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Abstract Ruin occurs the first time when the surplus of a company or an insti-

tution is negative. In the Omega model, it is assumed that even with a negative

surplus, the company can do business as usual until bankruptcy occurs. The prob-

ability of bankruptcy at a point of time only depends on the value of the negative

surplus at that time. Under the assumption of Brownian motion for the surplus, the

expected discounted value of a penalty at bankruptcy is determined, and hence the

probability of bankruptcy. There is an intrinsic relation between the probability of

no bankruptcy and an exposure random variable. In special cases, the distribution of

the total time the Brownian motion spends below zero is found, and the Laplace

transform of the integral of the negative part of the Brownian motion is expressed in

terms of the Airy function of the first kind.
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1 Introduction

There are two parts in this note. Both are related to the Omega model that was

introduced in Albrecher et al. [1]. In classical risk theory, a company goes out of

business as soon as ruin occurs, that is, when the surplus is negative for the first

time. In the Omega model, there is a distinction between ruin (negative surplus) and

bankruptcy (going out of business). It is assumed that even with a negative surplus,

the company can do business as usual and continue until bankruptcy occurs. The

probability for bankruptcy is quantified by a bankruptcy rate function x(x), where

x is the value of the negative surplus. The symbol for this function leads to the name

Omega model. The idea of distinguishing ruin from bankruptcy comes from the

impression that some companies and certain industries seem to be able to continue

doing business even when they are technically ruined. This may especially be true

for companies that are owned by governments or other companies.

Two of the main tasks in classical risk theory are to calculate the probability of

ruin and the expectation of a discounted penalty at the time of ruin. See Gerber and

Shiu [6], for example. Here, we determine the probability of bankruptcy and the

expectation of a discounted penalty at the time of bankruptcy. This is done in the

first part of this note (Sects. 2, 3). By assuming a Brownian motion for the surplus

process, explicit results are derived.

The second part (Sects. 4, 5) of this note presents a perhaps unexpected

mathematical application of the Omega model. The key for the application is

formula (25). Here, the Brownian motion is assumed to have a positive drift. By

considering its sample paths, various random variables are defined. Two examples

are L, the total time of the Brownian motion below zero, and the integral of the

negative part of the Brownian motion. By calculating the probability of bankruptcy

for a suitable bankruptcy rate function, we can determine the Laplace transforms

and hence moments of these random variables. In the special case of a constant

bankruptcy rate function and the Brownian motion starting at zero, the distribution

of L is easily determined by identifying its Laplace transform. It is found that the

probability density function of L is twice a gamma probability density function

(with shape parameter 1/2) minus the associated equilibrium probability density

function. Some results can be viewed as limiting cases of the compound Poisson

model; see Albrecher et al. [3], dos Reis [5], Loisel [9] and Zhang and Wu [11].

2 Expected discounted penalty at bankruptcy

As in Albrecher et al. [1], the surplus of a company is modeled by a Brownian

motion, and the company goes out of business when bankruptcy occurs. The surplus

at time t is

UðtÞ ¼ uþ lt þ rWðtÞ; t� 0: ð1Þ

Here u is the initial surplus, l is the expected gain per unit time, r2 the variance of

the gain per unit time, and {W(t)} is a standard Wiener process. The probabilistic

mechanism of bankruptcy is given by a bankruptcy rate function x(x) C 0, x B 0.
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Whenever the surplus is negative and has the value x, x(x) dt is the probability

for bankruptcy within dt time units. Note that the function x(x) does not depend

on other variables, such as the amount of time that the surplus has been below

zero.

In analogy to Gerber and Shiu [6], we assume a bounded penalty function
w(x), where x is now the negative surplus at the time of bankruptcy. We are

interested in the function

/ðuÞ ¼ E½e�dTwðUðTÞÞIðT\1ÞjUð0Þ ¼ u�; �1\u\1; ð2Þ

the expected present value of the penalty at bankruptcy, where T denotes the time of

bankruptcy. In this section, we assume a positive force of interest, i.e., d[ 0.

The function /(u) is obtained as the solution of the differential equations

D/00ðuÞ þ l/0ðuÞ � ½xðuÞ þ d�/ðuÞ þ xðuÞwðuÞ ¼ 0; u\0; ð3Þ
D/00ðuÞ þ l/0ðuÞ � d/ðuÞ ¼ 0; u [ 0; ð4Þ

in conjunction with the conditions that /(u) and /0ðuÞ are continuous at u = 0, and

that /(u) is bounded for u! �1: We have used the convenient notation

D ¼ 1

2
r2: ð5Þ

If we define x(x) = 0 for x [ 0, Eqs. (3) and (4) can be combined as a single

equation.

