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Abstract In this paper it is shown that a classical continuation principle due to Granas
for contractions holds under weaker contractive assumptions. This leads to a Leray–
Schauder principle for such contractions in hyperbolic spaces. Some applications to
nonexpansive mappings in hyperbolic geodesic spaces are also discussed.
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1 Introduction

Continuation methods in metric fixed point theory have been largely motivated by
the classical Leray–Schauder condition, which was originally formulated over eighty
years ago in [22] for compact mappings. Since then this condition has subsequently
been extensively used to study existence of fixed points for various types of mappings.
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The original idea may be formulated as follows. Suppose X is a Banach space with
D ⊂ X. A mapping T : D → X is said to satisfy the Leray–Schauder condition if
there exists z ∈ int (D) such that

T (x) − z �= λ (x − z) for all x ∈ ∂ D and λ > 1.

To place this condition in a more historical context we refer, for example, to a recent
paper by Morales [23] and the references cited therein. We also refer to the recent
paper by Garcia-Falset et al. [6] for additional historical comments.

In [23] Morales answered a long-standing open question posed by the first author
in 1975 [15]. Specifically, it was proved in [15] that if K is a bounded closed convex
subset of a Banach space which has the fixed point property for nonexpansive map-
pings, and if T : K → X satisfies the Leray–Schauder condition relative to some
point z ∈ int (K ), then T has a fixed point under the additional assumption that
inf {‖x − T (x)‖ : x ∈ ∂K } > 0. Morales proved, among other things, that even for
a wider class of mappings this second assumption may be dropped.

The purpose of the present paper is to study the Leray–Schauder condition and
related continuation methods in the context of certain metric and geodesic spaces. In
particular it is shown that a classical continuation principle due to Granas for contrac-
tions holds under slightly weaker assumptions. It is also shown that if G is a bounded
open set in a complete hyperbolic space X, and if f : G → X is nonexpansive, then
inf

{
d (x, f (x)) : x ∈ G

} = 0 if there exists p ∈ G such that x /∈ (p, f (x)) for all
x ∈ ∂G. This condition, in the present context, is equivalent to the Leray–Schauder
boundary condition.

We begin with the terminology of Papadopoulos [24]. Let (X, d) be a metric space.
Recall that a geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from
x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c (0) = x, c (l) = y,

and d
(
c(t), c

(
t ′
)) = ∣

∣t − t ′
∣
∣ for all t, t ′ ∈ [0, l]. In particular, c is an isometry and

d (x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and
y. In this case for t ∈ [0, 1] we use (1 − t) x ⊕ t y to denote the point of α which has
distance td (x, y) from x . The space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X.

Many results in this paper hold in a special class of spaces called hyperbolic spaces.
We turn now to the terminology of Kohlenbach [21].

Definition 1.1 (X, d, W ) is called a hyperbolic space if (X, d) is a metric space and
W : X × X × [0, 1] → X is a function satisfying

(i) d (z, W (x, y, λ)) ≤ (1 − λ) d (z, x) + λd (z, y) for each x, y, z ∈ X and λ ∈
[0, 1];

(ii) d (W (x, y, λ1) , W (x, y, λ2)) = |λ1 − λ2| d (x, y) for each x, y ∈ X and
λ1, λ2 ∈ [0, 1];

(iii) W (x, y, λ) = W (y, x, (1 − λ)) for each x, y ∈ X and λ ∈ [0, 1];

(iv)

{
d (W (x, z, λ) , W (y, w, λ)) ≤ (1 − λ) d (x, y) + λd (z, w)

for each x, y, z, w ∈ X and λ ∈ [0, 1] .
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Continuation principles 313

If only condition (i) is satisfied, then (X, d, W ) is a convexmetric space in the sense
of Takahashi [26]. Conditions (i)–(iii) together are equivalent to (X, d, W ) being a
space of hyperbolic type in the sense of Goebel-Kirk [9]. Condition (iii) ensures that
the set

{W (x, y, λ) : λ ∈ [0, 1]}

is a geodesic in the usual sense. In this casewe use (1 − λ) x⊕λy to denoteW (x, y, λ).

