical step in students’ development of MT is a focus on the number of 
groups rather than the number in each group. Such a shift leads to the recognition of 
the number of groups as a factor, and supports more efficient strategies and general-
ising (Siemon & Breed, 2006).

Rectangular array (area model) provides a visual representation of the mapping 
of two spaces into a third (Vergnaud, 1983) the product, which is a new quantity in 
its own right, rather than relationship between the two quantities (Schwartz, 1988; 
Vergnaud). Others contend that the array model encourages students to think about 
multiplication as a binary operation and makes the mathematical property of com-
mutativity, intuitively acceptable (Barmby et al., 2009; Greer, 1992).

Allocation/rate or isomorphism of measures (Vergnaud, 1983) refers to situations 
involving a direct proportion between two measure spaces M1 and M2. In the exam-
ple, “Jess buys four lollies that cost 15 cents each. How much does Jess have to 
pay?” the word “each” represents a hidden number (1) thus evoking a subtle rate 
situation: One lolly costs 15 cents; four lollies cost how much? Using a ratio table 
(Fig. 1) to represent the four items makes the relationships visible.

Viewing the situation vertically indicates a scalar relationship (multiplicative 
comparison) or a “within quantities” relation, as each is being scaled up by the same 
factor (× 4): thinking four lollies cost four times as much as one lolly. In contrast, 
viewing it horizontally involves a functional relationship that is “between quantities” 
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relation (lollies and cost), and the mapping of the number of lollies onto the cost of 
the lollies (× 15). Whilst the scalar relation can be thought of additively, the func-
tional relation can only be thought of multiplicatively (Askew, 2018; Vergnaud, 
1983).

Times-as-many/multiplicative comparison is the only ternary multiplicative rela-
tionship as there is only one variable or type of quantity (Vergnaud, 1997). In the 
example, “Jed has 6 times as many miniature cars as Sally. If Sally has 4 cars, how 
many cars does Jed have?” the only quantity (or variable) is miniature cars. The 
multiplicative factor may be considered the multiplier. Multiplicative comparison is 
a preliminary stage to ratio and relates directly to the nature of multiplication (Greer, 
1992; Vergnaud, 1983).

Cartesian product, or product of measures (Vergnaud, 1983), is a different con-
ceptualisation, as it involves the construction of a set of ordered pairs from two 
sets. In the example, “Jess has 3 skirts, and 4 shirts. How many different outfits can 
she wear?” the two sets contain three and four elements respectively, and the set of 
ordered pairs (Cartesian product) has 12 elements. The product is a new quantity in 
its own right, a characteristic shared with the rectangular array structure, rather than 
a relationship between the two quantities.

The description of each structure indicates that their representations (i.e. physical 
models) are different, but are also interconnected, which highlights the complexity 
associated with developing MT. Greer (1988) argued that experiences across these 
different problem types are necessary for students to develop MT and later propor-
tional reasoning.

In summary, this critique of the literature highlights the complexities associated 
with the development of MT, and why access to such is a persistent barrier to many 
students’ mathematical progress in the middle years. Several studies emphasised the 
need for teachers to understand the complexity associated with developing MT. In 
order to teach multiplication and division, teachers must first understand the nature 
of MT (Clark & Kamii, 1996; Zwanch & Wilkins, 2021). Other studies reported the 
need to reconsider the approaches to teaching multiplication (e.g. Askew, 2018; Sie-
mon et al., 2018; Tzur et al., 2018). In particular, Askew (2018) argued that primary 
students’ lack of development of MT may have more to do with the approaches to 
teaching multiplication than the students being “developmentally” ready. Further-
more, there is a need to break down the perception that the pathway to MT is through 
repeated addition, to broaden teachers’ pedagogical and content knowledge to other 
multiplicative structures and to consider the functional nature of MT (Askew, 2018). 
In addition, a greater emphasis is needed on teaching multiplicative reasoning in the 
early years of primary school (Askew et al., 2019).

Fig. 1  Representation of a 
simple rate problem

M1 

(lollies) 

M2  

(cost) 

1 15 

4 ? 



665

1 3

Impact of teachers’ professional learning on students’ learning…

Teacher professional learning models

Tzur et al. (2013) highlighted the need for PL to focus on deepening teachers’ under-
standing of concepts underpinning MT, carefully constructed tasks and a pedagogi-
cal approach that is aligned with a constructivist view of learning such as student-
adaptive pedagogy. This study informed the content our study, whereas others we 
drew on focused on structural aspects and processes of the PL. These include the 
need to situate PL for teachers in realistic contexts, as part of the ongoing work in 
schools (Bruce et al., 2010; Clarke & Hollingsworth, 2002); iterative cycles of plan-
ning, practice, and reflecting (Clarke & Hollingsworth) spaced over a period of time 
(e.g. Desimone, 2009). Furthermore, Timperley et al. (2007) suggested that, “pro-
fessional development that led to sustained better practice, had a focus on develop-
ing teachers’ pedagogical content knowledge in sufficient depth to form the basis of 
principled decisions about practice” (p. xivi).