Because /ð1Þ ¼ 0; the solution of the homogeneous differential equation (4) is

/ðuÞ ¼ /ð0Þe�qu; u [ 0; ð6Þ

where -q is the negative solution of the characteristic equation associated to (4),

Dn2 þ ln� d ¼ 0: ð7Þ

With u [ 0, for bankruptcy to ever occur, the surplus must first drop to 0. Formula

(6) shows that the expected discounted value of a payment of 1 at the time when the

surplus drops to 0 is e-qu. To get more specific results, we have to make more

specific assumptions about the function x(x) and solve (3) in conjunction with the

continuity conditions at u = 0 and the boundedness condition at �1:
Equation (3) can be derived as follows. For u \ 0, we distinguish whether or not

bankruptcy occurs within dt time units. Thus, apart from terms of order (dt)2 and

higher,

/ðuÞ ¼ ½xðuÞdt�wðuÞ þ ½1� xðuÞdt�e�ddtE½/ðuþ ldt þ rWðdtÞÞ�
¼ ½xðuÞdt�wðuÞ þ ½1� xðuÞdt�½1� ddt�½/ðuÞ þ l/0ðuÞdt þ D/00ðuÞdt�;

which leads to (3) after simplification.

Remark 2.1 Formula (6) still holds if the surplus process is a Levy process that

is skip-free downwards. The constant q[ 0 is determined by the condition that

{e-dt?qU(t)} is a martingale.
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3 Constant bankruptcy rates

Typically, the bankruptcy rate function is a decreasing function, for example, from

1 to 0 as x goes from �1 to 0. In contrast to this, we assume in this section that

x(x) is constant. The positive constant is denoted as k, i.e.,

xðxÞ ¼ k; x\0:

Under this assumption, bankruptcy can be explained in the framework of

randomized observation periods as in Albrecher et al. [2, 3]. Let s1; s2; . . . be i.i.d.

exponential random variables with mean 1/k. Let Tk ¼ s1 þ � � � þ sk denote the kth

observation time, k ¼ 1; 2; . . .: Here bankruptcy is defined as the event that the

surplus is ever negative at one of these observation times. From the memoryless

property of the exponential distribution it follows that the resulting bankruptcy rate

is also the constant k, which shows the equivalence of the two definitions.

We are now ready to determine /(u). By conditioning on s1 and U(s1) and using

the discounted density defined by (67) in the Appendix, we have

/ðuÞ ¼
Z1

0

e�dtfs1
ðtÞ
� Z1

�1

/ðuþ xÞfXðtÞðxÞdx

�
dt

¼
Z1

�1

/ðuþ xÞf d
XðsÞðxÞdx

¼
Z�u

�1

wðuþ xÞf d
XðsÞðxÞdxþ

Z1

�u

/ðuþ xÞf d
XðsÞðxÞdx:

ð8Þ

Applying (68) to (8) for u = 0 yields

/ð0Þ ¼ j
Z0

�1

wðxÞe�axdxþ j
Z1

0

/ðxÞe�bxdx: ð9Þ

Applying (6) to the last integral in (9) and rearranging, we obtain

/ð0Þ ¼
j
Z 0

�1
wðxÞe�axdx

1� j
Z 1

0

e�ðqþbÞxdx

¼ jðqþ bÞ
qþ b� j

Z 0

�1
wðxÞe�axdx

¼� ðqþ aÞ
Z 0

�1
wðxÞe�axdx

ð10Þ

because of (72) of the Appendix. Together with (6), this yields /(u) for u C 0. To

obtain /(u) for u \ 0, we return to (8) which is now
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/ðuÞ ¼ j
Z 0

�1
wðuþ yÞe�aydyþ j

Z �u

0

wðuþ yÞe�bydyþ j
Z 1
�u

/ðuþ yÞe�bydy

¼ j
Z u

�1
wðxÞeaðu�xÞdxþ j

Z 0

u

wðxÞebðu�xÞdxþ j
qþ b

/ð0Þebu; ð11Þ

where /(0) is given by (10).