The geodesic segment joining x and y is denoted by [x, y] (with the usual convention
for (x, y] and [x, y)). Thus (1 − λ) x ⊕ λy denotes the point of [x, y] with distance
λd (x, y) from x .A subset Y ⊆ X is said to be convex if [x, y] ⊂ Y for every x, y ∈ Y .

The relevant observation at this point is that it is not essential that geodesic segments
joining each two points of X be unique. It suffices to assume only that some family of
geodesic segments satisfy the relevant axioms; in this instance (i)–(iii). Thus the class
of spaces of hyperbolic type includes all normed linear spaces (not merely those with
strictly convex norm) as well as all convex subsets thereof.

For a more detailed discussion of these concepts we refer, e.g., to Chapters 6 and 9
of Kirk-Shahzad [20].

2 Continuation methods for contractions

In this section we take two facts as our points of departure. The first is a following
fundamental continuation principle due to Andrzej Granas. The second is an extension
of Banach’s contraction mapping theorem due to Felix Browder. Here, and throughout
the remainder of the section, we adopt the terminology of Jachymski and Jóźwik [14].

Theorem 2.1 ([10]) Let U be a domain in a complete metric space X, let f, g : U →
X be two contraction mappings, and suppose there exists H : U × [0, 1] → X such
that

(a) H (·, 1) = f, H (·, 0) = g;
(b) H (x, t) �= x for every x ∈ ∂U and t ∈ [0, 1] ;
(c) there exists α < 1 such that d (H (x, t) , H (y, t)) ≤ αd (x, y) for every x, y ∈ U

and t ∈ [0, 1] ;
(d) there exists a constant M ≥ 0 such that for every x ∈ U and t, s ∈ [0, 1] ,

d (H (x, t) , H (x, s)) ≤ M |s − t | .

Then f has a fixed point if and only if g has a fixed point.

Theorem 2.2 ([4]) Let (X, d) be a complete metric space and suppose f : X → X
satisfies

d ( f (x) , f (y)) ≤ ψ (d (x, y)) for all x, y ∈ X, (2.1)

where ψ : [0,∞) → [0,∞) is monotone nondecreasing, continuous from the right,
and such that ψ (t) < t for all t > 0. Then f has a unique fixed point x∗ ∈ X and
moreover f n (x) → x∗ as n → ∞ for every x ∈ X.
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In what follows we refer to mappings that satisfy the above condition Browder
contractions with contractive function ψ. In his survey [13], Jacek Jachymski shows
that Browder’s contractive condition is equivalent to or, in fact subsumes, many con-
tractive conditions that have subsequently appeared in the literature. By making some
modifications in Marlène Frigon’s proof of Theorem 2.1 (see [5]) we obtain the fol-
lowing extension of Granas’s theorem. We point out that in her original paper, Frigon
mentions that condition (d) of Theorem 2.1 may be weakened to condition (d′) below.
Theorem 2.3 Let U be a domain in a complete metric space X, let ψ : [0,∞) →
[0,∞) be monotone nondecreasing, continuous from the right, and such that ψ (t) < t
for all t > 0 and let let f, g : U → X be two Browder contractions with common
contractive function ψ. Suppose also that there exists H : U × [0, 1] → X such that

(a) H (·, 1) = f, H (·, 0) = g;
(b) H (x, t) �= x for every x ∈ ∂U and t ∈ [0, 1] ;
(c′) d (H (x, t) , H (y, t)) ≤ ψ (d (x, y)) for every x, y ∈ U and t ∈ [0, 1] ;
(d′) there exists a continuous function φ : [0, 1] → R such that for every x ∈ U

and t, s ∈ [0, 1] ,

d (H (x, t) , H (x, s)) ≤ |φ (t) − φ (s)| .
Then f has a fixed point if and only if g has a fixed point.

Proof of Theorem 2.3 Let

Q = {λ ∈ [0, 1] : H (·, λ) has a fixed point} .

