
Bull. Math. Sci. (2015) 5:13–18
DOI 10.1007/s13373-014-0059-1

On global inversion of homogeneous maps

Michael Ruzhansky · Mitsuru Sugimoto

Received: 27 September 2014 / Accepted: 3 October 2014 / Published online: 29 October 2014
© The Author(s) 2014. This article is published with open access at SpringerLink.com

Abstract In this note we prove a global inverse function theorem for homogeneous
mappings onRn . The proof is based on an adaptation of the Hadamard’s global inverse
theorem which provides conditions for a function to be globally invertible on Rn . For
the latter adaptation, we give a short elementary proof assuming a topological result.
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1 Introduction

The purpose of this note is to prove a global inverse function for homogeneous map-
pings on R

n . The main difficulty is in the fact that such mappings are not smooth at
the origin and thus, the known global inverse function theorems on Rn are not readily
applicable. The main motivation for studying such inverses are applications to the
global invertibility of Hamiltonian flows, and further applications to construction of
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suitable phase functions of Fourier integral operators, a topic that will be addressed
elsewhere.

Thus, our aim here is to establish the existence and the following properties for the
global inverses of homogeneous mappings.

Theorem 1.1 Let n ≥ 3 and 1 ≤ k ≤ ∞. Let f : R
n\0 → R

n be a positively
homogeneous mapping of order � > 0, i.e.

f (τξ) = τ� f (ξ) for all τ > 0, ξ �= 0.

Assume that f ∈ Ck(Rn\0) and that its Jacobian never vanishes on R
n\0. Then

f is bijective from R
n\0 to R

n\0, its global inverse satisfies f −1 ∈ Ck(Rn\0) and
is positively homogeneous of order 1/�. Moreover, if we extend f to R

n by setting
f (0) = 0, the extension is a global homeomorphism on R

n.

We remark that for n = 2 the conclusion is not always true because, for example,
the Jacobian of f (x, y) = (x2− y2, 2xy) never vanishes onR2\0 but f is not globally
invertible since f (x, y) = f (−x,−y).

Our proof is based on the application of an adaptation of the Hadamard global
inverse theorem. Thus, the second aim of this note is to give a short elementary proof
for it assuming a well-known topological result (very likely also known to Hadamard).

This kind of global inverse function theorem is a classical subject andof independent
interest, but sometimes it also plays an important role when we discuss the global L2

boundedness of oscillatory integrals. For example, Asada-Fujiwara [1] established
this boundedness based on the global invertibility of maps defined by phase functions
which are smooth everywhere. Generalising such results to the case of homogeneous
phase as in Theorem 1.1 is also important but it is not straightforward because of
the singularity at the origin. The global L2 boundedness of oscillatory integrals with
phases as in Theorem 1.1 has been analysed by the authors in [7] and applied to
questions of global smoothing for partial differential equations in [8]. The application
of Theorem 1.1 to the global analysis of hyperbolic partial differential equations and
the corresponding Hamiltonian flows will appear elsewhere.

2 Global inverses

Let us start with a topological result we assume. A differentiable map between mani-
folds is called a C1-diffeomorphism if it is one-to-one and its inverse is also differen-
tiable. A mapping f is called proper if f −1(K ) is compact whenever K is compact.

Theorem 2.1 Let M and N be connected, oriented, d-dimensional C1-manifolds,
without boundary. Let f : M → N be a proper C1-map such that the Jacobian J ( f )

never vanishes. Then f is surjective. If N is simply connected in addition, then f is
also injective.

This fact was known to Hadamard, but a rigorous proof for surjectivity can be found
in [6]. As for the injectivity, a precise proof can be found in [2, Sect. 3]. We remark
that it follows in principle from the general fact that a proper submersion between
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smooth manifolds without boundary is a fibre bundle, meaning in our setting that it
is a covering map. Since a simply connected manifold is its own universal covering
space, it implies that f is a diffeomorphism.

We will mostly discuss the mappings f : Rn → R
n , in which case we denote its

Jacobian by J ( f ) := det D f := det(∂ fi/∂x j ). The Hadamard global inverse function
theorem states:

Theorem 2.2 A C1-map f : R
n → R

n is a C1-diffeomorphism if and only if the
Jacobian det D f (w) never vanishes and | f (y)| → ∞ whenever |y| → ∞.