Let f d(x|u), x \ 0, denote the discounted density of the surplus at bankruptcy

given that the initial surplus is u. Because (10) and (11) are for arbitrary penalty

functions, f d(x|u) is the coefficient of w(x) in these formulas. Thus

f dðxj0Þ ¼ �ðqþ aÞe�ax; ð12Þ

from which and (6) it follows that

f dðxjuÞ ¼ �ðqþ aÞe�qu�ax; u� 0: ð13Þ

From (11) and (10), it follows that

f dðxjuÞ ¼
jeaðu�xÞ � j qþa

qþb ebu�ax; if x\u\0;

jebðu�xÞ � j qþa
qþb ebu�ax; if u\x\0:

(
ð14Þ

Remark 3.1 We note that (10) and (13) can be obtained as limits from Example 4.2

and formula (2.17) in Albrecher et al. [3].

Finally, let us determine /(u) in the special case w(x) = 1. Of course, we could

simply set w(x) = 1 in (10) and (11). Alternatively, we find /(u) as the solution of

the differential equation (3), which is now

D/00ðuÞ þ l/0ðuÞ � ðkþ dÞ/ðuÞ þ k ¼ 0; u\0; ð15Þ

and (6), in conjunction with the smooth junction condition

/0ð0�Þ ¼ /0ð0þÞ ð16Þ

and the boundedness condition of /(u) for u! �1: We note that a and b are the

solutions of the characteristic equation that is associated to (15). It follows from this

and the boundedness condition that

/ðuÞ ¼ Bebu þ k
kþ d

; u� 0; ð17Þ

The constant B is determined by (16) and (6),

bB ¼ �q/ð0Þ ¼ �q Bþ k
kþ d

� �
: ð18Þ

Thus

B ¼ � kq
ðqþ bÞðkþ dÞ ð19Þ
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and hence

/ðuÞ ¼ k
kþ d

1� q
qþ b

ebu

� �
; u� 0: ð20Þ

In particular,

/ð0Þ ¼ k
kþ d

b
qþ b

: ð21Þ

Remark 3.2 If we set w(x) = 1 in (10), we obtain

/ð0Þ ¼ qþ a
a

: ð22Þ

To reconcile this result with (21) use Dab = -(k ? d) and (73) of the Appendix.

4 The probability of bankruptcy and the time spent below zero

We assume that l[ 0. Let w(u) denote the probability of bankruptcy,

wðuÞ ¼ PrðT\1jUð0Þ ¼ uÞ; �1\u\1; ð23Þ

which is a special case of (2). There is an intrinsic relation between w(u) and the

times that the Brownian motion (1) spends below zero.

For each sample path of fUðtÞ; 0� t\1g; the exposure is the random variable

E ¼
Z1

0

xðUðtÞÞdt; ð24Þ

recall that x(x) = 0 if x [ 0. We can interpret E as a weighted length of time that

the Brownian motion spends below zero. For a given sample path of

fUðtÞ; 0� t\1g; the conditional probability for no bankruptcy is e�E : From the

law of total probability it follows that

1� wðuÞ ¼ E½e�E�: ð25Þ
For the remainder of this section, we shall consider the special case of a constant

bankruptcy rate k as in Sect. 3. We shall continue the discussion of the general case

in Sect. 5.

With x(x) = k for x \ 0, (25) becomes

1� wðuÞ ¼ E½e�kL�; ð26Þ

where L is the total length of time the Brownian motion spends below zero. That is,

1 - w(u) is the Laplace transform of L for U(0) = u. Because d = 0, q is the

‘‘adjustment coefficient’’ R in ruin theory,

q ¼ R ¼ l=D: ð27Þ
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Also

b ¼ �lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4kD

p
2D

¼ R

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=b

p �
; ð28Þ

with

b ¼ l2

4D
: ð29Þ

From (21) it follows that

1� wð0Þ ¼ R

Rþ b
¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=b

p : ð30Þ

This expression is the Laplace transform of L for u = 0. Taking its derivative at

k = 0, we see that

E½L� ¼ 1

4b
¼ D

l2
ð31Þ

as a first result. For the inversion, we rewrite the right hand side of (30) as

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k=b
p � 2b

1� 1ffiffiffiffiffiffiffiffiffiffi
1þk=b
p

k
: ð32Þ

Note that ‘ðkÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=b

p
is the Laplace transform of

gðtÞ ¼ b1=2

Cð1
2
Þ t

1
2
�1e�bt ¼

ffiffiffiffiffi
b

pt

r
e�bt; t [ 0; ð33Þ

the gamma pdf with shape parameter 1/2 and scale parameter b, and that [1 - ‘(k)]/k
is the Laplace transform of 1 - G(t), where G(t) is the corresponding cdf. Thus it

