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Abstract The present paper deals mainly with seven fundamental theorems of math-
ematical analysis, numerical analysis, and number theory, namely the generalized
Parseval decomposition formula (GPDF), introduced 15 years ago, the well-known
approximate sampling theorem (ASF), the new approximate reproducing kernel theo-
rem, the basic Poisson summation formula, already known to Gauß, a newer version of
theGPDF having a structure similar to that of the Poisson summation formula, namely,
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the Parseval decomposition–Poisson summation formula, the functional equation of
Riemann’s zeta function, as well as the Euler–Maclaurin summation formula. It will in
fact be shown that these seven theorems are all equivalent to one another, in the sense
that each is a corollary of the others. Since these theorems can all be deduced from each
other, one of them has to be proven independently in order to verify all. It is convenient
to choose the ASF, introduced in 1963. The epilogue treats possible extensions to the
more general contexts of reproducing kernel theory and of abstract harmonic analysis,
using locally compact abelian groups. This paper is expository in the sense that it treats
a number of mathematical theorems, their interconnections, their equivalence to one
another. On the other hand, the proofs of the many intricate interconnections among
these theorems are new in their essential steps and conclusions.

Keywords Bandlimited and non-bandlimited functions · Sampling theorem ·
Parseval formula · Reproducing kernel formula · Poisson’s summation formula ·
Riemann’s zeta function · Euler–Maclaurin summation formula

Mathematics Subject Classfication 30D10 · 94A20 · 41A80 · 42A38 · 30D05
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Pivotal theorems for bandlimited as well as non-bandlimited functions 483

1 Introduction

A provoking result of Fourier analysis has turned up in the past 15 years, namely

1.1 Generalized Parseval decomposition formula (GPDF)

For f ∈ F2 ∩ S1
w, w > 0, and g ∈ F2, there holds Rw f ∈ L2(R) and

∫
R

f (u)g(u) du = 1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)

− 1

w

∑
k∈Z

f

(
k

w

)
1√
2π

∫
|v|≥πw

ĝ(v)eikv/w dv +
∫
R

(Rw f )(u)g(u) du, (1.1)

where

(Rw f )(t) := 1√
2π

∑
k∈Z

(
1 − e−i2πkwt) ∫ (2k+1)πw

(2k−1)πw

f̂ (v)eivt dv (t ∈ R). (1.2)

Observe that limw→∞(Rw f )(t) = 0 uniformly for t ∈ R, since

∣∣(Rw f )(t)
∣∣ ≤

√
2

π

∫
|v|≥πw

| f̂ (u)| du. (1.3)

Here F2 and F2 ∩ S1
w are suitable subspaces of L2(R), and f̂ denotes the Fourier

transform (for exact definitions see Sect. 2.1).
Formula (1.1), first established in [17,18], can be said to be intermediate between the

classical General Parseval/Plancherel formula (or power/energy theorem) for L2(R)-
functions, namely

∫
R

f (u)g(u) du =
∫
R

f̂ (v)ĝ(v) dv ( f, g ∈ L2(R)),

and the special case of (1.1) for bandlimited L2(R)-functions, i. e., for functions f, g ∈
B̂2

πw (see Sect. 2.1), namely,

∫
R

f (u)g(u) du = 1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
=

∫
R

f̂ (v)ĝ(v) dv ( f, g ∈ B̂2
πw).

(1.4)
In fact, formula (1.1) is the extension of (1.4) from B̂2

πw to a larger subclass of
L2(R).

123



484 P. L. Butzer et al.

Note that if g ∈ B̂2
πw, then the hypotheses of GPDF are satisfied and the second

series on the right-hand side of (1.1) vanishes, and so (1.1) reduces to

∫
R

f (u)g(u) du = 1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
+

∫
R

(Rw f )(u)g(u) du. (1.5)

Moreover, if, in addition, f ∈ B̂2
πw, then the integral on the right-hand side of (1.5)

also vanishes since (Rw f )(u) = 0, and so (1.5) reduces to the (classical) General
Parseval formula (GPF) for f, g ∈ B̂2

πw, w > 0, already stated in (1.4). In this sense
the latter two terms in GPDF (1.1) can be regarded as remainder terms.