This theorem goes back to Hadamard [3–5]. In fact, in 1972 W. B. Gordon wrote
“This theorem goes back at least to Hadamard, but it does not appear to be ‘well-
known’. Indeed, I have found that most people do not believe it when they see it and
that the skepticism of some persists until they see two proofs.” The reason behind this is
that while we know that the function is locally a C1-diffeomorphism by the usual local
inverse function theorem, the condition that | f (y)| → ∞ as |y| → ∞, guarantees
that the function is both injective and, more importantly, surjective on the whole of
R

n . And indeed, W. B. Gordon proceeds in [2] by giving two different proofs for it,
for C2 and for C1 mappings.

It turns out that for dimensions n ≥ 3 the conclusion remains still valid even if we
relax the assumption, in some sense rather substantially, almost removing it at a finite
number of points. While often this is not the case (the famous one being the ‘hairy
ball theorem’, which fails completely if we assume that the vector field may be not
differentiable at one point), the theory of covering spaces assures that it is the case
here. In fact, here we have the following:

Theorem 2.3 Let n ≥ 3. Let a ∈ R
n. Let f : Rn → R

n be such that f is C1 on
R

n\{a}, with det D f �= 0 on R
n\{a}, and that f is continuous at a. Let b := f (a),

and assume that f (Rn\{a}) ⊂ R
n\{b} and that |y| → ∞ implies | f (y)| → ∞.

Then the mapping f : R
n → R

n is a global homeomorphism and its restriction
f : Rn\{a} → R

n\{b} is a global C1-diffeomorphism.

While general topological considerations as outlined above are possible here, we
prefer to also give an elementary proof in Sect. 3 of the fact that Theorem 2.1 implies
Theorem 2.3, also noting that exactly the same proof yields the following further
version:

Theorem 2.4 Let n ≥ 3. Let A ⊂ R
n be a closed set. Let f : Rn → R

n be such
that f is C1 on R

n\A, with det D f �= 0 on R
n\A, that f is continuous and injective

on A, and that Rn\ f (A) is simply connected. Assume that f (Rn\A) ⊂ R
n\ f (A)

and that |y| → ∞ implies | f (y)| → ∞. Then the mapping f : R
n → R

n is a
global homeomorphism and its restriction f : Rn\A → R

n\ f (A) is a global C1-
diffeomorphism.

Given Theorem 2.3, we can apply it to derive Theorem 1.1:

Proof of Theorem 1.1 First, let us extend f to R
n by setting f (0) = 0 and show that

f is continuous at 0. We observe that f (Sn−1) has a finite maximum. Let ξ j → 0,
and ξ j �= 0 for all j . Then
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| f (ξ j )| = |ξ j |�
∣
∣
∣
∣

f

(
ξ j

|ξ j |
)∣

∣
∣
∣
≤ C |ξ j |� → 0,

so that f is continuous at 0.
Let us now check that other conditions of Theorem 2.3 are satisfied. We observe

that f (Sn−1) has a positive minimum min|ξ |=1 | f (ξ)| = c0 > 0. Indeed, if f (ω) = 0
for some ω ∈ S

n−1, then f (tω)(= tκ f (ω)) = 0 for any t > 0. Differentiating it
in t , we have ω = 0 since the Jacobian of f never vanishes on R

n\0, which is a
contradiction. Then we have

| f (ξ)| = |ξ |�
∣
∣
∣
∣

f

(
ξ

|ξ |
)∣

∣
∣
∣
≥ c0|ξ |�, ξ �= 0,

which induces that f (Rn\0) ⊂ R
n\0 and that |y| → ∞ implies | f (y)| → ∞.

Therefore, by Theorem 2.3, f : Rn → R
n is a homeomorphism, and f −1 is Ck on

R
n\0 by the usual local inverse function theorem. Let us finally show that f −1 is

positively homogeneous of order 1/�. Indeed, for every τ > 0 and ξ �= 0 we have
f −1(τ� f (ξ)) = f −1( f (τξ)) = τξ . Since f is invertible, η = f (ξ) �= 0, and we
have f −1(τ�η) = τ f −1(η), or f −1(τη) = τ 1/� f −1(η). 	


3 Proofs

First we observe that in the setting of Theorem 2.3, by translation (by a) in x and by
subtracting b from f , we may assume without loss of generality that a = b = 0. To
prove Theorem 2.3, we start with preliminary statements.

Lemma 3.1 Let F ⊂ R
n\0. Then F is compact in R

n\0 if and only if it is compact
in R

n.