follows from (32) that the pdf of L for u = 0 is

2gðtÞ � 2b½1� GðtÞ�; t [ 0: ð34Þ

Note that because 1/(2b) is the mean of g(t), the function 2b[1 - G(t)], t [ 0, is a

probability density function; it is known as the equilibrium probability density
function associated to g(t) [8, p. 282].

Consider now the case u [ 0. By (26), (6) with d = 0, and (30), the Laplace

transform of L is

1� wðuÞ ¼1� e�Ru þ e�Ru½1� wð0Þ�

¼1� e�Ru þ e�Ru 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k=b

p :
ð35Þ

Hence, the distribution of L is of mixed type: it has a point mass of 1 - e-Ru at 0,

and a density

e�Ruf2gðtÞ � 2b½1� GðtÞ�g for t [ 0: ð36Þ
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This result has the following probabilistic interpretation: with probability 1 - e-Ru,

the Brownian motion will never drop to zero (in which case L has the value 0), and

with probability e-Ru the Brownian motion will reach zero. In this case, the con-

ditional pdf of L is given by (34). Formula (36) can be shown to match the top

formula on page 258 of Borodin and Salminen [4] by noting that

1� GðtÞ ¼ Erfcð
ffiffiffiffi
bt
p
Þ; ð37Þ

where Erfc(x) denotes the complementary error function.

Finally, we consider the case u \ 0. By (26) and (20) with d = 0, the Laplace

transform of L is

1� wðuÞ ¼ eub R

bþ R
; ð38Þ

which can be evaluated using (28) and (30). Formula (38) shows that

E½e�kL� ¼ E½e�kLI �E½e�kLII �; ð39Þ

where L is the sum of two independent random variables, L = LI ? LII.

Here LI is the first passage time at 0 and LII is the total time spent below zero after

time LI. It is well-known that LI has an inverse Gaussian distribution with Laplace

transform eub and pdf

�u

2
ffiffiffiffiffiffiffi
pD
p t�3=2 exp

�
�ðlt þ uÞ2

4Dt

�
; t [ 0;

and, of course, the pdf of LII is given by (34). The pdf of L is given by the last

formula on page 257 of Borodin and Salminen [4] with the correction that a minus

sign is missing in the first exponent.

Remark 4.1 Section 5 in dos Reis [5] contains results about the Laplace transform

of L in the case of the classical compound Poisson model. Section 4 in Zhang and

Wu [11] has the corresponding results in the compound Poisson perturbed by

diffusion model. Our (35) is contained as a special case in their (4.10).

Remark 4.2 Relation (25) holds for more general processes. Thus also here, one

strategy is to determine the probability of bankruptcy w(u) for x(x) = k, in order to

obtain the Laplace transform of L.

5 General bankruptcy rate functions

For an arbitrary bankruptcy function x(x), x \ 0, w(u) satisfies the differential

equation (3) with d = 0 and w(u) = 1, i.e.,

Dw00ðuÞ þ lw0ðuÞ � xðuÞwðuÞ þ xðuÞ ¼ 0; u\0: ð40Þ

It follows that

wðuÞ ¼ 1þ ChðuÞ; u\0; ð41Þ
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where C is a constant and h(u) is a non-trivial solution of the corresponding

homogeneous differential equation

Dh00ðuÞ þ lh0ðuÞ � xðuÞhðuÞ ¼ 0; u\0; ð42Þ

such that hð�1Þ ¼ 0: We note that h(u) is the auxiliary function in Section 5 of

Albrecher et al. [1] with d = 0. In the special case x(x) = k, h(u) = ebu (apart

from a constant factor) with b given by (28). From (41) it follows that

1� wðuÞ ¼ hðuÞ
hð0Þ ½1� wð0Þ�; u� 0: ð43Þ

Then w0ð0�Þ ¼ w0ð0þÞ is the condition that

� h0ð0Þ
hð0Þ ½1� wð0Þ� ¼ �Rwð0Þ; ð44Þ

which yields

wð0Þ ¼ h0ð0Þ
h0ð0Þ þ Rhð0Þ ð45Þ

and hence

1� wðuÞ ¼ RhðuÞ
h0ð0Þ þ Rhð0Þ ; u� 0; ð46Þ

by (43). The exposure can be decomposed as E ¼ EI þ EII : Here EI is the exposure

until the first passage time at 0, and EII is the exposure thereafter. Because EI and EII

are independent, we have

E½e�E� ¼ E½e�EI �E½e�EII �: ð47Þ

This is precisely the interpretation of (43). It generalizes (39).

