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Abstract Let π be a set of primes. According to H.Wielandt, a subgroup H of a finite
group X is called a π -submaximal subgroup if there is a monomorphism φ : X → Y
into a finite group Y such that Xφ is subnormal in Y and Hφ = K ∩ Xφ for a π -
maximal subgroup K of Y . In his talk at the celebrated conference on finite groups
in Santa-Cruz (USA) in 1979, Wielandt posed a series of open questions and among
them the following problem: to describe the π -submaximal subgroup of the minimal
nonsolvable groups and to study properties of such subgroups: the pronormality, the
intravariancy, the conjugacy in the automorphism group etc. In the article, for every
set π of primes, we obtain a description of the π -submaximal subgroup in minimal
nonsolvable groups and investigate their properties, sowe give a solution ofWielandt’s
problem.
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1 Introduction

In the paper, all groups are finite and G always denotes a finite group. Moreover,
π denotes some given set of primes and π ′ is the set of primes p such that p /∈ π . For
a natural number n, let π(n) be the set of prime divisors of n and let nπ be the π -share
of n, that is, the greatest divisor m of n such that π(m) ⊆ π . Clearly, n = nπnπ ′ and
(nπ , nπ ′) = 1. For a group G, let π(G) = π(|G|). A group G is called a π -group if
π(G) ⊆ π .

A subgroup H of G is said to be π -maximal if H is maximal with respect to
inclusion in the set of π -subgroups of G. We denote by mπ (G) the set of π -maximal
subgroups of G.

A group G is called aDπ -group (or write G ∈ Dπ ) if any two subgroups in mπ (G)

are conjugate. It is known thatG ∈ Dπ if and only if the complete analog of the Sylow
Theorem holds for π -subgroups of G, that is,

(1) G possesses a π -Hall subgroup (that is, a subgroup of order |G|π ),
(2) every two π -Hall subgroups are conjugate in G,
(3) every π -subgroup of G is contained in some π -Hall subgroup.

In particular, in a Dπ -group, the π -maximal subgroups are exactly the π -Hall sub-
groups. The Sylow Theorem states that G ∈ Dp for any group G and any prime p.
The Hall–Chunikhin Theorem [3,13,14] states that a group G is solvable if and only
if G ∈ Dπ for every set π of primes. But in general, for a given set π , the class
of Dπ -groups is wider than the class of solvable groups since every π -group is a
Dπ -group.

We denote by Hallπ (G) the set of π -Hall subgroups of a group G. TheDπ -groups
and the groups containing π -Hall subgroups are well investigated (see a survey [31]
and nextworks [7,10,25,34]). In particular, it is proved thatG ∈ Dπ if and only if every
composition factor of G is a Dπ -groups (see [22, Theorem 7.7], [31, Theorem 6.6],
[6, Chapter 2, Theorem 6.15]) and the simple Dπ -groups are described in [20, Theo-
rem 3] (see also [31, Theorem 6.9]). These results are based on the description of Hall
subgroups in the finite simple groups and the following nice properties of π -Hall sub-
groups: if N is normal and H is π -Hall subgroups in G, then HN/N ∈ Hallπ (G/N )

and H ∩ N ∈ Hallπ (N ).
The Hall–Chunikhin Theorem shows that, if G is nonsolvable, then G /∈ Dπ for

some π . It is clear that mπ (G) �= ∅ and Hallπ (G) ⊆ mπ (G) for any group G but, in
general, mπ (G) � Hallπ (G) and it may happen that Hallπ (G) = ∅. It is natural to try
to find a description for π -maximal subgroups similar to ones for π -Hall subgroups. A
hardness is that the π -maximal subgroups have no properties similar to the mentioned
above properties of π -Hall subgroups.

For example [38, (4.2)], if X and Y are groups and X /∈ Dπ for some π , then, for
any π -subgroup (not only for π -maximal) K of Y , there is a π -maximal subgroup
H of the regular wreath product X � Y such that the image of H under the natural
epimorphism X � Y → Y coincides with K .
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Classification and properties of the π -submaximal subgroups... 327

In general, the intersection of a π -maximal subgroup H with a normal subgroup N
of G is not a π -maximal subgroup of N . For example, it is easy to show that a Sylow
2-subgroup H of G = PGL2(7) is {2, 3}-maximal in G but H ∩ N /∈ m{2,3}(N ) for
N = PSL2(7).

But the situation with intersections of π -maximal and normal subgroups of a finite
group is not so dramatic in comparing with the situation with images under homomor-
phisms since the following statement holds.

Proposition 1.1 (Wielandt–Hartley Theorem) Let G be a finite group, let N be a
subnormal subgroup of G and H ∈ mπ (G). Then H ∩ N = 1 if and only if N is a
π ′-group.

For the case where N normal in G, Wielandt’s proof of this statement can be found
in [39, 13.2], and Hartly’s one in [11, Lemmas 2 and 3]. The proof of the above
proposition in the general case see [26, Theorem 7].

In view of Proposition 1.1, it is natural to consider the following concept. According
to H.Wielandt, a subgroup H of a group X is called a π -submaximal subgroup if there
is a monomorphism φ : X → Y into a group Y such that Xφ is subnormal in Y and
Hφ = K ∩ Xφ for a π -maximal subgroup K of Y . We denote by smπ (X) the set of
π -submaximal subgroups of X .

Evidently, mπ (G) ⊆ smπ (G) for any groupG. The inverse inclusion does not hold
in general as one can see in the above example: any Sylow 2-subgroup of PSL2(7) is
{2, 3}-submaximal but is not {2, 3}-maximal.

In view of the Wielandt–Hartley Theorem, 1 ∈ smπ (G) if and only if G is a π ′-
group.1 Moreover, in contrast with π -maximal subgroups, the following property of
π -submaximal subgroups holds:

If H ∈ smπ (G) and N is a (sub)normal subgroup of G, (∗)

then H ∩ N ∈ smπ (N ).

This property shows that, in some sense, the behavior of π -submaximal subgroups is
similar to ones of π -Hall subgroups under taking of intersections with (sub)normal
subgroups. Note that properties of π -submaximal subgroups are investigated in [8,9,
37,39] (see also [12,38]).

By using the closeness of the class ofDπ -group under taking extensions [22, Theo-
rem 7.7], (see also[31, Theorem 6.6] and [6, Chapter 2, Theorem 6.15]) one can show
that G ∈ Dπ if and only if every two π -submaximal subgroup of G are conjugate. In
particular, if G ∈ Dπ , then smπ (G) = mπ (G) = Hallπ (G).

In view of the Hall–Chunikhin Theorem, it is natural to consider some “critical”
situation where G is non-solvable (and G /∈ Dπ for some π ) but all subgroups of G
are solvable (and so they areDπ -groups). In this situation, G possesses more than one
conjugacy class of π -submaximal subgroups. In the paper, we consider the following

1 Note that, in Wielandt’s talk [38, (5.4)(a)], one can find a more strong version of this statement: if
H ∈ smπ (G) then NG (H)/H is a π ′-group. For the case where G is simple see Lemma 2.9.
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problem which was possed by H. Wielandt in his talk2 at the well-known conference
on finite groups in Santa-Cruz in 1979 [38, Frage (g)]:

Problem 1 (H. Wielandt 1979) To describe the π -submaximal subgroups of the min-
imal nonsolvable groups. To study properties of such subgroups: conjugacy classes,
the pronormality, the intravariancy,3 the conjugacy in the automorphism group etc.

A group G is minimal nonsolvable if G is nonsolvable but every proper subgroup
of G is solvable. As known, G is a minimal nonsolvable group if and only if G/�(G)

is a finite minimal simple group (that is, a non-abelian finite simple group S such
that S is minimal nonsolvable), where �(G) is the Ftattini subgroup of G that is the
intersection of the maximal subgroups of G. In 1968, J. Thompson [29, Corollary 1]
proved that S is a minimal simple group if and only if S is isomorphic to a group in
the following list T (we will call it as the Thompson list):

(1) L2(2p) where p is a prime;
(2) L2(3p) where p is an odd prime;
(3) where p is a prime such that p > 3 and p2 + 1 ≡ 0 (mod 5);
(4) Sz(2p) where p is an odd prime;
(5) L3(3).

Actually, the properties emphasized by Wielandt in Problem 1 play an important
role in the study of π -maximal and, in particular, π -Hall subgroups. For a π -Hall sub-
group H of G, the intravariancy means that H can be lifted to a π -Hall subgroup K of
Aut(G) such that K∩Inn(G) coincideswith the image of H in Inn(G)under the natural
epimorphismG → Inn(G) [31, Proposition 4.8]. One of important results concerning
with π -Hall subgroups of the finite simple groups is the statement that if a finite sim-
ple group S contains a π -Hall subgroup, then the number of the conjugacy classes of
π -Hall subgroups in S is a bounded π -number [23, Theorem 1.1], [31, Theorem 3.4].
This statement has many consequences for arbitrary finite groups: criteria of the exis-
tence [24] and the conjugacy [30], closeness of the class of Dπ -groups under taking
extensions, some analog of the Frattini argument for Hall subgroups [25] etc. The
strongest results on Hall subgroups turned out to be formulated in term of the pronor-
mality [7,32–34]: the pronormality of Hall subgroups in the finite simple groups, the
existence of a pronormal π -subgroup in any group containing π -Hall subgroups etc.