If g has a fixed point then 0 ∈ Q. We now show that Q is open in [0, 1]. Let λ0 ∈ Q
and suppose H (x, λ0) = x . Since x /∈ ∂U there exists r > 0 such that the closed ball
B (x; r) ⊂ U. Take δ > 0 such that for |λ − λ0| < δ, |φ (λ) − φ (λ0)| < r − ψ (r)

(where ψ and φ are as in (c′) and (d′)). Then the function H (·, λ) : B (x; r) →
B (x; r) . Indeed, for every y ∈ B (x; r) we have (using (c′) and (d)′)

d (x, H (y, λ)) ≤ d (H(x, λ0), H (y, λ0)) + d (H(y, λ0), H (y, λ))

≤ ψ (d (x, y)) + |φ (λ) − φ (λ0)|
≤ ψ (r) + r − ψ (r) = r.

Since the restriction of H (·, λ) to the ball B (x; r) satisfies the conditions of Browder’s
theorem, H (·, λ) has a fixed point for each λ ∈ [0, 1] for which |λ − λ0| < δ.

To see that Q is closed in [0, 1] , suppose λn ∈ Q, n = 1, 2, . . . , and suppose
λn → λ as n → ∞. For each n ∈ N there exists xn ∈ U such that

H (xn, λn) = xn .

Then if m, n ∈ N,

d (xm, xn) ≤ d (H (xm, λm) , H (xm, λn)) + d (H (xm, λn) , H (xn, λn))

≤ |φ (λm) − φ (λn)| + ψ (d (xm, xn)) .
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If {xn} is not a Cauchy sequence then by passing to a subsequence we may suppose
d (xm, xn) → t > 0 as m, n → ∞. Moreover, by passing to a subsequence again we
may suppose that either d (xm, xn) ↘t or d (xm, xn) ↗t. In the first case, since ψ is
continuous from the right, ψ (d (xm, xn))→ψ (t) as m, n→∞. In the second case,
because ψ is nondecreasing, ψ (d (xm, x n)) → r ≤ ψ (t) as m, n → ∞. In either
case, this leads to the contradiction

t ≤ ψ (t) . (2.2)

It follows that {xn} is a Cauchy sequence inU , so there exists x ∈ U such that xn → x
as n → ∞. Moreover, since ψ (0) = 0 and ψ is continuous from the right,

d (H (x, λ) , xn) = d (H(x, λ), H (xn, λn))

≤ d (H(x, λ), H (x, λn)) + d (H(x, λn), H (xn, λn))

≤ |φ (λ) − φ (λn)| + ψ (d (x, xn)) → 0 as n → ∞.

This proves that xn → H (x, λ) as n → ∞. Therefore H (x, λ) = x, proving
λ ∈ Q. It follows that Q = [0, 1] , completing the proof. ��
Remark 1 A routine argument shows that it is possible to replace condition (d′) in
Theorem 2.3 with the condition

(d′′) there exists a function φ : [0, 1] → R which is continuous at 0 such that for
every x ∈ U and t, s ∈ [0, 1] ,

d (H (x, t) , H (x, s)) ≤ φ (|t − s|) .

Remark 2 Theorem 2.3 extends Corollary 3.2 of Agarwal, et al. [1] in thatψ is merely
assumed to be continuous from the right rather than continuous.

Other weakenings in Theorem 2.1 are possible. For example, it is possible to replace
Browder’s condition involving the function ψ in Theorem 2.2 with a condition intro-
duced in [14] which is a minor variant of a condition due to Geraghty [7]. Suppose
α : R

+ → [0, 1) satisfies the condition: If {tn} is bounded, then α (tn) → 1 ⇒ tn → 0
as n → ∞. Condition 2.1 now becomes

d ( f (x), f (y)) ≤ α (d (x, y)) d (x, y) for all x, y ∈ X. (2.3)

Mappings satisfying this condition are called Geraghty (III) contractions in [14],
where it is shown that such contractions are equivalent to Browder contractions.
Therefore Theorem 2.3 holds for this class of mappings upon making the following
adjustment in Condition (c′):

(c′′)d (H (x, t) , H (y, t)) ≤ α (d (x, y)) d (x, y) for every x, y ∈ U and t ∈ [0, 1].
We include some details of the proof to illustrate the difference in methodology.