Remark 5.1 One might wonder how the probability of bankruptcy compares to the

probability of ruin. The question makes sense for u C 0, where the probabilities are

w(0) e-Ru and e-Ru, respectively. Hence, their ratio is w(0), independently of u. See

also (6).

Now we consider two special cases. First we assume that the bankruptcy function

is piecewise constant. Suppose that

c0 ¼ �1\c1\ � � �\cn�1\cn ¼ 0

and

xðxÞ ¼ kk; if ck�1\x\ck; k ¼ 1; . . .; n:

Let Lk denote the total time spent between the levels ck-1 and ck. Then E ¼Pn
k¼1 kkLk and (25) states that
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1� wðuÞ ¼ E exp �
Xn

1

kkLk

 !" #
: ð48Þ

Note that the expression on the right hand side is the joint Laplace transform of the

random variables L1; . . .; Ln:
To determine w(u), observe that

Dh00ðuÞ þ lh0ðuÞ � kkhðuÞ ¼ 0; ck�1\u\ck:

It follows that

hðuÞ ¼ Akeaku þ Bkebku; ck�1\u\ck;

where ak \ 0 and bk [ 0 are the solutions of

Dn2 þ ln� kk ¼ 0:

Note that A1 = 0 (because hð�1Þ ¼ 0), and we may set B1 = 1. Continuity of h(u)

and h0ðuÞ at u = ck implies that

Akeakck þ Bkebkck ¼ Akþ1eakþ1ck þ Bkþ1ebkþ1ck ;

Akakeakck þ Bkbkebkck ¼ Akþ1akþ1eakþ1ck þ Bkþ1bkþ1ebkþ1ck ;

k ¼ 1; . . .; n� 1: Thus, the A’s and the B’s can be determined recursively by the

formulas

Akþ1ðakþ1 � bkþ1Þeakþ1ck ¼ Akðak � bkþ1Þeakck þ Bkðbk � bkþ1Þebkck

and

Bkþ1ðbkþ1 � akþ1Þebkþ1ck ¼ Akðak � akþ1Þeakck þ Bkðbk � akþ1Þebkck :

Then (48) for u = 0 is given by (45) with

hð0Þ ¼An þ Bn;

h0ð0Þ ¼Anan þ Bnbn:

There is little hope that the joint Laplace transform (48) can be inverted. But, in

some cases, it might be possible to obtain moments of the joint distribution of

L1; . . .; Ln:
For the second special case, we assume that x(x) = -kx, x \ 0, for some k[ 0.

Thus

E ¼ k
Z1

0

UðtÞ�dt; ð49Þ

where U(t)- = max(-U(t), 0), and (25) gives the Laplace transform ofR1
0

UðtÞ�dt: Note that this random variable may be more meaningful than L.

By a transformation of variables, (42) with x(x) = -kx can be brought to the

form that characterizes the Airy functions. Thus we find that
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hðuÞ ¼ e�
Ru
2 Ai

k
D

� �1=3

�uþ l2

4Dk

� � !
ð50Þ

or a constant multiple thereof. Here Ai(x) denotes the Airy function of the first kind,

which vanishes at 1: In fact, it is known that

AiðxÞ� e�
2
3
x3=2

2
ffiffiffi
p
p

x1=4
for x!1: ð51Þ

See, for example, page 214 of Polyanin and Zaitsev [10]. It follows that

Ai0ðxÞ��
ffiffiffi
x
p

AiðxÞ for x!1: ð52Þ

Now (46) can be evaluated with

hð0Þ ¼ Aiðz2Þ ð53Þ

where

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k
D

�1=3 l2

4Dk

s
¼ R

2

D

k

� �1=3

ð54Þ

and

h0ð0Þ ¼ �R

2
hð0Þ � k

D

� �1=3

Ai0ðz2Þ: ð55Þ

Thus, for u = 0, the Laplace transform of the random variable
R1

0
UðtÞ�dt; with

respect to k, is

2RAiðz2Þ
RAiðz2Þ � 2ðkDÞ

1=3Ai0ðz2Þ
: ð56Þ

To check that the limit of this expression is 1 for k! 0; we can use (52).