In this instance the assumption f ∈ S1
w is implicitly contained in the hypothesis

f ∈ B̂2
πw; see Sect. 2.1.

The second formula to be considered is the approximate sampling formula
(ASF) treated in Weiss [83], Brown [11,12] and Butzer-Splettstößer [22]; see also
[84, pp. 64–66].

1.2 Approximate sampling formula (ASF)

For f ∈ F2 ∩ S1
w, w > 0, we have

f (t) =
∑
k∈Z

f

(
k

w

)
sinc(wt − k) + (Rw f )(t) (t ∈ R), (1.6)

the series converging absolutely and uniformly on R, where

sinc t :=
⎧⎨
⎩
sin π t

π t
, t ∈ R\{0},

1, t = 0.

For the important role played by the sinc-function in mathematics see [80,81].
The ASF for not necessarily bandlimited functions generalizes the classical version

f (t) =
∑
k∈Z

f

(
k

w

)
sinc(wt − k) (t ∈ R) (1.7)

of the sampling formula for f ∈ B̂2
πw.

In signal analysis, convergence the sampling series is usually defined via the
limit of the symmetric partial sums, i. e., limN→∞

∑
|k|≤N f (k/w) sinc(wt − k) [see

(2.20)], reflecting the mode of convergence of complex Fourier series (see, e. g., [41,
pp. 5–6]). In particular, it is the usual approach in sampling theory, where the ASF
holds for functions in F2. In the present case, however, the focus is on the equiva-
lence of the validity of the ASF with other results, in particular with the PSF (see
Sect. 3.4).
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Pivotal theorems for bandlimited as well as non-bandlimited functions 485

Whereas to proceed from (1.7) to (1.6) one adds the “error” term (Rw f )(t), to go
from (1.4) to (1.1) one has to add two “error” terms.

To make the foregoing generalization fully clear, the ASF yields the GPDF and,
conversely, the GPDF for just one special function will yield the ASF; thus the two
formulae are truly equivalent to another, as already shown in [18].

A third formula belonging to our grouping of six equivalences in Fig. 1 brings us into
contact with the theory of Hilbert spaces with reproducing kernel, an important branch
of functional analysis and complex function theory having many areas of applications,
with a long history. See, e. g., [3,37,46,62].

It is well known that B̂2
πw is a sub-Hilbert space of L2(R) and is, furthermore, an

example of a Hilbert space with reproducing kernel. It is a special case of Saitoh’s
presentation (see, e. g., [41,Ch. 3], [77, pp. 9, 194]). The reproducing kernel is (t, u) 	→
w sincw(t−u) and the reproducingkernel formula (RKF), expressing the reproduction
of f ∈ B̂2

πw from itself, that is, all of its values, is

f (t) = w

∫
R

f (u) sincw(t − u) du =
∫
R

f
( κ

w

)
sinc(wt − κ) dκ (t ∈ R). (1.8)

The second integral in (1.8) is just the first integral rearranged to give a precise integral
analogue of the series in (1.7), which may be thought of as a “discrete reproducing
kernel formula”, expressing the reproduction of f from a discrete subset of its values.

In view of the foregoing equivalence GPDF⇔ASF, the question arises whether
there can be established a generalized version of RKF, thus one for non-band-
limited L1(R)-functions, which is equivalent to the former two. In fact, one basic
aim of this paper is to introduce the new approximate reproducing kernel formula,
namely

1.3 Approximate reproducing kernel formula (ARKF)

Let f ∈ F2 ∩ S1
w with w > 0. Then Rw f ∈ L2(R) and

f (t) = w

∫
R

f (u) sincw(t − u) du + (Rw f )(t) − w

∫
R

(Rw f )(u) sincw(t − u) du.