The Clarke and Hollingsworth (2002) model and Timperley et al. (2007) Inquiry 
and Knowledge Building Cycle (IKBC) informed the present study. Both empha-
sise that teacher knowledge is multifaceted and involves teacher theory of practice, 
beliefs, values, and pedagogy. Timperley and colleagues proposed that relevant 
PCK could be developed over an extended period of time through teacher inquiry. 
Unlike the Clarke and Hollingsworth model, Timperley et al. presented a model of 
PL that emphasised teacher professional inquiry as the first step in teacher profes-
sional development. A distinguishing factor of the IKBC is that it focuses first on 
identifying student needs and, consequently, teacher professional learning needs are 
identified from these needs. The development of teachers’ PCK is, therefore, linked 
and contextualised to student learning needs.

Schools within the sector currently use the IKBC, so it was particularly relevant 
to our project. The leadership team and teachers in each school identified student 
learning needs from the analysis of student data (Timperley et al., 2009). A PL pro-
gram to address identified needs was developed by the first author in conjunction 
with Teaching Educators (TE) employed by the school system. In using this term, 
we refer to an educator “with content-specific expertise” whose main role is to sup-
port teachers to improve the quality of teaching and learning of mathematics (Cobb 
et al., 2018, p. 113).

Supporting professional learning

PL offered to teachers needs to create a bridge between research and classroom 
practice (Kretlow et  al., 2012). Both the Clarke and Hollingsworth (2002) and 
Timperley et al. (2009) models included an expert to support the intended learn-
ing in the classroom. Furthermore, a meta-analysis of PL (Yoon et  al., 2007) 
found that an effective method of changing teacher practice and improving stu-
dent learning incorporated a combination of PL followed by coaching of a knowl-
edgeable other. Much has been written about the role of coaches to support 
teacher growth and pedagogical practice (e.g. Cobb, et al., 2018; De Paor, 2015; 
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Kretlow et al., 2012; Polly, 2012; Sharratt & Fullan, 2012; Teemant et al., 2011). 
A common finding from these studies—improvement in teachers’ pedagogy—was 
a result of the support of an expert “knowledgeable other” (instructional coach), 
who provided in-classroom support to teachers as they enacted new pedagogi-
cal practices. Instructional coaches work in partnership with teachers to support 
the incorporation of research-based instructional practices into their teaching 
(Knight, 2009; Teemant et al., 2011). They support teachers to choose appropri-
ate instructional approaches, model these practices in the classroom, observe the 
practice of teachers, and engage in feedback (Knight, 2009). The work of instruc-
tional coaches is to improve teacher efficacy and, consequently, to improve stu-
dent outcomes (Kraft et al., 2018). TEs undertake such a role in this context of 
the study reported in this paper.

Instructional coaching is a way of providing PL alongside the daily work of 
teachers in the classroom. Critical to the effectiveness of the coaching activi-
ties is the need to “engage teachers in fundamental dialogue about mathematical 
content, mathematical learning and student understanding” (Campbell & Griffin, 
2017, p. 163).

Knight (2017, as cited in Walsh et al., 2020) provided an approach to instruc-
tional coaching that included three stages:

1. identification, in which the instructional coach determines the goal for the work 
with the teacher to support the move from current practice to new practice;

2. learning within a partnership between coach and teacher through co-teaching, in 
which teaching strategies and developed and enhanced; and,

3. teacher improvement through implementation of new strategies and monitoring 
of the practice with the help of the coach.

Co-teaching is powerful in supporting teachers to develop sophisticated 
instructional practices by affording opportunities for “in-the-moment” reflection 
(Mason, 2002), and to enhance the depth of post-lesson reflective thinking (Eden, 
2020). Increased responsiveness to student thinking within lessons was also noted 
as supporting teachers with developing adaptive practice (Eden). Sharratt and 
Fullan (2012) extended the notion of co-teaching to include instructional coaches 
employed by the school or, as in the current study, employed by an education 
system (TEs). The co-teaching cycle involves coaches and teachers co-planning, 
co-teaching, co-reflecting, and co-debriefing. It is recognised as having the poten-
tial to be “the most powerful way to improve teaching practice and to implement 
changes in assessment and instruction” (Sharratt & Fullan, p. 118–119). An 
important first step in the cycle is the process of co-planning, which is considered 
critical as it helps support teachers anticipate student responses to tasks (Stein 
et al., 2008). The instructional coach and class teacher co-teach lessons incorpo-
rating several opportunities during the lesson to ascertain student understanding. 
Post lesson, the instructional coach and classroom teacher co-debrief to discuss 
aspects of the lesson that could be modified, and the next steps for student learn-
ing (Sharratt & Fullan).
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In sum, the research literature highlights the importance of a “knowledgeable 
other” to support teachers to implement research informed pedagogical practices. 
Co-teaching is a critical component of this support, as is establishing trust with 
teachers and working with them in their classrooms. In the current study the role 
of “knowledgeable other” is the TE who works in schools over a sustained period 
of time to support teachers to improve pedagogical practices and student learning 
outcomes.