Theorem 2.4 Let U be a domain in a complete metric space (X, d) , let α : R
+ →

[0, 1) satisfy for bounded {tn} , α (tn) → 1 ⇒ tn → 0 as n → ∞, and let f, g : U →
X be two Geraghty (III) contractions with common contractive function α. Suppose
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also that H : U × [0, 1] → X satisfies (a), (b),
(
c′),

(
d ′) of Theorem 2.3 where

ψ (d (x, y)) is replaced with α(d (x, y))d (x, y) in
(
c′). Then f has a fixed point if

and only if g has a fixed point.

Proof The main difficulty in this proof involves showing that for |λ − λ0| sufficiently
small, H (·, λ) :B (x; r) → B (x; r) .Weprove this step in detail, adopting the notation
in the proof above. To see that Q is open in [0, 1] , let λ0 ∈ Q and suppose H (x, λ0) =
x . Since x /∈ ∂U there exists r > 0 such that the closed ball B (x; r) ⊂ U.Take δr > 0
such that for |λ − λ0| < δr , |φ (λ) − φ (λ0)| < r − α (r) r (where α and φ are as in
(c′′) and (d′)). Then if d (x, y) = r, d (x, H (y, λ)) ≤ r. Indeed, we have (using (c′′)
and (d′))

d (x, H (y, λ)) ≤ d (H (x, λ0) , H (y, λ0)) + d (H (y, λ0) , H (y, λ))

≤ α (d (x, y)) d(x, y) + |φ (λ) − φ (λ0)|
≤ α (r) r + r − α (r) r = r.

Now take 0 < r∗ < r so that r∗ ≤ α (r) r. Then if d (x, y) ≤ r∗ and |λ − λ0| < δr∗
(and using the fact that α (d (x, y)) < 1),

d (x, H (y, λ)) ≤ α (d (x, y)) d (x, y) + r − α (r) r

< d (x, y) + r − α (r) r

≤ r∗ + r − α (r) r ≤ r.

For each r ′ such that r∗ < r ′ < r there exists δr ′ > 0 such that if |λ − λ0| < δr ′ , then
|φ (λ) − φ (λ0)| < r ′ − α

(
r ′) r ′. Hence if d (x, y) = r ′,

d (x, H (y, λ)) ≤ r ′ ≤ r.

Now let δ = inf
{
δr ′ : r∗ ≤ r ′ ≤ r

}
. We now show that δ > 0. If δ = 0, then there

exists a sequence
{
r ′

n

} ⊂ [r∗, r ] such that r ′
n −α

(
r ′

n

)
r ′

n → 0 as n → ∞. Ifα
(
r ′

n

)
� 1

we may pass to a subsequence
{
r ′

nk

}
of

{
r ′

n

}
such that α

(
r ′

nk

) → t > 0 as k → ∞.

Then

lim inf
k

[
r ′

nk

(
1 − α

(
r ′

nk

))] ≥ r∗ (1 − t) > 0

contradicting r ′
nk

− α
(
r ′

nk

)
r ′

nk
→ 0 as k → ∞. Therefore α

(
r ′

n

) → 1. However
α

(
r ′

n

) → 1 implies r ′
n → 0, and this contradicts the fact that r ′

n ≥ r∗. Therefore it
must be the case that δ > 0, and for each y ∈ B (x; r) we have |λ − λ0| < δ ⇒
d (x, H (y, λ)) ≤ r. Hence for such λ, H (·, λ) : B (x; r) → B (x; r).

The remainder of the proof is straightforward, following the method of Theorem
2.3. ��
Remark 3 In a subsequent paper [8], Geraghty weakened his contractive condition,
requiring only that α (tn) → 1 ⇒ tn → 0 for monotone decreasing sequences
{tn} ⊂ R

+. Mappings satisfying this condition are called Geraghty (II) contractions
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in [14]. It is shown in [11] that the class of Geraghty (II) contractions coincides with a
class of contractions introduced by Boyd and Wong in [2]. The Boyd–Wong contrac-
tions are similar to the Browder contractions except that no monotonicity condition
is required on the Browder contractive function ψ, and it is only assumed that ψ is
upper semicontinuous from the right. It is noted in [14] that Boyd–Wong contractions
properly contain the Browder contractions. For a comprehensive comparison of these
and numerous related contractive conditions, we refer to the survey [14] by Jachymski
and Jóźwik.