(1.9)

Clearly, if f ∈ B̂2
πw, then again Rw f = 0, and so we obtain the (classical)

reproducing kernel formula RKF, namely (1.8). Thus (1.9) represents the classical
RKF plus two remainder terms.

There is a fourth formula which is fundamental in a variety of mathematical fields,
namely the truly well-known Poisson summation formula (PSF). But for purposes of
precision let us state the version we are using.
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1.4 Poisson’s summation formula (PSF)

Let f ∈ L1(R) such that f̂ ∈ S1
w for some w > 0; then

√
2πw

∑
k∈Z

f (x + 2kπw) =
∑
k∈Z

f̂

(
k

w

)
eikx/w (a. e.). (1.10)

Now to the fifth formula which is actually a different version of GPDF but has
a structure similar to that of the Poisson summation formula, however not for one
function f , but for the product of two, namely f g on the left-hand side, and the
product of their Fourier transforms on the right-hand side.

1.5 Parseval decomposition–Poisson summation formula (PDPS)

For f ∈ F2 ∩ S1
w, w > 0, σ > 0, and g ∈ F2, there holds

1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
eikx/w =

∑
k∈Z

∫ σ

−σ

f̂ (v − x + 2kπw) ĝ(v) dv

+ 1

w

∑
k∈Z

f
( k

w

) 1√
2π

∫
|v|≥σ

ĝ(v)eik(v+x)/w dv

(1.11)

almost everywhere on R. Furthermore, if rather g ∈ F1 instead of g ∈ F2, then the
formula holds for all x ∈ R.

PDPS can in fact be interpreted as an approximate form of PSF for a product f g in
which g takes the role of an approximately bandlimited function. Indeed, the second
series on the right-hand side of PDPS may be seen as an error term depending on the
deviation of g from a bandlimited function. If g is bandlimited to [−σ, σ ], i. e. g ∈ B̂2

σ ,
then PDPS reduces to

1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
eikx/w =

∑
k∈Z

∫ σ

−σ

f̂ (v − x + 2kπw) ĝ(v) dv (1.12)

holding almost everywhere on R when g ∈ F2 and everywhere if rather g ∈ F1.
A particular form of PDPS had already been used in [18] in one of the proofs,

namely the form

1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
=

∑
k∈Z

∫ πw

−πw

f̂ (v + 2kπw)ĝ(v) dv

+ 1

w

∑
k∈Z

f

(
k

w

)
1√
2π

∫
|v|≥πw

ĝ(v)eikv/w dv, (1.13)
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Pivotal theorems for bandlimited as well as non-bandlimited functions 487

provided f ∈ F2 ∩ S1
w and g ∈ F1. It is the case x = 0, σ = πw of (1.11), noting

∫ σ

−σ

f̂ (v − x +2kπw) ĝ(v) dv =
∫ 2kπw−x+σ

2kπw−x−σ

f̂ (v) ĝ(v + x −2kπw) dv. (1.14)

In fact, PDPS in the form (1.13) is just a different representation of GPDF; see [18]
for the details.

Of interest is a version of (1.13) with g replaced by ĝ, the Fourier transform of a
function g ∈ L1(R)∩L2(R), thus ĝ ∈ F2. The result canbe regarded as a discretization
of the classical Fourier exchange formula (2.5).

Just as for GPDF, the authors have also never met PDPS in the literature; both
formulae also do not seem to be particular cases of specific trace formulae known to
the authors.