In the paper, for every set π of primes and for every minimal nonsolvable group G,
we solve Problem 1. More precisely, in the first, we reduce this problem to the case
where G is a minimal simple group by proving the following statement:

Proposition 1.2 Letπ be a set of primes. Let G be a finite group and let N = F(G) be
the Fitting subgroup of G (that is, the greatest normal nilpotent subgroup of G).
Suppose H ∈ smπ (G). Then the following statements hold:

2 This problem is one of ten open problems in this talk [38]. Another problem [38, Frage (i)] is the following
conjecture: a subgroup A of a group G is subnormal if NA(H ∩ A)/(H ∩ A) is π ′-group for every set π and
every H ∈ mπ (G). This is a converse statement to the strong version of the Wielandt–Hartley Theorem
(see previous remark) and it was proved by P. Kleidman in his famous work [17].
3 In Wielandt’s terminology, a subgroup H of a group G is said to be intravariant if the conjugacy class
of H in G is Aut(G)-invariant, that is, for any α ∈ Aut(G), there is g ∈ G such that Hα = Hg . Recall, a
subgroup H of a group G is said to be pronormal if H and Hg are conjugate in 〈H, Hg〉 for any g ∈ G.
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(1) mπ (G/N ) = {K N/N | K ∈ mπ (G)}.
(2) H ∩ N coincides with the π -Hall subgroup Oπ (N ) of N.
(3) HN/N ∈ smπ (G/N ).
(4) HN/N is pronormal in G/N if and only if H is pronormal in G.
(5) H is intravariant in G if and only if the conjugacy class of HN/N in G/N is

invariant under the image Aut(G) of the map Aut(G) → Aut(G/N ) given by
the rule φ → φ̄ where φ̄ : Ng → Ngφ for φ∈ Aut(G).

If G is a minimal nonsolvable group, then F(G) = �(G). Thus, for every π -
submaximal subgroups H of a minimal nonsolvable group G, the image of H in the
corresponding minimal simple group G̃ = G/�(G) is a π -submaximal subgroup of
G̃. In order to solve Problem 1, we only need to describe the π -submaximal subgroup
of the minimal simple groups, that is, in the groups of the Thompson list. It is known
[5, Corollary 1.7.10] that π(G) = π(G̃), and it is clear that, if π ∩ π(G̃) = ∅, then
smπ (G) = mπ (G) = {1}; if π ∩ π(G̃) = {p}, then smπ (G) = mπ (G) = Sylp(G);

and if π(G̃) ⊆ π , then smπ (G) = mπ (G) = {G}. A description of the π -submaximal
subgroup in theminimal simple groups for the remaining cases is given in the following
Theorem.

Theorem 1.1 Let π be a set of primes and S a minimal simple group. Suppose
that |π ∩ π(S)| > 1 and π(S) � π . Then representatives of the conjugacy classes
of π -submaximal subgroups of S, the information of their structure, π -maximality,
pronormality, intravariancy, and the action of Aut(S) on the set of conjugacy classes
of π -submaximal subgroups can be specify in the corresponding Tables 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 and 11 below.

Corollary 1.1 For every setπ of primes, theπ -submaximal subgroups of anyminimal
nonsolvable group are pronormal.

Note that our results depend on Thompson’s classification of the minimal simple
groups and do not depend on the classification of finite simple groups.

1.0 Notation in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11

According to [1,2,18], we use the following notation.

ε denotes either +1 or −1 and the sing of this number.
Cn denotes the cyclic group of order n.
Eq denotes the elementary abelian group of order q where q is a power of a prime.
D2n denotes the dihedral group of order 2n, i. e. D2n = 〈x, y | xn = y2 = 1, x y =
zx−1〉. Note that D4 ∼= E4.
SD2n denotes the semi-dihedral group of order 2n , i. e.
SD2n = 〈x, y | x2n−1 = y2 = 1, x y = x2

n−2+1〉.
Sn means a symmetric group of degree n.
An denotes the alternating group of degree n.
GLn(q) denotes the general linear group of degree n over the field of order q.
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PGLn(q) denotes the projective general linear group of degree n over the field of
order q.
Ln(q) = PSLn(q) denotes the projective special linear group of degree n over
the field of order q.
r1+2n+ denotes the extra special group of order r1+2n and of exponent r where r is
an odd prime.
A : B means a split extension of a group A by a group B (A is normal).
An denotes the direct product of n copies of A.
Am+n means Am : An .
The conditions in the column “Cond.” are necessary and sufficient for the existence
and the π -submaximality of corresponding H . If a cell in this column is empty,
then it means that the corresponding π -submaximal subgroup always exists.
In the column “H” the structure of corresponding H is given.
The conditions in the column “is not π -max. if” are necessary and sufficient for
corresponding H to be not π -maximal in S. If either this column is skipped or a
cell in this column is empty, then the corresponding subgroup is π -maximal.
A number n in the column “NCC” is equal to the number of conjugacy classes of
π -submaximal subgroups of S isomorphic to corresponding subgroup H and, if
n > 1, then in the same column the action of Aut(S) on these classes is described.
The symbol “�” in the column “Pro.” means that the corresponding subgroup H
is pronormal in S.
The symbol “�” in the column “Intra.” means that the corresponding subgroup
H is intravariant in S. If a cell in this column is empty, then H is not intravariant.

1.1 The π -submaximal subgroups in S = L2(q), where q = 2 p, p is prime, for
π such that |π ∩ π(S)| > 1 and π(S) � π

|S| = q(q − 1)(q + 1), π(S) = {2} ∪ π(q − 1) ∪ π(q + 1).

See Tables 1 and 2.

Table 1 The π -submaximal subgroups of S = L2(q), where q = 2p , p is a prime. Case: 2 /∈ π . Notation:
πε = π ∩ π(q − ε), ε ∈ {+,−}. In any cases H is π -maximal

Cond. H NCC Pro. Intra.

1 π+ �= ∅ C(q−1)π 1 � �
2 π− �= ∅ C(q+1)π 1 � �

Table 2 The π -submaximal
subgroups of S = L2(q), where
q = 2p , p is a prime. Case:
2 ∈ π . Notation:
πε = π ∩ π(q − ε), ε ∈ {+,−}.
In any cases H is π -maximal

Cond. H NCC Pro. Intra.

1 Eq : C(q−1)π 1 � �
2 π+ �= ∅ D2(q−1)π 1 � �
3 π− �= ∅ D2(q+1)π 1 � �
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Classification and properties of the π -submaximal subgroups... 331

1.2 The π -submaximal subgroups in S = L2(q), where q = 3 p, p is odd prime,
for π such that |π ∩ π(S)| > 1 and π(S) � π

|S| = 1

2
q(q − 1)(q + 1), π(S) = {3} ∪ π(q − 1) ∪ π(q + 1).

See Tables 3 and 4.

1.3 The π -submaximal subgroups in S = L2(q), where q is a prime, q2 ≡ −1
(mod 5), for π such that |π ∩ π(S)| > 1 and π(S) � π

|S| = 1

2
q(q − 1)(q + 1), π(S) = {q} ∪ π(q − 1) ∪ π(q + 1).

See Tables 5 and 6.

Table 3 The π -submaximal subgroups of S = L2(q), where q = 3p , p is an odd prime. Case: 2 /∈ π .
Notation: πε = π ∩ π(q − ε), ε ∈ {+, −}. In any cases H is π -maximal

Cond. H NCC Pro. Intra.

1 3 ∈ π Eq : C(q−1)π 1 � �
2 3 /∈ π and π+ �= ∅ C(q−1)π 1 � �
3 π− �= ∅ C(q+1)π 1 � �

Table 4 The π -submaximal
subgroups of S = L2(q), where
q = 3p , p is an odd prime.
Case: 2 ∈ π . Notation:
πε = π ∩ π(q − ε), ε ∈ {+,−}
φ ∈ Aut(S)\ Inn(S), |φ| = p. In
any cases H is π -maximal

Cond. H NCC Pro. Intra.

1 3 ∈ π Eq : C 1
2 (q−1)π

1 � �

2 π+ �= {2} D(q−1)π 1 � �
3 D(q+1)π 1 � �
4 3 ∈ π A4 1 � �

Table 5 The π -submaximal subgroups of S = L2(q), where q > 3 is a prime, q2 ≡ −1 (mod 5). Case:
2 /∈ π . Notation: πε = π ∩ π(q − ε), ε ∈ {+,−}. In any cases H is π -maximal

Cond. H NCC Pro. Intra.

1 q ∈ π Cq : C(q−1)π 1 � �
2 q /∈ π and π+ �= ∅ C(q−1)π 1 � �
3 π− �= ∅ C(q+1)π 1 � �
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Table 6 The π -submaximal subgroups of S = L2(q), where q > 3 is a prime, q2 ≡ −1 (mod 5), in
the case 2 ∈ π . Notation: πε = π ∩ π(q − ε), ε ∈ {+,−}, δ ∈ Aut(S)\ Inn(S), |δ| = 2, Aut(S) =
〈Inn(S), δ〉 ∼= S : 〈δ〉 ∼= PGL2(q)

Cond. H NCC H is not π -max. if Pro. Intra.

