Skip to main content
Log in

On the potential of tungsten as next-generation semiconductor interconnects

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The continuous scaling of copper (Cu) interconnects produced two major shortcomings–a severe resistivity size effect and material reliability issues. Tungsten (W), with the expected reduction in resistivity size effect due to its shorter electron mean free path and improved reliability due to its high activation energy for diffusion, is a worthwhile candidate to replace Cu. In this article, the potential of W for future interconnects is critically discussed by reviewing the current status of W technology, including various W processing methods and the resulting phases, resistivity and microstructure. The compatibility of W with the back-end-of-line processes in CMOS devices is also discussed. The resistivity of W and Cu wires at similar nanoscale is compared based on the Fuchs-Sondheimer surface scattering model and Mayadas-Shatzkes grain boundary scattering model using the reported scattering parameters (p = 0.11 and R = 0.42 for W, and p = 0.52 and R = 0.43 for Cu), which shows that the resistivity of W wires is predicted to exhibit lower resistivity than that of Cu wires at line-widths below ~15 nm. Finally, anisotropy in the resistivity size effect in W wires is discussed, with a suggested method to reduce wire resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Wul, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, Nature 430, 61 (2004).

    Article  Google Scholar 

  2. A. Nieuwoudt and Y. Massoud, IEEE T. Electron Dev. 53, 2460 (2006).

    Article  Google Scholar 

  3. P. Avouris, Z. Chen, and V. Perebeinos, Nature Nanotechnol. 2, 605 (2007).

    Article  Google Scholar 

  4. K. C. Cadien, M. R. Reshotko, B. A. Block, A. M. Bowen, D. L. Kencke, and P. Davids, Proc. SPIE 5730, 133 (2005).

    Article  Google Scholar 

  5. A. Behnam, A. S. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, Nano Lett. 12, 4424 (2012).

    Article  Google Scholar 

  6. D. Choi, B. Wang, S. Chung, X. Liu, A. Darbal, A. Wise, N. T. Nuhfer, and K. Barmak, J. Vac. Sci. Tech. A 29, 051512 (2011).

    Article  Google Scholar 

  7. D. Choi, C. S. Kim, D. N. S. Chung, A. P. Warren, N. T. Nuhfer, M. F. Toney, K. R. Coffey, and K. Barmak, Phys. Rev. B 86, 045432 (2012).

    Article  Google Scholar 

  8. D. Choi, M. Moneck, X. Liu, S. J. Oh, C. R. Kagan, K. R. Coffey, and K. Barmak, Sci. Rep. 3, 2591 (2013).

    Article  Google Scholar 

  9. D. Choi, X. Liu, P. K. Schelling, K. R. Coffey, and K. Barmak, J. Appl. Phys. 115, 104308 (2014).

    Article  Google Scholar 

  10. D. Choi, Microelectronic Eng. 122, 5 (2014).

    Article  Google Scholar 

  11. C. S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004).

    Article  Google Scholar 

  12. Y.-J. Lee, H.-A-S. Shin, D.-H. Nam, H.-W. Yeon, B. Nam, K. Woo, and Y.-C. Joo, Electron. Mater. Lett. 11, 149 (2015).

    Article  Google Scholar 

  13. D. E. Xu, J. Chow, M. Mayer, and J. P. Jung, Electron. Mater. Lett. 11, 1078 (2015).

    Article  Google Scholar 

  14. A. Sharma, D. E. Xu, J. Chow, M. Mayer, H.-R. Sohn, and J. P. Jung, Electron. Mater. Lett. 11, 1072 (2015).

    Article  Google Scholar 

  15. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

    Article  Google Scholar 

  16. E. H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  Google Scholar 

  17. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).

