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Abstract Realistic models of traffic flow are nonlinear and involve nonlocal effects
in balance laws. Flow characteristics of different types of vehicles, such as cars and
trucks, need to be described differently. Two alternatives are used here, L p-valued
Lebesgue measurable density functions and signed Radon measures. The resulting
solution spaces are metric spaces that do not have a linear structure, so the usual
convenient methods of functional analysis are no longer applicable. Instead ideas
from mutational analysis will be used, in particular the method of Euler compactness
will be applied to establish the well-posedness of the nonlocal balance laws. This
involves the concatenation of solutions of piecewise linear systems on successive time
subintervals obtained by freezing the nonlinear nonlocal coefficients to their values
at the start of each subinterval. Various compactness criteria lead to a convergent
subsequence. Careful estimates of the linear systems are needed to implement this
program.
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1 Mathematical models of traffic flow

A large class of mathematical models of traffic flow is formulated as partial differential
equations of hyperbolic type, mostly continuity equations or balance laws. Recently
three aspects have been identified which deserve more attention from the analytical
point of view.

First, highways and streets usually consist of more than just one lane and, so we
need a theory that can handle systems of hyperbolic equations. Second, drivers of
vehicles can watch each other and, modern technology (like navigation tools, mobile
phones and centrally controlled restrictions on speed) provide facilities to take dis-
tant information into consideration. From the mathematical point of view, this leads
to nonlocal problems, i.e., the desired solution occurs in the coefficients not just in
a pointwise dependence, but in a functional dependence. Convolution operators, for
example, are preferred to Nemytskii operators in the quasilinear hyperbolic equa-
tions. Nonlocal models of hyperbolic type have already been investigated thoroughly
by Colombo, Goatin and collaborators, for example (see [2,16,22–25,28,36] and ref-
erences therein).

In addition, recent models try to avoid the a priori assumption that traffic is “suffi-
ciently dense” which is required for describing it in terms of a Lebesgue measurable
density. If both vehicles and trucks are using a highway, the traffic control panel has the
facilities to specify different restrictions on these groups. Hence it is worth considering
them as two components of the traffic system, but the trucks are usually so few that they
cannot be described as a Lebesgue measurable density function. From the analytical
point of view, the next larger function space (as a generalising alternative) consists of
Radon measures. Various models using time-dependent Radon measures have already
been published by Carrillo, Colombo, Piccoli and collaborators, for example (see,
e.g., [20,21,62–64] and references therein). The main results in [62–64], however, are
formulated for the continuity equation or for Radon measures with compact support
in Rd .

Motivated by the large number of traffic flow models published so far, the focus of
our interest is the following class of nonlocal hyperbolic problems

{
∂t f + divx

(G̃(t, f, μ) f
) = Ũ(t, f, μ) · f + W̃(t, f, μ)

∂t μ + divx
(B̃(t, f, μ) μ

) = C̃(t, f, μ) · μ

with given initial conditions at time t = 0. The main goal consists in specifying
sufficient conditions on the coefficients for its well-posedness for weakly continuous
distributional solutions f : [0, T ] → L p(RN ) (with p > 1) and μ : [0, T ] →
M(RN ), where M(RN ) denotes the set of finite Radon measures on R

N , i.e., to
allow their existence, uniqueness as well as the continuous dependence on given data
to be established. The coefficient functions here describe the functional dependence,
i.e., we regard them as functions

B̃ : [0, T ] × L p(RN ) × M(RN ) → W 1,∞(RN ,RN ),

C̃ : [0, T ] × L p(RN ) × M(RN ) → W 1,∞(RN ,R),
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G̃ : [0, T ] × L p(RN ) × M(RN ) → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

Ũ : [0, T ] × L p(RN ) × M(RN ) → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

W̃ : [0, T ] × L p(RN ) × M(RN ) → L p(RN )

because we aim at the most general class of problems for which aspects of nonlocal
dependence are characterised by appropriate conditions of boundedness and continu-
ity. From a slightly different perspective, the spatial dependence of the coefficients
is completely covered by the function values in W 1,∞(RN ), L∞(RN ) and L p(RN ),
respectively. The pointwise influence of the sought functions f, μ on their own evolu-
tion here is determined by the structure of the respective partial differential equation.
It determines essentially to which special examples of traffic flow models the main
results can be applied.
In this article we provide new results in various aspects:

• The Lebesgue measurable solution f to the nonlocal transport equation is consid-
ered with values in the Banach space L p(RN ) for some arbitrarily fixed parameter
p ∈ (1,∞). Most of the publications so far specify weak solutions in L1 with
bounded total variation in space so the well established theory about hyperbolic
balance laws can be applied (see, e.g., [2,23,25,30]). Clearly, the latter function
space opens the door for the coefficients to a larger class of pointwise dependence
on space, but it restricts the admissible set of solution values significantly. We
regard it as realistic in traffic flow models that drivers keep watching their close
environment and, this can be modelled in terms of a convolution operator, which
need not be symmetric in space and which can have a small support in comparison
with the length scale of interest. L p(RN ) provides the analytical advantage that
various types of singularities in spatial densities are covered.

• All coefficients involved can depend on the desired solutions in a functional and,
thus, nonlocal way (differently from [20], for example).

• The measure-valued component μ has its values in the space M(RN ) of finite
signed Radon measures, i.e., the dual space of continuous functions RN → R

vanishing at infinity supplied with supremum norm (see below for details). Such
measure values need not be probability measures or are not assumed to have
compact support (as in [62], [63, Section 3], for example).

• The measure-valued component μ need not be conserved (as, e.g., in [51, Sec-
tion 2.8], [62]).

The results about well-posedness concern three aspects: Firstly, we specify condi-
tions on the coefficients sufficient for the existence of weak solutions, which do not
necessarily imply uniqueness. Similarly to the standard Peano theorem for ordinary
differential equations (ODEs), they are based on appropriate continuity and concluded
from compactness arguments. Secondly, supplementary assumptions about Lipschitz
continuity of the coefficients w.r.t. state imply the uniqueness of weak solutions to the
respective initial value problem. Finally, the same conditions of Lipschitz continuity
guarantee the continuous dependence of solutions on given data, i.e., initial states and
coefficients, which then follows, essentially, from Gronwall’s inequality.

123



456 P. E. Kloeden, T. Lorenz

Outline of the paper

Some basic ideas on mutational analysis are briefly sketched in the next section, Sect.
2. Then, in Sect. 3, the main results on the well-posedness of solutions of the nonlocal
balance equations presented in the introduction are stated, first for L p-valued solutions
and then for Radonmeasure-valued solutions. The rest of the paper is dedicated to their
proofs. Existence results of L p-valued solutions of linear transport problems under
different regularity assumptions and various estimates needed later are collected in
Sect. 4. They are then used in the Euler compactness method in Sect. 5 to provide
proofs of the theorems stated in Sect. 3. Finally, Radon measure solutions are handled
analogously in Sects. 6 and 7.

2 Mutational analysis on spaces without a linear structure

From the analytical point of view, this article provides another novelty in comparison
with former publications in this field. It is the underlying concept for constructing
solutions. The main idea is to imitate the classical Euler method in combination with
compactness arguments. Importantly, this can be realised without special emphasis on
the linear structure of the underlying space.

Indeed, whenever the full dynamic problem is too complex for solving it explic-
itly, one usually relies on some notion of decomposing it into tractable subproblems.
Mild solutions to semi-linear evolution equations, for example, combine strongly
continuous semi-groups of linear operators with the variation of constants formula
leading to fixed-point problems. Galerkin methods are based on the projection on
finite-dimensional linear subspaces in combination with the limit for their dimensions
tending to infinity and so on. One of the simplest methods is the Euler algorithm,
which starts with some discretisation in time and then solves a simpler (usually lin-
ear) problem on each time subinterval. Originally introduced for ordinary differential
equations (ODEs), this approach has proved to be very powerful in various fields like
nonlinear evolution equations or stochastic differential equations (see, e.g., [45,61]).
There are many dynamic problems, however, whose states are not in a linear space,
but just in a metric space. A large class of examples looks for compact sets in R

N as
functions of time which determine their own evolution similarly to ODEs (see, e.g.,
[1,29,31,32,46,49,50,57]).

We focus on the mutational approach to differential equations in metric spaces by
Aubin [9–11]. It is similar to, but developed independently from the quasi-differential
equations by Panasyuk [58–60], which has been applied byColombo and collaborators
(see, e.g., [18,26,27] and references therein, a comparison in more details is presented
in [51,52], for example).

The key idea here is to start with a class of semi-dynamical systems on the (possibly
nonlinear) state space. The systems in that class are identified by a parameter. In the
standard situation R

N , each vector v ∈ R
N induces an affine semi-dynamical system

on RN defined by [0,∞) ×R
N � (h, ξ0) �→ ξ0 + h · v. (Here v ∈ R

N indicates the
parameter mentioned before.) A vector v ∈ R

N is defined as the (right) derivative of
a curve ξ : [0, T ) → R

N at time t ∈ [0, T ) if
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lim
h ↓ 0

1

h
·
∣∣∣ξ(t + h) − (

ξ(t) + h · v
)∣∣∣ = 0.

For an ODE x ′ = f (t, x), a vector field function f : [0, T ] × R
N → R

N is given
which prescribes the right derivative of the wanted curve in dependence of time t and
respective state.

In the (not necessarily linear, but) metric setting (X, d), a family of semi-dynamical
systems ϑp : [0,∞)× X → X for p ∈ P plays the role of the tangent vectors v ∈ R

N

and their corresponding affine maps. For a curve x : [0, T ] → X, ϑp represents
the counterpart of the right derivative at time t ∈ [0, T ) if it induces a first-order
approximation in the sense that

lim
h ↓ 0

1

h
· d

(
x(t + h), ϑp

(
h, x(t)

)) = 0.

This notion does not rely on any aspects of linear structure of X , but merely on
distances. The final step for generalising ODEs is now to prescribe the parameter
p ∈ P as a function of time t ∈ [0, T ) and state in X . This leads to a so-called
mutational equation on the tuple

(
X, d, (ϑp)p∈P

)
.

They were introduced by Jean-Pierre Aubin as a joint environment for evolving
vectors inRN and compact subsets ofRN [9–11] and then extended by the authors for
various further examples like stochastic differential equations with nonlocal sample
dependence, random closed sets in a Hilbert space and fuzzy differential equations
with evolving membership grade (see, e.g., [41–44,51,52]).

A key goal in mutational analysis so far has been to specify conditions on the given
semi-dynamical systems ϑp, p ∈ P, sufficient for the well-posedness of initial value
problems if the given feedback function satisfies standard assumptions like continuity
and Lipschitz continuity, respectively. The main approach for constructing solution
is always the Euler algorithm, so there is a special interest in the “error propagation”
along two Euler approximations for later conclusions about their maximal distance
while the time step is tending to 0. This basic notion has the immediate consequence
that any two components (or more) fitting in this framework can be combined in a
system immediately, i.e., sufficient conditions for the well-posedness of systems are
available without any additional considerations. That is the essential aspect motivating
our interest in this mutational framework. In this article, particularly, we are free to
consider the solutions with values in L p(RN ) and M(RN ) separately.

Finally, ourmain goal here is not to advertise some further abstract theory providing
yet another generalised solution to differential equations in metric spaces. Instead, we
want to emphasise the benefit of mutational analysis of specifying explicit continuity
conditions on the semi-dynamical systems which guarantee the convergence of the
Euler method, in a generalised sense, however. This makes it significantly easier to
check whether a decomposition of the full dynamic problem into a class of simpler
problems (inducing the semi-dynamical systems) plus feedback will succeed or not.
Then, in the very end and for each example individually, it is recommended to identify
an established solution criterion which the existing curve in the metric space satisfies.
In the concrete examples of nonlocal balance laws here, the curves are L p bounded,
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weakly continuous weak solutions and narrowly continuous distributional solutions
with values in the space of signed Radon measures, respectively. These connections
to partial differential equations specify essential differences of our results from recent
contributions of Aubin et al. to traffic flow modelling (see, e.g., [12–14]).

3 The main results

The main results on the existence and uniqueness of various kinds of solutions to the
nonlocal balance equations are stated in this section and will be proved later after
developments of other background results. These results are stated in terms of the
following metrics and convergence.

Definition 1 For p ∈ (1,∞) fixed and q := p
p−1 , define dL p : L p(RN )×L p(RN ) →

[0,∞)

dL p ( f, g) := sup

{∫
RN

ϕ · ( f − g) dx
∣∣∣ ϕ ∈ C1

c (R
N ), ‖ϕ‖Lq ≤ 1, ‖ϕ‖L∞ ≤ 1,

‖∇x ϕ‖L∞ ≤ 1

}
.

Here C0
c (R

N ) denotes the space of continuous functions RN → R with compact
support and C0

0 (R
N ) its closure with respect to the supremum norm, respectively.

Furthermore,M(RN ) consists of all finite real-valued Radon measures onRN , i.e., it
is the dual space of

(
C0
0 (R

N ), ‖ · ‖L∞
)
(due to the Riesz theorem [7, Remark 1.57]),

andM+(RN ) denotes the subset of nonnegativemeasuresμ ∈ M(RN ), i.e.μ(·) ≥ 0.

Definition 2 A sequence (μn)n∈N in M(RN ) is said to converge narrowly to μ ∈
M(RN ) if for every bounded continuous function ϕ : RN → R,

lim
n → ∞

∫
RN

ϕ dμn =
∫
RN

ϕ dμ.

Definition 3 ([51, Definition 2.42], [15, Section 8.3]) The mapping M(RN ) ×
M(RN ) → [0,∞) defined by

(μ, ν) �→ sup

{∫
RN

ψ d(μ−ν)

∣∣∣ψ ∈ C1(RN ), ‖ψ‖L∞ , ‖∇ψ‖L∞ ≤ 1

}

is called theW 1,∞ dual metric dM or theKantorovich-Rubinstein metric onM(RN ).

3.1 L p(RN )-valued solutions to nonlocal balance laws

Proofs of the following theorem and propositions are given in Sect. 5.
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Theorem 4 (Existence of solutions in L p(RN )) Consider the initial value problem

∂t f + divx (G(t, f ) f ) = U(t, f ) · f + W(t, f ), f (0) = f0 (1)

with the coefficient functions

G : [0, T ] × L p(RN ) →
{
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

U : [0, T ] × L p(RN ) →
{
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

W : [0, T ] × L p(RN ) → L p(RN )

under the following assumptions:

(i) (Global a priori bounds) sup
t, f

(∥∥divx G(t, f )
∥∥
L∞(RN )

+ ∥∥U(t, f )
∥∥
L∞(RN )

+∥∥W(t, f )
∥∥
L p(RN )

)
< ∞

(ii) (Locally uniform a priori bounds) For every r > 0, there exists a constant
Cr < ∞ such that for all t ∈ [0, T ] and f ∈ L p(RN ) with ‖ f ‖L p(RN ) ≤ r ,

∥∥G(t, f )
∥∥
L∞(RN )

+ ∥∥∂x G(t, f )
∥∥
L∞(RN ,RN×N )

≤ Cr ,
∥∥∇x U(t, f )

∥∥
L∞(RN ,RN )

≤ Cr .

(iii) (Locally uniform choice of function dominating values of W) For every radius
r > 0, there exist ŵ ∈ L p(RN ) and a compact set Kx ⊂ R

N such that for all
t ∈ [0, T ] and f ∈ L p(RN ) with ‖ f ‖L p(RN ) ≤ r ,

∣∣W(t, f ) (·)∣∣ ≤ ŵ(·) Lebesgue-almost everywhere in R
N\Kx .

(iv) G,U : [0, T ] × (
L p(RN ), dL p

) → (
Lq , ‖ · ‖Lq

)
and W : [0, T ] ×(

L p(RN ), dL p
) → (

L p, ‖ · ‖L p
)
are measurable.

(v) (Continuity) The functions G(t, ·),U(t, ·) : (L p(RN ), dL p
) → (

Lq , ‖ · ‖Lq
)
and

W(t, ·) : (L p(RN ), dL p
) → (

L p, ‖ · ‖L p
)
are continuous for Lebesgue-almost

every t ∈ [0, T ]:
Then every initial value problem related to (1) has a weak solution f : [0, T ] →
L p(RN ) in the following sense: f : [0, T ] → (

L p(RN ),weak
)
is continuous with

f (0) = f0 and

∫
RN

ϕ ( f (t2) − f (t1)) dx =
∫ t2

t1

∫
RN

f (s, x)G(s, f (s)
)
(x) · ∇x ϕ(x) dx ds

+
∫ t2

t1

∫
RN

(
f (s, x) U(

s, f (s)
)
(x)

+W(
s, f (s)

)
(x)

)
ϕ(x) dx ds (2)
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460 P. E. Kloeden, T. Lorenz

for any 0 ≤ t1 < t2 ≤ T, ϕ ∈ C1
c (R

N ). Furthermore this function f (·) is bounded
w.r.t. the L p(RN ) norm and continuous w.r.t. dL p .

In hypothesis (i), the global a priori bound on ‖W(t, f )‖L p(RN ) can be weakened to a
linear growth condition w.r.t. ‖ f ‖L p(RN ) since the subsequent considerations and the
Gronwall’s inequality still imply an a priori estimate of the L p(RN ) norm of weak
solutions at each time instant.

Proposition 5 (Uniqueness of weak solutions in L p(RN )) Consider the initial value
problem (1) with the coefficient functions

G : [0, T ] × L p(RN ) → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

U : [0, T ] × L p(RN ) → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

W : [0, T ] × L p(RN ) → L p(RN )

under the assumptions (i)–(iv) of Theorem 4 and the hypothesis

(vi′) (Locally uniform Lipschitz conditions w.r.t. states) For every r > 0, there
exists a constant Λr > 0 such that

∥∥G(t, f1) − G(t, f2)
∥∥
Lq (RN ,RN )

≤ Λr · dL p
(
f1, f2

)
,∥∥U(t, f1) − U(t, f2)

∥∥
Lq (RN )

≤ Λr · dL p
(
f1, f2

)
,∥∥W(t, f1) − W(t, f2)

∥∥
L p(RN )

≤ Λr · dL p
(
f1, f2

)

holds for all t ∈ [0, T ] and f1, f2 ∈ L p(RN ) with ‖ f1‖L p(RN ), ‖ f2‖L p(RN ) ≤ r .

Then for each initial state f0 ∈ L p(RN ), the continuous weak solution f :
[0, T ] → (

L p(RN ), weak
)
to the nonlinear problem (1) satisfying the measura-

bility conditions associated with

G(·, f ), ∂xG(·, f ), U(·, f ) ∈ L∞(
0, T ; L∞)

, W(·, f ) ∈ L1(0, T ; L p)

is unique.

Proposition 6 (Lipschitz continuous dependence on given data) Let G( j),U ( j) and
W( j) satisfy the assumptions of Proposition 5 (with the same a priori bounds). In
addition, let f ( j) denote the unique weak solution of problem (1) for the coefficients
G( j),U ( j),W( j) and the initial state f ( j)

0 ∈ L p(RN ), j = 1, 2, respectively. Choose

some R > 0 with max j = 1,2 ‖ f ( j)
0 ‖L p(RN ) ≤ R and set

Δ(t,C) : = sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤C

∥∥G(1)(t, ζ ) − G(2)(t, ζ )
∥∥
Lq (RN ,RN )

+ sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤C

∥∥U (1)(t, ζ ) − U (2)(t, ζ )
∥∥
Lq (RN )
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+ sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤C

∥∥W(1)(t, ζ ) − W(2)(t, ζ )
∥∥
L p(RN )

.

Then there exists a constant C > 0 depending on R, T and the constants of coefficient
functions (in assumptions (i)–(iv),(vi′)) such that for every t ∈ [0, T ],

dL p
(
f (1)(t), f (2)(t)

) ≤ eCt ·
(
dL p

(
f (1)
0 , f (2)

0

) + C ·
∫ t

0
Δ(s,C) ds

)
.

3.2 Measure-valued solutions to nonlocal balance laws

Proofs of the following theorems and propositions are given in Sect. 7.

Theorem 7 (Existence of distributional solutions with values in M(RN )) Consider
the initial value problem

∂t μ + divx (B(t, μ) μ) = C(t, μ) · μ in [0, T ], μ(0) = μ0 (3)

with the coefficient functions B : [0, T ] × M(RN ) → W 1,∞(RN ,RN ), C : [0, T ] ×
M(RN ) → W 1,∞(RN ,R) under the following assumptions:

(i) (Global a priori bounds) sup
t,ζ

(∥∥B(t, ζ )
∥∥
L∞(RN ,RN )

+∥∥C(t, ζ )
∥∥
L∞(RN )

)
< ∞

(ii) (Locally uniform a priori bounds) For every r > 0, there exists a constant
Cr < ∞ such that

∥∥∂x B(t, ζ )
∥∥
L∞(RN ,RN×N )

≤ Cr ,
∥∥∇x C(t, ζ )

∥∥
L∞(RN ,RN )

≤ Cr

holds for all t ∈ [0, T ], ζ ∈ M(RN ) with |ζ |(RN ) ≤ r .
(iii) The functionsB(·, ζ ), C(·, ζ ) : [0, T ] → (

L∞, ‖·‖L∞
)
are measurable for each

ζ ∈ M(RN ).
(iv) (Continuity w.r.t. states) The functions B(t, ·), C(t, ·) : (M(RN ), dM

) →(
L∞, ‖ · ‖L∞

)
are continuous for Lebesgue-almost every t ∈ [0, T ].