1 q ∈ π Cq : C 1
2 (q−1)π

1 � �

2 either π+ �= {2},
or 3 /∈ π or
q ≡ 1 (mod 8)

D(q−1)π 1 either π+ = {2}, 3 ∈ π , and
q ≡ 41 (mod 48)∗ or
π+ = {2, 3} and q ≡ 7, 31
(mod 72)∗∗

� �

3 either π− �= {2},
or 3 /∈ π , or
q ≡ −1
(mod 8)

D(q+1)π 1 either π− = {2}, 3 ∈ π , and
q ≡ 7 (mod 48)∗ or
π− = {2, 3} and q ≡ 41, 65
(mod 72)∗∗

� �

4 3 ∈ π and q ≡ ±3
(mod 8)

A4 1 � �

5 3 ∈ π and q ≡ ±1
(mod 8)

S4 2 permuted by δ �

∗ H ∼= D8 and H is contained in a π -maximal subgroup isomorphic to S4∗∗ H ∼= D6 and H is contained in a π -maximal subgroup isomorphic to S4

1.4 The submaximal π -subgroups in S = Sz(q), where q = 2 p, p is odd prime,
for π such that |π ∩ π(S)| > 1 and π(S) � π

|S| = q2(q − 1)(q2 + 1) = q2(q − 1)(q − r + 1)(q + r + 1),

where r = √
(2q) = 2(p+1)/2,

π(S) = {2} ∪ π(q − 1) ∪ π(q − r + 1) ∪ π(q + r + 1),

See Tables 7 and 8.
Table 7 The π -submaximal subgroups of S = Sz(q), where q = 2p , p is an odd prime. Case: 2 /∈ π .
Notation: r = √

(2q) = 2(p+1)/2 π0 = π ∩ π(q − 1), πε = π ∩ π(q − εr + 1), ε ∈ {+,−}. In any cases
H is π -maximal

Cond. H NCC Pro. Intra.

1 π0 �= ∅ C(q−1)π 1 � �
2 π+ �= ∅ C(q−r+1)π 1 � �
3 π− �= ∅ C(q−r+1)π 1 � �

Table 8 The π -submaximal subgroups of S = Sz(q), where q = 2p , p is an odd prime. Case: 2 ∈ π .
Notation: r = √

(2q) = 2(p+1)/2 π0 = π ∩ π(q − 1), πε = π ∩ π(q − εr + 1), ε ∈ {+,−}. In any cases
H is π -maximal

Cond. H NCC Pro. Intra.

1 E1+1
q : C(q−1)π 1 � �

2 π0 �= ∅ C(q−1)π : C4 1 � �
3 π+ �= ∅ D2(q−r+1)π 1 � �
4 π− �= ∅ D2(q+r+1)π 1 � �
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1.5 The π -submaximal subgroups of S = L3(3), for π such that |π ∩ π(S)| > 1
and π(S) � π

|S| = 24 · 33 · 13, π(S) = {2, 3, 13},

See Tables 9, 10, and 11.

2 Preliminaries

We write M �G if M is a maximal subgroup of G, that is, M < G and M ≤ H ≤ G
implies that either H = M or H = G. Moreover, we write H � G and H��G if H
is a normal or subnormal subgroup of G, respectively.

Lemma 2.1 Let S be a minimal simple group. Then representatives of the conjugacy
classes of maximal subgroups of S, the information on their structure, conjugacy
classes, and the action of Aut(S) on the set of the conjugacy classes of maximal
subgroups can be specify in the corresponding Tables 12, 13, 14, 15 and 16.

Proof See [1, Theorem 2.1.1, Tables 8.1–8.4 and 8.16], [16, Theorem II.8.27], [2],
[27, Theorem 9]. ��

Table 9 The π -submaximal
subgroups of S = L3(3). Case:
π ∩ π(S) = {3, 13}. In any cases
H is π -maximal

H NCC Pro. Intra.

1 C13 : C3 1 � �
2 32+1+ 1 � �

Table 10 The π -submaximal
subgroups of S = L3(3). Case:
π ∩ π(S) = {2, 13}. In any cases
H is π -maximal

H NCC Pro. Intra.

1 C13 1 � �
2 SD16 1 � �

Table 11 The π -submaximal subgroups of S = L3(3). Case: π ∩ π(S) = {2, 3} γ ∈ Aut(S)\ Inn(S),
|γ | = 2, Aut(S) = 〈Inn(S), γ 〉

H NCC H is not π -max. if Pro. Intra.

1 E32 : GL2(3) 2 permuted by γ �
2 31+2+ : C2

2 1 always; H ≤ E32 : GL2(3) � �
3 GL2(3) 1 always; H ≤ E32 : GL2(3) � �
4 S4 1 � �
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Table 12 Maximal subgroups
of S = L2(q) where q = 2p , p
is prime

M NCC

Eq : C(q−1) 1

D2(q−1) 1

D2(q+1) 1

Table 13 Maximal subgroups
of S = L2(q) where q = 3p , p
is an odd prime

M NCC

Cq : C 1
2 (q−1) 1

Dq−1 1

Dq+1 1

A4 1

Table 14 Maximal subgroups
of S = L2(q) where q > 3 is
prime, q2 ≡ −1 (mod 5)

M NCC Conditions

Cq : C 1
2 (q−1) 1

D(q−1) 1 q �= 7

D(q+1) 1 q �= 7

A4 1 q ≡ ±3 (mod 8)

S4 2 permuted by δ q ≡ ±1 (mod 8)

Here δ ∈ Aut(S)\ Inn(S),
|δ| = 2, Aut(S) = 〈Inn(S), δ〉 ∼=
S : 〈δ〉 ∼= PGL2(q)

Table 15 Maximal subgroups
of S = Sz(q) where q = 2p , p
is an odd prime

M NCC

E1+1
q : C(q−1) 1

C(q−1) : C4 1

D2(q−r+1) 1

D2(q+r+1) 1

Table 16 Maximal subgroups
of S = L3(3)

M NCC

E32 : GL2(3) 2 permuted by γ

C13 : C3 1

S4 1Here γ ∈ Aut(S)\ Inn(S),
|γ | = 2, Aut(S) = 〈Inn(S), γ 〉

Lemma 2.2 Let S be a minimal simple group, M �G for some G such that Inn(S) ≤
G ≤ Aut(S), and Inn(S) � M. Then G = MS and one of the following statement
holds.

(1) M ∩ Inn(S) � Inn(S);
(2) S ∼= L2(7), G = Aut(S), M ∼= D12 and M ∩ Inn(S) ∼= D6;
(3) S ∼= L2(7), G = Aut(S), M ∼= D16 and M ∩ Inn(S) ∼= D8;
(4) S ∼= L3(3), G = Aut(S), M ∼= GL2(3) : C2 and M ∩ Inn(S) ∼= GL2(3);
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(5) S ∼= L3(3), G = Aut(S), M ∼= 31+2+ : D8 and M ∩ Inn(S) ∼= 31+2+ : C2
2 .

Proof See [1, Theorem 2.1.1, Tables 8.1–8.4 and 8.16] and [2]. ��
Lemma 2.3 (see [35, Statements 7 and 9]) Let H1, . . . , Hn be subnormal subgroups
of G. Then K = 〈H1, . . . , Hn〉 is subnormal in G and every composition factor of K
is isomorphic to a composition factor of one of H1, . . . , Hn.

Lemma 2.4 (see [15, Lemma 1] and [5, Lemma 1.7.5]) Let A be a a normal sub-
group and H be a π -Hall subgroup of G. Then H ∩ A ∈ Hallπ (A) and H A/A ∈
Hallπ (G/A).

Lemma 2.5 (see [36] and [5, Theorem 1.10.1]) If G has a nilpotent π -Hall subgroup,
then G ∈ Dπ .

Recall, a group G is said to be π -separable if G has a (sub)normal series

G = G0 � G1 � · · · � Gn = 1

such that every section Gi−1/Gi is either a π -group or a π ′-group.

Lemma 2.6 If G is π -separable, then G ∈ Dπ and smπ (G) = mπ (G) = Hallπ (G).

Proof The statement G ∈ Dπ is proved in [28, Chapter V, Theorem 3.7]. Thus, in
view of

Hallπ (G) ⊆ mπ (G) ⊆ smπ (G),

it is sufficient to prove smπ (G) ⊆ Hallπ (G). Assume that H ∈ smπ (G). Without loss
of generality, we may assume that G��X and H = K ∩ G for some K ∈ mπ (X).
Let Y = 〈GX 〉 be the normal closure of G in X . Then Y is π -separable by Lemma 2.3.
Moreover, KY is π -separable, so KY ∈ Dπ . Hence K ∈ mπ (HY ) = Hallπ (HY ).
Clearly, G��Y . Hence H = K ∩ G ∈ Hallπ (G) by Lemma 2.4. ��
Lemma 2.7 (see [11, Lemma 2]) Let A be a normal subgroup of G let H ∈ mπ (G).
Then NA(H ∩ A)/(H ∩ A) is a π ′-group.

The following lemma was stated without a proof in [38, 5.3]. Here we give a proof
for it.