Question. We leave open the question of whether Theorem 2.3 holds for the Geraghty
(II) (= Boyd–Wong) contractions.

3 The Leray–Schauder condition for contractions in hyperbolic spaces

The following is an application of Theorem 2.3.

Theorem 3.1 Let G be a bounded domain in a complete hyperbolic space (X, d) and
suppose f : G → X is either a Browder or a Geraghty (III) contraction. Suppose
also that there exists p ∈ G such that x /∈ (p, f (x)) for all x ∈ ∂G. Then f has a
unique fixed point in G.

Proof We assume that f is a Browder contraction. Thus f : G → X satisfies

d ( f (x), f (y)) ≤ ψ (d (x, y)) for all x, y ∈ G (3.1)

where ψ is Browder contractive function. Define H : G × [0, 1] → X as follows.
For x ∈ G and t ∈ [0, 1] , take H (x, t) = ft (x) , where ft (x) is the point of
the segment [p, f (x)] with distance td (p, f (x)) from p. Then H (·, 1) = f and
H (·, 0) ≡ p. If f has a fixed point in ∂G there is nothing to prove, so we may assume
that x /∈ (p, f (x)) for all x ∈ ∂G. This assures that condition (b) of Theorem 2.3
holds. Also, using condition (iv) of the definition of a hyperbolic space (taking x = y)

we have:

d (H (x, t) , H (y, t)) = d ( ft (x) , ft (y))

≤ td ( f (x) , f (y))

≤ tψ (d (x, y))

so condition (c′) holds. Further, condition (3.1) implies d ( f (x), f (y)) ≤ d (x, y) for
each x, y ∈ G, and because G is bounded it follows that f (G) is bounded. Therefore
there exists M > 0 such that d (p, f (x)) ≤ M for all x ∈ G. Hence by condition (ii),

d (H(x, t), H (x, s)) = d ((1 − t) p ⊕ t f (x), (1 − s) p ⊕ s f (x))

= |s − t | d (p, f (x))

≤ M |s − t |
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318 W. A. Kirk, N. Shahzad

for some M > 0, so condition (d′) holds upon taking φ (s) = Ms. The conclusion of
the theorem now follows from Theorem 2.3 (or Theorem 2.4 in the case that f is a
Geraghty (III) contraction). ��
Remark 4 Theorem 3.1 extends Theorem 3.3 of [1] from Banach spaces to hyperbolic
spaces.

4 Nonexpansive mappings

Theorem 4.1 Let G be a bounded domain in a complete hyperbolic space (X, d) and
suppose f : G → X is a nonexpansive mapping. Suppose also that there exists p ∈ G
such that f satisfies the Leray–Schauder condition: x /∈ (p, f (x)) for all x ∈ ∂G.

Then in f
{
d (x, f (x)) : x ∈ G

} = 0.

Proof As above, for x ∈ G and t ∈ [0, 1), let ft (x) be the point of the segment
[p, f (x)] with distance td (p, f (x)) from p. Then ft : G → X is a contraction
mapping and x /∈ (p, ft (x)) for each x ∈ ∂G, so by Theorem 3.1 for each such t
there exists xt ∈ G such that ft (xt ) = xt . Thus (since { f (xt )} is bounded)

d (xt , f (xt )) = d ( ft (xt ) , f (xt ))

= d ((1 − t) p ⊕ t f (xt ) , f (xt ))

= (1 − t) d (p, f (xt ))

→ 0 as t → 1−.