To obtain the expectation of
R1

0
UðtÞ�dt; we calculated the derivative of (56)

with respect to k, and determined its limit for k! 0 using Mathematica. This leads

to the following result:

E

Z1

0

UðtÞ�dt

2
4

3
5 ¼ D2

l3
: ð57Þ

It is interesting to compare this result with (31). Now, consider U(0) = u C 0.

Because e-Ru is the probability that the Brownian motion {U(t)} will drop to level

0, we can generalize (31) and (57) as

E½L� ¼ D

l2
e�Ru ¼ e�Ru

DR2
; u� 0; ð58Þ

and
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E

Z1

0

UðtÞ�dt

2
4

3
5 ¼ D2

l3
e�Ru ¼ e�Ru

DR3
; u� 0; ð59Þ

respectively, where R is defined by (27). Note that the RHS of (58) is the negative of

the derivative of the RHS of (59) with respect to u; this is an illustration of Theorem

1 in Loisel [9].

Remark 5.2 Formulas (58) and (59) can be verified with Theorem 7 in Loisel [9].

Consider

UðtÞ ¼ uþ ct � SðtÞ; ð60Þ

where {S(t)} is a compound Poisson process with Poisson parameter m and expo-

nential claim size distribution with mean m. Then, Loisel’s results are

E½L� ¼ ð1� mRÞe�Ru

cmR2
; u� 0 ð61Þ

and

E

Z1

0

UðtÞ�dt

2
4

3
5 ¼ ð1� mRÞe�Ru

cmR3
; u� 0; ð62Þ

where the adjustment coefficient R is given by

R ¼ c� mm

cm
: ð63Þ

Note that the numerator in (61) and (62) is the probability of ruin; so is the

numerator on the RHS of (58) and (59). In the limit c!1; m!1;m! 0 such

that

c� mm ¼ l; ð64Þ

and

mm2 ¼ D; ð65Þ

the process (60) tends to (1). Because

cm2 ! D; ð66Þ

the RHS of (63) tends to the RHS of (27). Hence, (61) and (62) yield (58) and (59),

respectively.
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Appendix: Exponential stopping of Brownian motion

Let X(t) = l t ? r W(t), t C 0, where {W(t)} is a standard Wiener process. Let

fX(t)(x) denote the probability density function of X(t). For an independent random

variable s with exponential distribution (parameter k[ 0) and a force of interest

d[ 0, we consider the discounted density

f d
XðsÞðxÞ ¼ k

Z1

0

e�ðkþdÞtfXðtÞðxÞdt: ð67Þ

It is known that

f d
XðsÞðxÞ ¼

je�ax; if x� 0;
je�bx; if x [ 0;

�
ð68Þ

where a\ 0 and b[ 0 are the two solutions of the quadratic equation

Dn2 þ ln� ðkþ dÞ ¼ 0; ð69Þ

with D ¼ 1
2
r2 and

j ¼ k
Dðb� aÞ : ð70Þ

For a short proof of (68), consider the two-sided Laplace transform of (67):

Z1

�1

e�zxf d
XðsÞðxÞdx ¼k

Z1

0

e�ðkþdÞt�ltzþDtz2

dt

¼ k
kþ dþ lz� Dz2

¼ j
bþ z

� j
aþ z

;

ð71Þ

for -b\ z \ -a. This is indeed the two-sided Laplace transform of (68). There is

an alternative expression for j:

j ¼ �ðqþ aÞðqþ bÞ
b� a

; ð72Þ

where -q is the negative solution of (7). Formulas (70) and (72) are equivalent

because
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�ðqþ aÞðqþ bÞ ¼ k
D
: ð73Þ

For d = 0, (68) can be found as formula 2.1.0.5 on page 250 of Borodin and

Salminen [4]. Furthermore, we note that (68) can be obtained as a limiting result

from the unnumbered formula on page 655 of Albrecher et al. [2], or from the first

formula in Example 4.1 of Albrecher et al. [3]. Results more general than (68) and

their actuarial and financial applications can be found in Gerber et al. [7].
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