Lemma 2.8 Let π be a set of primes. Then, for a subgroup H of a non-abelian simple
group S, the following conditions are equivalent.

(1) H ∈ smπ (S).
(2) There exists a group G such that S is the socle of G, G/S is a π -group, and

H = S ∩ K for some K ∈ mπ (G).
(3) H = S ∩ K for some K ∈ mπ (Aut(S)) where S is identified with Inn(S).
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Proof (3) ⇒ (2) : It is sufficient to take G = SK where K as in (3).
(2) ⇒ (1) : It follows from the definition.
(1) ⇒ (3). Take a group X of the smallest order among all groupsG such that S can

be embedded into G as a subnormal subgroup and H = S∩ K for some K ∈ mπ (G).
Let A = 〈SX 〉. Then the simplicity of S implies that A is a miniml normal subgroup
in X . Since X has the smallest possible order, we obtain X = K A.

Now we show that X normalizes S. As a consequence, A = 〈SX 〉 = S. Clearly,
H = K ∩ S ≤ NK (S). Hence H ≤ S ∩ NK (S) ≤ S ∩ K = H and H = S ∩ NK (S).
We claim that N = NK (S) is a π -maximal subgroup of X0 = SN , so by minimality
of the order of X we obtain X = X0 ≤ NX (S). Assume that N ≤ U ≤ X0 for a
π -group U . Since SN ≤ SU ≤ X0 = SN , we have SU = SN . Note that

U/(U ∩ S) ∼= US/S = NS/S ∼= N/(N ∩ S).

In order to prove that N = U , we only need to show that U ∩ S = N ∩ S. Let
U0 = U ∩ S and let g1, . . . , gm be a right transversal of N in K . Then the subgroups
Si = Sgi , i = 1, . . . ,m, are pairwise different and

A = 〈S1, . . . , Sm〉 ∼= S1 × · · · × Sm .

Put V = 〈Ug1
0 , . . . ,Ugm

0 〉. Then K normalizes V . Indeed, let x ∈ K . Since K acts by
the right multiplication on {Ng1, . . . , Ngm}, there are a permutation σ of {1, . . . ,m}
and some elements t1, . . . , tm ∈ N such that

gi x = ti giσ , i = 1, . . . ,m.

Since ti ∈ N ≤ U for all i , we have that ti normalizes U0 = U ∩ S. Hence

V x = 〈Ug1x
0 , . . . ,Ugmx

0 〉 = 〈Ut1g1σ
0 , . . . ,Utmgmσ

0 〉
= 〈Ug1σ

0 , . . . ,Ugmσ

0 〉 = 〈Ug1
0 , . . . ,Ugm

0 〉 = V .

It follows that K normalizes V . Since K ∈ mπ (X), we have that V ≤ K . Conse-
quently,

U ∩ S = U0 ≤ V ∩ S ≤ K ∩ S = H = N ∩ S ≤ U ∩ S.

Thus, U ∩ S = N ∩ S and U = N .
Now we have that X = K S, so CK (S) � X and CK (S) is a π -group. Let

: X → X/CK (S)

be the natural epimorphism. Note that its restriction to S is an embedding of S into
the almost simple group X with the socle S ∼= S. It is easy to see that K ∈ mπ (X)

and H = K ∩ S. By the choice of X , we obtain CK (S) = 1, so X is almost simple.
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Thus, we can consider that X ≤ Aut(S). Let M ∈ mπ (Aut(S)) such that K ≤ M .
Then M ∩ S ≤ S ≤ X and K normalizes M ∩ S. This implies that M ∩ S ≤ K and
M ∩ S = K ∩ S = H . ��

Lemma 2.9 Let S be a finite simple group and let H ∈ smπ (S). Then NS(H)/H is
a π ′-group.

Proof We identify S with Inn(S). By Lemma 2.8, H = K ∩ S, where K ∈
mπ (Aut(S)). Since S � Aut(S), Lemma 2.7 implies that NS(H)/H is a π ′
-group. ��

Lemma 2.10 Let S = L2(q) where q is a power of some prime p. Suppose that π

is a set of primes such that 2 /∈ π while p ∈ π . Then the following statements are
equivalent.

(1) S ∈ Dπ .
(2) Aut(S) ∈ Dπ .
(3) π ∩ π(S) ⊆ {p} ∪ π(q − 1).

Proof See [21, Theorems A, 2.5, and, 3.3]. ��

3 Proof of Proposition 1.2

In this section, N = F(G) is the Fitting subgroup of G . (i. e. the largest normal
nilpotent subgroup of G). Suppose and H ∈ smπ (G).

(1) mπ (G/N ) = {K N/N | K ∈ mπ (G)}.

Proof Take K ∈ mπ (G). Suppose, K N/N ≤ L/N where L/N is a π -group. Then
L ∈ Dπ by Lemma 2.6. Since K ∈ mπ (L), we have K ∈ Hallπ (L) and K N/N ∈
Hallπ (L/N ) = {L/N } by Lemma 2.4. Hence, K N/N ∈ mπ (G/N ) and

{K N/N | K ∈ mπ (G)} ⊆ mπ (G/N ).

Conversely, assume that L/N ∈ mπ (G/N ). By Lemma 2.6, L ∈ Dπ and L/N =
K N/N for a fixed K ∈ Hallπ (L).We show that K ∈ mπ (G). In fact, assume that K ≤
V for a π -subgroup V of G. Then L ≤ V N and L = V N since L/N ∈ mπ (G/N ).
In view of K ∈ Hallπ (L) and L ∈ Dπ , we have K = V and K ∈ mπ (G). ��

(2) H ∩ N coincides with the π -Hall subgroup Oπ (N ) of N .

Proof Since N is nilpotent, N has a unique π -Hall subgroup. Hence we only need to
show that H ∩ N ∈ Hallπ (N ). By property (∗) of π -submaximal subgroups, H∩N ∈
smπ (N ) and smπ (N ) = Hallπ (N ) by Lemma 2.6. ��

(3) HN/N ∈ smπ (G/N ).
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Proof Denote by φ the natural epimorphism G → G/N . We need to show that
Hφ ∈ smπ (Gφ). One can assume that there exists a group X such that G �� X and
H = G ∩ K for some K ∈ mπ (X). Denote by Y the normal closure 〈N X 〉 of N in X .
Since N � G �� X , the Fitting Theorem [4, Chapter A, Theorem 8.8] implies that Y
is nilpotent. Consequently, G ∩ Y is also nilpotent. Since G ∩ Y � G, we have

N ≤ G ∩ Y ≤ F(G) = N .

Hence G ∩ Y = N . Consider the restriction τ : G → X/Y to G of the natural epi-
morphism X → X/Y . Then the kernel of τ coincides with N . By the homomorphism
Theorem, there exists an injective homomorphismψ : Gφ = G/N → X/Y such that
the following diagram is commutative:

G

φ

τ
X/Y

Gφ

ψ

Then

Gφψ = Gτ = GY/Y �� X/Y .

Moreover, we have

Hφψ = H τ = HY/Y = (G ∩ K )Y/Y = (GY/Y ) ∩ (KY/Y ) = Gφψ ∩ (KY/Y ),

where KY/Y ∈ mπ (X/Y ) in view of (1). Thus Hφ ∈ smπ (Gφ) by the definition of
a π -submaximal subgroup. ��
In order to prove next statements (4) and (5), we need the following lemma.

Lemma 3.1 In the above notation, HN is π -separable and H ∈ Hallπ (HN ).

Proof The group HN has the subnormal series

HN � N � H ∩ N � 1

such that HN/N is a π -group, N/(H ∩ N ) is a π ′-group by (2) and H ∩ N is a
π -group. Thus HN is π -separable. Moreover, H ∈ Hallπ (HN ) in view of

|HN |π = |HN/N ||H ∩ N | = |H/(H ∩ N )||H ∩ N | = |H |.

��
(4) HN/N is pronormal in G/N if and only if H is pronormal in G.
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Proof If H is pronormal in G, then the pronormality of HN/N in G/N is evident.
Conversely, assume that HN/N is pronormal in G/N . Let g ∈ G. We need to

prove that H and Hg are conjugate in 〈H, Hg〉.
Firstly, consider the case when g ∈ NG(HN ). Then Hg ≤ HN and Hg ∈

Hallπ (HN ) by Lemma 3.1. Clearly, the subgroup 〈H, Hg〉 of the π -separable group
HN is also π -separable. Lemma 2.6 implies that the π -Hall subgroups H and Hg of
〈H, Hg〉 are conjugate in 〈H, Hg〉.

Now consider the general case for g ∈ G. Since HN/N is pronormal in G/N ,
there is y ∈ 〈H, Hg〉 such that (HN )y = (HN )g . Hence gy−1 ∈ NG(HN ) and, in
view of above, there exist some z ∈ 〈H, Hgy−1〉 ≤ 〈H, Hg〉 such that Hz = Hgy−1

.
Hence H and Hg are conjugate by x = zy ∈ 〈H, Hg〉. ��
(5) H is intravariant in G if and only if the conjugacy class of HN/N in G/N is

invariant under Aut(G).