��
Our next observation involves the CAT(0) spaces of Gromov (see [3]). It is

known ([17], Theorem 21) that if K is a bounded closed convex subset of a com-
plete CAT(0) space X and if T : K → X is a nonexpansive mapping for which
inf {d (x, f (x)) : x ∈ K } = 0, then T has a fixed point. In conjunction with Theorem
4.1 this shows that the Leray–Schauder boundary condition implies the existence of
a fixed point for such mappings if int (K ) �= ∅. However in this case it is known that
the convexity assumption on K is not even needed. The following is Theorem 3.3 of
[18].

Theorem 4.2 Let G be a bounded open set in a complete CAT(0) space (X, d), and
suppose f : G → X is nonexpansive. Suppose also that there exists p ∈ G such that
x /∈ (p, f (x)) for all x ∈ ∂G. Then f has a fixed point in G.

We now turn to another application. It is easy to see that if B := B (p; r) is a closed
ball in a complete hyperbolic space and if f : B → B (p; r + ε) for some ε > 0,
then

inf {d (x, f (x)) : x ∈ B} ≤ ε.

This is because Theorem 4.1 implies inf {d (x, f (x)) : x ∈ B} = 0 if f satisfies the
Leray–Schauder condition on ∂ B for some x or, if the Leray–Schauder condition fails
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Continuation principles 319

there exists a point x ∈ ∂ B such that x ∈ (p, f (x)) , which implies d (x, f (x)) ≤ ε.

We now examine the extent to which this observation extends to arbitrary convex sets.
Let K be a bounded closed convex subset of a complete linear hyperbolic space X

in the sense that each two distinct points x, y of X lie on a unique geodesic (metric)
line containing the geodesic segment [x, y]. (This is the approach taken in [25]). The
following is an immediate extension of the observation about approximate fixed points
in closed balls. The ε-neighborhood of K for ε > 0 is the set:

Nε (K ) = {x ∈ X : dist (x, K ) ≤ ε} .

Theorem 4.3 Let K be a bounded closed convex subset of a complete linear hyper-
bolic space, and suppose int (K ) �= ∅. If ε > 0 and f : K → Nε (K ) is nonexpansive,
then

inf {d (x, f (x)) : x ∈ K } ≤ diam (K ) − 2r̄ + ε,

where r̄ = sup {r > 0 : B (p; r) ⊂ K for some p ∈ int (K )}.
Proof Since int (K ) �= ∅ there exist p ∈ int (K ) and r > 0 such that B (p; r) ⊂ K
and B

(
p; r ′)

� K if r ′ > r . Let ε′ > ε be arbitrary. If the Leray–Schauder condition
holds on ∂K relative to p then by Theorem 4.1 there is nothing to prove. Otherwise
there exists y ∈ ∂K such that y ∈ (p, f (y)) . Also, since f (y) ∈ Nε (K ) there exists
z ∈ ∂K such that d ( f (y) , z) ≤ ε′. If z = y we are finished. Otherwise, there is
a point q on the geodesic line passing through p and z such that d (q, p) = r and
d (q, p) + d (p, z) = d (q, z) ≤ diam (K ) . Thus d (p, z) ≤ diam (K ) − r. Since
d (p, y) ≥ r, it follows that

d (y, f (y)) = d (p, f (y)) − d (p, y)

≤ d (p, z) + d (z, f (y)) − d (p, y)

≤ d (p, z) + ε′ − d (p, y)

≤ [diam (K ) − r ] + ε′ − d (p, y)

≤ diam (K ) − 2r + ε′.

Since B (p; r) is an arbitrary ball in K and ε′ > ε is arbitrary, the conclusion follows.
��

We do not know whether the estimate in Theorem 4.3 is optimal. Indeed, as we
show in the Appendix a sharper estimate holds in a Banach space.

5 Further remarks

The so-called R-trees (or metric trees) are a very special case of the CAT(0) spaces
(see [3, p.167]).

Definition 5.1 An R-tree is a metric space X such that
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(i) there is a unique geodesic segment (again, denoted by [x, y]) joining each two
points x, y ∈ X ;

(ii) if [y, x] ∩ [x, z] = {x} then [y, x] ∪ [x, z] = [y, z].

The following is another result of [18]. In this instance boundedness of the domain
may be replaced by geodesic boundedness.