Methodology

This quantitative study, comparing the results of student assessment data, was 
conducted in a metropolitan school system in Australia during 2016 and 2017. 
Two cohorts of primary schools were involved in the MT research project. These 
included 13 schools in 2016 and 22 schools in 2017. Principals of these schools 
chose to be involved, as they had identified MT as a focus for PL, based on students’ 
MAI results. All students in years 1 to 6 were assessed by their class teacher at the 
start of each school year. MAI results in 2015 indicated that over 50% of year 3 
and 38% of year 4 students in the school system had not progressed beyond using a 
physical model to solve basic multiplication and division problems (Growth Point 
3, see Fig. 2). That is, students were reliant on physical objects and counting-based 
additive strategies.

Teaching educators

As stated earlier, TEs are employed by the school system to support mathematics 
instruction in schools. Five TEs work in partnership with school leadership teams on 
the school-identified mathematics goal using the IKBC (Timperley et al., 2009) to:

• deliver the big ideas from research related to mathematics content and pedagogi-
cal practices, for example, the use of challenging multiplication tasks;

• implement the co-teaching cycle through co-planning, co-teaching, and co-
debriefing with teachers (Sharratt & Fullan, 2012); and

0. Not apparent. 

1. Counting group items as ones. 

2. Modelling multiplication and division (all objects perceived). 

3. Partial modelling multiplication and division (some objects perceived). 

4. Abstracting multiplication and division (no objects perceived). 

5. Basic derived and intuitive strategies for multiplication. 

6. Basic, derived and intuitive strategies for division. 

7. Extending and applying multiplication and division. 

8.Extending and applying multiplication and division to fractions and decimals. 

Fig. 2  Strategies for multiplication and division growth points
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• support teachers to experiment with changes of practice in the classroom by 
modelling, co-teaching, and observing.

In 2016, these TEs facilitated the PL in participating schools across three terms 
(terms 2–4) as part of each school’s regular after-school meetings. They provided 
periodic in situ, that, is in-classroom coaching support for selected schools. In con-
trast, in 2017, TEs followed up the PL with in situ support 4–5 times per term for 
each project school. The decision to increase the support was informed by the 2016 
MAI data, which showed greater growth in participating schools that had additional 
TE coaching support than those that received no TE support.

Professional learning modules

The research team, led by a university mathematic educator (first author), developed 
six PL modules with the TEs. Each PL module included the following structure.

1. Reading a professional article about the multiplicative structure in focus.
2. Analysing student data—work samples of tasks completed in mathematics lesson.
3. Reflecting on student work samples—the observations of multiplicative thinking 

in student responses were recorded in teacher reflective journals.
4. Solving a series of learning tasks focused on each multiplicative structure and 

discussing the underpinning mathematics and possible student responses.
5. Teaching the tasks from each module as a between module activity.

Content was informed by the literature that highlighted the importance of stu-
dents understanding multiplication beyond the “equal groups” structure (Askew, 
2018; Barmby et al., 2009; Confrey, 1994; Greer, 1992; Vergnaud, 1983); the early 
development of MT, in particular the importance of the construction and coordina-
tion of composite units (Clark & Kamii, 1996; Hackenberg & Tillema, 2009; Steffe,  
1994; Sullivan et  al., 2001); and pathway to MT. Through the process of co- 
constructing the modules with a mathematics education academic, the TEs built their  
content knowledge and confidence to deliver the modules to all staff in each pro-
ject school. To ensure consistency, each module included facilitator notes, a Power-
Point presentation including specific tasks and pedagogical practices teachers would 
explore during each module, and a resource pack for teachers.

Each module included challenging tasks (Sullivan et al., 2011) related to the con-
tent and ways to adapt and extend tasks (Sullivan et  al., 2006). Throughout each 
module, important ideas about learning mathematics with understanding (explor-
ing, reasoning, questioning, justifying, and reflecting) were discussed and mod-
elled. Other components included teacher reflection, and pedagogies to explore in 
classrooms (e.g. teacher noticing, holding back from telling, giving students time 
to engage in productive struggle, use of probing questions, student choice in how 
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they represented their thinking, and sharing solution methods). The elements of the 
launch, explore, summarise lesson structure (Sullivan et al., 2016) were modelled in 
the modules and in classrooms.

Table 1 presents an overview of each module’s content and an example of a task 
that teachers explored in the module, and then with their students in the classroom. 
These tasks were designed for years 3–4 students and modified versions of these 
tasks were provided for Foundation (first year of school)–year 2, and years 5–6 
students.