    Article  Google Scholar 

  18. T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 81, 155454 (2010).

    Article  Google Scholar 

  19. D. Gall, J. Appl. Phys. 119, 085101 (2016).

    Article  Google Scholar 

  20. L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).

    Article  Google Scholar 

  21. E. Fawcett and D. Griffiths, J. Phys. Chem. Solids 23, 1631 (1962).

    Article  Google Scholar 

  22. CRC Handbook of Chemistry and Physics, 92th ed., pp. 12-41 (2012), http://www.hbcpnetbase.com/

  23. W. Steinhögl, G. Steinlesberger, M. Perrin, G. Scheinbacher, G. Schindler, M. Traving, and M. Engelhardt, Microelectronic Eng. 82, 266 (2005).

    Article  Google Scholar 

  24. A. J. Learn and D. W. Foster, J. Appl. Phys. 58, 2001 (1985).

    Article  Google Scholar 

  25. G. M. Mikhailov, A. V. Chernykh, and V. T. Petrashov, J. Appl. Phys. 80, 948 (1996).

    Article  Google Scholar 

  26. S. M. Rossnagel, I. C. Noyan, and C. Cabral Jr., J. Vac. Sci. Technol. B 20, 2047 (2002).

    Article  Google Scholar 

  27. R. C. Sun, T. C. Tisone, and P. D. Cruzan, J. Appl. Phys. 44, 1009 (1973).

    Article  Google Scholar 

  28. I. P. Ivanov, I. Sen, and P. Keswick, J. Vac. Sci. Tech. B 24, 523 (2006).

    Article  Google Scholar 

  29. L. Uray, Inter. J. Refract. Met. H. 20, 318 (2002).

    Google Scholar 

  30. L. Uray, J. Mat. Sci. Lett. 10, 1409 (1991).

    Article  Google Scholar 

  31. A. C. Chandrashekar, F. Chen, J. Lin, R. Humayun, P. Wongsenakhum, S. Chang, M. Danek, T. Itou, T. Nakayama, A. Kariya, M. Kawaguchi, and S. Hizume, Jpn. J. Appl. Phys. 49, 096501 (2010).

    Article  Google Scholar 

  32. P. J. Feenan, A. Myers, and D. Sang, Solid State Commun. 16, 35 (1975).

    Article  Google Scholar 

  33. D. Sang, A. Myers, and P. J. Feenan, Solid State Commun. 18, 597 (1976).

    Article  Google Scholar 

  34. R. Herrmann and V. S. Édelman, Zh. Eksp. Teor. Fiz. 64, 1563 (1967) [Engl. Trans. Sov. Phys. JETP 26, 901 (1968)].

    Google Scholar 

  35. R. F. Girvan, A. V. Gold, and R. A. Phillips, J. Phys. Chem. Solids 29, 1485 (1968).

    Article  Google Scholar 

  36. J. Kollár, Solid State Commun. 27, 1313 (1978).

    Article  Google Scholar 

  37. P. J. Feenan, A. Myers, and D. Sang, Solid State Commun. 16, 35 (1975).

    Article  Google Scholar 

  38. J. Liu and K. Barmak, Acta Mater. 104, 223 (2016).

    Article  Google Scholar 

  39. T. J. Vink, W. Walrave, J. C. L. Daams, A. G. Dirks, M. A. J. Somers, and K. J. A. Van der Aker, J. Appl. Phys. 74, 988 (1993).