Then every initial value problem related to (3) has a narrowly continuous dis-
tributional solution μ : [0, T ] → M(RN ) in the sense that μ : [0, T ] →(M(RN ), narrow

)
, t �→ μt is continuous for μ0 given and

∫
RN

ϕdμt2 −
∫
RN

ϕdμt1 =
∫ t2

t1

∫
RN

B(s, μs
)
(x) · ∇x ϕ(x) dμs(x) ds

+
∫ t2

t1

∫
RN

C(s, μs
)
(x) ϕ(x) dμs(x) ds (4)

for any 0 ≤ t1 < t2 ≤ T, ϕ ∈ C1
c (R

N ). Furthermore, this function μ(·) is bounded
w.r.t. the total variation, has tight values and is continuous w.r.t. dM.
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Proposition 8 (Uniqueness of distributional measure-valued solutions) Consider the
same initial value problem (3) with the coefficient functions

B : [0, T ] × M(RN ) → W 1,∞(RN ,RN ), C : [0, T ] × M(RN ) → W 1,∞(RN ,R)

under the assumptions (i)–(iii) of Theorem 7 and the hypothesis

(v′) (Locally uniform Lipschitz conditions w.r.t. states) For every r > 0 there exists
a constant Λr > 0 such that

∥∥B(t, ζ1) − B(t, ζ2)
∥∥
L∞(RN ,RN )

≤ Λr · dM
(
ζ1, ζ2

)
,∥∥C(t, ζ1) − C(t, ζ2)

∥∥
L∞(RN )

≤ Λr · dM
(
ζ1, ζ2

)

for all t ∈ [0, T ] and ζ1, ζ2 ∈ M(RN ) with |ζ1|(RN ), |ζ2|(RN ) ≤ r .

Then for each initial Radon measure μ0 ∈ M(RN ), the narrowly continuous dis-
tributional solution μ : [0, T ] → M(RN ) to nonlocal initial value problem (3) is
unique.

Proposition 9 (Lipschitz continuous dependence on given data) Let B( j) and C( j)

satisfy the assumptions of Proposition 8 (with the samea priori bounds). In addition, let
μ( j) denote the unique distributional solution of problem (3) related to the coefficients
B( j), C( j) and the initial measure μ

( j)
0 ∈ M(RN ), j = 1, 2, respectively. Choose

some R > 0 with max j = 1,2
∣∣μ( j)

0

∣∣(RN ) ≤ R and set

Δ(t,C) : = sup
ζ ∈M(RN ):
|ζ |(RN ) ≤C

∥∥B(1)(t, ζ ) − B(2)(t, ζ )
∥∥
L∞

+ sup
ζ ∈M(RN ):
|ζ |(RN ) ≤C

∥∥C(1)(t, ζ ) − C(2)(t, ζ )
∥∥
L∞ .

Then there exists a constant C > 0 depending on R, T and the constants of coefficient
functions (in assumptions (i)–(iii) and (v′)) such that

dM
(
μ

(1)
t , μ

(2)
t

) ≤ eCt ·
(
dM

(
μ

(1)
0 , μ

(2)
0

) + C ·
∫ t

0
Δ(s,C) ds

)

for every t ∈ [0, T ].

4 L p(RN)-valued solutions to linear balance laws

4.1 The metrics dL p, eL p of the state space L p(RN )

In Definition 1, we have already specified the metric dL p on L p(RN ). It will mainly
serve the comparison of two densities at the same time instant. Now two furthermetrics
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on L p(RN ) follow. They will be used for describing the regularity of weak solutions
with respect to time.

Definition 10 Let 1 < p < ∞ and q > 1 with 1
p + 1

q = 1 and define ĕL p , eL p :
L p(RN ) × L p(RN ) → [0,∞) as

ĕL p ( f, g) : = sup
{∫

RN
ϕ · ( f − g) dx

∣∣∣ ϕ ∈ C1
c (R

N ), ‖ϕ‖W 1,q ≤ 1, ‖ϕ‖W 1,∞ ≤ 1
}

eL p ( f, g) : = ĕL p ( f, g) + ∣∣ ‖ f ‖L p(RN ) − ‖g‖L p(RN )

∣∣ .
Remark 11 Obviously the following inequalities hold for all f, g ∈ L p(RN ):

ĕL p ( f, g) ≤ dL p ( f, g) ≤ ‖ f − g‖L p(RN ), eL p ( f, g) ≤ 2 · ‖ f − g‖L p(RN ).

Remark 12 The metrics dL p and ĕL p are constructed in a very similar way, namely
in terms of a supremum for all test functions in a unit ball. What differs, however, is
the class of test functions and the norm underlying the unit ball. From a more general
point of view, they both modify the L p norm. Indeed, the well-known Hahn-Banach
theorem implies for every f, g ∈ L p(RN )

‖ f − g‖L p(RN ) = sup

{∫
RN

ϕ · ( f − g) dx
∣∣∣ ϕ ∈ Lq(RN ), ‖ϕ‖Lq ≤ 1

}

= sup

{∫
RN

ϕ · ( f − g) dx
∣∣∣ ϕ ∈ C1

c (R
N ), ‖ϕ‖Lq ≤ 1

}

since Lq(RN ) represents the dual space of L p(RN ) andC1
c (R

N ) is dense in theBanach
space Lq(RN ). The main difference concerns the class of test functions. For the metric
dL p (concerning distances between density functions at the same time instant later on),
for example, we additionally suppose every test function ϕ ∈ C1

c (R
N ) to be in the unit

ball of W 1,∞(RN ), i.e., ϕ is bounded and 1-Lipschitz continuous in addition. Hence,
the related functional

L p(RN ) −→ R, f �−→
∫
RN

ϕ · f dx

might hardly change when comparing two density functions f, g ∈ L p(RN ) although
the L p norm ‖ f − g‖L p(RN ) is rather large. Similar modifications of the norm have
already proved to be useful for L2 density functions in cancer cell migration models
in [53,54], for example.

In this subsection we specify relations between the metrics dL p , ĕL p , eL p and more
established topologies like the L p(RN ) norm and the weak topology. Then in Sect. 6.1
below, the notion is adapted to signed Radon measures on R

N (see Remark 41 for
more details).
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Lemma 13 ĕL p metrizes the weak topology on norm-bounded tight balls in L p(RN )

in the following sense: Suppose f ∈ L p(RN ) and let ( fk)k∈N be any sequence in
L p(RN ) such that

(| fk |p) is tight in RN , i.e.,

lim
ρ→∞ sup

k∈N
‖ fk‖L p(RN \Bρ(0)) = 0.

Then,

fk → f weakly in L p(RN )(k → ∞) ⇔
⎧⎨
⎩

sup
k∈N

‖ fk‖L p(RN ) < ∞ and

lim
k→∞ ĕL p

(
fk, f

) = 0.

Proof The “⇐” direction: This is an immediate consequence of the fact that C1
c (R

N )

is a dense subset of the dual space Lq(RN ) = (
L p(RN )

)′ (see, e.g., [68, IV.9 Exam-
ple 3]).
The “⇒” direction: Every weakly converging sequence is known to be bounded w.r.t.
the underlying norm as a consequence of the Banach–Steinhaus theorem. Write S :=
sup
k∈N

‖ fk‖L p(RN ) < ∞. It follows from the lower semicontinuity of the norm w.r.t. the

weak convergence that ‖ f ‖L p(RN ) ≤ S.
To prove that ĕL p ( fk, f ) → 0, choose ε > 0 arbitrarily. There is a radius ρ ≥ 1

such that

‖ f ‖L p(RN \Bρ(0)) + sup
k∈N

‖ fk‖L p(RN \Bρ(0)) < ε
2

since (| fk |p)k∈N is tight by assumption.According to the Sobolev embedding theorem,
the set

{
ϕ ∈ C1

c (B2ρ(0))
∣∣ ‖ϕ‖W 1,q ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}
(strictly speaking, their zero

extensions to R
N ) is relatively compact in

(
Lq(RN ), ‖ · ‖Lq (RN )

)
. Hence there exist

finitely many functions ϕ1, . . . , ϕ j ∈ C1
c (B2ρ(0)) (with j = j (ε, ρ) ∈ N) such that

sup
i ≤ j

{‖ϕi‖W 1,q , ‖ϕi‖W 1,∞
} ≤ 1 and

{
ϕ ∈ C1

c (B2ρ)

∣∣∣ ‖ϕ‖W 1,q ≤ 1, ‖ϕ‖W 1,∞ ≤ 1
}

⊂
j⋃

i = 1

{
g ∈ Lq(RN )

∣∣ ‖g − ϕi‖Lq <
ε

4 S + 1

}
.

Then we obtain

ĕL p
(
fk, f

) Def.= sup

{∫
RN

ϕ · ( fk − f ) dx
∣∣∣ ϕ ∈ C1

c (R
N ), ‖ϕ‖W 1,q ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}

≤ sup
{ ∫

RN
ϕ · ( fk − f ) dx

∣∣∣ ϕ ∈ C1
c (B2ρ), ‖ϕ‖W 1,q ≤ 1, ‖ϕ‖W 1,∞ ≤ 1

}

+ ε

2
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≤ sup
1≤ i ≤ j

∫
RN

ϕi · ( fk − f ) dx + ε

4 S + 1
‖ fk − f ‖L p(RN ) + ε

2

≤ sup
1≤ i ≤ j

∫
RN

ϕi · ( fk − f ) dx + ε.

Hence lim supk→∞ ĕL p
(
fk, f

) = 0.
��

Corollary 14 Every norm-bounded closed tight subset of L p(RN ) is (sequentially)
compact w.r.t. ĕL p .

Proof The Banach space L p(RN ) (with 1 < p < ∞) is reflexive and so, every
bounded closed ball in L p(RN ) is known to be sequentially compact with respect to
the weak topology (e.g., [68, V.1.Theorem 1]). The equivalence in Lemma 13 then
implies convergence w.r.t. ĕL p . ��
Corollary 15 Let ( fk)k∈N and (gk)k∈N be two bounded sequences in L p(RN ) such
that both

(| fk |p)k∈N and
(|gk |p)k∈N are tight in RN . Then the following equivalence

holds

lim
k → ∞ ĕL p

(
fk, gk

) = 0 ⇔ lim
k → ∞ dL p

(
fk, gk

) = 0.

Proof The “⇐” direction: This is a consequence of ĕL p ≤ dL p .
The “⇒” direction: This implication results from essentially the same argu-
ments as Lemma 13 for two reasons: Firstly, the (now larger) subset

{
ϕ ∈

C1
c (B2ρ(0))

∣∣ ‖ϕ‖Lq ≤ 1, ‖ϕ‖W 1,∞ ≤ 1
}
is also relatively compact in

(
Lq(RN ), ‖ ·

‖Lq (RN )

)
. Secondly, both dL p and ĕL p depend only on the difference of their two

arguments. (These metrics originate from norms, although we do not use this deeper
structure elsewhere.) ��
Corollary 16 Norm-bounded closed convex tight subsets of L p(RN ) are relatively
compact with respect to dL p in the following sense: Let M ⊂ L p(RN ) be any norm-
bounded closed convex subset with limρ→∞ sup f ∈M ‖ f ‖L p(RN \Bρ(0)) = 0. Then

every sequence in M has a subsequence converging in
(
L p(RN ), dL p

)
.

Proposition 17 The following equivalence holds for any sequence ( fk)k∈N in
L p(RN ):

lim
k→∞

∥∥ fk − f
∥∥
L p(RN )

= 0 ⇔
{

lim
k→∞ eL p

(
fk, f

) = 0(| fk |p)k∈N is tight in RN

⇔

⎧⎪⎨
⎪⎩

lim
k→∞ ‖ fk‖L p = ‖ f ‖L p

lim
k→∞ dL p

(
fk, f

) = 0(| fk |p)k∈N is tight in RN .
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Proof This results essentially from the fact that L p(RN ) is a reflexive Banach space.
According to a theorem by Riesz and Radon (e.g., [3, U6.6] or [34, Proposition 5.10]),
every weakly converging sequence ( fk)k∈N in L p(RN ) has the property

∥∥ fk −
f
∥∥
L p(RN )

→ 0(k → ∞) ⇔ ‖ fk‖L p(RN ) → ‖ f ‖L p(RN )(k → ∞). Hence the
first claimed equivalence is a direct consequence of Lemma 13. Finally the second
equivalence results from Remark 11. ��
Proposition 18 Norm-bounded closed convex tight subsets of L p(RN ) are complete
with respect to dL p in the following sense: Let M ⊂ L p(RN ) be any norm-bounded
closed convex subset with limρ→∞ sup f ∈M ‖ f ‖L p(RN \Bρ(0)) = 0. Then every
Cauchy sequence w.r.t. dL p in M has a limit in M w.r.t. dL p .

This can be concluded indirectly from the compactness property in Corollary 16. Sup-
plementarily we now give a separate proof without using the topological equivalence
of dL p and eL p specified in Corollary 15 (see [54, Section 5.1] or [53, Section 5.1] for
the corresponding metrics on L2 with different arguments).

Proof Let ( fk)k∈N be a Cauchy sequence in M w.r.t. dL p . Then ( fk)k∈N is Cauchy
sequence w.r.t. ĕL p due to Remark 11. Hence Corollary 14 provides a function f ∈
L p(RN )with ĕL p ( fk, f ) → 0 as k → ∞ or equivalently fk → f weakly in L p(RN ).
By Mazur’s Lemma (see, e.g., [68, V.1.Theorem 2]), the norm-closed convex set
M ⊂ L p(RN ) is weakly closed, so f ∈ M .

It remains to prove dL p ( fk, f ) → 0 for k → ∞. Choose any ε > 0. As ( fk)k∈N
is Cauchy sequence w.r.t. dL p , there is some J = J (ε) ∈ N with dL p

(
fk, fl

) ≤ ε

for all k, l ≥ J . For every test function ϕ ∈ C1
c (R

N ) with ‖ϕ‖Lq ≤ 1, ‖ϕ‖L∞ ≤
1, ‖∇x ϕ‖L∞ ≤ 1 and any k ≥ J , we conclude from the weak convergence of ( fl)l∈N
to f that

∫
RN

ϕ · ( fk − f ) dx = lim sup
l → ∞

∫
RN

ϕ · ( fk − fl) dx ≤ lim sup
l → ∞

dL p
(
fk, fl

) ≤ ε,

i.e., dL p ( fk, f ) ≤ ε holds for every k ≥ J . ��

4.2 Nonautonomous linear problem: uniqueness of weak solutions

Proposition 19 Suppose for any T > 0 that g̃ ∈ L∞(
0, T ; L∞(RN ,RN )

)
, ∂xg̃ ∈

L∞(
0, T ; L∞(RN ,RN×N )

)
, ũ ∈ L∞(

0, T ; L∞(RN )
)
and w̃ ∈ L1

(
0, T ; L p(RN )

)
.

Then for any initial function f0 ∈ L p(RN ), there exists at most one weak solution
f ∈ L1

(
0, T ; L p(RN )

)
of the nonautonomous transport equation in [0, T ]

∂t f + divx( f g̃(t)) = ũ(t) f + w̃(t), f (0) = f0.

In short, every weak solution in Proposition 19 proves to be a “renormalized”
solution (in the sense of DiPerna and Lions [33]) and so is unique. The proof is
essentially based on the smoothing arguments of Le Bris and Lions in their article
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[48] about “transport equations with partially W 1,1 velocities”. The norms in L1, L∞
used there have just to be replaced by the L p norm as indicated in [33].

Weak (possiblymeasure-valued) solutions to linear transport equations and the rela-
tion to their (generalised) flow along ODEs (with discontinuous coefficients) belong
to the current fields of research in analysis (see, e.g., [4–6,17,55,56] and references
therein). Existence of solutions can usually be proved by means of smoothing coeffi-
cients. Uniqueness of weak solutions, however, proves to be a very challenging topic.
[55, Theorem 5.10] exemplifies how rather weak assumptions about the divergence of
the vector fields ensure the uniqueness of weak solutions to homogeneous transport
equations if their values are nonnegative bounded Radon measures on the Euclidean
space. In [6], however, it is pointed out as an open question whether similar uniqueness
results also hold for signed measures (as values of weak solutions), unless the vector
field is assumed to fulfil an Osgood-type condition.

4.3 Linear problem with “more regular” coefficients: existence of solutions

Proposition 20 Suppose that g ∈ C1
c (R

N ,RN ), u ∈ C1(RN ) ∩ W 1,∞(RN ) and
w ∈ L p(RN ). Then for any initial function f0 ∈ L p(RN ) and period T > 0, there
exists a weak solution f : [0, T ] → L p(RN ) of

∂t f + divx( f g) = u f + w, f (0) = f0 (5)

in the sense that f : [0, T ] → L p(RN ) is weakly continuous with f (0) = f0 and

∫
RN

ϕ ( f (t2) − f (t1)) dx =
∫ t2

t1

∫
RN

(
f (s, · ) (g · ∇x ϕ + u ϕ)

)
dxds

+ (t2 − t1)
∫
RN

ϕ wdx (6)

for any 0 ≤ t1 < t2 ≤ T, ϕ ∈ C1
c (R

N ).
This solution can be represented as

∫
RN

ϕ · f (t) dx =
∫
RN

(
ψt,ϕ(0; · ) f0 + w

∫ t

0
ψt,ϕ(s; ·)ds

)
dx (7)

with ψt,ϕ ∈ C1([0, t] ×R
N ) denoting the unique solution to the adjoint problem (11)

below.Moreover, with the notation [r ]− := min{r, 0} for r ∈ R, it satisfies the a priori
estimate

∥∥ f (t)
∥∥
L p(RN )

≤ (‖ f0‖L p(RN ) + ‖w‖L p(RN ) t
) · e(‖ [divx g]−‖L∞+‖u‖L∞ ) · t .

The proof is given at the end of the subsection after some preparatory lemmata.
The characterisation of “weak solution” in Proposition 20 differs slightly from the

standard definition, but it implies successively by means of approximation that:
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1. For anyϕ ∈ C1
c (R

N ), the function from [0, T ] toR given by t �→
∫
RN

ϕ f (t) dx is

Lipschitz continuous. Indeed the image f ([0, T ]) ⊂ L p(RN ) is weakly compact,
hence bounded and so, the claimed Lipschitz continuity results from the detailed
reformulation (6) of weak solutions.

2. In addition, for any test function φ ∈ C∞
c ([0, T ] × R

N ) depending on time

∫
RN

(
φ(T, x) f (T, x) − φ(0, x) f0(x)

)
dx

=
∫ T

0

∫
RN

(
f (s, x)

(
g(x) · ∇xφ(s, x) + u(x) φ(s, x)

))
dxds

+
∫ T

0

∫
RN

(
φ(s, x) w + ∂sφ(s, x) f (s, x)

)
dxds .

The existence of weak solutions in L∞(0, T ; L p(RN )) of the initial value prob-
lem (5), has already been verified under weaker assumptions about g, divxg and u
(see, e.g., [33, Proposition II.1] with the modified regularization presented in [48]).
For investigating the dependence of solutions on initial data and coefficients, however,
we prefer supplementary uniqueness and need an appropriate representation such as
in (7).

Lemma 21 (The flow along the autonomous ODE) For every α ∈ R and g ∈
L1
loc(R

N ,RN ) with ∂xg ∈ L∞(RN ,RN×N ) there exists a function Xα,g : [0,∞) ×
R

N → R
N induced by the unique Carathéodory solutions to the autonomous ordinary

differential equation

∂t Xα,g(t; x) = α · g(Xα,g(t; x)
)
, Xα,g(0; x) = x. (8)

Moreover,Xα,g(t; · ) : RN → R
N is a Lipschitz continuous homeomorphism for each

t ≥ 0 and, with the notation [r ]+ := max{r, 0}, [r ]− := min{r, 0} for r ∈ R, satisfies

∥∥∂x Xα,g(t; · )∥∥L∞(RN ,RN×N )
≤ econst(N ,|α|) (1+‖∂xg‖L∞ ) · t (9)

∂
∂t det ∂x Xα,g(t; · ) = α · (divxg)

(
Xα,g(t; ·)) · det ∂x Xα,g(t; · )

e− |α|‖[divx g]−‖L∞ · t ≤ det ∂x Xα,g(t; · ) ≤ e|α|‖[divx g]+‖L∞ · t . (10)

If, in addition, g ∈ C1
c (R

N ,RN ), then Xα,g(t, · ) : RN → R
N is continuously differ-

entiable for each t ∈ [0,∞) and satisfies

∥∥∂x Xα,g(t; · )∥∥L∞(RN ,RN×N )
≤ econst(N ,|α|) (1+‖Dg‖L∞ ) · t .

