Skip to main content
Log in

Controlling the microstructure and magnetic properties of Mn-Zn ferrites nanopowders synthesized by co-precipitation method

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Nanocrystalline manganese zinc ferrites (Mn X Zn1−XFe2O4) powders with Mn2+ ions ratio (x) varying from 0.3 to 0.9 have synthesized by co-precipitation method. The results show that single Mn X Zn1−XFe2O4 phase forms at annealing temperature 1000°C for 2 h. The lattice parameter and crystallite size of the produced Mn-Zn ferrites powders increase with increasing the Mn2+ ion molar ratio. The microstructure and magnetic properties of the produced Mn X Zn1−XFe2O4 powders depend on the temperature and Mn2+ ion content. The morphology of Mn0.8Zn0.2Fe2O4 powder clearly appears as a homogeneous octahedral-like structure. The saturation magnetization of the Mn-Zn ferrite powders increase as the result of increasing Mn2+ ion ratio to 0.8. A high saturation magnetization (73.64 emu/g) achieves for the Mn0.8Zn0.2Fe2O4 powders annealed at 1100°C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. F. M. Costa, V. J. Silva, C. C. Xin, D. A. Vieira, D. R. Cornejo, and R. H. G. A. Kiminami, J. Alloys Compd. 495, 503 (2010).

    Article  Google Scholar 

  2. K. G. Kanade, D. P. Amalnerkar, H. S. Potdar, and B. B. Kale, Mater. Chem. Phys. 117, 187 (2009).

    Article  Google Scholar 

  3. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, and H. Wang, J. Mag. Mag. Mater. 321, 3203 (2009).

    Article  Google Scholar 

  4. Q. Li and W. Wang, Solid State Sci. 12, 1303 (2010).

    Article  Google Scholar 

  5. B. S. Zlatkov, N. S. Mitrović, M. V. Nikolić, A. M. Maričić, H. Danninger, O. S. Aleksić, and E. Halwax, Mater. Sci. Eng. B 175, 217 (2010).

    Article  Google Scholar 

  6. L. Xiao and T. Zhou, J. Meng, Particuology 7, 491 (2009).

    Article  Google Scholar 

  7. P. Hu, H.-B. Yang, D.-A. Pan, H. Wang, J.-J. Tian, and S.-G. Zhang, J. Magn. Magn. Mater. 322, 173 (2010).

    Article  Google Scholar 

  8. X. Cao, G. Liu, Y. Wang, J. Li, and R. Hong, J. Alloys Compd. 497, L9 (2010).

    Article  Google Scholar 

  9. M. M. Hessien, M. M. Rashad, K. El-Barawy, and I. A. Ibrahim, J. Magn. Magn. Mater. 320, 1615 (2008).

    Article  Google Scholar 

  10. X. Hou, J. Feng, X. Liu, Y. Ren, Z. Fan, and M. Zhang, J. Colloid Inter. Sci. 353, 524 (2011).

    Article  Google Scholar 

  11. L. Nalbandian, A. Delimitis, V. T. Zaspalis, E. A. Deliyanni, D. N. Bakoyannakis, and E. N. Peleka, Microporous Mesoporous Mater. 114, 465 (2008).

    Article  Google Scholar 

  12. J. Feng, L.-Q. Guo, X. Xu, S.-Y. Qi, and M.-L. Zhang, Physica B: Condensed Matter 394, 100 (2007).

    Article  Google Scholar 

  13. C. Venkataraju, G. Sathishkumar, and K. Sivakumar, J. Magn. Magn. Mater. 322, 230 (2010).

    Article  Google Scholar 

  14. C. F. Zhang, X. C. Zhong, H. Y. Yu, Z. W. Liu, and D. C. Zeng, Physica B: Condensed Matter 404, 2327 (2009).

    Article  Google Scholar 

  15. D. S. Mathew and R.-S. Juang, Chem. Eng. J. 129, 51 (2007).

    Article  Google Scholar 

  16. S. Gubbala, H. Nathani, K. Koizol, and R. D. K. Misra, Physica B: Condensed Matter 348, 317 (2004).

    Article  Google Scholar 

  17. M. Mozaffari, F. Ebrahimi, S. Daneshfozon, and J. Amighian, J. Alloys Compd. 449, 65 (2004).

    Article  Google Scholar 

  18. P. M. Botta, P. G. Bercoff, E. F. Aglietti, H. R. Bertorello, and J. M. P. López, Ceram. Inter. 32, 857 (2004).

    Article  Google Scholar 

  19. D. Arcos, R. Valenzuela, M. Vázquez, and M. V. Regí, J. Solid State Chem. 141, 10 (1998).

    Article  Google Scholar 

  20. D. Limin, H. Zhidong, Z. Yaoming, W. Ze, and Z. Xianyou, J. Rare Earths 24, 54 (2006).

    Article  Google Scholar 

  21. P. P. Hankare, R. P. Patil, U. B. Sankpal, S. D. Jadhav, K. M. Garadkar, and S. N. Achary, J. Alloys Compd. 509, 276 (2011).

    Article  Google Scholar 

  22. A. Angermann and J. Töpfer, Ceram. Inter. 37, 995 (2011).

    Article  Google Scholar 

  23. A. Angermann, J. Töpfer, K. L. da Silva, and K. D. Becker, J. Alloys Compd. 508, 433 (2010).

    Article  Google Scholar 

  24. Q. Zhang, M. Zhu, Q. Zhang, Y. Li, and H. Wang, J. Magn. Magn. Mater. 321, 3203 (2009).

    Article  Google Scholar 

  25. M. I. Ivanovskaya, A. I. Tolstik, D. A. Kotsikau, and V. V. Pankov, Russian J. Phys. Chem. A. 183, 2081 (2009).

    Article  Google Scholar 

  26. M. M. Hessien, M. M. Rashad, and K. El-Barawy, J. Magn. Magn. Mater. 320, 336 (2008).

    Article  Google Scholar 

  27. A. Verma and R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006).

    Article  Google Scholar 

  28. M. M. Rashad and S. M. El-Sheikh, Mater. Res. Bull. 46, 469 (2011).

    Article  Google Scholar 

  29. M. M. Rashad, Mater. Sci. Eng. B 127, 123 (2006).

    Article  Google Scholar 

  30. S. Dasgupta, J. Das, J. Eckert, and I. Manna, J. Magn. Magn. Mater. 306, 9 (2006).

    Article  Google Scholar 

  31. M. M. Rashad, E. M. Elsayed, M. M. Moharam, R. M. Abou-Shahba, and A. E. Saba, J. Alloys Compd. 486, 759 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashad, M.M., Nasr, M.I. Controlling the microstructure and magnetic properties of Mn-Zn ferrites nanopowders synthesized by co-precipitation method. Electron. Mater. Lett. 8, 325–329 (2012). https://doi.org/10.1007/s13391-012-1104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-1104-4

Keywords

Navigation