Proof Recall that Aut(G) is the image in Aut(G/N ) of Aut(G) under the map φ → φ̄

where φ̄ : Ng → Ngφ for φ∈ Aut(G).
If H is intravariant in G, then for every φ ∈ Aut(G), there is g ∈ G such that

Hφ = Hg . Hence

(HN/N )φ̄ = {(Nh)φ̄ | h ∈ H} = {Nhφ | h ∈ H} = HφN/N = HgN/N

and so the conjugacy class of HN/N in G/N is invariant under Aut(G).
Conversely, assume that the conjugacy class of HN/N in G/N is invariant under

Aut(G). We need to show that for every φ ∈ Aut(G) there exists g ∈ G such that
Hφ = Hg . It is clear that Hφ ∈ smπ (G). By the hypothesis, there is x ∈ G such
that HφN = Hx N , and in view of Lemma 3.1, Hφ, Hx ∈ Hallπ (HφN ) and HφN is
π -separable. Hence, Hφ = Hxy for some y ∈ HφN by Lemma 2.6. ��

4 Proof of Theorem 1.1 and Corollary 1.1

We divide our proof of Theorem 1.1 onto three parts. In the first part (Proposition 4.1
in Sect. 1.1), we prove that if H is a π -submaximal subgroup of a minimal simple
group S, then H can be found in that of Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11
which corresponds to given S and π . In the second part (Proposition 4.2 in Sect. 1.2),
we prove that every H in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 are π -submaximal
for corresponding S and prove that the information on the π -maximality, conjugacy,
intravariancy and the action of Aut(S) on the conjugacy classes for this subgroups is
true. Finally, in the third part (Proposition 4.3 in Sect. 1.3) we prove the pronormality
of the π -submaximal subgroups in the minimal simple groups and, as a consequence,
in the minimal nonsolvable groups (Corollary 1.1).

1.1 The classification of π -submaximal subgroups in minimal simple groups

In this section, S is a group in the Thompson list T , that is, S is one of the following
groups:
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(1) L2(q) where q = 2p, p is a prime;
(2) L2(q) where where q = 3p, p is an odd prime;
(3) L2(q) where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5);
(4) Sz(q) where q = 2p, p is an odd prime;
(5) L3(3).

We identify S with Inn(S) ∼= S. Let π be a set of primes such that |π ∩ π(S)| > 1 and
π(S) � π . The following statement gives a classification of π -submaximal subgroups
in the minimal simple groups.

Proposition 4.1 If H ∈ smπ (S) where S ∈ T , then H appears in the corresponding
column in that of Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 which corresponds to S and
π .

Proof Let H ∈ smπ (S). Lemma 2.8 implies that H = K ∩ S for some K ∈ mπ (G)

where S ≤ G ≤ Aut(S) and G = K S. By Lemma 2.9, NS(H)/H is a π ′-group and,
in particular, H �= 1. Since S is not a π -group, we have K < G and K ≤ M for some
maximal subgroup M of G. Note that M ∩ S < S (in fact, if M ∩ S = S it would
be G = K S ≤ MS ≤ M , which contradicts M � G), so M is solvable. Moreover,
K ∈ mπ (M) = Hallπ (M) in view of solvability of M . Hence by Lemma 2.4,

H = K ∩ S = K ∩ (M ∩ S) ∈ Hallπ (M ∩ S).

It follows from Lemma 2.2 that one of the following cases holds:

(I) M ∩ S � S;
(II) S ∼= L2(7), G = Aut(S), M ∼= D12 and M ∩ S ∼= D6;
(III) S ∼= L2(7), G = Aut(S), M ∼= D16 and M ∩ S ∼= D8;
(IV) S ∼= L3(3), G = Aut(S), M ∼= GL2(3) : 2 and M ∩ S ∼= GL2(3);
(V) S ∼= L3(3), G = Aut(S), M ∼= 31+2+ : D8 and M ∩ S ∼= 31+2+ : C2

2 .

Firstly, we consider Cases (II)–(V) keeping in mind that 1 < H ∈ Hallπ (M ∩ S).
Assume that Case (II) holds. Then S = L2(q), where q = 7 and M ∩ S ∼= D6.
If 2 /∈ π , then |H | = 3 and H appears in the 2-nd row of Table 5 for π+ = {3}.
If 3 /∈ π , then |H | = 2 and 2 ∈ π . In this case, H is contained in a Sylow 2-

subgroup P of S. But 1 < NP (H)/H ≤ NS(H)/H , so NS(H)/H is not a π ′-group,
which contradicts Lemma 2.9. Thus, this case is impossible.

If 2, 3 ∈ π , then H = M∩S and H appears in the 2-nd row of Table 6 forπ+ �= {2}.
Assume that Case (III) holds. Then S = L2(q), where q = 7 and M ∩ S ∼= D8. In

this case, H ∈ Hallπ (M ∩ S) implies that 2 ∈ π , H = M ∩ S is a Sylow 2-subgroup
of S, and H appears in the 3-rd row of Table 6 for q ≡ −1 (mod 4).

Assume that Case (IV) holds. Then S = L3(3) and M ∩ S ∼= GL2(3).
If 2 /∈ π , then |H | = 3 and H is contained in a Sylow 3-subgroup P of S. But

1 < NP (H)/H ≤ NS(H)/H , so NS(H)/H is not a π ′-group, which contradicts
Lemma 2.9. Thus, this case is impossible.

If 3 /∈ π , then H ∼= SD16, H coincides with a Sylow 2-subgroup of S, and
π ∩ π(S) = {2, 13}. Hence, H appears in the 2-nd row of Table 10.

If 2, 3 ∈ π , then H = M ∩ S and H appears in the 3-rd row of Table 11 for
π ∩ π(S) = {2, 3}.
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Assume that Case (V) holds. Then S = L3(3) and M ∩ S ∼= 31+2+ : C2
2 .

If 2 /∈ π , then π ∩ π(S) = {3, 13}, H ∼= 31+2+ and H coincides with a Sylow
3-subgroup of S. In this case, H appears in the 2-nd row of Table 9.

If 3 /∈ π , then |H | = 4 and 2 ∈ π . In this case, H is contained in a Sylow
2-subgroup P of S. But 1 < NP (H)/H ≤ NS(H)/H . Hence NS(H)/H is not a
π ′-group, contrary to Lemma 2.9. Thus, this case is impossible.

If 2, 3 ∈ π , then H = M ∩ S and H appears in the 2-nd row of Table 11 for
π ∩ π(S) = {2, 3}.

Now we consider Case (I). In this case, H coincides with some nontrivial π -Hall
subgroup of a maximal subgroup U = M ∩ S of S ∈ T . By using Lemma 2.1,
we consider the nontrivial π -Hall subgroups of maximal subgroups U of all groups
S ∈ T .
Case (I)(1) S = L2(q) where q = 2p, p is a prime. In this case, the numbers 2, q − 1
and q + 1 are pairwise coprime and hence

π(S) = {2} ∪̇π(q − 1) ∪̇ π(q − 1)

(the dot over the symbol of union means that we have a union of pairwise disjoint
sets). Let

πε = π∩π(q − ε) for ε ∈ {+,−}.

By Lemma 2.1, U is one of the following groups: either Eq : C(q−1), or D2(q−ε),
where ε ∈ {+,−}.

If 2 /∈ π , then

π ∩ π(S) = π+ ∪̇ π−

and H must be a nontrivial cyclic group of order (q − ε)π and so πε �= ∅. Thus, H
appears in Table 1.

If 2 ∈ π , then

π ∩ π(S) = {2} ∪̇π+ ∪̇ π−

and H must be either the Frobenius group in the 1-st row of Table 2 or the dihedral
group D2(q−ε)π , where ε ∈ {+,−}.Moreover, in the last case,πε �= ∅ since otherwise
|H | = 2 and H is contained as a proper subgroup in a Sylow 2-subgroup P of S,
contrary to Lemma 2.9. Thus H appears in Table 2.

Case (I)(2) S = L2(q) where q = 3p, p is an odd prime. In this case,

π(S) = {3} ∪ π(q − 1) ∪ π(q − 1).

Moreover, 3 is coprime with both q − 1 and q + 1 and (q − 1, q + 1) = 2. As in
above, we set

πε = π ∩ π(q − ε) for ε ∈ {+,−}.
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By Lemma 2.1, U is one of the following groups: either Eq : C 1
2 (q−1), or Dq−ε,

where ε ∈ {+,−}, or A4.
If 2, 3 /∈ π , then

π ∩ π(S) = π+ ∪̇ π−

and H must be a nontrivial cyclic group of order (q − ε)π , and so πε �= ∅. Thus, H
appears in Table 3.

If 2 /∈ π and 3 ∈ π , then

π ∩ π(S) = {3} ∪̇ π+ ∪̇ π−

and H must be either the Frobenius group in the 1-st row of Table 3 or a nontrivial
cyclic group of order (q − ε)π and hence πε �= ∅.

Assume that ε = + and H is cyclic of order (q −1)π . We claim that H /∈ smπ (G).
Indeed, if H ∈ smπ (G), then H = K ∩ S for some K ∈ mπ (Aut(S)) by Lemma 2.8.
It is known that |Aut(S)/S| = 2p (see [1, Table 8.1], for example). Consider two
cases: p /∈ π and p ∈ π .