In particular, each function Xα,g(t, · ) : RN → R
N for t ∈ [0,∞), is a diffeomor-

phism.

These properties ofXα,g result from the standard theory about ordinary differential
equations (see, e.g., [39, § V.3], [4, Remark 6.3]).
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Lemma 22 Suppose that g ∈ C1
c (R

N ,RN ) and u ∈ C1(RN ) ∩W 1,∞(RN ). Then for
any t ∈ [0, T ] and ϕ ∈ C1

c (R
N ), there is a unique solution ψt,ϕ = ψ ∈ C1([0, t] ×

R
N ) of the first-order end-time problem

∂s ψ + g · ∇xψ + u ψ = 0 in [0, t] × R
N , ψ(t) = ϕ in RN (11)

given by

ψ(s; x) = ϕ
(
X1,g(t − s; x)) · exp

(∫ t−s

0
u
(
X1,g(r; x)

)
dr

)
. (12)

Moreover, the a priori estimate

∥∥ψt,ϕ(s; · )∥∥Lq ≤ ‖ϕ‖Lq · e(‖[divx g]−‖L∞+‖u‖L∞ ) · t (13)

holds for every 0 ≤ s ≤ t ≤ T and ϕ ∈ C1
c (R

n).

Proof Choose t ∈ [0, T ] and ϕ ∈ C1
c (R

N ). The method of characteristics provides
the explicit solution φ ∈ C1([0, t] × R

N ), namely

φ(s; · ) = ϕ
(
X1,g(s; · )) · exp

( ∫ s

0
u
(
X1,g(s − r; · )) dr),

of the semi-linear initial value problem

∂s φ − g · ∇xφ − u φ = 0 in [0, t] × R
N , φ(0) = ϕ in R

N .

Substituting ψ(τ ; x) := φ(t − τ ; x) for τ ∈ [0, t], we obtain the claimed solution
ψ ∈ C1([0, t]×R

N ) of the given transport equationwith end-time conditionψ(t, · ) =
ϕ:

ψ(s; · ) = ϕ
(
X1,g(t − s; · )) · exp

( ∫ t

s
u
(
X1,g(r − s; · )) dr).

Moreover, the transformation theorem for Lebesgue integrals leads to

∫
RN

∣∣ψt,ϕ(s; x)∣∣q dx ≤ eq ‖u‖L∞ · (t−s) ·
∫
RN

∣∣ϕ(X1,g(t − s; x))∣∣q dx

≤ eq ‖u‖L∞ · (t−s) ·
∥∥∥det (

∂x X1,g(t − s; · ))−1
∥∥∥
L∞ ‖ϕ‖qLq

≤ eq ‖u‖L∞ · t · e‖[divx g]−‖L∞ · t ‖ϕ‖qLq .

��
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Proof of Proposition 20 For any t ∈ [0, T ] and ϕ ∈ C1
c (R

N ), consider the solution
ψt,ϕ ∈ C1([0, t] × R

N ) to the semi-linear end-time problem (11). Due to the a priori
bound (13) in Lemma 22, the linear operators

ϕ �→ ψt,ϕ(s; ·) = ϕ
(
X1,g(t − s; · )) · exp

(∫ t−s

0
u(X1,g(r; · )) dr

)
,

ϕ �→
∫ t

0
ψt,ϕ(s; · )ds

from C1
c (R

N ) into C1(RN ) are continuous with respect to the Lq(RN ) norm and so,
they have unique continuous extensions to Lq(RN ).

For each t ∈ [0, T ], select the unique function f (t) in the dual space L p(RN ) of
Lq(RN ) such that

∫
RN

ϕ f (t) dx =
∫
RN

(
ψt,ϕ(0; · ) f0 + w

∫ t

0
ψt,ϕ(s; ·) ds

)
dx (14)

for any ϕ ∈ C1
c (R

N ). In particular, ‖ f (t)‖L p(RN ) is bounded by a constant depending
on

∥∥[divx g]−
∥∥
L∞ , ‖u‖L∞ , ‖w‖L p , ‖ f0‖L p and T only:

‖ f (t)‖L p = sup

{∫
RN

ϕ · f (t) dx
∣∣∣ ϕ ∈ Lq(RN ), ‖ϕ‖Lq ≤ 1

}

= sup

{∫
RN

ϕ · f (t) dx
∣∣∣ ϕ ∈ C1

c (R
N ), ‖ϕ‖Lq ≤ 1

}

= sup
{
‖ψt,ϕ(s; ·)‖Lq

(‖ f0‖L p + ‖w‖L p t
) ∣∣∣ ϕ ∈ C1

c (R
N ),

‖ϕ‖Lq ≤ 1, s ≤ t
}

(13)≤ e(‖[divx g]−‖L∞+‖u‖L∞ ) · t · (‖ f0‖L p(RN ) + ‖w‖L p(RN ) t
)
.

This leads to the bounded function f : [0, T ] → L p(RN ), which we now prove to
be a weak solution of problem (5).

For any test functionϕ ∈ C1
c (R

N )with compact support, the functionΦ : [0, T ] →
R given by t �→ ∫

RN ϕ f (t) dx is absolutely continuous with

Φ ′(t) = d

dt

∫
RN

(
f0(x)ϕ

(
X1,g(t; x)

)
e
∫ t
0 u(X1,g(r; x))dr

+ w(x)
∫ t

0
ψt,ϕ(s; x)ds

)
dx

=
∫
RN

∂

∂t

(
f0(x)ϕ

(
X1,g(t; x)

) · exp
( ∫ t

0
u
(
X1,g(r; x)

)
dr

))
dx

+
∫
RN

w(x) · ∂

∂t

∫ t

0

(
ϕ
(
X1,g(t − s; x)) · e

∫ t−s
0 u(X1,g(r; x)) dr

)
ds dx
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=
∫
RN

{
f0(x)

(
∇ϕ

(
X1,g(t; x)

) · ∂tX1,g(t; x)

+ ϕ
(
X1,g(t; x)

)
u
(
X1,g(t; x)

) ) · exp
( ∫ t

0
u
(
X1,g(r; x)

)
dr

)}
dx

+
∫
RN

w(x)
{
ϕ(x) +

∫ t

0

(
∇ϕ

∣∣
(X1,g(t−s; x)) · ∂tX1,g(t − s; x)

+ ϕ
∣∣
(X1,g(t−s; x)) u

(
X1,g(t−s; x))) e

∫ t−s
0 u(X1,g(r; x)) dr ds

}
dx

(14)=
∫
RN

(
∇ϕ · g(x) + ϕ u

)
· f (t) dx +

∫
RN

ϕ w dx.

Indeed, the global a priori bound on both ‖ f (t)‖L p and the other functions g, u, ϕ, w
ensure that all Lebesgue integrals here exist and so, the rules of differentiation can be
applied to weak derivatives (see, e.g., [69]). ��

4.4 Linear problem with “more regular” coefficients: an explicit formula for
solutions in L p(RN)

Proposition 23 Under the assumptions of Proposition 20, the weak solution f :
[0, T ] → L p(RN ) of the initial value problem (5) presented in Eq. (7) has the explicit
form

f (t, ξ) = f0
(
X−1,g(t; ξ)

) · exp
(∫ t

0
(u − divx g)

(
X−1,g(s; ξ)

)
ds

)

+
∫ t

0

(
w
(
X−1,g(t−s; ξ)

) · exp
( ∫ t−s

0
(u−divx g)

(
X−1,g

(
r; ξ)

)
dr

))
ds.

For our conclusions later on, the main benefit of this explicit formula is to provide a
dominating function of space and time. It will help us to verify tightness of solutions
while coefficients are perturbed in a suitably bounded way (see Lemma 31 below).

Corollary 24 (A function dominating this weak solution) Under the assumptions of
Proposition 20, the weak solution f : [0, T ] → L p(RN ) of initial value problem (5)
presented in Eq. (7) satisfies

| f (t, ξ)| ≤ e(‖ [divx g]−‖L∞+‖u‖L∞ ) · t ·
(∣∣ f0(X−1,g(t; ξ)

)∣∣
+

∫ t

0

∣∣w(
X−1,g(t − s; ξ)

)∣∣ ds) ,

| f (t, ξ)|p ≤ C eC t ·
(∣∣ f0(X−1,g(t; ξ)

)∣∣p +
∫ t

0

∣∣w(
X−1,g(t − s; ξ)

)∣∣p ds
)

for every t ∈ [0, T ] and Lebesgue-almost every ξ ∈ R
N with a finite constant C that

depends on N, p, T , ‖[divx g]−‖L∞ and ‖u‖L∞ .
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Proof of Proposition 23 The main idea is to change the right-hand side of Eq. (7) by
means of the theorems of Fubini and the change of variables. The change of coordinates
x �→ X1,g(t; x) = ξ from R

N to R
N has the continuously differentiable inverse

ξ �→ X−1,g(t; ξ) = x from R
N to R

N . Hence, the change of variables formula for
Lebesgue integrals (see, e.g., [47, XXI, Theorem 2.6]) leads to

∫
RN

ψt,ϕ(0; x) f0(x) dx
(12)=

∫
RN

{
ϕ
(
X1,g(t; x)

) · exp
(∫ t

0
u
(
X1,g(r; x)

)
dr

)}
f0(x) dx

=
∫
RN

ϕ(ξ) · exp
(∫ t

0
u
(
X1,g

(
r; X−1,g(t; ξ)

))
dr

)
f0
(
X−1,g(t; ξ)

)

·∣∣ det ∂ξX−1,g(t; ξ)
∣∣ dξ

=
∫
RN

ϕ(ξ) · exp
(∫ t

0
u
(
X−1,g

(
t − r; ξ

)
dr

)
f0
(
X−1,g(t; ξ)

)

·∣∣ det ∂ξX−1,g(t; ξ)
∣∣ dξ

(10)=
∫
RN

ϕ(ξ) · exp
(∫ t

0
u
(
X−1,g

(
t − r; ξ

)
dr

)
f0
(
X−1,g(t; ξ)

)

·e− ∫ t
0 (divx g)(X−1,g(s; ξ))ds dξ

=
∫
RN

ϕ(ξ) · exp
(∫ t

0
(u − divx g)

(
X−1,g(s; ξ)

)
ds

)
f0
(
X−1,g(t; ξ)

)
dξ .

Similarly, by the transformation x �→ X1,g(t − s; x) = ξ , we obtain

∫
RN

(
w(x) ·

∫ t

0
ψt,ϕ(s; x) ds

)
dx

(10)=
∫ t

0

∫
RN

w(x) · ϕ
(
X1,g(t − s; x)) · exp

(∫ t−s

0
u
(
X1,g(r; x)

)
dr

)
dxds

=
∫ t

0

∫
RN

w
(
X−1,g(t − s; ξ)

) · ϕ(ξ)

· exp
(∫ t−s

0
u
(
X1,g

(
r; X−1,g(t − s; ξ)

))
dr

)

· ∣∣ det ∂ξX−1,g(t − s; ξ)
∣∣ dξds

=
∫ t

0

∫
RN

w
(
X−1,g(t − s; ξ)

) · ϕ(ξ)

· exp
(∫ t−s

0
(u − divx g)

(
X−1,g

(
r; ξ)

)
dr

)
dξds

=
∫
RN

ϕ(ξ) ·
∫ t

0

(
w
(
X−1,g(t − s; ξ)

)
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· exp
(∫ t−s

0
(u − divx g)

(
X−1,g

(
r; ξ)

)
dr

))
ds dξ.

Finally the claim results directly from Eq. (7). ��
Remark 25 The results of this subsection can be extended easily to nonautonomous
linear problems as considered in Sect. 4.2, i.e., for any T > 0 and coeffi-
cients g̃ ∈ L∞(

0, T ; L∞(RN ,RN )
)
, ∂xg̃ ∈ L∞(

0, T ; L∞(RN ,RN×N )
)
, ũ ∈

L∞(
0, T ; L∞(RN )

)
and w̃ ∈ L1

(
0, T ; L p(RN )

)
.

According to Proposition 19, every initial function f0 ∈ L p(RN ) leads to at most
one weak solution f ∈ L1

(
0, T ; L p(RN )

)
of the nonautonomous transport equation

∂t f + divx( f g̃(t)) = ũ(t) f + w̃(t), f (0) = f0. (15)

Considering now the flow Xα,̃g : [0, T ] × R
N → R

N of the nonautonomous differ-
ential equation

∂t Xα,̃g(t; x) = α · g̃(t, Xα,g(t; x)
)
, Xα,̃g(0; x) = x

in the sense of Carathéodory solutions, we can follow the same arguments as in the
proof of Proposition 20 for verifying that the function f̃ : [0, T ] → L p(RN ) with

∫
RN

ϕ f̃ (t) dx =
∫
RN

ϕ
(
X1,̃g(t; x)

) · exp
(∫ t

0
ũ
(
r, X1,̃g(r; x)

)
dr

)
f0dx

+
∫
RN

∫ t

0
w̃(s, x) ϕ

(
X1,̃g(t − s; x))

· exp
(∫ t−s

0
ũ
(
r, X1,̃g(r; x)

)
dr

)
ds dx

for each ϕ ∈ C1
c (R

N ) is this unique weak solution of (15). This leads to the counter-
parts of the explicit representation in Proposition 23 and to the dominating function in
Corollary 24 by using the area formula (e.g., [35, § 3.3, Theorem 2]) rather than the
change of variables formula for Lebesgue integrals.

Finally, the weak solution f : [0, T ] → L p(RN ) of the nonautonomous linear
problem (15) satisfies

| f (t, ξ)| ≤ eC · t ·
(∣∣ f0(X−1,̃g(t; ξ)

)∣∣ +
∫ t

0

∣∣w(
s, X−1,̃g(t − s; ξ)

)∣∣ ds
)

| f (t, ξ)|p ≤ C eC · t ·
(∣∣ f0(X−1,̃g(t; ξ)

)∣∣p +
∫ t

0

∣∣w(
s, X−1,̃g(t − s; ξ)

)∣∣pds
)

(16)

for Lebesgue-almost every t ∈ [0, T ] and Lebesgue-almost every ξ ∈ R
N with finite

constants C depending on N , p, T , ‖∂xg̃‖L∞(0,T ;L∞), ‖ũ‖L∞(0,T ;L∞).
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4.5 Autonomous linear problem with “more regular” coefficients: further
estimates

Definition 26 For any functions g ∈ C1
c (R

N ,RN ), u ∈ C1(RN ) ∩ W 1,∞(RN ) and

w ∈ L p(RN ), let ϑ f
g,u,w : [0, 1]×L p(RN ) → L p(RN ) be defined as the unique weak

solution ϑ
f
g,u,w(t, f0) := f (t) of

∂t f + divx( f g) = u f + w in [0, t], f (0) = f0,

the existence and uniqueness ofwhich are stated in Propositions 19 and 20 respectively.

Proposition 27 Suppose that g, ĝ ∈ C1
c (R

N ,RN ), u, û ∈ C1(RN ) ∩ W 1,∞(RN ) ∩
Lq(RN ) and w, ŵ ∈ L p(RN ). Then the following properties hold for any f0, f1 ∈
L p(RN ), s, t ∈ [0, 1] with s + t ≤ 1:

(1) ϑ
f
g,u,w(0, f0) = f0

(2) ϑ
f
g,u,w(s + t, f0) = ϑ

f
g,u,w

(
s, ϑ

f
g,u,w(t, f0)

)
(3)

∥∥ϑ f
g,u,w(t, f0)

∥∥
L p ≤ (‖ f0‖L p + ‖w‖L p t

) · econst(N )·(1+‖ [divx g]−‖L∞+‖u‖L∞ ) · t

(4)
∥∥ϑ f

g,u,w(t, f0)
∥∥
L p ≥ ‖ f0‖L p · e− const(N )·(1+‖ [divxg]+‖L∞+‖u‖L∞ ) · t − ‖w‖L p t

(5) ĕL p
(
f0, ϑ

f
g,u,w(t, f0)

) ≤ t ·const(N , ‖g‖L∞ , ‖ [divx g]−‖L∞ , ‖u‖L∞)·(‖ f0‖L p

+ ‖w‖L p )

(6) eL p
(
f0, ϑ

f
g,u,w(t, f0)

) ≤ t · const(N , ‖g‖L∞ , ‖ divx g ‖L∞ , ‖u‖L∞) · (‖ f0‖L p

+ ‖w‖L p )

(7) dL p
(
ϑ

f
g,u,w(t, f0), ϑ

f
g,u,w(t, f1)

) ≤ dL p
(
f0, f1

) ·
econst(N )(1+‖∂xg‖L∞+‖u‖L∞+‖∇xu‖L∞ ) · t

(8) dL p
(
ϑ

f
g,u,w(t, f0), ϑ

f
ĝ,̂u,ŵ(t, f0)

) ≤ C · (‖ f0‖L p + ‖ŵ‖L p
) · t

(∥∥g − ĝ
∥∥
Lq +∥∥u − û

∥∥
Lq + ∥∥w − ŵ

∥∥
L p

)
with a constant C = C

(
N , p, ‖∂x g‖L∞ , ‖∂x ĝ‖L∞ ,

‖u‖W 1,∞ , ‖û‖W 1,∞
)
.

Lemma 28 Under the assumptions of Proposition 20, let ψt,ϕ ∈ C1([0, t] × R
N )

denote the unique solution to problem (11) for any t ∈ [0, T ] and ϕ ∈ C1
c (R

N ) given.
In addition, let ψ̂t,ϕ ∈ C1([0, t] × R

N ) be the solution to problem (11) with instead
the coefficients ĝ ∈ C1

c (R
N ,RN ) and û ∈ C1(RN ) ∩ W 1,∞(RN ) ∩ Lq(RN ).

Then, the following a priori estimates

∥∥∇x ψt,ϕ(s; · )∥∥Lq ≤ (‖∇x ϕ‖Lq + ‖ϕ‖Lq (t − s) ‖∇xu‖L∞)

· econst(N ,p) · (1+‖∂xg‖L∞+‖u‖L∞ ) · t ,∥∥ψt,ϕ(s; · ) − ψ̂t,ϕ(s; · )∥∥Lq ≤ (‖ϕ‖L∞ + ‖∇x ϕ‖L∞
)

·C t eC t (‖g − ĝ‖Lq + ‖u − û‖Lq
)

hold for every 0 ≤ s ≤ t ≤ T and ϕ ∈ C1
c (R

N ) with a constant C which depends on
N, p, ‖∂x g‖L∞ , ‖∂x ĝ‖L∞ , ‖∇x u‖L∞ and ‖∇x û‖L∞ .
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Proof of Lemma 28 As before X1,g denotes the solution of initial value prob-
lem (8). The explicit representation of ψt,ϕ , i.e., ψt,ϕ(s; x) = ϕ

(
X1,g(t − s; x)) ·

e
∫ t−s
0 u(X1,g(r; x)) dr , provides for the gradient with respect to x

∣∣∇x ψt,ϕ(s; · )∣∣ ≤
( ∣∣∣∇x ϕ

(
X1,g(t − s; · )) · ∂x X1,g(t − s; · )

∣∣∣
+
∣∣∣ ϕ

(
X1,g(t − s; · )) ·

∫ t−s

0
∇xu

(
X1,g(r; · )) · ∂x X1,g(r; · ) dr

∣∣∣
)

· e
∫ t−s
0 u(X1,g(r; · )) dr .

The change of variables formula for Lebesgue integrals leads to the following upper
estimate of the first scalar product:

∫
RN

∣∣∇x ϕ
(
X1,g(t − s; x)) · ∂x X1,g(t − s; x)∣∣q dx

≤ ∥∥∂x X1,g(t − s; · )∥∥qL∞ ·
∫
RN

∣∣∇xϕ
(
X1,g(t − s; x))∣∣q dx

(9)≤ econst(N ,p) · (1+‖∂xg‖L∞ ) · t ·
∥∥∥det (∂x X1,g(t; · ))−1

∥∥∥
L∞ ‖∇x ϕ‖qLq

(10)≤ econst(N ,p) · (1+‖∂xg‖L∞ ) · t · ‖∇x ϕ‖qLq .

The corresponding conclusion for the second term and Minkowski inequality imply

∥∥∇x ψt,ϕ(s; ·)∥∥Lq ≤ econst(N ,p) · (1+‖∂xg‖L∞+‖u‖L∞ ) · t

·(‖∇x ϕ‖Lq + ‖ϕ‖Lq (t − s) ‖∇xu‖L∞
)
.

To “compare” the solutions ψt,ϕ and ψ̂t,ϕ related to the coefficients g, u and ĝ, û,
respectively,we use the auxiliary functionsgλ := λ·g+(1−λ)·̂g, uλ := λ·u+(1−λ)·̂u
and Ψ λ

t,ϕ ∈ C1([0, t] × R
N ), where 0 ≤ λ ≤ 1, with

Ψ λ
t,ϕ(s; · ) := ϕ

(
X1,gλ(t − s; · )) · exp

(∫ t−s

0
uλ

(
X1,gλ(r; · )) dr

)
.