Next to our sixth formula, the famous

1.6 Functional equation of the Riemann zeta function (FERZ)

For the Riemann zeta function, defined by

ζ(s) :=
∞∑

k=1

1

ks
(s = σ + iτ ∈ C, σ > 1), (1.15)

and for σ ≤ 1 by analytic continuation, there holds for all s ∈ C the equation

π− s
2 �

( s

2

)
ζ(s) = π− 1−s

2 �

(
1 − s

2

)
ζ(1 − s) (s ∈ C)

or, equivalently,

2(2π)−s cos
(πs

2

)
�(s)ζ(s) = ζ(1 − s). (1.16)

In fact, we shall reprove the well-known equivalence FERZ ⇔ PSF (see the lit-
erature cited in Sect. 4) in great detail, in particular in regard to the interchanges of
the orders of summation and/or integration occurring. What is remarkable about this
equivalence is that in the direction FERZ ⇒ PSF, a very particular result, namely
the functional equation for ζ(s), implies a very general result, the PSF for a large
class of functions. In other words, a formula of number theory, (externally) unrelated
to periodicity and Fourier series, can yield a basic, general formula of analysis, one
connecting Fourier series and integrals.

It is well-known that the FERZ is equivalent to the second famous functional equa-
tion, namely FEJT

ϑ
(
−1

z

)
= (−i z)

1
2 ϑ(z), (1.17)
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satisfied by Jacobi’s ϑ-function

ϑ(z) = 1 + 2
∞∑

k=1

exp(iπk2z) =
∞∑

k=−∞
exp(iπk2z). (1.18)

The function ϑ , defined on the upper half-plane H := {z ∈ C; �z > 0}, is analytic
in H and periodic with period 2.

As to the proofs of FERZ ⇒ FEJT see e. g. Hamburger [36, pp. 136–137], and for
the converse Riemann [74]. In the matter see also [44].

It is well known that an application of PSF to the Gauß kernel of (2.12) yields FEJT
(see [20, p. 204]).

Furthermore, Dedekind’s η-function (1877) of elliptic modular functions,

η(z) = exp
( iπ z

12

) ∞∏
k=1

(
1 − exp(i2πkz)

)
, (1.19)

analytic on H , satisfies the same functional equation (1.17), namely FEDE
(cf. [2, pp. 47–50]),

η
(
−1

z

)
= (−i z)

1
2 η(z).

Finally to our seventh formula, discovered by Euler in connection with the so-called
Basel problem, i. e., with determining ζ(2) in modern terminology.

1.7 Euler–Maclaurin summation formula (EMSF)

For n, r ∈ N and f ∈ C (2r)[0, n], we have
n∑

k=0

f (k) =
∫ n

0
f (x) dx + 1

2

[
f (0) + f (n)

] +
r∑

k=1

B2k

(2k)!
[

f (2k−1)(n) − f (2k−1)(0)
]

+(−1)r
∞∑

k=1

∫ n

0

ei2πkt + e−i2πkt

(2πk)2r
f (2r)(t) dt, (1.20)

where B2k are the Bernoulli numbers.
The implications to be established in this paper are indicated by the arrows in Fig. 1.

For a proof of ASF⇔EMSF the reader is referred to [16]. Thus each of the seven
formulae GPDF, ASF, ARKF, PSF, PDPS, FERZ and EMSF is equivalent to each
other, in the sense that each is a corollary of each of the others.

This means that three different, particular results of number theory (FERZ, FEJT,
FEDE) are equivalent to six general summation formulae of Fourier analysis, signal
analysis and numerical analysis, namely PSF, PDPS, GPDF, ASF, ARKF, EMSF.

Section 2 is devoted to notations and the side results needed. In Sect. 3 we prove
a first grouping of equivalences, namely, GPDF⇔ASF, and then ASF⇔ ARKF,
PSF⇔PDPS, and finally ASF⇔PSF. The latter three equivalences are new results
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Fig. 1 The implications to be
proved PDPS FERZ

PSF

ASF

GPDF ARKF

of this paper. Section 4 is concerned with the equivalence of PSF and FERZ, and in
Sect. 5 gives a proof of ASF independent of the other formulae of this paper.