If p /∈ π , then K ≤ S and H = K . In particular, in this case, H ∈ mπ (S). But it is
easy to see that H ∈ Hallπ+(S) and S ∈ Dπ+ by Lemma 2.5. A maximal subgroup of
the type Eq : C 1

2 (q−1) of S contains some π+-Hall subgroup of S and H is conjugate
to this subgroup. It means that H normalizes a Sylow 3-subgroup of S, contrary to
H ∈ mπ (S).

If p ∈ π, then, in view of (p, q + 1) = (p, 3p + 1) = 1, we have by Lemma 2.10
that

Aut(S) ∈ Dτ where τ = π+ ∪ {3, p}.

Since K ∈ mπ (Aut(S)) and K is a τ -group, we obtain that

K ∈ mτ (Aut(S)) = Hallτ (Aut(S)).

But |K | = p|H | is not divisible by 3, a contradiction again.
Thus, if 2 /∈ π and 3 ∈ π, then H is not a cyclic group of order (q − 1)π . In the

remaining cases, H appears in Table 3.
Suppose that 2 ∈ π . Then the maximal subgroups containing a Sylow 2-subgroup

of S are Dq+1 and A4. Hence H is a 2-group if and only if π− = {2} and H =
D(q+1)2 = D(q+1)π . In particular, such H can not be contained in Eq : C 1

2 (q−1) and
Dq−1. Now it is easy to see that if 3 /∈ π , then H coincides with a π -Hall subgroup
of Dq−ε, where ε ∈ {+,−}; and if 3 ∈ π , then H can not coincide with a Sylow
2-subgroup P by Lemma 2.9 in view of NS(P) ∼= A4. Hence H must coincides with
one of the following groups Eq : C 1

2 (q−1)π
, D(q−1)π , D(q+1)π or A4. In all these cases,

H appears in Table 4.
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Case (I)(3) S = L2(q), where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5).
In this case,

π(S) = {q} ∪ π(q − 1) ∪ π(q − 1),

q is coprime with both q − 1 and q + 1 and (q − 1, q + 1) = 2. Let

πε = π ∩ π(q − ε) for ε ∈ {+,−}

as usual.
In this case, Aut(S) ∼= PGL2(q). By Lemma 2.1, U is one of the following

groups: or Cq : C 1
2 (q−1), or Dq−ε where ε ∈ {+,−}, or one of A4 and S4 for q ≡ ±3

(mod 8) and q ≡ ±1 (mod 8), respectively. It follows from [1, Table 8.1] that, with
the exception of the case U ∼= S4, we have U = V ∩ S for some V � Aut(S) such
that Aut(S) = SV and |V : U | = 2.

Suppose that 2 /∈ π . Since |Aut(S) : S| = 2, H must be a π -maximal subgroup
of S by Lemma 2.8. If H is contained in one of A4 or S4, then |H | = 3 and, since
any Sylow 3-subgroup of S is cyclic, H is contained in Dq−ε with q ≡ ε (mod 3).
Moreover, if q ∈ π , then the unique π -Hall subgroup of Dq−1 is not π -maximal in S.
Indeed, this subgroup is a cyclic π+-Hall subgroup of S. Lemma 2.5 implies that this
subgroup is conjugate to a subgroup in some Frobenius group Cq : C 1

2 (q−1) ≤ S and
normalizes a Sylow q-subgroup of S. Hence, if 2 /∈ π , then H appears in Table 5.

Suppose that 2 ∈ π . In order to show that H appears in Table 6, it is sufficient to
show that a π -Hall subgroup H of Dq−ε is not π -submaximal in S if πε = {2}, 3 ∈ π

and q �≡ ε (mod 8). Indeed, if q ≡ −ε (mod 8), then |H | = (q − ε)2 = 2 < |S|2
and H < P for some Sylow 2-subgroup P of S, which contradicts Lemma 2.9;
if q ≡ ±3 (mod 8), then H is an elementary abelian Sylow 2-subgroup of S, and
|H | = 4, which contradicts Lemma 2.9 since, by the Sylow Theorem, H is contained
as a normal subgroup in amaximal subgroup of S isomorphic to A4 and this subgroups
is a π -group.

Case (I)(4) S = Sz(q) where q = 2p, p is an odd prime. In this case,

π(S) = {2} ∪̇ π(q − 1) ∪̇ π(q − r + 1) ∪̇ π(q + r + 1)

where r = √
2q = 2(p+1)/2. Let

π0 = π ∩ π(q − 1) and πε = π ∩ π(q − εr + 1) for ε ∈ {+,−}.

ByLemma 2.1,U is one of the following groups: or E1+1
q : C(q−1), orC(q−1)π : C4,

or D2(q−εr+1)π where ε ∈ {+,−}.
Note that S has exactly one conjugacy class of cyclic subgroups of order q − 1

(see the character table of S in [27, Theorem 13]). Hence, if 2 /∈ π , then any π -
Hall subgroup of E1+1

q : C(q−1) is contained as a π -Hall subgroup in some maximal
subgroup of kind C(q−1)π : C4. Thus, in the case when 2 /∈ π , H appears in Table 7.
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Now assume that 2 ∈ π . If one of the sets π0, π+, π− is empty, then any π -Hall
subgroup of the respective subgroups: or C(q−1)π : C4, or D2(q−r+1), or D2(q−r+1),
is a 2-group, but is not a Sylow 2-subgroup. Then Lemma 2.9 implies that case where
H is a π -Hall subgroup in one of these maximal subgroup of S is impossible. In the
remaining cases, H appears in Table 8.

Case (I)(5) S = L3(3). In this case, π(S) = {2, 3, 13}. By Lemma 2.1, U is one
of the following groups: or E32 : GL2(3), or C13 : C3, or S4. Since π(S) � π and
|π ∩ π(S)| > 1, the intersection π ∩ π(S) coincides with one of sets {3, 13}, {2, 13},
and {2, 3}.

Suppose that π ∩ π(S) = {3, 13}. Then a π -Hall subgroup H of E32 : GL2(3)
coincides with a Sylow 3-subgroup 31+2+ of S and appears in Table 9. A π -Hall
subgroup H of C13 : C3 is C13 : C3 itself and H appears in Table 9. A π -Hall
subgroup H of S4 is of order 3 and Lemma 2.9 implies that this case is impossible.

Suppose that π ∩ π(S) = {2, 13}. Then a π -Hall subgroup H of E32 : GL2(3)
coincides with a semi-dihedral Sylow 2-subgroup SD16 of both E32 : GL2(3) and S,
and H appears in Table 10. A π -Hall subgroup H of C13 : C3 is cyclic of order 13
and appears in Table 10. A π -Hall subgroup H of S4 is of order 8 and is not a Sylow
2-subgroup of S. We may exclude this case by Lemma 2.9.

Finally, suppose thatπ∩π(S) = {2, 3}. Then aπ -Hall subgroup H of E32 : GL2(3)
is E32 : GL2(3) itself and H appears in Table 11. A π -Hall subgroup H of C13 : C3
is cyclic of order 3 and Lemma 2.9 implies that this case is impossible. A π -Hall
subgroup H of S4 is S4 itself and it appears in Table 11. ��

1.2 The π -submaximality, π -maximality, conjugacy, and intravariancy for
subgroups in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10

In this section, as in above, S is a group in the Thompson list T .
We prove that the converse of Proposition 4.1 holds, that is, the subgroups placed in

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 areπ -submaximal under corresponding conditions.
Moreover, we prove that the information about the π -maximality, the conjugacy, the
action of Aut(S) on the conjugacy classes of this subgroups, and the intravariancy in
this tables is correct.

Proposition 4.2 Let S ∈ T , π be a set of primes such that |π ∩ π(S)| > 1 and
π(S) � π , and let H be a subgroup of S placed in corresponding column of one of
Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 which corresponds to S. Then

(1) H ∈ smπ (S).
(2) H ∈ Hallπ (M) for every M � S such that H ≤ M (and so H ∈ mπ (S)) with

the exception of the following cases:
(2a) S = L2(q) for some prime q such that q > 3 and q2 + 1 ≡ 0 (mod 5);

2, 3 ∈ π , H = D(q−ε)π , ε ∈ {+,−}, π ∩ π(q − ε) = {2} and

q ≡ −ε7 (mod 48).

In this case, H is a Sylow 2-subgroup of S, H ∼= D8, and H < S4 � S.
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(2b) S = L2(q) for some prime q such that q > 3 and q2 + 1 ≡ 0 (mod 5);
2, 3 ∈ π , H = D(q−ε)π , ε ∈ {+,−}, π ∩ π(q − ε) = {2, 3} and

q ≡ ε7, ε31 (mod 72).

In this case, H ∼= S3 ∼= D6, H is a {2, 3}-Hall subgroup of the normalizer in
S of a Sylow 3-subgroup and H < S4 � S.