In particular, Ψ 1
t,ϕ = ψt,ϕ and Ψ 0

t,ϕ = ψ̂t,ϕ . Furthermore, the integral form of differ-
ential equation (8), i.e.,

X1,gλ(t; x) = x +
∫ t

0
gλ

(
X1,gλ(s; x)

)
ds,

provides an integral equation for the partial derivative X1,gλ(·; x) w.r.t. parameter λ:

∂λX1,gλ(t; x) =
∫ t

0

((
g − ĝ

)
(X1,gλ(s; x)) + ∂xgλ(X1,gλ(s; x)) · ∂λ X1,gλ(s; x)

)
ds
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∣∣∂λX1,gλ(t; x)
∣∣ ≤ 2

∫ t

0
max

{∣∣∣(g − ĝ
)∣∣
X1,gλ (s; x)

∣∣∣ , ∣∣∣∂xgλ

∣∣
X1,gλ (s; x) · ∂λ X1,gλ(s; x)

∣∣∣} ds

≤ 2 t
1
p

(∫ t

0
max

{∣∣∣(g − ĝ
)∣∣
X1,gλ (s; x)

∣∣∣q ,
∣∣∣∂xgλ

∣∣
X1,gλ (s; x) · ∂λ X1,gλ(s; x)

∣∣∣q} ds
) 1

q

∣∣∂λX1,gλ(t; x)
∣∣q ≤ 2q t

q
p

∫ t

0
max

{∣∣∣(g − ĝ
)∣∣
X1,gλ (s; x)

∣∣∣q ,
∣∣∣∂xgλ

∣∣
X1,gλ (s; x) · ∂λ X1,gλ(s; x)

∣∣∣q} ds

≤ 2q t
q
p

∫ t

0

(∣∣∣(g − ĝ
)∣∣
X1,gλ (s; x)

∣∣∣q

+
∣∣∣∂xgλ

∣∣
X1,gλ (s; x) · ∂λ X1,gλ(s; x)

∣∣∣q) ds,

so

∥∥∂λX1,gλ(t; · )∥∥qLq ≤ 2q t
q
p

∫ t

0

(‖g − ĝ‖qLq · ec s + ‖∂xgλ‖qL∞
∥∥∂λ X1,gλ(s; x)

∥∥q
Lq

)
ds

with a constant c = c
(
N , ‖ [divx g]−‖L∞ , ‖ [divx ĝ]−‖L∞

)
. Hence by the Gronwall’s

inequality, ∥∥∂λ X1,gλ(t; · )∥∥Lq ≤ ‖g − ĝ‖Lq · C teCt

with some constant C = C (N , p, ‖∂x g‖L∞ , ‖∂x ĝ‖L∞). Thus,

∂λ Ψ λ
t,ϕ(s; x) = e

∫ t−s
0 uλ

(
X1,gλ (r; x)) dr ·

{
∂xϕ

∣∣
X1,gλ (t−s; x) · ∂λX1,gλ(t − s; x)

+ϕ
∣∣
X1,gλ (t−s; x) ·

∫ t−s

0

(
(u − û)

∣∣
X1,gλ (r; x)

+ ∂xuλ

∣∣
X1,gλ (r; x)· ∂λX1,gλ(r; x)

)
dr

}

implies the upper estimate

∥∥∂λ Ψ λ
t,ϕ(s; · )∥∥Lq ≤ e(t−s)·(‖u‖L∞+‖û‖L∞ )

·
{∥∥∂xϕ(X1,gλ(t − s; · ))∥∥L∞ · ∥∥∂λX1,gλ(t − s; · )∥∥Lq

+‖ϕ‖L∞ · (t − s)

×
(

‖u − û‖Lq · ec(t−s) + ∥∥∂x uλ

∥∥
L∞ · sup

r ≤ t−s
‖∂λX1,gλ(r; · )‖Lq

)}

≤ CeC t · (t − s) · {‖∇x ϕ‖L∞ ‖g − ĝ‖Lq

+‖ϕ‖L∞
(‖u − û‖Lq + (‖∂xu‖L∞ + ‖∂xû‖L∞

)
· ‖g − ĝ‖Lq (t − s)

)}
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with some constant C = C (N , p, ‖∂x g‖L∞ , ‖∂x ĝ‖L∞ , ‖u‖L∞ , ‖û‖L∞) < ∞. The
last claimed inequality now results from

∥∥ψt,ϕ(s; · ) − ψ̂t,ϕ(s; · )∥∥Lq ≤
∫ 1

0

∥∥∂λ Ψ λ
t,ϕ(s; · )∥∥Lq dλ .

��
Proof of Proposition 27 The statements of the theorem will be considered sequen-
tially.
(1) The property ϑ

f
g,u,w(0, f0) = f0 results immediately fromDefinition 26 of ϑ f

g,u,w.

(2) The semi-group property ϑ
f
g,u,w(s + t, f0) = ϑ

f
g,u,w

(
s, ϑ

f
g,u,w(t, f0)

)
is a con-

sequence of the uniqueness of solutions to the initial value problem (5) as stated in
Proposition 19.
(3) This upper L p bound has already been formulated (and proved) in Proposition 20.
(4) Choose any t ∈ [0, 1] and f0 ∈ L p(RN ). The characterizing condition (6) on
weak solutions implies immediately that f : [0, t] → L p(RN ) is a weak solution of
initial value problem (5) if and only if f̂ := f (t − ·) : [0, t] → L p(RN ) is a weak
solution of

∂t f̂ − divx
(
f̂ g

) = − u f̂ − w in [0, t], f̂ (0) = f (t). (17)

From the uniquenessmentioned in Proposition 19,we conclude that theweak solutions
of (17) characterize the inverse of ϑ

f
g,u,w(t, ·) : L p(RN ) → L p(RN ), i.e.,

ϑ
f
g,u,w(t, · )−1 : L p(RN ) → L p(RN ), f (t) �→ f̂ (t) = f0, (18)

where ϑ
f
g,u,w(t, f0) = f (t). Now the lower L p bound of f (t) := ϑ

f
g,u,w(t, f0) results

from the counterpart of property (3) for Eq. (17):

‖ f0‖L p ≤ (∥∥ f (t)
∥∥
L p + ‖w‖L p t

) · econst(N ,p)·(1+‖ [divx (−g)]−‖L∞+‖u‖L∞ ) · t .

(5) For f (t) := ϑ
f
g,u,w(t, f0), t ∈ [0, 1] and ϕ ∈ C1

c (R
N ), Eq. (6) and property (3)

imply

∫
RN

ϕ ( f (t) − f0) dx =
∫ t

0

∫
RN

(
f (s, · ) (g · ∇x ϕ + u ϕ)

)
dxds

+t
∫
RN

ϕ w dx

≤
∫ t

0

(
‖ f (s)‖L p (‖g‖L∞ ‖∇ϕ‖Lq

+‖u‖L∞ ‖ϕ‖Lq )
)
ds + t · ‖ϕ‖Lq ‖w‖L p

≤ t · (‖ϕ‖Lq + ‖∇ϕ‖Lq
) · (‖ f0‖L p + ‖w‖L p

)
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(1 + ‖g‖L∞ + ‖u‖L∞)

· exp (const(N , p) · (1 + ‖ [divx g]−‖L∞ + ‖u‖L∞)
)
.

The supremum w.r.t. all ϕ ∈ C1
c (R

N ) satisfying both ‖ϕ‖W 1,q ≤ 1 and ‖ϕ‖W 1,∞ ≤
1 leads to the claimed estimate of ĕL p

(
f0, f (t)

)
.

(6) Statements (3) and (4) imply the right continuity of [0, 1] → R, t �→∥∥ϑ f
g,u,w(t, f0)

∥∥
L p at t = 0. Due to the semi-group property (2), the norm is right

continuous at every t ∈ [0, 1). By means of (18), we similarly obtain the left conti-
nuity of

∥∥ϑ f
g,u,w(·, f0)

∥∥
L p in (0, 1].

Furthermore, statements (3) and (4) guarantee that the right Dini derivative is
bounded at each time instant t ∈ [0, 1):

lim sup
h ↓ 0

∣∣∣∣∣
∥∥ϑ f

g,u,w(t + h, f0)
∥∥
L p − ∥∥ϑ f

g,u,w(t, f0)
∥∥
L p

h

∣∣∣∣∣
≤ const(N , p, ‖divx g‖L∞ , ‖u‖L∞) · (∥∥ϑ f

g,u,w(t, f0)
∥∥
L p + ‖w‖L p

)
(3)≤ const(N , p, ‖divx g‖L∞ , ‖u‖L∞) · (‖ f0‖L p + ‖w‖L p

)
,

so the function
∥∥ϑ f

g,u,w(·, f0)
∥∥
L p : [0, 1] → [0,∞) is even Lipschitz continu-

ous. Together with property (5), this leads to the claimed Lipschitz continuity of
ϑ

f
g,u,w(·, f0) w.r.t. the metric eL p .

(7) For every test function ϕ ∈ C1
c (R

N ), the representations (7), (12) guarantee for

the solutions ϑ
f
g,u,w(t, f0) and ϑ

f
g,u,w(t, f1) related to initial states f0, f1 ∈ L p(RN ),

respectively,

∫
RN

ϕ · (ϑ f
g,u,w(t, f0) − ϑ

f
g,u,w(t, f1)

)
dx =

∫
RN

ψt,ϕ(0; x)( f0 − f1
)
(x) dx

=
∫
RN

ϕ
(
X1,g(t; x)

) · exp
(∫ t

0
u
(
X1,g(r; x)

)
dr

) (
f0 − f1

)
(x) dx . (19)

Bymeans of density arguments, this relation can be extended to any auxiliary function
ϕ ∈ C0

c (R
N )∩W 1,∞(RN ). Due to the assumptions g ∈ C1

c (R
N ,RN ), u ∈ C1(RN )∩

W 1,∞(RN ), the function from R
N to RN defined by

x �→ ϕ
(
X1,g(t; x)

) · exp
(∫ t

0
u
(
X1,g(r; x)

)
dr

)

is Lipschitz continuous with compact support in R
N at each time instant t ∈ [0, 1]

and, the following a priori estimates hold

∥∥ϕ (
X1,g(t; · )) ∥∥qLq ≤ ‖ϕ‖qLq ·

∥∥∥det (∂x X1,g(t; · ))−1
∥∥∥
L∞

(10)≤ ‖ϕ‖qLq · econst(N ) · ‖ [divxg]−‖L∞ · t ,
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∥∥∂x (ϕ ◦ X1,g(t; · ))∥∥L∞ ≤ ‖∇x ϕ‖L∞ · ∥∥∂xX1,g(t; · )∥∥L∞
(9)≤ ‖∇x ϕ‖L∞ · econst(N ) · (1+‖∂xg‖L∞ ) · t .

Correspondingly, the second factor in representation (19) of the difference, i.e., the
expression ηg,u,t : RN → R defined by

x �→ exp

(∫ t

0
u
(
X1,g(r; x)

)
dr

)
,

and its gradient are essentially bounded with the a priori bound

∥∥∇x ηg,u,t
∥∥
L∞ ≤ e‖u‖L∞ t ·

∫ t

0

∥∥∇xu
(
X1,g(r; · ))∥∥L∞

∥∥∂x X1,g(r; · )∥∥L∞ dr

(9)≤ econst(N ) (1+‖∂xg‖L∞+‖u‖L∞ ) t · ∥∥∇xu
∥∥
L∞ t .

Hence, standard arguments (about homogeneity w.r.t. the norm of test functions) lead
to

dL p
(
ϑ

f
g,u,w(t, f0), ϑ

f
g,u,w(t, f1)

)
(19)= sup

{∫
RN

ϕ
(
X1,g(t; ·)) ηg,u,t · ( f0 − f1

)
dx

∣∣∣
ϕ ∈ C1

c (R
N ), ‖ϕ‖Lq ≤ 1, ‖ϕ‖L∞ ≤ 1, ‖∇x ϕ‖L∞ ≤ 1

}

≤ econst(N ) (1+‖∂xg‖L∞+‖u‖L∞+‖∇xu‖L∞ ) · t · dL p
(
f0, f1

)
.

(8) For every test function ϕ ∈ C1
c (R

N ), let ψt,ϕ , ψ̂t,ϕ ∈ C1([0, t] × R
N ) denote

the auxiliary functions as specified in Lemma 28. We conclude from the estimates in
Lemmas 22, 28

∫
RN

ϕ · (ϑ f
g,u,w(t, f0) − ϑ

f
ĝ,̂u,ŵ(t, f0)

)
dx

(7)=
∫
RN

((
ψt,ϕ(0; · ) − ψ̂t,ϕ(0; · )) f0

+ w

∫ t

0
ψt,ϕ(s; ·) ds − ŵ

∫ t

0
ψ̂t,ϕ(s; ·) ds

)
dx

≤ ∥∥ψt,ϕ(0; · ) − ψ̂t,ϕ(0; · )∥∥Lq ‖ f0‖L p + ∥∥w − ŵ
∥∥
L p · sup

s ≤ t

∥∥ψt,ϕ(s; ·)∥∥Lq t

+ ∥∥ŵ∥∥
L p · sup

s ≤ t

∥∥ψt,ϕ(s; ·) − ψ̂t,ϕ(s; ·)∥∥L p t

≤ (‖ϕ‖L∞ + ‖∇x ϕ‖L∞
) (‖ f0‖L p + ‖ŵ‖L p

) · C eCt t
(∥∥g − ĝ

∥∥
Lq + ∥∥u − û

∥∥
Lq

)

+ ‖ϕ‖Lq · C eCt t
∥∥w − ŵ

∥∥
L p
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with a constant C = C
(
N , p, ‖∂x g‖L∞ , ‖∂x ĝ‖L∞ , ‖∇x u‖L∞ , ‖∇x û‖L∞

)
. ��

4.6 Extending existence and estimates for autonomous linear problems to “less
regular” coefficients

In comparisonwith Proposition 20 about existence of solutions, the coefficients g, u,w
are now supposed to satisfy the weaker regularity assumptions of the main Theorem 4,
but we still consider the autonomous problem:

Proposition 29 Assume g ∈ L∞(RN ,RN ) ∩ Lq, ∂x g ∈ L∞(RN ,RN×N ), u ∈
L∞(RN ) ∩ Lq ,∇x u ∈ L∞(RN ,RN ), w ∈ L p(RN ). Then for any initial function
f0 ∈ L p(RN ), there exists a weak solution f : [0, 1] → L p(RN ) of the following
initial value problem in the sense of Proposition 20

∂t f + divx( f g) = u f + w in [0, 1], f (0) = f0. (20)

Furthermore, this solution is unique and denoted by ϑ
f
g,u,w(·, f0) : [0, 1] → L p(RN ).

Finally, all estimates in Proposition 27 hold under these weaker regularity assump-
tions.

The proof is essentially based on smoothing the coefficients g, u such that Proposi-
tion 20 can be applied without any significant effects on the a priori estimates.

The following lemma can be verified quite easily by means of mollifying with
some Dirac sequence of smooth functions (see, e.g., [47, Section VIII.3]) in combi-
nation with any cut-off function for the compact support. It is worth mentioning that
this lemma states just the Lq convergence of the sequence (gk)k∈N, but not the L∞
convergence of the derivatives (∂xgk)k∈N.

Lemma 30 C∞(RN ,Rm)∩Lq(RN ,Rm) is dense in
{
h ∈ Lq(RN ,Rm)

∣∣ ∂xh ∈ L∞
(RN ,Rm×N )

}
w.r.t. the Lq norm. In particular, for every function h ∈ Lq(RN ,Rm)

with distributional derivative ∂xh ∈ L∞(RN ,Rm×N ), there exists a sequence (hk)k∈N
in C∞(RN ,Rm) with

lim
k→∞

∥∥hk − h
∥∥
Lq = 0, sup

k∈N
‖hk‖Lq ≤ ‖h‖Lq , sup

k∈N
‖∂xhk‖L∞ ≤ ‖∂xh‖L∞

and (if m = N) supk∈N ‖divx hk‖L∞ ≤ ‖divx h‖L∞ .
Moreover, for any function h ∈ L∞(RN ,Rm) ∩ Lq(RN ,Rm) with ∂xh ∈

L∞(RN ,Rm×N ), the sequence (hk)k∈N in C∞
c (RN ,Rm) can be constructed in such

a way that limk→∞
∥∥hk − h

∥∥
Lq = 0 in addition to

sup
k∈N

‖hk‖Lq ≤ ‖h‖Lq , sup
k∈N

‖hk‖L∞ ≤ ‖h‖L∞ , sup
k∈N

‖∂xhk‖L∞ ≤ ‖∂xh‖L∞ + ‖h‖L∞

and (if m = N) supk∈N ‖divx hk‖L∞ ≤ ‖divx h‖L∞ + ‖h‖L∞ .
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In general, any proof via smoothing coefficients requires some limit process in the end,
so we need the completeness of the underlying subset of L p(RN ) with respect to dL p .
As a consequence of Proposition 18, this feature is closely related to the tightness of
the values to the power p (of solutions to the approximate problems). The dominating
function mentioned in Corollary 24 provides the tool for specifying which norms of
the coefficients should be uniformly bounded in this context:

Lemma 31 (Tight values due to uniformly bounded velocities) Let G ⊂ C1
c (R

N ,RN )

and U ⊂ C1(RN ) ∩ W 1,∞(RN ) be any nonempty subsets with γ := sup
{‖g‖L∞ +

‖divx g‖L∞ + ‖u‖L∞
∣∣g ∈ G, u ∈ U

}
< ∞. Suppose that W := {

w ∈
L p(RN )

∣∣|w| ≤ ŵ Lebesgue-a.e. in R
N\Kx

}
for some ŵ ∈ L p(RN ) and a com-

pact set Kx ⊂ R
N .

Then for every f0 ∈ L p(RN ), the subset
{∣∣ϑ f

g,u,w(t, f0)
∣∣p ∣∣∣ t ∈ [0, 1], g ∈ G,

u ∈ U, w ∈ W } ⊂ L1(RN ) is tight, i.e., for r → ∞,

sup

{∫
RN \Br (0)

∣∣ϑ f
g,u,w(t, f0)

∣∣p dx
∣∣∣ t ∈ [0, 1], g ∈ G, u ∈ U, w ∈ W

}
→ 0.

Proof of Lemma 31 This is based on the simple observation that
∣∣X1,g(t, x)−x

∣∣ ≤ C t
holds for all x ∈ R

N and t ≥ 0 with the constant C := sup
g∈G

‖g‖L∞ < ∞.

Indeed, for every ε > 0, there is a radius r̂ > 0 with Kx ⊂ Br̂ (0) and∥∥ f0
∥∥
L p(RN \Br̂ (0))

+ ∥∥ŵ∥∥
L p(RN \Br̂ (0))

< ε. Set R := r̂ + C ≥ r̂ and Zr

:= R
N \Br (0) ⊂ R

N for each r ≥ r̂ . Due to Corollary 24, the function ξt :=
ϑ

f
g,u,w(t, f0) ∈ L p(RN ) with any g ∈ G, u ∈ U , w ∈ W , t ∈ [0, 1] satisfies

∥∥ξt∥∥p
L p(ZR)

=
∫
ZR

∣∣ξt (x)∣∣p dx

≤ c · ec(‖divx g‖L∞+‖u‖L∞ ) · t ( ∫
ZR

∣∣ f0(X−1,g(t, x)
)∣∣p dx

+
∫
ZR

sup
s ∈ [0,t]

∣∣w(
X−1,g(s, x)

)∣∣p dx
)

≤ c · ec(2 ‖divx g‖L∞+‖u‖L∞ ) · t
∫
Zr̂

(∣∣ f0∣∣p + |ŵ|p) dx

with constants c = c(N , p) ≥ 1 because for each k ∈ N and s ∈ [0, 1], the diffeo-
morphism X−1,g(s, · ) : RN → R

N maps ZR in a subset of Zr̂ ⊂ R
N . Hence we

obtain
∥∥ξt∥∥p

L p(ZR)
≤ const(γ, N , p) · ε with a constant depending on the fixed bound

γ < ∞, dimension N and p ∈ (1,∞) (but not on g, u, w or t ∈ [0, 1]). ��
Proof of Proposition 29 Choose sequences (gk)k∈N in C∞

c (RN ,RN ) and (uk)k∈N in
C∞
c (RN ) converging to g, u, respectively, as described in Lemma 30. According to

Proposition 20, each related initial value problem

∂t fk + divx( fk gk) = uk fk + w in [0, T ], fk(0) = f0
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has aweak solution fk : [0, T ] → L p(RN ). Estimates (3), (5) and (8) in Proposition 27
imply

∥∥ fk(t)
∥∥
L p ≤ eC T · (‖ f0‖L p + ‖w‖L p

)
, eL p

(
fk(s), fk(t)

) ≤ C · |t − s|

with a constant C = const
(
N , p, ‖ f0‖L p , ‖g‖L∞, ‖divx g‖L∞ , ‖u‖L∞ , ‖w‖L p

)
for

all k ∈ N, s, t ∈ [0, T ] and

sup
t ∈ [0,T ]

dL p
(
fk(t), fl(t)

) → 0 for k, l → ∞.