    Article  Google Scholar 

  40. J. H. Souk, A. Segmüller, and J. Angilello, J. Appl. Phys. 62, 15 (1987).

    Article  Google Scholar 

  41. L. Krusin-Elbaum, K. Ahn, J. H. Souk, and C. Y. Ting, J. Vac. Sci. Technol. A 4, 3106 (1986).

    Article  Google Scholar 

  42. J. Ligot, S. Benayoun, and J. J. Hantzpergue, J. Vac. Sci. Technol. A 19, 798 (2001).

    Article  Google Scholar 

  43. G. S. Chen, H. S. Tian, C. K. Lin, G.-S. Chen, and H. Y. Lee, J. Vac. Sci. Technol. A 22, 281 (2004).

    Article  Google Scholar 

  44. M. J. O’Keefe and J. T. Grant, J. Appl. Phys. 79, 9134 (1996).

    Article  Google Scholar 

  45. A. S. Kao, C. Hwang, V. J. Novotny, V. R. Deline, and G. L. Gorman, J. Vac. Sci. Technol. A 7, 2966 (1989).

    Article  Google Scholar 

  46. C. Kim, I. Rho, S. Kim, I. Han, H. Kang, S. Ryu, and H. Kim, J. Electrochem. Soc. 156, H685 (2009).

    Article  Google Scholar 

  47. S. Kim, E. Hwnag, B. Kim, J. Lee, H. Sun, T. Hong, J. Kim, H. Sohn, J. Kim, and T. Yoon, Electrochem. Solid St. 8, C155 (2005).

    Article  Google Scholar 

  48. A. K. Sinha, T. E. Smith, T. T. Sheng, and N. N. Axelrod, J. Vac. Sci. Technol. 10, 436 (1973).

    Article  Google Scholar 

  49. C. E. Wickersham, J. E. Poole, and K. E. Palmer, J. Vac. Sci. Technol. B 4, 1339 (1986).

    Article  Google Scholar 

  50. F. Meyer, D. Bouchier, V. Stambouli, C. Pellet, C. Schwebel, and G. Gautherin, Appl. Surf. Sci. 38, 286 (1989).

    Article  Google Scholar 

  51. Y. Igasaki and H. Mitsuhashi, Thin Solid Films 70, 17 (1980).

    Article  Google Scholar 

  52. I. C. Noyan, T. M. Shaw, and C. C. Goldsmith, J. Appl. Phys. 82, 4300 (1997).

    Article  Google Scholar 

  53. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, Chap. 9, Prentice Hall, USA (2000).

    Google Scholar 

  54. S. B. Herner, Y. Tanaka, H. Zhang, K. A. Littau, and S. G. Ghanayem, J. Electrochem. Soc. 147, 1982 (2000).

    Article  Google Scholar 

  55. C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, IBM J. Res. Dev. 42, 567 (1988).

    Google Scholar 

  56. J. S. Chawla, F. Gstrein, K. P. O’Brien, J. S. Clarke, and D. Gall, Phys. Rev. B 84, 235423 (2011).

    Article  Google Scholar 

  57. H.-D. Liu, Y.-P. Zhao, G. Ramanath, S. P. Murarka, and G.-C. Wang, Thin Solid Films 384, 151 (2001).

    Article  Google Scholar 

  58. H. Marom and M. Eizenberg, J. Appl. Phys. 99, 123705 (2006).

    Article  Google Scholar 

  59. S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Tech. B 22, 240 (2004).

    Article  Google Scholar 

  60. K. Sivaramasrishnan and T. L. Alford, Appl. Phys. Lett. 94, 052104 (2009).

    Article  Google Scholar 

  61. J.-W. Lim and M. Isshiki, J. Appl. Phys. 99, 094909 (2006).

    Article  Google Scholar 

  62. J.-W. Lim, K. Mimura, and M. Isshiki, Appl. Surf. Sci. 217, 95 (2003).

    Article  Google Scholar 

  63. C. V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000).

    Article  Google Scholar 

  64. T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 79, 041402 (2009).

    Article  Google Scholar 

  65. http://www.itrs.net/LINKS/2013. TRS/201. Chapters/2013. Interconnect.pdf.

  66. B. Felman and S. Dunham, Appl. Phys. Lett. 95, 222101 (2009).

    Article  Google Scholar 

  67. N. W. Ashcroft and N. D. Mermin, Solid State Phys. Thomson Learning, USA (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katayun Barmak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Barmak, K. On the potential of tungsten as next-generation semiconductor interconnects. Electron. Mater. Lett. 13, 449–456 (2017). https://doi.org/10.1007/s13391-017-1610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1610-5

Keywords

Navigation