Participants

Table  2 provides information about the schools participating in the project. Both 
cohorts included a diverse range of schools based on socio-economic status (SES), 
English as an Additional Language/Dialect (EAL/D), and school size. The 2017 
cohort had a slightly wider range of SES than 2016 including one school with the 
lowest possible SES ranking. There was also a range of students with EAL/D, in 
both cohorts. Only information for each years 3 and 4 cohort is included, as their 
historical data was used for the research.

Whilst the PL and research focused on years 3 and 4 teachers and students, all 
teachers from Foundation to year 6 participated in the PL with the expectation that 
the learning would be adapted for their students. Teachers’ experience ranged from 
early career teachers to very experienced teachers.

Table 1  Overview of the content of the PL modules and an example of a task

Module Focus Task example

1 Overview of course and 
multiplicative interview

A Blue whale is about 34 m long. A crocodile is about 
4.3 m long. A Blue whale is about how many times as 
long as a crocodile?

2 Overview of multiplicative 
structures

106 people were going to the netball gala day. They 
travelled in vans that could take six people. What is the 
least number of vans needed? Solve it in two different 
ways

3 Rectangular arrays This carrot patch is being harvested. The farmer asked 
his workers to find the best way to work out how many 
carrots are still to be picked. How might you work 
out how many carrots are in the patch? (Students are 
shown a picture of a partially picked patch.)

4 Times-as-many Jess collected twice as many shells as Angie. They 
collected 30 shells altogether. How many shells did 
Angie collect?

5 Allocation and rate It costs $18 to buy 12 cans of soft drink. How many cans 
would you get for $30?

6 Analysis of interview data and 
reflection of student learning

A shop sells Ghost Drop lollies at ten for 35 cents. How 
many Ghost Drops could I buy with $1.40?
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Data collection

Data were collected from three different sources: (1) teacher survey data, the find-
ings of which were reported earlier (see Downton et al., 2018); (2) historical growth 
point (GP) data from the MAI; and (3) NAPLAN data. The MAI is a clinical inter-
view designed to assess primary students’ learning in the number domains of count-
ing, place value, addition and subtraction strategies, and multiplication and division 
strategies. It is linked to a research-based framework of growth points (Gervasoni 
et al., 2017) that describes a pathway through which students’ mathematical think-
ing can be viewed and analysed (Clarke et al., 2005). MAI data are used to compare 
growth over time and to identify trends.

MAI data are collected each year by the whole system and allow historical data 
over time to be analysed. NAPLAN is a national assessment conducted in May each 
year to assess all students across Australia in years 3, 5, 7, and 9 on fundamental dis-
ciplines of literacy and numeracy. Both assessments are administered annually by all 
schools in the system and, therefore, provided longitudinal data for analysis of MT.

MAI data for both cohorts represent data for year 4 students in February 2016 
and 2017 (administered before the PL commenced) through to year 6 in February 
2018 and 2019, that is MAI data for years 3, 4, 5, and 6. NAPLAN data was ana-
lysed for each cohort in year 3 (the year before the PL) and in year 5 (the year after 
the PL). NAPLAN and MAI data sets, therefore, represent the achievements of the 
same students both prior to and post the PL.

Data analysis

MAI data reported in this paper were for students whose data could be matched 
from year 4 (2016) to year 6 (2018) and year 4 (2017) to year 6 (2019). These 
data were analysed using the Growth Point Framework (Clarke et al., 2002) for 
the multiplication and division domain (Fig.  2). Growth Point 4 is the point at 
which students can abstract—a critical stage in the development of MT (Sullivan  
et al., 2001). For this study, students who achieved GP 4 and above on the MAI 
were categorised as multiplicative thinkers, and those who achieved GP 3 or 
below were categorised as additive thinkers in multiplicative situations. Direct 
comparisons of the percentage of students at lower GPs (0, 1, 2, and 3) were 
made between school involved in the MT project (MT) and non-participating 

Table 2  Information pertaining to schools participating in the project

Year Number of 
schools

Size range 
(enrolments)

Total number  
of years 3 & 4  
student 
participants

SES ranking 
range (2016 
census)

SES ranking 
mean (2016 
census)

English as an 
Additional 
Language (EALD 
range

2016 13 168–764 1480 94–115 100.9 0.5–87.6%
2017 22 121–815 2695 78–120 101.2 0–93%
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schools (notMT). Comparisons between MT and notMT schools were also made 
pertaining to the percentage of students at higher GPs (4, 5, 6, 7, and 8).

In addition, the change in each student’s growth point for this domain was 
identified and the cohort was disaggregated by the level of increase in the growth 
points. This measure was used to gauge the overall level of growth for each 
student.

NAPLAN numeracy results are reported using a national achievement scale. 
Student raw scores on tests are converted to a NAPLAN “scale score” so the 
scores can be located on the national scale. NAPLAN reporting scales are con-
structed so that any given scale score represents the same level of achievement 
over time within a domain. For example, a score of 700 in numeracy in 1 year 
represents the same level of numeracy achievement in other years. Prior to 2018, 
the NAPLAN data for numeracy was disaggregated and reported against two 
scales, Number, Patterns and Algebra (NPA), and Data, Space and Measurement 
(DSM). From 2018 onwards, the disaggregation into the two sub-scales of numer-
acy was not reported.