Furthermore, the subset
{| fk(t)|p ∣∣ k ∈ N, t ∈ [0, T ]} ⊂ L1(RN ) is tight due

to Lemma 31. According to Proposition 18, there exists a bounded limit function
f : [0, T ] → L p(RN ) with dL p

(
fl(t), f (t)

) → 0 (l → ∞) for each t ∈ [0, T ]. By
the triangle inequality, this convergence proves to be even uniform w.r.t. t ∈ [0, T ]:

sup
t ∈ [0,T ]

dL p
(
fk(t), f (t)

) → 0 (k → ∞).

In particular, f is Lipschitz continuous with respect to ĕL p and so it is weakly
continuous due to Lemma 13.

Finally, f : [0, T ] → L p(RN ) proves to satisfy the characteristic condition (6) on
weak solutions, i.e.,

∫
RN

ϕ ( f (t2) − f (t1)) dx =
∫ t2

t1

∫
RN

( f (s, · ) (g · ∇x ϕ + u ϕ)) dx ds

+ (t2 − t1)
∫
RN

ϕ w dx

for any 0 ≤ t1 < t2 ≤ T andϕ ∈ C∞
c (RN ). Indeed, the general relation ĕL p ≤ dL p and

Lemma 13 imply fk(t) → f (t) weakly in L p(RN ) for each t ∈ [0, T ]. For arbitrary
ε > 0, choose the index J ∈ N sufficiently large such that ‖gl−g‖Lq +‖ul−u‖Lq ≤ ε

holds for all l ≥ J . Fixing any indices k, l ≥ J , the uniform convergence of ( fk)k∈N
w.r.t. dL p leads to

∣∣∣
∫ t2

t1

∫
RN

fk(s, ·)gk · ∇x ϕ dx −
∫ t2

t1

∫
RN

f (s, ·)g · ∇x ϕ dx
∣∣∣

≤
∣∣∣
∫ t2

t1

∫
RN

fk(s, ·)(gk − gl) · ∇x ϕ dx
∣∣∣

+
∣∣∣
∫ t2

t1

∫
RN

(
fk(s, ·) − f (s, ·))gl · ∇x ϕ dx

∣∣∣
+
∣∣∣
∫ t2

t1

∫
RN

f (s, · )(gl − g) · ∇x ϕ dx
∣∣∣

≤ const
(
N , p, ‖ f0‖L p , ‖w‖L p , ‖∇x ϕ‖L∞

) · ‖gk − gl‖Lq
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+ const(N , p, ‖gl · ∇x ϕ‖W 1,∞

+‖gl · ∇x ϕ‖Lq ) · sup
s∈[0,T ]

dL p ( fk(s), f (s))

+ const
(
N , p, ‖ f0‖L p , ‖w‖L p , ‖∇x ϕ‖L∞

) · ‖gl − g‖Lq .

Hence we obtain

lim
k → ∞

∣∣∣∣
∫ t2

t1

∫
RN

(
fk(s, ·) gk · ∇x ϕ − f (s, ·) g · ∇x ϕ

)
dx

∣∣∣∣
≤ const

(‖ f0‖L p , ‖w‖L p , ‖∇x ϕ‖L∞
) · ε.

Essentially the same arguments guarantee

lim
k → ∞

∣∣∣∣
∫ t2

t1

∫
RN

(
fk(s, ·)ukϕ − f (s, ·)uϕ

)
dx

∣∣∣∣
≤ const

(‖ f0‖L p , ‖w‖L p , ‖ϕ‖L∞
) · ε

with ε > 0 having been fixed arbitrarily small.
Finally the weak solution f : [0, T ] → L p(RN ) is unique as a consequence of Propo-
sition19.Theuniformconvergencew.r.tdL p implies that all estimates inProposition27

hold for ϑ
f
g,u,w( · , f0)

Def.= f (·) : [0, 1] → L p(RN ) (with T = 1). ��

5 Euler compactness method for L p(RN)-valued solutions

Whenever we want to solve more complicated initial value problems by means of
the linear autonomous problem (20), we have to rely on a method of approximation.
There are usually two analytic bases between which we can choose: Completeness
and compactness.

Proposition 18 gives sufficient conditions for the completeness of a subset of
L p(RN ) with respect to the metric dL p . In short, they consist of tightness and bound-
edness (w.r.t. the L p(RN ) norm).

Here we are going to verify a form of sequential compactness which proves to
be suitable for constructing solutions by means of Euler methods. In particular, this
criterion is closely related to the observation that all Euler approximations are to start
in the same initial state given. This motivated the term “Euler compact” in the general
metric setting of mutational equations (see [51, Definition 2.15]).

Proposition 32 Fix f0 ∈ L p(RN ), T > 0, γ > 0, ŵ ∈ L p(RN ) and a compact set
Kx ⊂ R

N arbitrarily. Set

Mγ, ŵ :=
{
(g, u, w)

∣∣∣g ∈ L∞(RN ,RN ) ∩ Lq , ∂x g ∈ L∞, u ∈ L∞(RN ) ∩ Lq ,

∇x u ∈ L∞(RN ,RN ), w ∈ L p(RN ), |w| ≤ ŵ Leb.-a.e. in RN\Kx,

‖g‖L∞ + ‖divx g‖L∞ + ‖u‖L∞ + ‖w‖L p ≤ γ
}
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and let NL p = NL p ( f0, T, γ, ŵ) denote the subset of all functions f : [0, T ] →
L p(RN ) constructed in the following piecewise way: For an arbitrary equidistant
partition 0 = t0 < t1 < · · · < tn = T of [0, T ] and n tuples (gk, uk, wk) ∈ Mγ,ŵ for
k = 1, . . ., n, define f : [0, T ] → L p(RN ) by means of the unique weak solution of
the autonomous linear transport equation

∂t f + divx( f gk) = uk f + wk in [tk−1, tk], f (0) = f0

(according to Proposition 29) in a continuous piecewise way, i.e., successively for
k = 1, . . ., n.

Then the set
{| f (t)|p∣∣ t ∈ [0, T ], f (·) ∈ NL p

} ⊂ L1(RN ) is tight. At each time
t ∈ [0, T ], the set

{
f (t)

∣∣ f (·) ∈ NL p
} ⊂ L p(RN ) is relatively compact w.r.t. the

metric dL p .

The first statement of this proposition can be summarized briefly in the following
way. The preceding Lemma 31 can be extended in two regards, namely from “more
regular” to “less regular” coefficients and from just one autonomous linear problem
to a piecewise autonomous linear problem. The first aspect is reflected by the choice
of Mγ,ŵ, while the second aspect refers to the construction of NL p ( f0, T, γ, ŵ).

For the sake of transparency, we present an intermediate step first. Indeed, the proof
of Lemma 31 is based essentially on Corollary 24 providing a function dominating
the weak solution for “more regular” coefficients. For tightness, however, we need
estimates for their integrals over complements of balls, as the proof of Lemma 31
reveals. This feature is concluded for solutions to the autonomous linear transport
equation with “less regular” coefficients.

Lemma 33 (Integrals of powered weak solutions outside balls) Let the assumptions
of Proposition 32 hold and consider any tuple (g, u, w) ∈ Mγ,ŵ. Then the weak
solution f : [0, T ] → L p(RN ) of the autonomous linear initial value problem (20)
presented in Proposition 29 satisfies for every t ∈ [0, T ] and every radius r > 0 with
Kx ⊂ Br (0)

∫
RN \Br+γ t (0)

| f (t, x)|p dx ≤ const(N , p, T, γ ) ·
∫
RN \Br (0)

(| f0|p + |ŵ|p) dx .

Proof of Lemma 33 The approximation method underlying the proof of Proposi-
tion 29 essentially bridges the gap between the autonomous linear transport equation
with “more regular” coefficients and its counterpart with “less regular” coefficients.
We choose the same approximating sequences (gk)k∈N in C∞

c (RN ,RN ) and (uk)k∈N
in C∞

c (RN ) converging to g, u respectively as described in Lemma 30. Due to Propo-
sition 20, each related initial value problem

∂t fk + divx( fk gk) = uk fk + w in [0, T ], fk(0) = f0
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has a weak solution fk : [0, T ] → L p(RN ). Furthermore, we have already verified in
the proof of Proposition 29

sup
t ∈ [0,T ]

dL p
(
fk(t), f (t)

) → 0 (k → ∞).

For each t ∈ [0, T ], the general inequality ĕL p ≤ dL p and Lemma 13 imply fk(t) →
f (t) weakly in L p(RN ), so the sequence of restrictions

(
fk(t)

∣∣
RN \Br+γ t (0)

)
k∈N con-

verges weakly to fk(t)
∣∣
RN \Br+γ t (0)

in L p
(
R

N\Br+γ t (0)
)
. The norm is known to

be lower semicontinuous w.r.t. weak convergence in a Banach space (see, e.g., [19,
Proposition 3.5 (iii)]), thus

∫
RN \Br+γ t (0)

| f (t, x)|p dx ≤ lim inf
k → ∞

∫
RN \Br+γ t (0)

| fk(t, x)|p dx .

As in the proof of Lemma 31, we conclude from Corollary 24 for each k ∈ N and
t ∈ [0, T ]

∫
RN \Br+γ t (0)

| fk(t, x)|p dx

≤ C ·
(∫

RN \Br+γ t (0)

∣∣ f0(X−1,gk (t, x)
)∣∣p dx

+
∫
RN \Br+γ t (0)

∫ t

0

∣∣w(
X−1,gk (t−s, x)

)∣∣p ds dx

)

with a constant C = C(N , p, T, γ ) < ∞ due to Hölder’s inequality.
In the next step, we essentially use that

∣∣X−1,gk (t−s, x)−x
∣∣ ≤ ‖gk‖L∞ |t−s| ≤ γ t

holds for every s ∈ [0, t] and x ∈ R
N . This implies X−1,gk (t−s, x) ∈ R

N\Br (0)
whenever x ∈ R

N\Br+γ t (0) and s ∈ [0, T ], so we conclude from the change of
variables theorem for Lebesgue integrals that

∫
RN \Br+γ t (0)

| fk(t, x)|p dx

≤ C ·
(∫

RN \Br+γ t (0)

∣∣ f0(X−1,gk (t, x)
)∣∣p dx

+
∫ t

0

∫
RN \Br+γ t (0)

∣∣w(
X−1,gk (t−s, x)

)∣∣p dx ds

)

≤ C eγ t ·
(∫

RN \Br (0)

∣∣ f0∣∣p dx +
∫ t

0

∫
RN \Br (0)

∣∣w∣∣p dx ds

)

≤ C eγ t ·
(∫

RN \Br (0)

∣∣ f0∣∣p dx + t ·
∫
RN \Br (0)

∣∣ŵ∣∣p dx
)
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≤ C e(γ+1)t
∫
RN \Br (0)

(∣∣ f0∣∣p + |ŵ|p) dx.

��
Proof of Proposition 32 Consider any function f : [0, T ] → L p(RN ) inNL p ( f0, T,

γ, ŵ). By definition, there are an underlying equidistant partition 0 = t0 < t1 < · · · <

tn = T and n tuples (gk, uk, wk) ∈ Mγ,ŵ for k = 1, . . ., n. We now apply the same
arguments as in the preceding proof of Lemma 33 successively to the subintervals
[tk−1, tk] and, for every t ∈ [0, T ] and r > 0 with Kx ⊂ Br (0), obtain

∫
RN \Br+γ t (0)

| f (t, x)|p dx ≤ const(N , p, T, γ ) ·
∫
RN \Br (0)

(| f0|p + |ŵ|p) dx .

This slight extension of Lemma 33 to piecewise autonomous problems implies directly
that the set

{| f (t)|p∣∣t ∈ [0, T ], f (·) ∈ NL p
} ⊂ L1(RN ) is tight.

Finally, at each time t ∈ [0, T ], the set
{
f (t)

∣∣∣ f (·) ∈ NL p

}
⊂ L p(RN ) is

norm bounded as a piecewise consequence of Proposition 27 (3) (extended to “less
regular” coefficients). Hence its norm closed convex hull is relatively compact in(
L p(RN ), dL p

)
according to Corollary 16 and so is the set itself. This completes the

proof of Euler compactness as specified in Proposition 32. ��

5.1 Proofs of the well-posedness results in Sect. 3.1

Now we consider the “full” nonlinear balance law (1) whose coefficients depend on
the current L p integrable state in a functional (i.e., nonlocal) way as stated in Sect. 3.1:

∂t f + divx (G(t, f ) f ) = U(t, f ) · f + W(t, f ) in [0, T ], f (0) = f0.

On the way to the existence of a weak solution, we first consider the stronger
assumptions that all coefficient functions are continuous (w.r.t. both arguments) and
not Carathéodory as assumed in Theorem 4. In particular, it is then more transpar-
ent to construct solutions by means of Euler method and the auxiliary solutions
ϑ

f
g,u,w : [0, 1] × L p(RN ) → L p(RN ) to autonomous linear problems specified in

Proposition 29.

Proposition 34 Consider the coefficient functions

G : [0, T ] × L p(RN ) → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

U : [0, T ] × L p(RN ) → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

W : [0, T ] × L p(RN ) → L p(RN ),

under the assumptions (i)–(iii) of Theorem 4 and the hypothesis

(iv′) G, U : [0, T ] × (
L p(RN ), dL p

) → (
Lq , ‖ · ‖Lq

)
and W : [0, T ] ×(

L p(RN ), dL p
) → (

L p, ‖ · ‖L p
)
are continuous.
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Then there exists a function f : [0, T ] → L p(RN ) with the following properties:

(1) f is bounded with respect to the L p(RN ) norm,
(2) f : [0, T ] → (

L p(RN ), ĕL p
)
is continuous,

(3) for a.e. t ∈ [0, T [, lim
h ↓ 0

1
h ·dL p

(
f (t+h), ϑ

f(
G(t, f (t)),U(t, f (t)),W(t, f (t))

)(h, f (t)
))

= 0,
(4) f : [0, T ] → (

L p(RN ), weak
)
is a continuous weak solution to initial value

problem (1).
(5) f is a renormalized solution (in the sense of DiPerna and Lions [33]) to the

nonautonomous linear problem

∂t f + divx( f g̃(t)) = ũ(t) f + w̃(t) in [0, T ], f (0) = f0

with the time-dependent coefficients g̃ := G( · , f (·)), ũ := U( · , f (·)), w̃ :=
W( · , f (·)).

The proof of Proposition 34 consists of several steps:

Lemma 35 (A “mutational” solution)Under the assumptions of Proposition 34, there
exists a function f : [0, T ] → L p(RN ) with properties (1)–(3) specified there.

Proof It is essentially based on Euler method in combination with the suitable form
of compactness. Let C̃ > 0 denote the constant depending on N , p, T , γ mentioned
in Lemma 33. We follow the arguments in the proof of [51, Theorem 3.19] applied to
the tuple

(
E, d, e, �·�) consisting of

E :=
{

f ∈ L p(RN )

∣∣∣for every radius ρ > 0 with Kx ⊂ Bρ(0) ⊂ R
N :

∫
RN \Bρ+γ T (0)

| f |pdx ≤ C̃ ·
∫
RN \Bρ(0)

(| f0|p + |ŵ|p)dx
}

with � · � := ‖ · ‖L p(RN ), d := dL p (in the sense of Definition 1) and e := ĕL p (in the
sense of Definition 10) .

On the basis of assumption (i) of Theorem 4, set the abbreviation

η := sup
t, f

(∥∥divx G(t, f )
∥∥
L∞ + ∥∥U(t, f )

∥∥
L∞ + ∥∥W(t, f )

∥∥
L p

)
< ∞.

Step 1. Construction of the Euler approximation fn : [0, T ] → E ⊂ L p(RN ).
For each index n ∈ N (with 2n > T ), set hn := T

2n , t
k
n := k hn for k = 0, . . . , 2n ,

fn(0) := f0 ∈ E and

fn(t) := ϑ
f
(G(tkn , f (tkn )), U(tkn , f (tkn )), W(tkn , f (tkn )))

(
t − tkn , f (tkn )

)
for t ∈ (

tkn , tk+1
n

]
,

0 ≤ k < 2n .
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This leads to a function fn : [0, T ] → L p(RN ). Proposition 27 (extended to “less
regular” coefficients as mentioned in Proposition 29) implies in a piecewise way

• ‖ fn(t)‖L p ≤ (‖ f0‖L p + η
) · econst(N ,η)·T =: ρ for all t ∈ [0, T ],

• fn : [0, T ] → (L p(RN ), ĕ) is λ-Lipschitz continuous with λ = λ(N , η, ρ,Cρ)

where Cρ denotes the constant in hypothesis (ii) of Theorem 4.

Furthermore, we conclude fromLemma 33 in the same piecewise way as for Propo-
sition 32

• fn(t) ∈ E holds for every t ∈ [0, T ] and n ∈ N.

Step 2. Selecting a subsequence
(
fnm

)
m∈N and its pointwise limit f : [0, T ] → E

w.r.t. dL p .
Proposition 32 about “Euler compactness” states at each time t ∈ [0, T ] that the

set
{
fn(t)

∣∣n ∈ N
}
is relatively compact with respect to the metric dL p . Hence we can

extract a subsequence
(
fnm (t)

)
m∈N converging to some f (t) ∈ L p(RN ) w.r.t. dL p .

From ĕL p ≤ dL p and Lemma 13, this implies fnm (t) → f (t) weakly in L p(RN ), so
the lower semicontinuity of norms w.r.t. weak convergence leads to

∫
RN \Bρ+γ T (0)

| f (t, x)|pdx ≤ lim inf
m → ∞

∫
RN \Bρ+γ T (0)

∣∣ fnm (t, x)
∣∣pdx

≤ C̃ ·
∫
RN \Bρ(0)

(| f0|p + |ŵ|p)dx,

i.e., hence f (t) ∈ E .
We now consider all rational t ∈ [0, T ] successively. Cantor’s diagonal method
provides both a subsequence (again denoted by)

(
fnm

)
m∈N and a function f :

[0, T ] ∩ Q → E ⊂ L p(RN ) such that dL p
(
fnm (t), f (t)

) → 0 (m → ∞) for
every t ∈ [0, T ] ∩ Q. Then (even) for every t ∈ [0, T ]\Q, the sequence

(
fnm (t)

)
m∈N

converges to some f (t) ∈ E w.r.t. dL p . Indeed, fix t ∈ [0, T ]\Q arbitrarily. Due to
Proposition 32,

(
fnm (t)

)
m∈N has a point of accumulation f (t) ∈ E w.r.t. dL p . It is

now suffices to verify

lim
k → ∞ ĕL p

(
f (sk), f (t)

) = 0

for any sequence (sk)k∈N in [0, T ] ∩ Q tending to t , because then the point of accu-
mulation of

(
fnm (t)

)
m∈N w.r.t. dL p is unique and hence its limit. From the general

relation ĕL p ≤ dL p , we conclude that

ĕL p
(
f (sk), f (t)

) ≤ ĕL p
(
f (sk), fnm (sk)

) + ĕL p
(
fnm (sk), fnm (t)

)
+ ĕL p

(
fnm (t), f (t)

)
≤ dL p

(
f (sk), fnm (sk)

) + λ · |sk − t | + dL p
(
fnm (t), f (t)

)
.

In addition to limm → ∞ dL p
(
f (sk), fnm (sk)

) = 0 for each k ∈ N, the choice of
f (t) ∈ E implies that
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lim inf
m → ∞ dL p

(
fnm (t), f (t)

) = 0.

Thus ĕL p
(
f (sk), f (t)

) ≤ λ · |sk − t | holds for every k ∈ N and converges to 0 for
k → ∞.

To summarise, we have now found a subsequence
(
fnm

)
m∈N and a function f :

[0, T ] → E ⊂ L p(RN ) such that

dL p
(
fnm (t), f (t)

) → 0 (m → ∞)

for every t ∈ [0, T ].
Step 3. Some estimates for this limit function f : [0, T ] → E ⊂ L p(RN ).

In view of Lemma 13, the pointwise convergence of
(
fnm

)
m∈N in (E, dL p ) implies

that

fnm (t) → f (t) weakly in L p(RN ) (m → ∞)

for every t ∈ [0, T ], so

‖ f (t)‖L p ≤ lim inf
m → ∞

∥∥ fnm (t)
∥∥
L p ≤ ρ.

Furthermore we obtain for any s, t ∈ [0, T ] and m ∈ N

ĕL p
(
f (s), f (t)

) ≤ ĕL p
(
f (s), fnm (s)

) + ĕL p
(
fnm (s), fnm (t)

)
+ĕL p

(
fnm (t), f (t)

)
≤ dL p

(
f (s), fnm (s)

) + λ |s − t | + dL p
(
fnm (t), f (t)

)
.

The limit for m → ∞ yields ĕL p
(
f (s), f (t)

) ≤ λ |s − t | for any s, t ∈ [0, T ],
i.e., f is λ-Lipschitz continuous w.r.t. ĕL p . Hence, the claimed properties (1) and (2)
(formulated in Proposition 34) are verified for f .

Step 4. f also has the claimed property (3), i.e., for a.e. t ∈ [0, T [,

lim
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) = 0 .