(2c) S = L3(3), π ∩ π(S) = {2, 3}, and H = 31+2+ : C2
2 . In this case,

H < E32 : GL2(3) � S.
(2d) S = L3(3), π ∩ π(S) = {2, 3}, and H = GL2(3). In this case,

H < E32 : GL2(3) � S.
(3) S has a unique conjugacy class ofπ -submaximal subgroups isomorphic to H with

the exception of the following cases when S has exactly two conjugacy classes of
π -submaximal subgroups isomorphic to H that are fused in Aut(S):

(3a) S = L2(q)where q is a prime such that q > 3, q2+1 ≡ 0 (mod 5), q ≡ ±1
(mod 8), 2, 3 ∈ π , and H = S4;

(3b) S = L3(3), π ∩ π(S) = {2, 3}, and H = E32 : GL2(3).
(4) H is intravariant in S excepting the cases determined in (3) where S has two

conjugacy classes of π -submaximal subgroups isomorphic to H.

Proof Firstly, we prove (2).
Non-π -maximality of H and corresponding inclusions in cases (2b) or (2c) follow

from [2].
Suppose case (2a) holds. Then S = L2(q), 2, 3 ∈ π , H = D(q−ε)π where q is a

prime such that q > 3 and q2 + 1 ≡ 0 (mod 5), ε ∈ {+,−}.
Consider the case where π ∩π(q − ε) = {2} and q ≡ −ε7 (mod 48). Then q ≡ ε

(mod 8). This means that H coincides with a Sylow 2-subgroup of S and, moreover,
S contains a maximal subgroup isomorphic to S4 by Lemma 2.1. Since q ≡ −7ε
(mod 16), we have |H | = (q − ε)π = 8 = |S4|2. The Sylow Theorem implies that
H is conjugate to a Sylow 2-subgroup of S4. Thus, H is not π -maximal in S in view
of 2, 3 ∈ π and S4 is a π -group.

Now consider the case where π ∩ π(q − ε) = {2, 3} and q ≡ ε7, ε31 (mod 72).
Then q ≡ −ε (mod 8). It means that S contains a maximal subgroup M isomorphic
to S4 by Lemma 2.1. But it is easy to calculate that |H | = (q − ε)π = 6 and so
H ∼= S3. Moreover, H contains a Sylow 3-subgroup P of S since |S|3 = 3. It follows
that H is contained in NS(P). By considering the maximal subgroups of S given in
Lemma 2.1, it is easy to see that NS(P) = Dq−ε, so H is a {2, 3}-Hall subgroup of
NS(P). By the Sylow Theorem, we can assume that P < M . Since NM (P) ∼= S3, we
obtain NM (P) ∈ Hall{2,3}(NS(P)). The Hall Theorem and the solvability of NS(P)

imply that H is conjugate with NM (P) and H is not π -maximal in S since 2, 3 ∈ π

and S4 is a π -group.
In order to complete the proof of (2), it is sufficient to show that, in the remaining

cases, H is a π -Hall subgroup in every maximal subgroup M of S containing H . By
Lemma 2.1, an easy calculation show that one of the following cases holds:

(I) up to isomorphism, there is a unique maximal subgroup M of S such that |H |
divides |M |, H ≤ M and H is a π -Hall subgroup of M .
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(II) S = L2(q) where q = 2p for a prime p, 2 /∈ π , H = C(q−1)π , and, up to
isomorphism, there are exactly two maximal subgroup M of S such that |H |
divides |M |, namely either M = Eq : C(q−1) or M = D2(q−1). In this case, H
is a π -Hall subgroup of every maximal subgroup containing H .

(III) S = L2(q) where q = 2p for a prime p, 2 ∈ π , H = D2(q−1)π , and, up to
isomorphism, there are exactly two maximal subgroup M of S such that |H |
divides |M |, namely either M = Eq : C(q−1) or M = D2(q−1). In this case
H is not isomorphic to a subgroup of Eq : C(q−1) and is contained only in
M = D2(q−1). Hence H is a π -Hall subgroup of every maximal subgroup
containing H .

(IV) S = L2(q) where either q = 3p for odd prime or q > 3 is a prime, 2 /∈ π , H =
C(q−1)π and, up to isomorphism, there are exactly two maximal subgroup M of
S such that |H | divides |M |, namely either M = Eq : C 1

2 (q−1) or M = Dq−1.
In this case, H is a π -Hall subgroup of every maximal subgroup containing H .

(V) S = Sz(q) where q = 2p for a prime p, 2 /∈ π , H = C(q−1)π , and, up to
isomorphism, there are exactly two maximal subgroup M of S such that |H |
divides |M |, namely either M = E1+1

q : C(q−1) or M = Cq−1 : C4. In this
case, H is a π -Hall subgroup of every maximal subgroup containing H .

(VI) S = Sz(q) where q = 2p for a prime p, 2 ∈ π , H = C(q−1)π : C4, and, up
to isomorphism, there are exactly two maximal subgroup M of S such that |H |
divides |M |, namely either M = E1+1

q : C(q−1) or M = Cq−1 : C4. In this case
H is not isomorphic to a subgroup of E1+1

q : C(q−1) and is contained only in
M = Cq−1 : C4. Hence H is a π -Hall subgroup of every maximal subgroup
containing H .

(VII) S = L2(q) where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5),
2 ∈ π , H = D(q−ε)π for some ε ∈ {+,−}, |H | divides 24, and, up to isomor-
phism, there are exactly two maximal subgroup M of S such that |H | divides
|M |, namely either M = Dq−ε or M ∈ {A4, S4}. This case will be separately
considered below.

(VIII) S = L2(q) where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5),
2, 3 ∈ π , H ∈ {A4, S4}, |H | divides q − ε for some ε ∈ {+,−} and, up to
isomorphism, there are exactly two maximal subgroup M of S such that |H |
divides |M |, namely either M = Dq−ε or M ∈ {A4, S4}. In this case H is not
isomorphic to any subgroup of Dq−ε, so H itself is maximal and coincide with
its π -Hall subgroup.

(IX) S = L3(3), π = {2, 3}, H = S4, and, up to isomorphism, there are exactly
two maximal subgroup M of S such that |H | divides |M |, namely either
M = E32 : GL2(3) or M = S4. In this case, H itself is maximal and coin-
cide with its π -Hall subgroup.

Thus, in order to complete the proof of (2), we need to consider Case (VII): S = L2(q)

where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5), 2 ∈ π , H = D(q−ε)π

for some ε ∈ {+,−}, |H | divides 24, and, up to isomorphism, there are exactly two
maximal subgroup M of S such that |H | divides |M |, namely either M = Dq−ε or
M ∈ {A4, S4}. It is clear that H is a π -Hall subgroup of Dq−ε. We need to show that
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either H is not contained in M ∈ {A4, S4}, or H is a π -Hall subgroup in such M , or
one of the exceptional cases (2a) and (2b) holds.

Note that we have the condition in Table 6 for H that ether πε �= {2}, or 3 /∈ π , or
q ≡ ε (mod 8).

Suppose that πε �= {2}. Since |H | = (q − ε)π divides 24, the assumption πε �= {2}
means that 3 ∈ π , 3 divides H , and M ∈ {A4, S4} is a π -group. Since H must contain
a dihedral group of order 6 in this case, M �= A4 and so M = S4. This implies that
q ≡ ±1 (mod 8). But S4 does not contained a dihedral group of order 12 and we have
that |H | = 6. In particular,

2 = |H |2 = (q − ε)2

and q ≡ −ε (mod 4). Thus, q ≡ −ε (mod 8). Moreover, |H | divides 24 implies that
q − ε is not divisible by 9 and hence q ≡ ±3+ ε (mod 9). It is not difficult to prove
that

q ≡ −ε (mod 8) and q ≡ ±3 + ε (mod 9)

if and only if q ≡ ε7, ε31 (mod 72).

Thus, exceptional case (2b) holds.
Thus, we can consider that πε = {2}. Suppose that 3 /∈ π . Since |H | divides 24,

we have H = D8 or H = D4 = C2 ×C2. In the first case, M = S4 and H is a π -Hall
subgroup of both Dq−ε and S4, and in the second case, M = A4 and H is π -Hall in
both Dq−ε and A4.

Consider the last case when πε = {2} and 3 ∈ π . Then q ≡ ε (mod 8) and
condition |H | divides 24 implies that |H | = 8. Hence q �≡ ε (mod 16). This implies
that q ≡ 8+ ε (mod 16). Moreover, q ≡ −ε (mod 3) since otherwise 3 ∈ πε = {2}.
It is not difficult to prove that

q ≡ 8 + ε (mod 16) and q ≡ −ε (mod 3) if and only if q ≡ −ε7 (mod 48).

Thus, the exceptional case (2a) holds.
This completes the proof of (2).

Nowweprove (1). In viewof (2), it is sufficient to prove that if one of the exceptional
cases (2a)–(2d) in (2) holds, thenH = K∩S for some K ∈ mπ (G)whereG = Aut(S).