NAPLAN scores for the 2016  year 4 cohort were matched from their 2015 
(year 3) to their 2017 (year 5) scores on the NPA scales. These data were then 
classified into three groups to compare growth: schools participating with TE 
support, schools participating with no TE support, and schools not participating 
(notMT). Two levels of data analysis were conducted. The first level involved cal-
culating mean growth for each cohort, the second to identify any levels of signifi-
cance between the means using analysis of variance (ANOVA). A similar analysis 
was repeated using the DSM scale.

NAPLAN scores were not reported separately on these scales from 2018, as simi-
lar analysis was not possible for the 2017 year 4 cohort. This was a limitation of our 
study.

Results

In this section, results of the analysis of MAI data are presented, followed by those 
of NAPLAN data. Whilst the analysis of student data is the focus of this paper, it 
is also necessary to draw on the analysis of the teacher survey data (2016) and TE 
observations to contextualise the findings relating to the student data.

MAI results—year 4, 2016 cohort

Increase in multiplicative thinkers

Table 3 shows the distribution of GPs for students as they progressed from year 4, 
2016, to year 6, 2018, for the 13 schools involved in the MT project in 2016. These 
schools are coded as MT; schools not involved are coded as notMT. Only students 
with assessment data in each of the 3 years were included in the analysis. Conse-
quently, the data represent a sample of the entire population (approximately 2,800 
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students). Reading the table horizontally shows the number and percentage of stu-
dents who achieved that GP in each year. GP4 is a critical stage in students’ devel-
opment of MT; below this GP, students are relying on counting based strategies or 
AT. Rows representing GP4 to GP8 are shaded to indicate students at these growth 
points are considered multiplicative thinkers.

As seen by the GP distribution (columns 3 and 9), there was little difference 
between the cohorts in 2016, with 69% of students (MT) and 65% (notMT) still on 
GP3 or less. By 2018, this had reduced to 23% (MT) and 27% (notMT).

Table  4 presents the aggregated data from Table  3 pertaining to multiplicative 
thinkers’ for cohorts in years 4 and 6 MT and notMT groups, presented as percent-
ages only.

Table 3  Distribution of growth points by numbers of students’ 2016-2018 MAI data

Multiplicative Thinking Project (MT) Not Multiplicative Thinking Project (notMT) 

Year 4 
2016

Year 5 
2017 

Year 6 
2018

Year 4 
2016 

Year 5 
2017 

Year 6 
2018

GP N % N % N % N % N % N % 

8 0 0.0% 7 1.2% 26 4.6% 3 0.4% 8 1.0% 19 2.4% 

7 4 0.7% 13 2.3% 30 5.3% 1 0.1% 5 0.6% 24 3.0% 

6 7 1.2% 34 6.0% 58 10.3% 14 1.8% 49 6.1% 94 11.8% 

5 45 8.0% 87 15.4% 119 21.1% 50 6.3% 112 14.0% 164 20.5% 

4 118 20.9% 209 37.0% 201 35.6% 211 26.4% 301 37.7% 285 35.7% 

3 135 23.9% 103 18.2% 69 12.2% 175 21.9% 135 16.9% 117 14.6% 

2 218 38.6% 98 17.3% 59 10.4% 288 36.0% 169 21.2% 86 10.8% 

1 31 5.5% 10 1.8% 3 0.5% 43 5.4% 16 2.0% 5 0.6% 

0 7 1.2% 4 0.7% 0 0.0% 14 1.8% 4 0.5% 5 0.6% 

Total 565 100% 565 100% 565 100% 799 100% 799 100% 799 100% 

Table 4  Percentage of students 
using multiplicative strategies 
( ≥ GP4) by cohort with 95% 
confidence intervals

Cohort Group Percentage 
multiplicative thinkers

Lower
95% CI

Upper
95% CI

Year 4 2016 MT 30.8% 27.9% 34.6%
Year 4 2016 notMT 34.9% 31.6% 38.2%
Year 6 2018 MT 76.8% 73.3% 80.3%
Year 6 2018 notMT 73.3% 70.3% 76.4%
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There is a 46% increase in the proportion of multiplicative thinkers for the MT 
group, which was then compared with a 38% increase in multiplicative thinkers 
for the notMT group (see Fig. 3). A Z-statistic was calculated to compare the two 
population proportions to test for significance. The Z-statistic was calculated to 
be 2.8 (p = 0.0025), which is significant at the alpha level of 0.05. Therefore, we 
reject the null hypothesis that there was no difference in the proportions between 
the two groups. Thus, we have evidence that the 8% increase in multiplicative 
thinkers between the two groups is an actual difference.