Proposition 27 (8) specifies the dependence of solutions to autonomous linear problems
(with “more regular” coefficients) on the coefficient functions. Similarly Proposi-
tion 27 (7) describes that the distance between initial states may increase at most
exponentially.

Both estimates can be extended easily to “less regular” coefficients (as mentioned
in Proposition 29) and to piecewise autonomous linear problems as they have just
occurred in the construction of each Euler approximation fn : [0, T ] → E ⊂
L p(RN ).
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Using the notation [s]n := max
{
tkn

∣∣ 0 ≤ k ≤ 2n, tkn ≤ s
}
for any s ∈ [0, T ], we

obtain for each m ∈ N and t ∈ [0, T ]

dL p

(
fnm (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ dL p

(
fnm (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, fnm (t)
))

+ dL p

(
ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, fnm (t)
)
,

ϑ
f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ const(N , η, ρ,Cρ) ·
∫ t+h

t

(∥∥ G([s]nm , fnm ([s]nm )
) − G(t, f (t)

)∥∥
Lq

+ ∥∥ U([s]nm , fnm ([s]nm )
) − U(

t, f (t)
)∥∥

Lq

+ ∥∥W([s]nm , fnm ([s]nm )
) − W(

t, f (t)
)∥∥

L p

)
ds

+ dL p
(
fnm (t), f (t)

) · econst(N ,η,Cρ) · h .

For each s ∈ [0, T ], we will show that dL p
(
fnm ([s]nm ), f (s)

) → 0 (m → ∞).
Indeed, we know for every m ∈ N that

ĕL p
(
fnm ([s]nm ), fnm (s)

) ≤ λ
∣∣[s]nm − s

∣∣ ≤ λ
T

2nm
→ 0 (m → ∞) .

Due to the tightness of all functions in E , Corollary15 leads todL p
(
fnm ([s]nm ), fnm (s)

)
→ 0 for m → ∞. Hence, the triangle inequality of dL p and the construction of f (·)
(as a pointwise limit) imply

dL p
(
fnm ([s]nm ), f (s)

) ≤ dL p
(
fnm ([s]nm ), fnm (s)

)
+dL p

(
fnm (s), f (s)

) → 0 + 0 (m → ∞).

From the continuity of G, U ,W for every h ∈ [0, T − t] we conclude that

dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

= lim
m → ∞ dL p

(
fnm (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ const(N , η, ρ,Cρ) ·
∫ t+h

t

(∥∥ G(s, f (s)
) − G(t, f (t)

)∥∥
Lq

+ ∥∥ U(
s, f (s)

) − U(
t, f (t)

)∥∥
Lq

+ ∥∥W(
s, f (s)

) − W(
t, f (t)

)∥∥
L p

)
ds + 0.
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Finally, the fundamental theorem of calculus guarantees that

lim
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) = 0 .

��
Lemma 36 (A weak solution) Under the assumptions of Proposition 34, every func-
tion f : [0, T ] → L p(RN ) with properties (1)–(3) satisfies the properties (4) and (5)
claimed in Proposition 34.

Proof Choose ϕ ∈ C1
c (R

N ) arbitrarily and define ψ : [0, T ] → R by ψ(t) =∫
RN ϕ(x) f (t, x)dx. Due to the Lipschitz continuity of f w.r.t. ĕL p (assumed in
property (2)), ψ is Lipschitz continuous. Furthermore at Lebesgue-almost every time
instant t ∈ [0, T [, we conclude from property (3) that

lim
h ↓ 0

1
h ·

(∫
RN

ϕ f (t + h)dx −
∫
RN

ϕ ϑ
f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)
dx

)

≤ lim
h ↓ 0

‖ϕ‖Lq +‖ϕ‖L∞+‖∇xϕ‖L∞
h

·dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) = 0.

Hence,

lim
h ↓ 0

ψ(t+h)−ψ(t)
h = lim

h ↓ 0

1
h ·

(∫
RN

ϕ f (t + h)dx −
∫
RN

ϕ f (t)dx
)

= lim
h ↓ 0

1
h ·

(∫
RN

ϕ ϑ
f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)
dx

−
∫
RN

ϕ f (t)dx
)

(6)= lim
h ↓ 0

1
h ·

(∫ h

0

∫
RN

(
ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(s, f (t)
)·

(G(t, f (t)) · ∇x ϕ + U(t, f (t)) ϕ
))

dx ds

+ h
∫
RN

ϕ W(
t, f (t)

)
dx

)
,

i.e., limh ↓ 0
ψ(t+h)−ψ(t)

h = ∫
RN f (t)

(
G(t, f (t)

) · ∇x ϕ + U(
t, f (t)

)
ϕ
)

dx +∫
RN ϕ W(

t, f (t)
)
dx.

Rademacher’s theorem implies condition (2) on weak solutions to initial value
problem

∂t f + divx (G(t, f ) f ) = U(t, f ) · f + W(t, f ) in [0, T ], f (0) = f0.
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Finally consider the composed coefficient functions as in property (5) inProposition 34

g̃ := G( · , f (·)) : [0, T ] → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

ũ := U( · , f (·)) : [0, T ] → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

w̃ := W( · , f (·)) : [0, T ] → L p(RN ).

They satisfy the regularity assumptions of Proposition 19, so the weak solution to the
nonautonomous linear problem

∂t f + divx( f g̃(t)) = ũ(t) f + w̃(t) in [0, T ], f (0) = f0

is unique. Hence, it is always a renormalized solution (in the sense of DiPerna and
Lions [33]). ��
Now we extend the existence result in Proposition 34 from continuous coefficients
G, U , W to Carathéodory functions as assumed in Theorem 4. This gap is bridged
approximatively bymeans of the following Scorza-Dragoni theorem formetric spaces.

Lemma 37 ([65, Theorem 1]) Let S be a compact Hausdorff topological space, μ a
Radon measure on S and X, Y metric spaces. Suppose X to be separable.

Then every Carathéodory function g : S × X → Y satisfies the Scorza-Dragoni
property, i.e., for every ε > 0, there exists a closed subset Sε ⊂ S with μ(S\Sε) < ε

such that the restriction g|Sε×X is continuous.

Proof of Theorem 4 Fix ε > 0 arbitrarily. The Scorza–Dragoni theorem for metric
spaces (i.e., Lemma 37) provides a closed subset Jε ⊂ [0, T ] with L1

([0, T ]\Jε
)

< ε

such that the restrictions

G∣∣Jε×L p(RN )
: Jε × L p(RN ) → {

g ∈ L∞(RN ,RN ) ∩ Lq
∣∣ ∂yg ∈ L∞}

,

U ∣∣
Jε×L p(RN )

: Jε × L p(RN ) → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

W∣∣
Jε×L p(RN )

: Jε × L p(RN ) → L p(RN )

are continuous.
The complement of Jε in [0, T ] is open, so consists of (at most) countably many

open intervals. This allows us to extend these restrictions in a linear way to continuous
functions

Gε : [0, T ] × L p(RN ) → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

Uε : [0, T ] × L p(RN ) → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

Wε : [0, T ] × L p(RN ) → L p(RN ),

whose values share the norm bounds and dominating function with the original coef-
ficients G, U ,W specified in hypotheses (i)–(iii) (of Theorem 4).
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The modified coefficient functions Gε, Uε, Wε satisfy the assumptions of Proposi-
tion 34 and so, there exists a weak solution fε : [0, T ] → L p(RN ) with properties
(1)–(5) specified there.
For ε > 0 we next consider any sequence tending to 0. Then the same arguments as in
the proof of Lemma 35 lead to a (sub-) sequence (εk)k∈N and a function f : [0, T ] →
L p(RN ) such that for every t ∈ [0, T ],

dL p
(
fεk (t), f (t)

) → 0 (k → ∞).

Let η, ρ, Cρ abbreviate the a priori bounds introduced in the proof of Lemma 35.
The construction of fεk (·) (as limit of Euler approximations) and Proposition 27 (7.),
(8.) imply for every k ∈ N, t ∈ [0, T ), h ≥ 0 (with t + h ≤ T ) and any “less regular”
coefficients g, u, w (as in Proposition 29)

dL p

(
fεk (t + h), ϑ

f
g,u,w

(
h, f (t)

))

≤ eC ·h ·
(
dL p

(
fεk (t), f (t)

)

+ C ·
∫ t+h

t

(∥∥Gεk (s, fεk (s)) − g
∥∥
Lq + ∥∥Uεk (s, fεk (s)) − u

∥∥
Lq

+∥∥Wεk (s, fεk (s)) − w
∥∥
L p

)
ds

)

with a constant C = const(η, ρ,Cρ) > 0. For every k ∈ N and t ∈ [0, T ), the triangle
inequality for dL p leads to

dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ dL p

(
f (t + h), fεk (t + h)

)
+ dL p

(
fεk (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ dL p

(
f (t + h), fεk (t + h)

)
+ dL p

(
fεk (t), f (t)

)
· eC h

+C eC h ·
∫ t+h

t

(∥∥Gεk (s, fεk (s)) − G(t, f (t))
∥∥
Lq + ∥∥Uεk (s, fεk (s)) − U(t, f (t))

∥∥
Lq

+ ∥∥Wεk (s, fεk (s)) − W(t, f (t))
∥∥
L p

)
ds.

The limit for k → ∞ provides every t ∈ [0, T ) and h > 0 with t + h ≤ T

dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

≤ C eC h ·
∫ t+h

t

(∥∥G(s, f (s)) − G(t, f (t))
∥∥
Lq + ∥∥U(s, f (s)) − U(t, f (t))

∥∥
Lq

+∥∥W(s, f (s)) − W(t, f (t))
∥∥
L p

)
ds.
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As a consequence of general results about Lebesgue points, it can be verified indirectly
that the limit for k → ∞ implies for Lebesgue-almost every t ∈ [0, T ),

lim sup
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) ≤ 0,

i.e., the limit function f : [0, T ] → L p(RN ) has the properties (1)–(3) specified in
Proposition 34. According to Lemma 36, it is then a weak solution to nonlinear initial
value problem

∂t f + divx (G(t, f ) f ) = U(t, f ) · f + W(t, f ) in [0, T ], f (0) = f0.

��
Until now our way to weak solutions is essentially based on the construction of func-
tions f : [0, T ] → L p(RN ) which are bounded w.r.t. L p(RN ), continuous w.r.t. ĕL p

and satisfy the infinitesimal condition on distances

lim
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) = 0 .

Then Lemma 36 guarantees that f is a weak solution to the full nonlinear transport
equation (with nonlocal dependences). For our further conclusions about the well-
posedness, we formulate the inverse implication.

Lemma 38 Suppose that the assumptions of Theorem 4 hold and that f : [0, T ] →
L p(RN ) satisfies the following conditions:

(1) f is bounded with respect to the L p(RN ) norm,
(2) f : [0, T ] → (

L p(RN ), weak
)
is continuous,

(3) the composite coefficient functions

g̃ := G( · , f (·)) : [0, T ] → {
g ∈ L∞(RN ,RN ) ∩ Lq

∣∣ ∂yg ∈ L∞}
,

ũ := U( · , f (·)) : [0, T ] → {
u ∈ L∞(RN ) ∩ Lq(RN )

∣∣ ∇yu ∈ L∞}
,

w̃ := W( · , f (·)) : [0, T ] → L p(RN )

satisfy the measurability conditions underlying g̃ ∈ L∞(
0, T ; L∞)

, ∂x g̃ ∈
L∞(

0, T ; L∞)
, ũ ∈ L∞(

0, T ; L∞)
and w̃ ∈ L1

(
0, T ; L p

)
,

(4) f : [0, T ] → L p(RN ) is a weak solution to initial value problem (1)
(
in the

sense of Eq. (2) for any 0 ≤ t1 < t2 ≤ T and ϕ ∈ C1
c (R

N )
)
.

Then, the set
{| f (t, ·)|p ∣∣ t ∈ [0, T ]} ⊂ L1(RN ) is tight and f is continuous w.r.t. the

metrics ĕL p , dL p . Moreover, f fulfils the infinitesimal condition at Lebesgue-almost
every time instant t ∈ [0, T )

lim
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)) = 0.
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Proof The proof is carried out in three steps.

Step 1. The set
{| f (t, ·)|p ∣∣ t ∈ [0, T ]} ⊂ L1(RN ) is tight.

In Remark 25, inequality (16) specifies a function dominating the weak solution f
Lebesgue-almost everywhere in [0, T ] ×R

N . Hence, essentially the same arguments
as in the proof of Lemma 33 imply that

∫
RN \Bρ+γ t (0)

| f (t, x)|p dx ≤ const · econst·(γ+1) t ·
∫
RN \Bρ(0)

(| f0|p + |ŵ|p) dx

for every t ∈ [0, T ] and each radius ρ > 0 with Kx ⊂ Bρ(0). This in turn implies the
claimed tightness of

{| f (t, ·)|p ∣∣ t ∈ [0, T ]} ⊂ L1(RN ) as explained in the proof of
Proposition 32.

Step 2. f : [0, T ] → L p(RN ) is continuous w.r.t. both ĕL p and dL p .
Weak continuity and tight values imply the continuity w.r.t. ĕL p according to

Lemma 13. Due to Corollary 15, this is equivalent to the continuity w.r.t. dL p .

Step 3. The infinitesimal condition on f (t + ·) w.r.t. dL p .
The coefficient functions G, U : [0, T ]×(

L p(RN ), dL p
) → (

Lq , ‖ ·‖Lq
)
andW :

[0, T ]× (
L p(RN ), dL p

) → (
L p, ‖ · ‖L p

)
are supposed to be Carathéodory functions

(according to hypothesis (iv), (v) of Theorem 4). Hence the composed functions g̃,
ũ : [0, T ] → (

Lq , ‖ · ‖Lq
)
and w̃ : [0, T ] → (

L p, ‖ · ‖L p
)
are measurable.

Proposition 34 ensures the existence of a function f̄ : [0, T ] → L p(RN ) satisfying

(1) f̄ is bounded with respect to the L p(RN ) norm,
(2) f̄ : [0, T ] → (

L p(RN ), ĕL p
)
is Lipschitz continuous,

(3) lim
h ↓ 0

1
h · dL p

(
f̄ (t + h), ϑ

f(̃
g(t), ũ(t), w̃(t)

)(h, f̄ (t)
)) = 0 for a.e. t ∈ [0, T ),

(4) f̄ : [0, T ] → (
L p(RN ),weak

)
is a continuous weak solution to nonautonomous

linear problem

∂t f̄ + divx( f̄ g̃(t)) = ũ(t) f̄ + w̃(t) in [0, T ], f̄ (0) = f0.

According to Proposition 19, the weak solution to the last nonautonomous linear
problem is unique, so f̄ must coincide with f , i.e., f (t) = f̄ (t) ∈ L p(RN ) for each
t ∈ [0, T ]. Property (3) gives the claimed infinitesimal condition on f (t + ·) for
Lebesgue-almost every t ∈ [0, T ). ��
Proof of Proposition 5 As a consequence of Lemma 38, each continuous weak solu-
tion f : [0, T ] → (

L p(RN ), weak
)
of the full nonlinear problem

∂t f + divx (G(t, f ) f ) = U(t, f ) · f + W(t, f ) in [0, T ], f (0) = f0

considered here in Proposition 5 also satisfies the properties (1)–(3) and (5) listed in
Proposition 34. Furthermore, the set

{| f (t)|p∣∣t ∈ [0, T ]} ⊂ L1(RN ) are tight, so f
is also continuous w.r.t. dL p due to Corollary 15.
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Let f , f̄ : [0, T ] → L p(RN ) be two arbitrary solutions to the nonlinear problem
sharing the initial state f (0) = f0 = f̄ (0) ∈ L p(RN ). Then the function ψ :
[0, T ] → [0,∞) defined by ψ(t) = dL p ( f (t), f̄ (t)) is continuous with ψ(0) = 0
and satisfies, for Lebesgue-almost every t ∈ [0, T ),

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h = lim suph ↓ 0

1
h · (dL p

(
f (t + h), f̄ (t + h)

) − dL p
(
f (t), f̄ (t)

))

≤ lim sup
h ↓ 0

1
h · dL p

(
f (t + h), ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
))

+ lim sup
h ↓ 0

1
h ·

(
dL p

(
ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f (t)
)
,

ϑ
f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f̄ (t)
)) − dL p

(
f (t), f̄ (t)

))

+ lim sup
h ↓ 0

1
h · dL p

(
ϑ

f(
G(t, f (t)), U(t, f (t)), W(t, f (t))

)(h, f̄ (t)
)
,

ϑ
f(
G(t, f̄ (t)), U(t, f̄ (t)), W(t, f̄ (t))

)(h, f̄ (t)
))

+ lim sup
h ↓ 0

1
h · dL p

(
ϑ

f(
G(t, f̄ (t)), U(t, f̄ (t)), W(t, f̄ (t))

)(h, f̄ (t)
)
, f̄ (t + h)

)

≤ 0 + lim sup
h ↓ 0

1
h · dL p

(
f (t), f̄ (t)

) · (eCh − 1
)

+C · (∥∥G(t, f (t)) − G(t, f̄ (t))
∥∥
Lq + ∥∥U(t, f (t)) − U(t, f̄ (t))

∥∥
Lq

+ ∥∥W(t, f (t)) − W(t, f̄ (t))
∥∥
L p

) + 0

due to Proposition 27 (7) and (8) (extended to “less regular” coefficients as mentioned
inProposition29).Here the constantC dependsonρ := sup

t ∈ [0,T ]
{‖ f (t)‖L p , ‖ f̄ (t)‖L p

}
< ∞ and the bounds given in hypotheses (i) and (ii) of Theorem 4.

Assumption (vi′) about Λρ-Lipschitz continuity of the coefficients w.r.t. state dL p

leads to

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ C · dL p

(
f (t), f̄ (t)

) + C · 3 Λρ · dL p
(
f (t), f̄ (t)

)

≤ C (1 + 3 Λρ) · ψ(t)

for Lebesgue-almost every t ∈ [0, T [. Finally, Gronwall’s inequality (e.g., [51, Propo-
sition A.2] or [52, Corollary A.1]) implies ψ(t) = 0 for every t ∈ [0, T ], i.e., the
weak solutions f and f̄ coincide. ��

Proof of Proposition 6 It follows essentially the same track as the preceding proof of
Proposition 5 about uniqueness and, it just takes the different coefficient functions into
consideration. The basic analytical tool is Gronwall’s inequality again. The auxiliary
functionψ : [0, T ] → [0,∞) defined byψ(t) := dL p

(
f (1)(t), f (2)(t)

)
is continuous

123



Nonlocal multi-scale traffic flow models. . . 497

with ψ(0) = dL p
(
f (1)
0 , f (2)

0

)
and satisfies, for Lebesgue-almost every t ∈ [0, T ),

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h

= lim sup
h ↓ 0

1
h ·

(
dL p

(
f (1)(t + h), f (2)(t + h)

) − dL p
(
f (1)(t), f (2)(t)

)) ≤ · · ·

≤ 0 + lim sup
h ↓ 0

1
h · dL p

(
f (1)(t), f (2)(t)

) · (eCh − 1
)

+C ·
(∥∥G(1)(t, f (1)(t)

) − G(2)(t, f (2)(t)
)∥∥

Lq

+ ∥∥U (1)(t, f (1)(t)
) − U (2)(t, f (2)(t)

)∥∥
Lq

+ ∥∥W(1)(t, f (1)(t)
) − W(2)(t, f (2)(t)

)∥∥
L p

)
+ 0

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h

≤ C · dL p
(
f (1)(t), f (2)(t)

)
+ C ·

(∥∥ G(1)(t, f (1)(t)
) − G(1)(t, f (2)(t)

)∥∥
Lq

+ ∥∥ G(1)(t, f (2)(t)
) − G(2)(t, f (2)(t)

)∥∥
Lq

+ ∥∥ U (1)(t, f (1)(t)
) − U (1)(t, f (2)(t)

)∥∥
Lq

+ ∥∥ U (1)(t, f (2)(t)
) − U (2)(t, f (2)(t)

)∥∥
Lq

+ ∥∥W(1)(t, f (1)(t)
) − W(1)(t, f (2)(t)

)∥∥
L p

+∥∥W(1)(t, f (2)(t)
) − W(2)(t, f (2)(t)

)∥∥
L p

)

≤ C · dL p
(
f (1)(t), f (2)(t)

)
+C ·

(
Λρ · dL p

(
f (1)(t), f (2)(t)

) + sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥ G(1)(t, ζ ) − G(2)(t, ζ )
∥∥
Lq

+ Λρ · dL p
(
f (1)(t), f (2)(t)

) + sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥ U (1)(t, ζ ) − U (2)(t, ζ )
∥∥
Lq

+ Λρ · dL p
(
f (1)(t), f (2)(t)

) + sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥W(1)(t, ζ ) − W(2)(t, ζ )
∥∥
L p

)

≤ C
(
1 + 3Λρ

) · ψ(t) + C · Δ(t)

with the bounded auxiliary function Δ : [0, T ] → [0,∞) defined by

Δ(t) := sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥ G(1)(t, ζ ) − G(2)(t, ζ )
∥∥
Lq
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+ sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥ U (1)(t, ζ ) − U (2)(t, ζ )
∥∥
Lq

+ sup
ζ ∈ L p(RN ):
‖ζ‖L p ≤ ρ

∥∥W(1)(t, ζ ) − W(2)(t, ζ )
∥∥
L p ,

which is also Lebesgue measurable due to hypothesis (iv) of Theorem 4. Hence, by
Gronwall’s inequality,

ψ(t) ≤ ψ(0) · eC (1+3Λρ) · t +
∫ t

0
Δ(s) · eC (1+3Λρ) · (t−s) ds

for every t ∈ [0, T ]. ��

6 Measure-valued solutions to linear problems

Herewe investigate distributional solutions to nonlinear balance lawswhose values are
Radon measures onRN . From the analytical point of view, we follow the arguments in
[51, Section 2.5] right away and give enough details for a self-contained presentation.