Suppose one of cases (2a)–(2b) holds. Then S = L2(q), 2, 3 ∈ π , H = D(q−ε)π

where q is a prime such that q > 3, q2 + 1 ≡ 0 (mod 5), ε ∈ {+,−}, and G =
PGL2(q). It follows from [1, Table 8.1] that H ≤ U � G where U ∼= D2(q−ε). Let
K ∼= D2(q−ε)π be a π -Hall subgroup ofU . Then G = SK . Assume that K /∈ mπ (G).
Then K < L for some π -maximal subgroup L of G. It follows from π(S) � π that
S � L . Let V be a maximal subgroup of G such that L ≤ V . In view of Lemma 2.2,
either V ∩ S � S or q = 7 and V ∩ S ∈ {D6, D8}. It is easy to see that the the
both arithmetic conditions q ≡ −ε7 (mod 48) in (2a) and q ≡ ε7, ε31 (mod 72)
in (2b) imply that q ≡ ±1 (mod 8), so S has no maximal subgroup isomorphic to
A4. Moreover, V S = G = PGL2(q). If we assume that V ∩ S � S and V ∩ S ∼=
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S4, then the conjugacy class in S of maximal subgroups isomorphic to S4 would be
invariant under G = Aut(S). But it is not so, see Table 14. Thus, V ∩ S is one of
the following groups: Cq : C 1

2 (q−1), Dq+ε, and Dq−ε. Since V ≤ NG(V ∩ S), we
have V = NG(V ∩ S) and V coincides with one of Cq : Cq−1, D2(q+ε), and D2(q−ε).
But V contains K ∼= D2(q−ε)π and K /∈ Hallπ (V ). We can exclude the case where
V = Cq : Cq−1 since in this case every dihedral subgroup of V is isomorphic to D2q
but ((q − ε)π , q) = 1. If V = D2(q+ε), then (q − ε)π divide (q − ε, q + ε) = 2,
but (q − ε)π = |H | ∈ {6, 8}; a contradiction. The last case when V = D2(q− ε) is
impossible in view of K /∈ Hallπ (V ). Thus, K ∈ mπ (G) and H = K ∩ S ∈ smπ (S).

In the cases (2c) and (2d), π ∩ π(S) = {2, 3}. Let G = Aut(S) ∼= L3(3) : C2.
Lemma 2.2 implies that H = V ∩ S where V � G and V = GL2(3) : C2 in the
case (2c) and V ∼= 31+2+ : D8 in the case (2d). Thus V ∈ mπ (G) and H ∈ smπ (S).
Therefore, (1) is proved.

Prove (3). By Lemma 2.1 (Tables 14 and 16), if one of the exceptional cases (3a) or
(3b) holds, then H is a maximal subgroup of corresponding S, any maximal subgroup
of S which is not isomorphic to H does not contain a subgroup isomorphic to H ,
and S has exactly two conjugacy classes of (maximal) subgroups isomorphic to H
interchanged by every non-inner automorphism of S.

We need to prove that in the remaining cases, every K ∈ smπ (S) isomorphic to
H is conjugate to H . By (2), if there is a maximal subgroup M of S containing both
H and K , then H, K ∈ Hallπ (M). The solvability of M implies that H and K are
conjugate in M in view the Hall Theorem. Hence we can consider that H and K are
contained in non-conjugate maximal subgroups M and N , respectively.

If M and N are isomorphic, then Lemma 2.1 implies that either (a) S = L2(q),
q > 3 is a prime, and M ∼= N ∼= S4, or (b) S = L3(3) and M ∼= N ∼= E32 : GL2(3).
Since H ∈ Hallπ (M) and K ∈ Hallπ (N ) in view of (2) and H �= M and K �= N
(if not, one of the exceptional cases (3a) or (3b) holds), H and K are Sylow 2- or
3-subgroups of M and N , respectively. Now Lemma 2.9 and H, K ∈ smπ (S) imply
that H, K are Sylow subgroups in S and they are conjugate by the Sylow Theorem.

Consider the case where M and N are non-isomorphic maximal subgroups of S.
In this case, |H | = |K | divides (|M |, |N |) and, by the arguments similar above, we
can consider that the numbers |H | = |K | and (|M |, |N |) are not powers of primes.
Consider all possibilities for S.

Let S = L2(q) where q = 2p, p is a prime. Since (|M |, |N |) is not a power of
prime, by the information in Table 12 we can consider that M = Eq : C(q−1) and
N = D2(q−1). If 2 ∈ π , then the π -Hall subgroups of M and N are non-isomorphic.
Hence 2 /∈ π . In this case, both H and K are abelian π -Hall subgroups of S and they
are conjugate by Lemma 2.5.

Let S = L2(q), where q = 3p and p is an odd prime. Note that the order of
Eq : C 1

2 (q−1) is odd and the orders of Dq−1 and Dq+1 are not divisible by 3. Now it
easy to see from Table 13 that the condition that (|M |, |N |) is not a power of prime
implies that we can consider that M = Eq : C 1

2 (q−1), N = Dq−1, and 2 /∈ π . In
this case, both H and K are abelian π -Hall subgroups of S and they are conjugate by
Lemma 2.5.
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Let S = L2(q) where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5). The
case when one of M and N is Eq : C 1

2 (q−1) and other one is Dq−1 can be argued
similarly as the previous case, and as (|M |, |N |) is not a power of prime, we can
consider that M ∈ {A4, S4}. Hence 2, 3 ∈ π . If M = A4, then H = M (if not, |H |
is a power of 2 or 3), but the maximal subgroups of S of the other types contain no
subgroups isomorphic to A4. Hence M = S4. Since the other maximal subgroups of S
do not contain subgroups isomorphic to S4 and H is not a power of a prime, we have
that H ∼= S3. Since a maximal subgroup N of S contains a subgroup K isomorphic
to H ∼= S3, it is easy to see from Table 14 that N = Dq−ε for some ε ∈ {+,−} and
in view of K ∈ Hallπ (N ) we have that |S|3 = |N |3 = 3. Hence N is the normalizer
of a Sylow 3-subgroup P of S and K ∈ Hallπ (NS(P)). But H ∼= K means that H is
also a π -Hall subgroup of some (solvable) normalizer of a Sylow 3-subgroup Q of S.
Hence by the Sylow and Hall Theorems, H and K are conjugate.

Let S = Sz(q), where q = 2p, p is an odd prime. This case can be investigated
without essential changes as the case S = L2(q), q = 2p.

Finally, let S = L3(3). Since (|M |, |N |) is not a power of prime and in view of
the information in Table 16, we can consider that M = E32 : GL2(3), N = S4 and
π = {2, 3}. But H ∈ Hallπ (M) and K ∈ Hallπ (N ) implies that H = M � N = K ;
a contradiction.

Statement (4) is a straightforward consequence of (3). ��

1.3 The pronormality of the π -submaximal subgroups of minimal nonsolvable
groups

In order to complete the proof of Theorem 1.1, we need to establish the pronormality
of the π -maximal subgroups in minimal simple groups, that is, we need to show that
every subgroup H appearing in one of Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 is
pronormal in the corresponding group S ∈ T .

Proposition 4.3 Let S be a minimal simple group and H ∈ smπ (S). Then H is
pronormal in S.

Proof Let g ∈ S. We need to show that H and Hg are conjugate in 〈H, Hg〉. It is
trivial if 〈H, Hg〉 = S. Hence we can consider that 〈H, Hg〉 ≤ M for some M � S. If
H ∈ Hallπ (M), then H, Hg ∈ Hallπ (〈H, Hg〉) and the solvability of M implies that
H and Hg are conjugate in 〈H, Hg〉.

Thus, in view of the statement (2) of Proposition 4.2, we only need to consider the
cases (2a)–(2d) in this statement.

(2a) S = L2(q) where q is a prime such that q > 3 and q2 + 1 ≡ 0 (mod 5),
2, 3 ∈ π , H = D(q−ε)π ε ∈ {+,−}, π ∩ π(q − ε) = {2}, q ≡ −ε7 (mod 48),
and H ∼= D8 is a Sylow 2-subgroup of S.

In this case, H is pronormal as a Sylow subgroup of S.

(2b) S = L2(q)where q is a prime such that q > 3 and q2+1 ≡ 0 (mod 5), 2, 3 ∈ π ,
H = D(q−ε)π ε ∈ {+,−}, π ∩ π(q − ε) = {2, 3}, q ≡ ε7, ε31 (mod 72), and
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H ∼= S3 ∼= D6 is a {2, 3}-Hall subgroup of the normalizer of a Sylow 3-subgroup
of S.

By the Sylow Theorem, one can consider that H and Hg are {2, 3}-Hall subgroups of
the same (solvable) normalizer of a Sylow 3-subgroup of S. Then by theHall Theorem,
H and Hg are conjugate in 〈H, Hg〉.
(2c) S = L3(3), π ∩π(S) = {2, 3}, and H = 31+2+ : C2

2 is the normalizer of a Sylow
3-subgroup of S.

In this case, H and Hg are conjugate in K = 〈H, Hg〉 since both H and Hg are
normalizers of Sylow 3-subgroups of K .

(2d) S = L3(3), π ∩ π(S) = {2, 3}, and H = GL2(3).

It is easy see that in this case H contains a Sylow 2-subgroup P of S. One can take
some x ∈ 〈H, Hg〉 such that Px = Pg . Then gx−1 ∈ NS(P). But NS(P) = P by [19,
Corollary] and g ∈ Px ⊆ 〈H, Hg〉. Hence H and Hg are conjugate in K = 〈H, Hg〉.

��
Proof of Corollary 1.1. The corollary is a straightforward consequence of Proposi-
tions 1.2(4) and 4.3.
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