Fig. 3  Percentage of multiplicative thinkers in each cohort with 95% confidence intervals shown
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Student growth in multiplicative thinking

The MAI data was disaggregated by the increase in the number of growth points for 
each student between year 4, 2016, and year 6, 2018. The “on the way growth point” 
(OTWGP) for the start of year 4 is 3 and the OTWGP for the start of year 6 is 5. 
Hence, an increase of 2 growth points would be considered a measure of the typical 
growth of a student over the 2-year period.

Students engaged through their school’s involvement in the MT project had 29% 
of the cohort show an increase of 2 growth points compared with 24% of students 
in non-engaged schools (Fig. 4). A positive difference also exists between MT and 
notMT schools for increases of 3, 4, and 5 growth points of 2%, 1%, and 1% respec-
tively. Conversely, a greater proportion of students from notMT schools exhibited 
some degree of stagnation in their learning, being defined as less than a 2-growth 
point increase when compared with students from MT schools.

Increase in multiplicative thinkers

Growth point data in Table 5 reflects the MAI analysis for the 22 schools involved 
in the PL in 2017. Data tracks the progression of student achievement in the mul-
tiplication and division strategies domain from year 4, 2017, to year 6, 2019. 
Their data is compared in Tables 5 and 6 against schools that had not participated 
in the PL. Only students with assessment data in each of the 3 years are included 
in the analysis. Prior to the project, more students were on GP3 or less (64%) in 
MT schools than notMT schools (60%). However, by 2019, this had reduced to 
22% (MT) and 24% (notMT).

Fig. 4  Percentage of cohort by increase in growth points from year 4 to year 6
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Table 6 presents the aggregated data from Table 5 pertaining to multiplicative think-
ers’ for cohorts in years 4 and 6 MT and notMT groups, presented as percentages only.

Fig. 5  Percentage of multiplicative thinkers in each cohort with 95% confidence intervals shown

Table 6  Percentage of students 
using multiplicative strategies 
( ≥ GP4) by cohort with 95% 
confidence intervals

Cohort Group Percentage multiplicative 
thinkers

Lower
95% CI

Upper
95% CI

Year 4 2017 MT 36.3% 33.5% 39.1%
Year 4 2017 notMT 39.4% 36.5% 42.4%
Year 6 2019 MT 77.8% 75.4% 80.2%
Year 6 2019 notMT 75.6% 73.0% 78.2%
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Figure 5 shows a 42% increase in multiplicative thinkers in the MT group com-
pared with the 36% increase in the notMT group. A Z-statistic was calculated to 
be 2.57 (p = 0.005), which is significant at an alpha of 0.05. Therefore, we can 
reject the null hypothesis that there was no difference in the increase of multipli-
cative thinkers between the two groups. Thus, we have evidence that the 6% dif-
ference between the two groups is statistically significant.

Student growth in multiplicative thinking

The patterns of growth for the year 4, 2017, to year 6, 2019, cohort (see Fig. 6) 
are similar to the previous cohort. A greater proportion of students in MT schools 
exhibited growth of 2 or more growth points when compared with students in 
notMT schools. Greater stagnation, defined as less than a 2-growth point increase, 
was observed for notMT schools as compared with MT schools.

NAPLAN data analysis

NAPLAN data were collected and grouped according to three groups of schools: 
TE support, no TE support, and notMT. The analysis was completed for the NPA 
and the DSM scales. For each of the analyses, a table of the difference in means 
is provided, followed by a one-way analysis of variance (ANOVA). Finally, a 
post hoc analysis using the Tukey HSD test is provided to examine differences 
between the groups, if any.

As seen in Table 7, the cohort with TE support had the largest mean growth 
of 94.07 across 2 years from 2015 to 2017; those with no TE in-classroom sup-
port had a mean growth of 88.25, whereas notMT schools had a mean growth of 
84.28.

Fig. 6  Percentage of cohort by increase in growth points from year 4, 2017, to year 6, 2019
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At an alpha of 0.05, the analysis of variance (Table  8) showed a significant 
difference among the groups, F (2, 2795) = 3.0725, p = 0.046. Post hoc analysis 
using the Tukey HSD test was conducted to examine differences between the 
groups (see Table 9).

Statistically significant difference “Between Groups” at p = 0.049 was between 
the TE support ( x = 94.07 ) and notMT group ( x = 84.28) for the NPA scale. 
The effect size for the TE support group was calculated at d = 0.70 compared to 
d = 0.64 for the notMT group.

The cohort with TE support had the largest mean growth across the 2 years for 
DSM scale (see Table 10). Unlike NPA (Table 7), the mean growth for notMT was 
larger than no TE support schools.

At an alpha of 0.05, the analysis of variance (Table 11) showed a significant dif-
ference among the groups, F (2, 2795) = 4.108, p = 0.016. Post hoc analysis using 
the Tukey HSD test was conducted to examine differences between the groups (see 
Table 12).

Statistically significant difference “Between Groups” at p = 0.013 was between the 
TE support ( x = 105.68 ) and no TE Support group ( x = 92.33) for the DSM scale.