The basic idea is again to break the problem up into the family of autonomous
linear problems and “feedback” via the Euler algorithm, exactly as for solutions with
values in L p(RN ) (in Sect. 4, 5). We simply adapt the classes of test functions when
specifying the metric and now take the total variation into consideration. This special
choice of test functions proved to be useful for structured population models in [38].

6.1 Key features of the W1,∞ dual metric dM on Radon measures M(RN )

The weak* topology onM(RN ) is a rather obvious choice. There is, however, a very
useful alternative which proves to be equivalent if we restrict our considerations to
subsets of Radonmeasures which are “concentrated not too far away from each other”.

Definition 39 Anonempty subset S ⊂ M(RN ) is called (uniformly) tight if for every
ε > 0 there exists a compact set Kε ⊂ R

N such that the total variation of each μ ∈ S
satisfies supμ∈S

∣∣μ∣∣(RN\Kε) < ε.

Tightness is just one of the many concepts which are often introduced (merely)
for probability measures or positive Radon measures (see e.g. [4,5,8]). Many results
also hold inM(RN ) by considering the total variation (if necessary). Here we want to
dispense with any global restrictions about the sign or total variation of Radon mea-
sures, so we cannot simply use, in particular, any Wasserstein metric (for probability
measures).

The narrow topology on every tight subset of M(RN ) is equivalent to the weak*
topology (with respect toM(RN ) = C0

0 (R
N )′). It is metrizable on tight subsets with

uniformly bounded total variation.
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Proposition 40 (1) For every λ > 0 and μ, ν ∈ M(RN ),

dM(μ, ν) = sup

{
1
λ

∫
RN

ϕ d(μ − ν)

∣∣∣ ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ ≤ λ, ‖∇ϕ‖L∞ ≤ λ

}

= sup

{
1
λ

∫
RN

ϕ d(μ − ν)

∣∣∣ ϕ ∈ W 1,∞(RN ), ‖ϕ‖L∞ ≤ λ, ‖∇ϕ‖L∞ ≤ λ

}

= ‖μ − ν‖(W 1,∞)′

(2) For any tight sequence (μn)n∈N and μ in M(RN ), the following equivalences
hold

lim
n → ∞ dM(μn, μ) = 0 & sup

n ∈N

|μn|(RN ) < ∞ ⇔ μn → μ weak* (n → ∞)

⇔ μn → μ narrowly (n → ∞).

(3) The set
{
μ ∈ M(RN )

∣∣ |μ|(RN ) ≤ r
}
is complete w.r.t. dM for any r > 0.

(4) Every tight set S ⊂ M(RN )with sup
μ∈S

|μ|(RN ) < ∞ is relatively compact w.r.t.

dM.

Remark 41 The metric dM on Radon measures (specified in Definition 3) is known
under various names in the literature. It is called Kantorovich-Rubinshtein metric in
[15, Section 8.3], W 1,∞ dual metric in [51, Section 2.5.1]. Statement (1) in the recent
proposition motivates us to prefer the second name. Equivalent counterparts can be
found as bounded Lipschitz a.k.a. Fortet-Mourier distance (originally for probability
measures) in [66, Section 6] or as flat metric of finite Radon measures on R+ and RN

respectively in [20,21,38], for example.
From our point of view, the motivation of dM has two origins: First, the theorem

of Hahn-Banach leads to a representation of the well established total variation of a
Radon measure μ on R

N

|μ|(RN ) = sup

{∫
RN

ϕ(x) dμ(x)
∣∣∣ ϕ ∈ C0

c (R
N ), ‖ϕ‖L∞ ≤ 1

}

similarly to Remark 12 about the L p norm. Second, the popular Wasserstein metric
can be characterized both in terms of an optimal transport problem and by means of
dual function. The latter has the form

W1(μ, ν) = sup

{∫
RN

ϕ(x) dμ(x) −
∫
RN

ϕ(x) dν(x)
∣∣∣ ϕ ∈ C0(RN ), Lip ϕ ≤ 1

}

but the underlying equivalence is restricted to probability measures μ, ν (even on
Polish metric space) in general (see, e.g., [15, Section 8.10], [66, Section 6]). The
restriction to 1-Lipschitz continuous test functions ϕ which are bounded in addition
enables us to preserve the metric properties while generalizing the distance in two
directions: First we can consider signed Radon measures (instead of positive ones)
and second, the two compared Radonmeasures need not have the same total variations
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(as probability measures do). dM (almost) suggests itself in this context, and we have
already benefited from this notion in [38,51], for example.

Similarly to Sect. 4.1 about L p density functions, Proposition 40 serves the purpose
of providing connections with more established concepts of convergence for Radon
measures on RN—restricted to tight subsets, at least.

Proof of Proposition 40 We essentially follow the arguments for [51, Proposi-
tion 2.43] and give all relevant details here for the sake of a self-contained presentation.
(1) Considering the restrictions to an arbitrarily fixed compact subset of R

N ,

each function in W 1,∞(RN ) can be approximated by elements of C∞
c (RN ) ⊂

C1(RN ) ∩ W 1,∞(RN ) with respect to supremum norm. This implies the equivalent
characterizations of dM(μ, ν) asserted here.
(2) The equivalence of narrow and weak* convergence results from the assumption
of tightness according to the comment preceding the statement of this proposition.

Now let (μn)n∈N be any sequence in M(RN ) and μ ∈ M(RN ) satisfying
limn → ∞ dM(μn, μ) = 0 and supn ∈N |μn|(RN ) < ∞ . In particular,∫
RN ϕ dμn → ∫

RN ϕ dμ for n → ∞ and every ϕ ∈ W 1,∞(RN ). This sequence also
converges for ϕ ∈ C0

0 (R
N ) sinceW 1,∞(RN )∩C0

0 (R
N ) is dense in (C0

0 (R
N ), ‖ ·‖L∞)

and the total variations of (μn)n∈N are bounded. Thus, the sequence (μn)n∈N also
converges weakly* inM(RN ) = C0

0 (R
N )′.

Finally, assume the tight sequence (μn)n∈N in M(RN ) to converge weakly* to
μ ∈ M(RN ). Then C := sup

n ∈N

|μn|(RN ) < ∞ due to the uniform boundedness

theorem (e.g., [68, Section V.1 Theorem 10]) and,

|μ|(RN ) ≤ lim inf
n → ∞ |μn|(RN ) ≤ C.

We still have to prove for n → ∞ that

sup

{∫
RN

ϕd
(
μn − μ

) ∣∣∣ ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ ≤ 1, ‖∇ϕ‖L∞ ≤ 1

}
→ 0 .

Choose ε > 0 arbitrarily. Then there exists a sufficiently large radius R > 0 with

sup
n ∈N

∣∣μn
∣∣(RN\BR(0)) + ∣∣μ∣∣(RN\BR(0)) ≤ ε

since {μn|n ∈ N} is tight. Due to the Arzelà-Ascoli Theorem (see, e.g., [37]), the
set

{
ϕ ∈ C∞

c (BR+1(0))
∣∣‖ϕ‖L∞ ≤ 1, ‖∇ϕ‖L∞ ≤ 1

}
is relatively compact in(

C0(BR+1(0)), ‖ · ‖∞
)
. Hence, there always exist finitely many functions ϕ̃1, . . .,

ϕ̃kε ∈ C∞
c (RN ) with support in BR+1(0) and ‖ϕ̃i‖∞ ≤ 1, ‖∇ϕ̃i‖∞ ≤ 1 such that

{
ϕ ∈ C∞

c (BR+1(0))
∣∣ ‖ϕ‖L∞ ≤ 1, ‖∇ϕ‖L∞ ≤ 1

}
⊂

⋃
i = 1 ... kε

{
ϕ
∣∣ ‖ϕ − ϕ̃i |BR+1(0)‖L∞ ≤ ε

}
.
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This implies

sup

{∫
RN

ϕ d
(
μn − μ

) ∣∣∣ ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ ≤ 1, ‖∇ϕ‖L∞ ≤ 1

}

≤ sup

{∫
BR(0)

ϕ d
(
μn − μ

) ∣∣∣ ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ ≤ 1, ‖∇ϕ‖L∞ ≤ 1

}
+ ε

≤ sup

{∫
BR(0)

ϕ̃i d
(
μn − μ

) ∣∣∣ 1 ≤ i ≤ kε

}
+ 2C ε + ε

≤ ε + 2C ε + ε

for all n ∈ N sufficiently large (merely depending on ε) since μn → μ weakly*.
(3) Let (μn)n∈N be a Cauchy sequence w.r.t. dM satisfying supn∈N |μn|(RN ) ≤
r < ∞.

The arguments proving the first part “�⇒” of statement (2) imply that (μn)n∈N
is Cauchy sequence with respect to the weak* topology of M(RN ). There is the
unique measure μ ∈ M(RN ) as weak* limit of (μn)n∈N due to [7, Theorem 1.59]. In
particular, |μ|(RN ) ≤ lim inf

n → ∞ |μn|(RN ) ≤ r .

It remains to verify that dM(μn, μ) → 0 for n → ∞. Indeed for arbitrary ε > 0,
there exists an index nε ∈ N such that for all m, n ≥ nε,

dM(μm, μn)
Def.= sup

{∫
RN

ϕd
(
μm − μn

)∣∣∣ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ , ‖∇ϕ‖L∞ ≤ 1

}

≤ ε.

Due to the weak* convergence of (μn)n∈N to μ inM(RN ) = (
C0
0 (R

N ), ‖ · ‖∞
)′, the

limit for n → ∞ reveals for every m ≥ nε

dM(μm, μ)
Def.= sup

{ ∫
RN

ϕd
(
μm − μ

)∣∣∣ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ , ‖∇ϕ‖L∞ ≤ 1

}

≤ sup
{

lim
n → ∞

∫
RN

ϕd
(
μm − μn

)∣∣∣ϕ ∈ C∞
c (RN ), ‖ϕ‖L∞ , ‖∇ϕ‖L∞ ≤ 1

}
≤ ε.

(4) By the assumption of tightness, the relative compactness of S with respect to the
metric dM results from its weak* compactness inM(RN ) = C0

0 (R
N )′ and, the latter

is ensured by the Banach-Alaoglu Theorem.
(Alternatively, the Prokhorov Theorem states that bounded and tight subsets of

positive Radon measures are sequentially relatively compact with respect to narrow
convergence [5,8]. An extension to Borel measures on a complete separable metric
space can be found at [15, Theorem 8.6.2].) ��
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6.2 Linear transport equations induce transitions onM(RN )

Among the transport equations for Radon measures, the linear one is much simpler
to solve, of course. Indeed, the method of characteristics even provides an explicit
solution to the initial value problem:

Let b : R
N → R

N and c : R
N → R be bounded and Lipschitz continuous.

For any given ν0 ∈ M(RN ), the linear problem here focuses on a measure-valued
distributional solution μ : [0, T ] → M(RN ) defined by t �→ μt of

∂tμt + divx (bμt ) = c μt in [0, T ], μ0 = ν0

in the sense that
∫
RN

ϕ dμt −
∫
RN

ϕ dν0 =
∫ t

0

∫
RN

(∇ϕ(x) · b(x) + ϕ(x) c(x)) dμs(x)ds

for every t ∈ [0, T ] and any test function ϕ ∈ C∞
c (RN ,R).

We use the notation introduced in Lemma 21: X1,b : [0, T ] × R
N → R

N is induced
by the flow along b, i.e., X1,b(·, x0) : [0, T ] → R

N is the continuously differentiable
solution to the Cauchy problem

d

dt
x(t) = b(x(t)) in [0, T ], x(0) = x0 .

As a well-known result about ordinary differential equations, solutions to Cauchy
problems are continuously differentiable with respect to initial data and right-hand
side if the vector field (on the right-hand side) is continuously differentiable and, the
following estimates result from the corresponding integral equations and Gronwall’s
inequality (see, e.g., [39, Chapter V], [40, Chapter 17], [67, Section 13]).

Lemma 42 For any vector fields b, b̄ ∈ C1(RN ,RN ) ∩W 1,∞(RN ,RN ) the solution
maps X1,b, X1,b̄ : [0, T ] × R

N → R
N are continuously differentiable with

Lip X1,b(t, ·) ≤ eLipb · t , ‖X1,b(t, ·) − X1,b̄(t, ·)‖L∞ ≤ ‖b − b̄‖L∞ · t et ·Lipb̄.

Proposition 43 For any b ∈ W 1,∞(RN ,RN ), c ∈ W 1,∞(RN ,R) and initial measure
ν0 ∈ M(RN ), a solution μ : [0, T ] → M(RN ) written as t �→ μt to the linear
problem

∂tμt + divx (bμt ) = c μt in [0, T ], μ0 = ν0

(in the distributional sense) is given by

∫
RN

ϕ dμt =
∫
RN

ϕ(X1,b(t, x)) · exp
(∫ t

0
c(X1,b(s, x)) ds

)
dν0(x)

for all ϕ ∈ C1
c (R

N ).
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Proof First, we verify that the right-hand side provides a distributional solution to the
linear problem with the initial measure ν0. In fact, it is absolutely continuous with
respect to t because for any subinterval [s, t] ⊂ [0, T ],
∣∣∣∣
∫
RN

ϕ dμt −
∫
RN

ϕ dμs

∣∣∣∣
=

∣∣∣∣
∫
RN

(
ϕ(X1,b(t, x)) · e

∫ t
0 c(X1,b(r,x)) dr − ϕ(X1,b(s, x)) · e

∫ s
0 c(X1,b(r,x)) dr

)
dμ0(x)

∣∣∣∣
≤

∫
RN

(∣∣∣ [ϕ(X1,b(σ, x))
]σ=t
σ=s

∣∣∣ et ‖c‖L∞ + |ϕ(X1,b(s, x))|
[
e
∫ σ
0 c(X1,b(r,x)) dr

]σ=t

σ=s

)
d|μ0(x)|

≤
(
‖∇ϕ‖L∞ ‖b‖L∞ (t − s) et ‖c‖L∞ + ‖ϕ‖L∞ et ‖c‖L∞ ‖c‖L∞ (t − s)

)
|μ0|(RN ).

From the chain rule for weak derivatives, at Lebesgue-almost every time t ∈ [0, T ],
we conclude that

d

dt

∫
RN

(
ϕ(X1,b(t, x)) · exp

(∫ t

0
c(X1,b(s, x)) ds

))
dν0(x)

=
∫
RN

(
∇ϕ(X1,b(t, x)) · b(X1,b(t, x)) + ϕ(X1,b(t, x)) c(X1,b(t, x))

)

·e
∫ t
0 c(X1,b(r,x)) dr dν0

=
∫
RN

(
∇ϕ(y) · b(y) + ϕ(y) c(y)

)
dμt (y).

��

This solution is alreadywell-known and usually denoted in the form of a push-forward.
Furthermore, it is unique because solutions to the nonautonomous linear transport
equation fulfil the following comparison principle (see also [5,8,33]):

Proposition 44 ([55] Lemma 3.5, Proposition 3.6) Let v ∈ L1
([0, T ];W 1,∞(RN ,

R
N )

)
be a Borel vector field and let c(·, ·) be a Borel bounded and locally Lipschitz

continuous (w.r.t. the space variable) scalar function in (0, T ) × R
N .

(1) For eachprobabilitymeasure μ̂0 onRN (i.e., positivemeasure μ̂0 ∈ M(RN )with
μ̂0(R

N ) = 1) , there exists a unique narrowly continuousμ : [0, T ] → M(RN ),
written t �→ μt , solving the initial value problem (in the distributional sense)

∂tμt + divx (vt μt ) = ct μt in (0, T ) × R
N , μ0 = μ̂0 .

(2) The comparison principle holds in the following sense: Let σ , written t �→ σt ,
be a narrowly continuous family of (possibly signed) measures solving

∂tσt + divx (vt σt ) = ct σt in (0, T ) × R
N
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with σ0 ≤ 0 and

∫ T

0

∫
RN

(
|vt (x)| + |ct (x)|

)
d|σt |(x) dt < ∞,

∫ T

0

(
|σt |(B) + sup

B
|vt | + Lip vt |B

)
dt < ∞,

∫ T

0

(
|σt |(B) + sup

B
|ct | + Lip ct |B

)
dt < ∞

for any bounded closed set B ⊂ R
N . Then, σt ≤ 0 holds for any t ∈ [0, T ).

The solutions to the linear problem lay the basis for transitions onM(RN ):

Definition 45 For each b ∈ W 1,∞(RN ,RN ) and c ∈ W 1,∞(RN ,R), define ϑ
μ
b,c :

[0, 1]×M(RN ) → M(RN ) byϑ
μ
b,c(t, μ0) = μt withμ : [0, T ] → M(RN ), written

t �→ μt , denoting the unique solution of

∂tμt + divx (bμt ) = c μt in [0, T ]

(in the distributional sense) as specified in Proposition 43.

Proposition 46 For any b, b̄ ∈ C1(RN ,RN ) ∩ W 1,∞(RN ,RN ) and c, c̄ ∈
W 1,∞(RN ,R) the measure-valued maps

ϑ
μ
b,c, ϑ

μ

b̄,c̄
: [0, 1] × M(RN ) → M(RN )

fulfil for any μ0, ν0 ∈ M(RN ) and t, h ∈ [0, 1] with t + h ≤ 1

(1) ϑ
μ
b,c(0, μ0) = μ0

(2) ϑ
μ
b,c

(
h, ϑ

μ
b,c(t, μ0)

) = ϑ
μ
b,c(t + h, μ0)

(3)
∣∣ϑμ

b,c(h, μ0)
∣∣(RN ) ≤ e‖c‖L∞ h · |μ0|(RN )

(4) dM
(
ϑ

μ
b,c(t, μ0), ϑ

μ
b,c(t+h, μ0)

) ≤ h
(‖b‖L∞ + ‖c‖L∞

)
e‖c‖L∞ · |μ0|(RN )

(5) dM
(
ϑ

μ
b,c(h, μ0), ϑ

μ
b,c(h, ν0)

) ≤ dM(μ0 ν0) · e(Lipb+‖c‖W1,∞ ) h

(6) dM
(
ϑ

μ
b,c(h, μ0), ϑ

μ

b̄,c̄
(h, μ0)

) ≤ (‖b − b̄‖L∞ · eh ‖∇c‖L∞ + ‖c − c̄‖L∞
)
h

eh·(Lipb+max{‖c‖L∞ ,‖c̄‖L∞}) · ∣∣μ0
∣∣(RN ) .

Assuming b, b̄ ∈ C1(RN ,RN ) in addition to b, b̄ ∈ W 1,∞(RN ,RN ) serves the
single purpose that we can use the estimates of the preceding Lemma 42 for the
comparisons specified in Proposition 46. The additional regularity of b and b̄ does
not have any influence on the inequalities though. Indeed, for each h ∈ [0, 1] and
μ0 ∈ M(RN ), the map (b, c) �→ ϑ

μ
b,c(h, μ0) with

ϑμ·,·(h, μ0) : (W 1,∞(RN ,RN ) ∩ C1, ‖ · ‖L∞
) × (

W 1,∞(RN ,R), ‖ · ‖L∞
)

→ (M(RN ), dM
)
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is continuous according to statement (6). For this reason, we can extend all state-
ments in Proposition 46 to arbitrary b, b̄ ∈ W 1,∞(RN ,RN ) because C1(RN ,RN ) ∩
W 1,∞(RN ,RN ) is dense inW 1,∞(RN ,RN )with respect to the L∞ normand, bounded
subsets of M(RN ) are complete w.r.t. dM as specified in condition (3) of Proposi-
tion 40.

Proof of Proposition 46 Statements (1) and (2) follow directly from the explicit for-
mula in Proposition 43 and the semi-group property of the flow X1,b(·, ·), i.e.,
X1,b

(
h, X1,b(t, x)

) = X1,b(t + h, x) for all x ∈ R
N and t , h ≥ 0.