Theorem 5.1 ([18]) Let (X, d) be a complete R-tree, suppose K is a closed, geo-
desically bounded, convex subset of X, and suppose p ∈ int (K ). If f : K → X is
continuous and satisfies the Leray–Schauder condition:

x /∈ (p, f (x)) for all x ∈ ∂K .

Then f has a fixed point.

Crucial to the proof of the above result is the fact that a continuous self-mapping of
a geodesically bounded closed convex subset of a complete R-tree always has a fixed
point. For a detailed discussion, see [19].

Finally,we remark in passing that it is shown in [12] that for a nonexpansivemapping
T : B → H, where B is the unit ball in a Hilbert space H, the existence of a fixed
point for T and the Leray–Schauder condition are mutually exclusive alternatives, and
that this fact characterizes Hilberts space among Banach spaces. It is not clear whether
a similar fact characterizes CAT(0) spaces among Busemann spaces.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

6 Appendix

The following is a Banach space extension of Theorem 4.3. However we do not even
know whether this estimate is optimal.

Theorem 6.1 ([16]) Let K be a bounded closed convex subset of a Banach space X
with int (K ) �= ∅, and let f : K → Nε (K ) (ε > 0) be nonexpansive. Then

inf {‖x − f (x)‖ : x ∈ K } ≤
(

diam (K ) − r̄ + ε

r̄ + ε

)
ε

where

r̄ = sup {r > 0 : B (p; r) ⊂ K for some p ∈ int (K )} .

Proof Because [16] may not be readily available we include the details. Since
int (K ) �= ∅ there exists r > 0 such that B (p; r) ⊂ K , and we may further suppose
p = 0. If the Leray–Schauder condition holds for f on ∂K relative to p then by
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Theorem 4.1 (or earlier Banach space results) there is nothing to prove, so we suppose
that for some y ∈ ∂K and λ > 1, f (y) = λy. Now let ε′ > ε > 0 be arbitrary. Since
f (y) ∈ Nε (K ) there exists z ∈ ∂K such that d ( f (y), z) ≤ ε′.
Let w ∈ X satisfy

y =
(
1 − λ−1

)
w + λ−1z. (6.1)

Then, since y = λ−1 f (y), we have

(
1 − λ−1

)
w = λ−1 ( f (y) − z) . (6.2)

From (6.2),

(
1 − λ−1

)
‖w‖ = λ−1 ‖ f (y) − z‖

≤ λ−1ε′ (6.3)

and it follows that (
1 − λ−1

) [‖w‖ + ε′] ≤ ε′. (6.4)

Multiplying both sides by ‖ f (y)‖ we have

(
1 − λ−1

)
[‖w‖ + ε′] ‖ f (y)‖ ≤ ε′ ‖ f (y)‖ .

Since
(
1 − λ−1

) ‖ f (y)‖ = ‖y − f (y)‖ ,

‖y − f (y)‖ ≤ ε′ ‖ f (y)‖
‖w‖ + ε′ .

However ‖ f (y)‖ ≤ diam (K ) − r + ε, so

‖y − f (y)‖ ≤ ε′ ‖ f (y)‖
‖w‖ + ε′ ≤

(
diam (K ) − r + ε

‖w‖ + ε′ ε′
)

.

Also, since both y and z lie on ∂K , it follows thatw /∈ int (K ). In particular ‖w‖ ≥ r .
Therefore

‖ f (y) − y‖ ≤
(

diam (K ) − r + ε

r + ε′

)
ε′.

Since ε′ > ε is arbitrary and B (p, r) is an arbitrary ball in K , the conclusion follows.
��

It is easy to check that

(
diam (K ) − r̄ + ε

r̄ + ε

)
ε ≤ diam (K ) − 2r̄ + ε. This is

because diam (K ) ≥ 2r if B (p; r) ⊂ K , with equality holding only if diam (K ) =
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2r . Thus in general the estimate in Theorem 6.1 is better that the one given by Theorem
4.3. At the same time, if K is a closed ball each estimate reduces to

inf {d (x, f (x)) : x ∈ K } ≤ ε.
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