Note that the PL focus did not cover any of the content outcomes for the DSM 
strand explicitly, and there was no statistically significant difference between the TE-
supported schools and non-project schools.

In sum, the results of the analysis of MAI and NAPLAN student data indicate 
greater growth in student learning of MT in schools that participated in PL combined 
with additional TE in-class coaching support. The results also show greater student 
growth in MT for schools that participated with no additional support. When student 
data of participating schools is disaggregated into schools that had in-class TE coaching 
support, compared with those that only participated in PL sessions, the results indicate 
that there was a statistically significant difference. More specifically, student growth 

Table 7  Differences in mean 
growth between groups 2015 to 
2017 NAPLAN (NPA)

Groups of schools Number of 
students

Mean of growth 
between scores

Standard 
deviation

TE support 278 94.07 65.7
No TE support 361 88.25 56.5
notMT 2159 84.28 66.5

Table 8  Analysis of variance

Source of variation SS df MS F P-value F crit

Between groups 26,147 2 13,073 3.0725 0.04645 2.998
Within groups 11,892,615 2795 4254
Total 11,918,762 2797
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Table 9  Tukey HSD post hoc 
analysis

*Significant at alpha 0.05

Group comparison Diff Lower Upper p adj

notMT/no TE support −3.9654 12.6630 4.7323 0.5333
TE support/no TE support 5.8226 −6.3829 18.028 0.5025
TE support/notMT 9.7880 0.0412 19.5348 0.0487*

Table 10  Differences in mean 
growth between groups 2015 to 
2017 NAPLAN (DSM)

Groups of schools Number of 
students

Mean of growth 
between scores

Standard 
deviation

TE support 278 105.68 60.2
No TE support 361 92.33 58.0
notMT 2159 99.16 58.8

Table 11  Analysis of variance

Source of variation SS df MS F P-value F 
crit

Between groups 28,481 2 14,240 4.108 0.016 2.998
Within groups 9,687,998 2795 3466
Total 9,716,480 2797

Table 12  Tukey HSD post hoc 
analysis

*Significant at alpha 0.05

Group comparison Diff Lower Upper p adj

notMT/no TE support 6.829 −1.021 14.679 0.103
TE support/no TE support 13.344 2.328 24.360 0.013*
TE support/notMT 6.515 −2.282 15.312 0.192
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was greater in schools where there was a combination of PL and in-class TE coaching 
support. In contrast, there was no statistical difference in growth in these schools for the 
DSM strand.

Insights from teacher survey data and TE reflections

Responses from the 2016 teacher survey, teacher reflective diary, and TE reflections 
of in situ support are included to situate the findings relating to student data.

There are definitely learnings from this experience that I would pursue in my 
future teaching these include: asking challenging questions that use specific lan-
guage i.e. times as many, word problems presented in different ways (not just the 
typical form), use of arrays to show multiplication and division, highlight propor-
tional reasoning in the solution, the concept of composites. Year 4 Teacher

Involvement in this project has challenged the staff to think differently about the 
questions they are asking of the students and the task they are designing. This has 
resulted in a great improvement in teacher questioning and student learning as evi-
denced by our 2016 Naplan results, which saw a great improvement in the targeted 
areas of Multiplication and Division. Lead teacher

The language of times-as-many was challenging for students initially but once 
they had more experience with tasks like this, I saw a shift in the strategies they used 
and they were using multiplicative language and making connections between multi-
plication and division. Year 3 teacher’s diary

Watching our TE model, listening to the language she uses and applying that into 
my own practice and modelling to colleagues. Knowing how and when to prompt 
and use multiplicative strategies to weave it into the concept has been extremely 
helpful. Lead teacher

TE reflections

Before we began the professional learning, teachers reported that it was difficult to 
hold back from telling students what to do.

Teachers we worked with in classrooms were able to confidently participate in 
conversations around student problem solving as their MCK improved.

Lead teachers commented that conversations in the staffroom around the tasks, 
had teachers talking confidently about students’ Multiplicative thinking.

Teachers used the mantra “Use what you know, to work out what you don’t 
know”, shared in the PL. This was stated by a student I interviewed in the post 
interview.

This small sample of responses provides insights into the impact of the PL, role 
of TE in-class support, and a teacher’s own growth in understanding of how students 
develop MT.
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Discussion

A key goal in teaching MT is to shift students from counting-based strategies to 
multiplicative strategies. In order to achieve this goal, teachers require an under-
standing of the key conceptual underpinnings of multiplicative thinking (Clark & 
Kamii, 1996; Zwanch & Wilkins, 2021), the stages involved, the different multipli-
cative semantics structures, and PCK (Askew, 2018; Siemon et  al., 2018). These 
components were illustrated and exemplified in each module of the PL in the MT 
project (Downton et al., 2018).

To consider the impact of the PL on student learning, we drew on existing 
longitudinal student data, rather than relying solely on teacher self-reported data, 
their diaries, and TE reflections. Three main findings relating to students’ devel-
opment of MT were evident.