(3) The total variation of any measure μ ∈ M(RN ) in an open set A ⊂ R
N is

|μ|(A) = sup

{∫
RN

ϕ d μ

∣∣∣ ϕ ∈ C0
c (A), ‖ϕ‖L∞ ≤ 1

}

due to [7, Proposition 1.47]. Thus, we conclude from Proposition 43 for every μ0 ∈
M(RN ) and h ∈ [0, 1]
∣∣ϑμ

b,c(h, μ0)
∣∣(RN )

= sup

{∫
RN

ϕ ϑ
μ
b,c(h, μ0)

∣∣∣ ϕ ∈ C0
c (R

N ), ‖ϕ‖L∞ ≤ 1

}

= sup

{∫
RN

ϕ(X1,b(t, x)) · e
∫ h
0 c(X1,b(s,x))dsd μ0(x)

∣∣∣ ϕ ∈ C0
c (R

N ), ‖ϕ‖L∞ ≤ 1

}

≤ e‖c‖L∞ h · sup
{∫

RN
|ϕ(X1,b(t, x))|d|μ0|(x)

∣∣∣ ϕ ∈ C0
c (R

N ), ‖ϕ‖L∞ ≤ 1

}

≤ e‖c‖L∞ h · |μ0|(RN ).

(4) Let ϕ ∈ C∞
c (RN ) be an arbitrary function with ‖ϕ‖L∞ ≤ 1 and ‖∇ϕ‖L∞ ≤ 1.

Due to Proposition 43 again, we obtain for every μ0 ∈ M(RN ) and t , h ∈ [0, 1] with
t + h ≤ 1

∫
RN

ϕ d
(
ϑ

μ
b,c(t + h, μ0) − ϑ

μ
b,c(t, μ0)

)

=
∫ t+h

t

d

ds

∫
RN

ϕ(x)d ϑ
μ
b,c(s, μ0) (x) ds

=
∫ t+h

t

∫
RN

(∇ϕ(x) · b(x) + ϕ(x) c(x)
)
d ϑ

μ
b,c(s, μ0) (x) ds

≤
∫ t+h

t

(‖∇ϕ‖L∞ ‖b‖L∞ + ‖ϕ‖L∞ ‖c‖L∞
) ∣∣ϑμ

b,c(s, μ0)
∣∣(RN ) ds

≤ h · (‖b‖L∞ + ‖c‖L∞
)
e‖c‖L∞ |μ0| (RN )

as a consequence of statement (3). The supremum with respect to all these functions
ϕ leads to claim (4) about dM

(
ϑ

μ
b,c(t, μ0), ϑ

μ
b,c(t + h, μ0)

)
.

123



506 P. E. Kloeden, T. Lorenz

(5) Let ϕ ∈ C∞
c (RN ) again denote any function with ‖ϕ‖L∞ ≤ 1 and ‖∇ϕ‖L∞ ≤ 1.

Then, any measures μ0, ν0 ∈ M(RN ) satisfy at every time h ∈ [0, 1]
∫
RN

ϕ d
(
ϑ

μ
b,c(h, μ0) − ϑ

μ
b,c(h, ν0)

)

=
∫
RN

ϕ(X1,b(h, x)) · exp
(∫ h

0
c(X1,b(s, x)) ds

)
d
(
μ0 − ν0

)
(x)

≤ e(Lipb+‖c‖W1,∞ ) h · dM(μ0, ν0).

Indeed, the last estimate results from assertion (1) of Proposition 40 because the
composition

ψh : R
N → R

N , x �→ ϕ(X1,b(h, x)) · exp
(∫ h

0
c(X1,b(s, x)) ds

)

is continuously differentiable with compact support and, Lemma 42 implies that

‖ψh‖L∞ ≤ ‖ϕ‖L∞e‖c‖L∞ h ≤ e‖c‖L∞ h

and

‖∇ψh‖L∞

≤ e‖c‖L∞ h
(

‖∇ϕ‖L∞‖∂x X1,b(h, ·)‖L∞ + ‖ϕ‖L∞ ·
∫ h

0
‖∇c‖L∞ ‖∂x X1,b(s, ·)‖L∞ ds

)

≤ e‖c‖L∞ h
(
eLipb · h + h‖∇c‖L∞eLipb · h)

≤ e(Lipb+‖c‖L∞ ) h(1 + h‖∇c‖L∞
)

≤ e(Lipb+‖c‖L∞ ) heh‖∇c‖L∞ = e(Lipb+‖c‖W1,∞ ) h .

The supremumwith respect to allϕ ∈ C∞
c (RN ) satisfying ‖ϕ‖L∞ ≤ 1 and ‖∇ϕ‖L∞ ≤

1 leads to

dM
(
ϑ

μ
b,c(h, μ0), ϑ

μ
b,c(h, ν0)

) ≤ e(Lipb+‖c‖W1,∞ ) h · dM(μ0, ν0).

(6) For estimating dM
(
ϑ

μ
b,c(h, μ0), ϑ

μ

b̄,c̄
(h, μ0)

)
with any μ0 ∈ M(RN ) and

h ∈ [0, 1], we again choose an arbitrary function ϕ ∈ C∞
c (RN ) with ‖ϕ‖L∞ ≤ 1

and ‖∇ϕ‖L∞ ≤ 1 and consider now an appropriate convex combination ψ : [0, 1] ×
[0, 1] × R

N → R
N :

ψ(λ, h, x) := ϕ
(
λ X1,b(h, x) + (1 − λ) X1,b̄(h, x)

)
· e

∫ h
0 λ·c(X1,b(r,x)) + (1−λ)·c̄(X1,b̄(r,x)) dr .
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Obviously, ψ is continuously differentiable and, Lemma 42 ensures

∥∥ ∂

∂ λ
ψ(λ, h, ·)∥∥L∞ ≤ ‖∇ϕ‖L∞

∥∥X1,b(h, ·) − X1,b̄(h, ·)∥∥L∞ · eh·max{‖c‖L∞ ,‖c̄‖L∞}

+ ‖ϕ‖L∞ ·
∫ h

0

∥∥c(X1,b(r, ·)) − c̄(X1,b̄(r, ·))
∥∥
L∞ dr

×eh ·max{‖c‖L∞ ,‖c̄‖L∞}

≤ ‖b − b̄‖L∞heh ˙Lipb · eh ·max{‖c‖L∞ ,‖c̄‖L∞}

+ h
(‖c − c̄‖L∞ + ‖∇c‖L∞‖b − b̄‖L∞heh ·Lipb)

· eh ·max{‖c‖L∞ ,‖c̄‖L∞}

≤ (‖b − b̄‖L∞ eh ‖∇c‖L∞ + ‖c − c̄‖L∞
)
h

×eh·(Lipb+max{‖c‖L∞ ,‖c̄‖L∞}) .

Hence we obtain

∫
RN

ϕd
(
ϑ

μ
b,c(h, μ0) − ϑ

μ

b̄,c̄
(h, μ0)

) =
∫
RN

(
ψ(1, h, x) − ψ(0, h, x)

)
dμ0(x)

=
∫
RN

∫ 1

0

∂

∂ λ
ψ(λ, h, x)dλ dμ0(x)

≤ ∥∥ ∂

∂ λ
ψ(λ, h, ·)∥∥L∞

∣∣μ0
∣∣(RN )

≤ (‖b − b̄‖L∞ eh ‖∇c‖L∞ + ‖c − c̄‖L∞
)
h

× eh·(Lipb+ max{‖c‖L∞ ,‖c̄‖L∞}) ∣∣μ0
∣∣(RN ) .

��

7 Euler compactness method for measure-valued solutions

Similarly to Proposition 32 about L p(RN )-valued solutions, we now specify the spe-
cial form of sequential compactness that is sufficient for concluding the existence of
solutions (to the full nonlinear problem) from Euler approximations (on the basis of
autonomous linear problems).

Proposition 47 Choose μ0 ∈ M(RN ), T > 0 and R > 0 arbitrarily. Let NM =
NM(μ0, T, R) denote the subset of all curves μ : [0, T ] → M(RN ) constructed in
the following piecewise way: For an arbitrary equidistant partition 0 = t0 < t1 <

· · · < tn = T of [0, T ] (with n > T ) and functions b1, . . ., bn ∈ W 1,∞(RN ,RN )

and c1, . . ., cn ∈ W 1,∞(RN ,R) with max
{‖bk‖W 1,∞ , ‖ck‖W 1,∞

∣∣ 1 ≤ k ≤ n
} ≤ R,

define μ : [0, T ] → M(RN ) as

μt := ϑ
μ
bk ,ck

(
t − tk−1, μtk−1

)
for t ∈ (tk−1, tk], k = 1, 2, . . . , n.
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Then at each time t ∈ [0, T ], the set {μt |μ(·) ∈ NM} ⊂ M(RN ) is relatively compact
with respect to the W 1,∞ dual metric dM. Furthermore, the set of all measure values
of NM(μ0, T, R), i.e.,

{
μt

∣∣ t ∈ [0, T ], μ(·) ∈ NM
} ⊂ M(RN ), is tight.

Proof As a piecewise consequence of assertion (3) of Proposition 46 the total vari-
ation |ν|(RN ) is uniformly bounded for all measures ν ∈ {μt |t ∈ [0, T ], μ(·) ∈
NM} ⊂ M(RN ) : |ν|(RN ) ≤ eRT |μ0|(RN ). It suffices to prove that this set{
μt

∣∣t ∈ [0, T ], μ(·) ∈ NM
} ⊂ M(RN ) is tight. Indeed, assertion (4) of Proposi-

tion 40 then implies its relative compactness w.r.t. the metric dM.
For every ε > 0, there exists a compact subset Kε ⊂ R

N with |μ0|(RN\Kε) < ε. We
conclude

∣∣μt
∣∣(RN\BR T (Kε)

) ≤ ∣∣μt
∣∣(RN\BR t (Kε)

)
< ε eRt ≤ ε eRT

for all t ∈ [0, T ] and μ(·) ∈ NM(μ0, T, R). Indeed, let 0 = t0 < t1 < . . . <

tn = T denote the underlying equidistant partition of [0, T ] and with b1, . . ., bn ∈
W 1,∞(RN ,RN ) and c1, . . ., cn ∈ W 1,∞(RN ,R) denote

μt = ϑ
μ
bk ,ck

(
t − tk−1, μtk−1

)
for t ∈ (tk−1, tk], k = 1, 2, . . . n.

From Proposition 43, we obtain for each t ∈ (tk−1, tk] by induction with respect to k
∣∣μt

∣∣(RN\BR t (Kε)
)

= sup

{∫
RN

ϕ d ϑ
μ
bk ,ck

(t − tk−1, μtk−1)

∣∣∣ ϕ∈C0
c (R

N\BR t (Kε)), ‖ϕ‖L∞ ≤1

}

≤ sup

{∫
RN

ϕ̄
(
X1,bk (t − tk−1, x)

)
dμtk−1(x) · e(t−tk−1) R

∣∣∣ ϕ̄∈C0
c (R

N\BR t (Kε)),

‖ϕ̄‖L∞ ≤1

}

≤ sup

{∫
RN

ψ(x) dμtk−1(x) · e(t−tk−1) R
∣∣∣ ψ ∈C0

c (R
N\BR tk−1(Kε)), ‖ψ‖L∞ ≤1

}

= e(t−tk−1) R
∣∣μtk−1

∣∣(RN\BR tk−1(Kε)
)
.

��
Corollary 48 The closure of NM(μ0, T, R) ⊂ M(RN ) with respect to dM is tight.

Proof Consider any Radon measure ζ in the closure ofNM(μ0, T, R) w.r.t. dL p , i.e.,
there is a sequence (ζk)k∈N with dM

(
ζk, ζ

) → 0 for k → ∞. This implies ζk → ζ

weakly* inM(RN ) = C0
0 (R

N )′ due to assertion (2) of Proposition 40.
For ε > 0 fixed arbitrarily, Proposition 47 provides a compact subset Kε ⊂ R

N

with |η|(RN\Kε

)
< ε for all η ∈ NM(μ0, T, R). Considering just the restrictions

to R
N\Kε, we conclude from ζk → ζ weakly* in M(

R
N\Kε

) = C0
0

(
R

N\Kε

)′ that
|ζ |(RN\Kε

) ≤ lim inf
k → ∞ |ζk |

(
R

N\Kε

)
< ε (see, e.g., [68, § V.1 Theorem 9 (ii)]). Hence

the closure of NM(μ0, T, R) ⊂ M(RN ) w.r.t. dM is tight. ��
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7.1 Proofs on the well-posedness of the nonlocal balance law in Sect. 3.2

We follow similar arguments to those presented for L p(RN )-valued solutions in
Sect. 5.1 to the results stated in Sect. 3.2.

An infinitesimal condition w.r.t. dM lays the foundations for another type of solu-
tions whose existence can be verified by means of Euler compactness method. This
alternative criterion represents what is usually considered in mutational equations in
the (purely) metric setting (see [10,11,51]). Then we provide a connection between
these generalised (“mutational”) solutions and distributional solutions to the transport
equation.

Proposition 49 Consider the coefficient functions B : [0, T ] × M(RN ) →
W 1,∞(RN ,RN ), C : [0, T ] × M(RN ) → W 1,∞(RN ,R) under the assumptions
(i) and (ii) of Theorem 7 and the hypothesis

(iv′) B, C : [0, T ] × (M(RN ), dM
) → (

L∞, ‖ · ‖L∞
)
are continuous.

Then there exists a function μ : [0, T ] → M(RN ) with the following properties:

(1) μ is bounded with respect to the total variation and,
{
μt

∣∣t ∈ [0, T ]} ⊂ M(RN )

is tight.
(2) μ : [0, T ] → (M(RN ), dM

)
is continuous,

(3) lim
h ↓ 0

1
h · dM

(
μt+h, ϑ

μ

(B(t, μt ), C(t, μt ))

(
h, μt

)) = 0 for a.e. t ∈ [0, T [,
(4) μ : [0, T ] → M(RN ) is a narrowly continuous distributional solution to initial

value problem (3).

This existence result can be extended to Theorem 7 by means of the Scorza-Dragoni
theorem in metric spaces (i.e., Lemma 37). The corresponding arguments of approxi-
mation are the same as from Proposition 34 to Theorem 4 (presented in Sect. 5.1).
The proof of Proposition 49 consists of several lemmata.

Lemma 50 (A “mutational” solution)Under the assumptions of Proposition 49, there
exists a function μ : [0, T ] → M(RN ) with properties (1)–(3) specified there.

Proof (Sketch) The shortest formulation might be: We can simply apply [51, The-
orem 2.18] to the tuple

(M(RN ), dM, | · |(RN )
)
. For the sake of a self-contained

presentation, we summarize the gist of the proof as follows.
The steps for verifying Lemma 35 are all based on the Euler method in com-

bination with the suitable form of compactness (presented in Proposition 47). A
subsequence of Euler approximations proves to converge to a Lipschitz continuous
function μ : [0, T ] → (M(RN ), dM

)
pointwise w.r.t. dM. Corollary 48 guarantees

that
{
μt

∣∣t ∈ [0, T ]} ⊂ M(RN ) is tight. The estimates for the distances between two
Euler approximations result from Proposition 46 in a piecewise way if we take the
following a priori bounds into consideration:

η := sup
t,ζ

(∥∥B(t, ζ )
∥∥
L∞ + ∥∥C(t, ζ )

∥∥
L∞

)
(i)
< ∞, ρ := |μ0|(RN ) · eηT + 1

and the constant Cρ according to hypothesis (ii) of Theorem 7. ��
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Lemma 51 (Adistributional solution)Under the assumptions of Proposition 49, every
function μ : [0, T ] → M(RN ) with properties (1)–(3) is narrowly continuous and
solves

∂t μ + divx (B(t, μ) μ) = C(t, μ) · μ

in the distributional sense, i.e., for any 0 ≤ t1 < t2 ≤ T , ϕ ∈ C1
c (R

N ),

∫
RN

ϕdμt2 −
∫
RN

ϕdμt1 =
∫ t2

t1

∫
RN

B(s, μs
)
(x) · ∇x ϕ(x) dμs(x) ds

+
∫ t2

t1

∫
RN

C(s, μs
)
(x) ϕ(x) dμs(x) ds.

Proof The continuity w.r.t. dM and tight values always imply the narrow continuity
due to Proposition 40 (2). Moreover, for every ϕ ∈ C1

c (R
N ), the auxiliary function

ψ : [0, T ] → R defined by ψ(t) = ∫
RN ϕ(x) dμt (x) is continuous and satisfies for

Lebesgue-almost every t ∈ [0, T )

lim
h ↓ 0

1
h · (ψ(t + h) − ψ(t)

)

= lim
h ↓ 0

1
h ·

(∫
RN

ϕ dμt+h −
∫
RN

ϕ dμt

)

= lim
h ↓ 0

1
h ·

(∫
RN

ϕ dμt+h −
∫
RN

ϕ dϑ
μ

(B(t, μt ), C(t, μt ))

(
h, μt

))

+ lim
h ↓ 0

1
h ·

(∫
RN

ϕ dϑ
μ

(B(t, μt ), C(t, μt ))

(
h, μt

) −
∫
RN

ϕ dμt

)

= 0 + lim
h ↓ 0

1
h ·

(∫
RN

ϕ(X1,B(t, μt )(h, x)) · e
∫ h
0 C(t, μt )(X1,B(t, μt )(s,x)) dsdμt (x)

−
∫
RN

ϕ dμt

)

=
∫
RN

(∇ϕ(y) · B(t, μt )(y) + ϕ(y) C(t, μt )(y)) dμt (y)

due to the property (3) of μ(·) and Proposition 43 respectively. ��
These two lemmata imply Proposition 49, i.e., the main result about the existence
of a measure-valued solution to nonlocal balance law (3) whenever both coefficients
B, C : [0, T ] × (M(RN ), dM

) → (
L∞, ‖ · ‖L∞

)
are assumed to be continuous

(in addition). This statement can be extended to Carathéodory coefficient functions
by means of Scorza-Dragoni theorem in metric spaces (i.e., Lemma 37) and so, we
finally obtain Theorem 7.

In the next step, we provide a connection from narrowly continuous distributional
solutions to the generalised type of solution described in Lemma 50. The following
statement plays the role of Lemma 38 in the setting of measure-valued distributional
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solutions. The narrow topology implies the analytical advantage that the number of
assumptions is smaller this time since some features (of distributional solutions) can
be concluded.

Lemma 52 Under the assumptions of Theorem 7, let μ : [0, T ] → M(RN ), satisfy
the following conditions:

(1) μ is narrowly continuous,
(2) μ : [0, T ] → M(RN ) is a distributional solution to initial value problem (3) (in

the sense of Eq. (4) for any 0 ≤ t1 < t2 ≤ T and ϕ ∈ C1
c (R

N )).

Then, μ is bounded with respect to the total variation and, the set
{
μt

∣∣ t ∈ [0, T ]} ⊂
M(RN ) is tight. Moreover, μ is continuous w.r.t. the metric dM and, at Lebesgue
almost every time instant t ∈ [0, T ) it satisfies the infinitesimal condition

lim
h ↓ 0

1
h · dM

(
μt+h, ϑ

μ

(B(t, μt ), C(t, μt ))
(h, μt )

) = 0 .

Proof μ : [0, T ] → (M(RN ), narrow
)
is assumed to be continuous and so, the

image set μ([0, T ]) ⊂ M(RN ) is compact with respect to the narrow topology.
According to the generalisation of Prokhorov’s theorem to Borel measures on a com-
plete separable metric space in [15, Theorem 8.6.2], this compactness implies that
μ([0, T ]) ⊂ M(RN ) is both bounded w.r.t. the total variation and tight (in the sense
of Definition 39). Hence, μ : [0, T ] → (M(RN ), dM

)
is continuous according to

assertion (2) of Proposition 40.
The coefficients B, C : [0, T ] × (M(RN ), dM

) → (
L∞, ‖ · ‖L∞

)
are Carathéodory

functions by assumptions (iii) and (iv) of Theorem 7.Hence the composite coefficients

b̃ := B(·, μ(·)) : [0, T ] → (
W 1,∞(RN ,RN ), ‖ · ‖L∞

)
,

c̃ := C(·, μ(·)) : [0, T ] → (
W 1,∞(RN ), ‖ · ‖L∞

)

are Lebesgue measurable and bounded. Proposition 49 provides a function ν :
[0, T ] → M(RN )which is a narrowly continuous distributional solution to the nonau-
tonomous linear problem

∂t ν + divx
(̃
b(t) ν

) = c̃(t) · ν in [0, T ], ν(0) = μ0 (21)

and satisfies the infinitesimal condition at Lebesgue-almost every time instant t ∈
[0, T )

lim
h ↓ 0

1
h · dM

(
νt+h, ϑ

μ

(̃b(t), c̃(t))
(h, νt )

) = 0.

The comparison principle in Proposition 44 implies the uniqueness of solutions to (21)
and so, ν andμ coincide in [0, T ]. Thus,μ satisfies the claimed infinitesimal condition
w.r.t. dM. ��
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This equivalence of solution criteria lays the basis for proving Proposition 8 (about
uniqueness of distributional solutions) and Proposition 9 (about its continuous depen-
dence of data) by the same arguments as for L p(RN )-valued solutions in Sect. 5.1.
In addition to Proposition 46, the key tool is Gronwall’s inequality again (see [51,
Proposition A.2]).
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