Skip to main content
Log in

A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Lee, S. Wu, S. B. Jhong, K. H. Chen, and K. T. Liu, J. Nanomater. 2014, 250439-1 (2014).

    Google Scholar 

  2. M. S. Sun, J. C. Zhang, J. Huang, J. F. Wang, and K. Xu, J. Cryst. Growth 436, 62 (2016).

    Article  Google Scholar 

  3. H. V. Bui, F. B. Wiggers, A. Gupta, M. D. Nguyen, A. A. I. Aarnink, M. P. de Jong, and A. Y. Kovalgin, J. Vac. Sci. Technol. A 33, 01A111 (2015).

    Google Scholar 

  4. K. H. Chiu, J. H. Chen, H. R. Chen, and R. S. Huang, Thin Solid Films 515, 4819 (2007).

    Article  Google Scholar 

  5. M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V. M. Airaksinen, and H. Lipsanen, Appl. Surf. Sci. 257, 7827 (2011).

    Article  Google Scholar 

  6. M. Razeghi and R. A. McClintock, J. Cryst. Growth 311, 3067 (2009).

    Article  Google Scholar 

  7. T. V. Blank and Y. A. Gol’dberg, Semiconductors 37, 1000 (2003).

    Google Scholar 

  8. C. R. Ortiz, V. M. Pantojas, and W. O. Rivera, Solid State Electron. 91, 106 (2014).

    Article  Google Scholar 

  9. B. Abdallah, S. Al-Khawaja, A. Alkhawwam, and I. M. Ismail, Thin Solid Films 562, 152 (2014).

    Article  Google Scholar 

  10. B. Abdallah, S. Al-Khawaja, and A. Alkhawwam, Appl. Surf. Sci. 258, 419 (2011).

    Article  Google Scholar 

  11. A. M. Ivanov, I. M. Kotina, M. S. Lasakov, N. B. Strokan, and L. M. Tuhkonen, Semiconductors 44, 1031 (2010).

    Google Scholar 

  12. Y. Tanaka, Y. Hasebe, T. Inushima, A. Sandhu, and S. Ohoya, J. Cryst. Growth 209, 410 (2000).

    Article  Google Scholar 

  13. F. Jose, R. Ramaseshan, S. Dash, S. Bera, A. K. Tyagi, and B. Raj, J. Phys. D Appl. Phys. 43, 075304 (2010).

    Article  Google Scholar 

  14. M. Leskela, J. Niinisto, and M. Ritala, Comph. Mater. Process 4, 101 (2014).

    Article  Google Scholar 

  15. M. Ritala, M. Leskelä, E. Nykänen, P. Soininen, and L. Niinistö, Thin Solid Films 225, 288 (1993).

    Article  Google Scholar 

  16. H. Altuntas, C. Ozgit-Akgun, I. Donmez, and N. Biyikli, IEEE Trans. Electron Dev. 62, 3627 (2015).

    Article  Google Scholar 

  17. H. Altuntas, C. Ozgit-Akgun, I. Donmez, and N. Biyikli, J. Appl. Phys. 117, 155101 (2015).

    Article  Google Scholar 

  18. H. C. Barshilia, B. Deepthi, and K. S. Rajam, Thin Solid Films 516, 4168 (2008).

    Article  Google Scholar 

  19. C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, J. Mater. Chems. C, 2, 2123 (2014).

    Article  Google Scholar 

  20. Z. X. Bi, Y. D. Zheng, R. Zhang, S. L. Gu, Q. Xiu, L. L. Zhou, B. Shen, D. J. Chen, and Y. Shi, J. Mater. Sci. Mater. El. 15, 317 (2004).

    Article  Google Scholar 

  21. X. H. Xu, C. J. Zhang, and Z. H. Jin, Thin Solid Films 388, 62 (2001).

    Article  Google Scholar 

  22. F. Engelmark, J. Westlinder, G. F. Iriarte, I. V. Katardjiev, and J. Olsson, IEEE Trans. Electron. Dev. 50, 1214 (2003).

    Article  Google Scholar 

  23. D. Eom, S. Y. No, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, C229 (2006).

    Article  Google Scholar 

  24. I. C. Oliveira, M. Massi, S. G. Santos, C. Otani, H. S. Maciel, and R. D. Mansano, Diam. Relat. Mater. 10, 1317 (2001).

    Article  Google Scholar 

  25. C. I. Wu and A. Kahn, Appl. Phys. Lett. 74, 546 (1999).

    Article  Google Scholar 

  26. T. Adam, J. Kolodzey, C. P. Swann, M. W. Tsao, and J. F. Rabolt, Appl. Surf. Sci. 175-176, 428 (2001).

    Article  Google Scholar 

  27. Z. R. Song, Y. H. Yu, D. S. Shen, S. C. Zou, Z. H. Zheng, E. Z. Luo, and Z. Xie, Mater. Lett. 57, 4643 (2003).

    Article  Google Scholar 

  28. K. Tsubouchi and N. Mikoshiba, IEEE Trans. Sonics Ultrason. 32, 634 (1985).

    Article  Google Scholar 

  29. E. V. Gerova, N. A. Ivanov, and K. I. Kirov, Thin Solid Films 81, 201 (1981).

    Article  Google Scholar 

  30. A. Fathimulla and A. A. Lakhani, J. Appl. Phys. 54, 4586 (1983).

    Article  Google Scholar 

  31. H. Altuntas, T. Bayrak, S. Kizir, A. Haider, and N. Biyikli, Semic. Sci. Tech. 31, 075003 (2016).

    Article  Google Scholar 

  32. V. Ligatchev, Rusli, and Z. Pan, Appl. Phys. Lett. 87, 242903 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halit Altuntas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, H., Bayrak, T. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition. Electron. Mater. Lett. 13, 114–119 (2017). https://doi.org/10.1007/s13391-017-6111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6111-z

Keywords

Navigation