1. Students in schools where teachers engaged in PL with ongoing TE support had 
the greatest mean growth over the 2 years as evident in both the MAI data and 
NAPLAN results. The increase was statistically significant.

2. More students achieved the higher GPs in schools that received the PL than those 
in not-project schools.

3. Students in project schools also demonstrated less reliance on additive strategies 
evidenced by the reduced number of students in the lower GPs (GP 3 or below) 
compared to students in not-project schools.

Four factors relating to the PL contributed to this growth in student learning. 
First, the staff in each MT school made a commitment to participate. Doing so 
provided an opportunity for a shared understanding of effective pedagogies and 
a theoretical trajectory of learning pertaining to MT, to be developed across the 
school.

Second, the PL was targeted and carefully designed to incorporate pedago-
gies, professional readings, challenging tasks, and content related to multipli-
cative structures that were less familiar, or unfamiliar, to the teachers, namely 
times-as-many, allocation/rate, and Cartesian product (Greer, 1988; Thompson 
& Saldanha, 2003). A key feature of the PL was its delivery as modules over 
an extended period of time by TEs in participating schools. The effectiveness of 
spacing the PL over a period of time (Desimone, 2009; Timperley et  al., 2007) 
provided sufficient time for teachers to explore the tasks and pedagogies in their 
classrooms, then reflect on the learning when analysing student work samples. 
Reflecting in this way assisted teachers to realise the capabilities of students when 
challenged. Furthermore, the cyclical nature of the PL enabled teachers to reflect 
on the impact of their new knowledge and practice on student learning.

Third, and central to the improvement in student growth, was the additional 
in-class TE support, as each teacher enacted the different tasks and pedagogies. 
A critical aspect of this support was developing teachers’ expertise to notice par-
ticular student thinking and respond in the moment using enabling or extending 
prompts. As indicated in the literature, this between-module classroom enactment 



682 A. Downton et al.

1 3

of the new practice (Clarke & Hollingsworth, 2002) is more effective when teach-
ers are able to work with knowledgeable others (Timperley et  al., 2009). TE 
support was enacted through the implementation of the co-teaching cycle of co- 
planning, co-teaching, and co-debriefing (Sharratt & Fullan, 2012), which  
Sharratt (2019) maintained is critical to improving student learning outcomes.

Fourth, as a consequence of the teacher PL, students engaged with more chal-
lenging tasks related to different multiplicative semantic structures in their math-
ematics lessons, and used more efficient strategies. As reported in the literature, 
students need to experience the different multiplicative problem types, multi-step 
problems, and engage with more complex number combinations that cannot be 
intuitively grasped, in order to shift from a reliance on counting based strategies 
(Askew, 2018; Callingham, 2003; Downton & Sullivan, 2017; Greer, 1988).

Concluding comments

This study investigated the impact of a structured school-based PL program on 
students’ development of MT. The findings indicate that greater mean growth in 
student learning over a 2-year period was evident in participating schools with TE 
support. Critical to this development is teachers’ PCK (Downton et al., 2018), in 
particular their awareness of the need to gradually remove physical prompts and 
encourage students to form mental images of multiplicative situations (Sullivan 
et al., 2001).

In addition to the key features and models of PL identified in the literature, this 
study highlights the value of providing a carefully designed ongoing school-based 
PL conducted by knowledgeable leaders who also provide regular support to teach-
ers. Such support is characterised by a cycle of planning, practice, and reflection 
(Bruce et al., 2010), and the acknowledgment that sustained growth in teacher prac-
tice and subsequent student learning takes time and requires a whole school commit-
ment (Clarke & Hollingsworth, 2002). Providing opportunities for such support and 
collaboration reflects the third recommendation of the Gonski et  al. (2018) report 
which detailed the importance of creating, supporting, and valuing a profession of 
expert educators. Specifically, that Australian education should “Create the condi-
tions and culture to enable and encourage more professional collaboration, observa-
tion, feedback and mentoring amongst teachers” (p. 3).

Several avenues for further research arise from this study relating to students’ 
transition from additive to MT, in particular the importance of exploring different 
multiplicative structures from an early age to support this transition. Opportunities 
for further research relating to PL include the following: how to sustain the impact 
of PL programs in schools; the impact of ongoing in situ PL on teacher knowledge 
and practice, and student learning; and the optimum frequency and level of TE 
(external coaching) support offered to schools that will have the greatest impact on 
student learning.
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We acknowledge two limitations of this study: the lack of opportunity to analyse 
subsequent NAPLAN data, and lack of resources and time to conduct teacher inter-
views and classroom observations.

Overall, the findings highlight the importance of providing a PL program tar-
geted to an identified need, in this instance, teachers’ knowledge of MT and PCK, to 
improve students’ learning. A unique component of this PL model was the ongoing 
in-classroom support from a “knowledgeable other”, who facilitated the PL within 
the school.
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