Proof Assume that F ⊂ R
n\0 is compact in R

n\0. Let F ⊂ ⋃

α Vα for a family of
sets Vα which are open in Rn . Then

F ⊂
(

⋃

α

Vα

)

∩ (Rn\0) =
⋃

α

(

Vα ∩ (Rn\0)),

so that F is covered by a family of sets Vα ∩ (Rn\0) which are open in R
n\0. Since

F is compact in Rn\0, there is a finite subfamily Vj , j = 1, . . . , m, such that

F ⊂
m
⋃

j=1

(

Vj ∩ (Rn\0)) =
⎛

⎝

m
⋃

j=1

Vj

⎞

⎠ ∩ (Rn\0).

Hence F ⊂ ⋃m
j=1 Vj , so that F is compact in Rn .

Conversely, assume that F ⊂ R
n\0 is compact in R

n , and let F ⊂ ⋃

α Uα , for a
family of sets Uα ⊂ R

n\0 which are open in R
n\0. Then Uα = Vα ∩ (Rn\0), for
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some Vα open in R
n . Hence F ⊂ ⋃

α Vα , and by compactness of F in R
n , there is a

finite subcovering F ⊂ ⋃m
j=1 Vj . Since F ⊂ R

n\0, we have

F ⊂
⎛

⎝

m
⋃

j=1

Vj

⎞

⎠ ∩ (Rn\0) =
m
⋃

j=1

(

Vj ∩ (Rn\0)) =
m
⋃

j=1

U j ,

which proves that F is compact in Rn\0. 	

We recall that a mapping f is called proper if f −1(K ) is compact whenever K is

compact.

Lemma 3.2 Let f : Rn → R
n be proper and such that f (0) = 0 and f (Rn\0) ⊂

R
n\0. Then the restriction f : Rn\0 → R

n\0 is proper.

Proof Let K ⊂ R
n\0 be compact in R

n\0. By Lemma 3.1 it is compact in R
n , and,

since f is proper, the set f −1(K ) is compact in R
n . We notice that if 0 ∈ f −1(K )

then we would have 0 = f (0) ∈ K , which is impossible since K ⊂ R
n\0. Hence

f −1(K ) ⊂ R
n\0, and by Lemma 3.1 again, the set f −1(K ) is compact in R

n\0.
Hence the restriction f : Rn\0 → R

n\0 is proper. 	

Lemma 3.3 Let f : Rn → R

n be continuous everywhere. Then f is proper if and
only if |y| → ∞ implies | f (y)| → ∞.

Proof We show the if part. Let K ⊂ R
n be compact. Then it is closed and hence

f −1(K ) ⊂ R
n is closed. Suppose f −1(K ) is not bounded. Then there is a sequence

y j ∈ f −1(K ) such that |y j | → ∞. Hence f (y j ) ∈ K and also | f (y j )| → ∞ by
the assumption on f , which yields a contradiction with the boundedness of K . The
converse implication is clearly also true. 	

Lemma 3.4 Let f : Rn → R

n be proper, injective, and continuous. Then f is an
open map.

Proof Let us assume that f (U ) is not open for an open subset U ⊂ R
n . Then there

is a point a ∈ U such that f (a) is on the boundary of f (U ), and we can construct
a sequence y j ∈ R

n\U such that f (y j ) → f (a). Since f is proper, there exists a
subsequence y′

j which converges to some point b ∈ R
n\U . Note that b �= a. Since f

is continuous, f (y′
j ) → f (b), but we also have f (y′

j ) → f (a) which contradicts to
the fact that f is injective. 	


The following result is a straight forward consequence of Theorem 2.1.

Corollary 3.5 Let n ≥ 2. Let f : Rn → R
n be proper and such that and f (0) = 0

and f (Rn\0) ⊂ R
n\0. Moreover, assume that f is C1 on R

n\0, with det D f �= 0
on R

n\0. Then the restriction f : Rn\0 → R
n\0 is surjective. If n ≥ 3 in addition,

f : Rn\0 → R
n\0 is also injective.

Proof By Lemma 3.2, the restriction of f is a proper map from M = R
n\0 to N

= R
n\0. Note that N is simply connected if n ≥ 3. Then Theorem 2.1 implies the

statement. 	
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With all these facts, Theorem 2.3 is immediate:

Proof of Theorem 2.3 By Corollary 3.5 and Lemma 3.3, the map f : Rn\0 → R
n\0

is bijective. Hence it is a global C1 diffeomorphism by the usual local inverse function
theorem. Furthermore, the map f : Rn → R

n is also bijective since f (0) = 0, hence
the global inverse f −1 : Rn → R

n exists and is continuous by Lemma 3.4. Since
f : Rn → R

n is also continuous, it is a homeomorphism. 	
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