The epilogue of Sect. 6, with the topic abstract settings, deals with the possibility
of presenting this paper in a setting based on reproducing kernel (r.k.) theory, and also
in terms of abstract harmonic analysis, using locally compact abelian groups.

In the present paper, dealing with the grouping (A): GPDF, ASF, ARKF, PSF,
PDPS, FERZ, as well as the Euler–Maclaurin summation formula EMSF (handled in
[16])—all for non-bandlimited functions—thebasic result is that all seven theorems are
equivalent amongst themselves. On the other hand, in our joint paper [15], treating the
grouping (B), namely the classical sampling theoremCSF, the general Parseval formula
GPF (i. e., the GPDF for bandlimited functions), the reproducing kernel formula GPF
(i. e., GPDF for bandlimited functions) and the PSF—all for bandlimited functions—it
was shown that the latter four theorems are also all equivalent amongst themselves.

However in our article [14] it was shown that the approximate sampling theorem,
the ASF, is equivalent to the classical sampling theorem CSF. Thus the conclusion of
the present paper, together with the papers [15,16] and [14], is the full equivalence of
the groupings (A) and (B). In other words, the seven theorems for non-bandlimited
functions are all equivalent to the corresponding ones for the classical bandlimited
functions.

Whereas the majority of the assertions of the theorems in question have been stated
and established in earlier papers by a (part) of the present authors, the proofs of the
many delicate interconnections between those of grouping (A), the chief topic of the
paper, are new in their essential steps and conclusions, as referred to.

Electrical engineers use bandlimited functions as a mathematical model which is a
rather severe restriction. In fact there do not exist signalswhich are simultaneously ban-
dlimited and duration-limited (time-limited). Hence engineers work intuitively with
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490 P. L. Butzer et al.

approximately bandlimited functions; these are covered by our non-bandlimited the-
orems. Thus our paper can also be regarded as a further justification of what electrical
engineers do in their real life work.

2 Notations and side results

2.1 Notations

The Fourier transform of f ∈ L p(R) with p = 1 or p = 2 is defined by

f̂ (v) := 1√
2π

∫
R

f (u)e−ivu du (v ∈ R),

the integral being understood as the limit in the L2(R)-norm for p = 2. We shall
consider the following function spaces, namely

F p := {
f ∈ L p(R) ∩ C(R) ; f̂ ∈ L1(R)

}
(p = 1, 2),

where C(R) denotes the space of all uniformly continuous and bounded functions on
R, and

S p
w := {

f : R → C ; (
f ( k

w
)
)

k∈Z ∈ 
p(Z)
}

(w > 0, 1 ≤ p ≤ ∞).

There holds F1 ⊂ F2 and S1
w ⊂ S p1

w ⊂ S p2
w ⊂ S∞

w for 1 ≤ p1 ≤ p2 ≤ ∞.
The Bernstein spaces B̂ p

σ for p = 1, 2 and σ > 0 are defined in terms of the Fourier
transform via

B̂ p
σ := {

f ∈ L p(R) ; f̂ (v) = 0 a. e. outside [−σ, σ ]}.
Since the Fourier transform of a function f ∈ B̂ p

σ has support on a set of finitemeasure,
those functions are also called “bandlimited”. One has the inclusions B̂1

σ ⊂ B̂2
σ and

B̂ p
σ ⊂ F p ∩ S1

w ⊂ F p ∩ S p
w, p = 1, 2; see [64, pp. 123,126].

2.2 Results on Fourier analysis

Let us list some well-known results from Fourier analysis; see any textbook in the
matter, e. g., [20, Chapt. 5.1 and 5.2].

Proposition 1 (a) If f ∈ L p(R), p = 1, 2, then for each h ∈ R,

[ f (· + h)]̂ (v) = f̂ (v)eihv (2.1)

[e−ih· f (·)]̂ (v) = f̂ (v + h) (2.2)

for all v ∈ R in case p = 1 and a.e. in case p = 2.
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Pivotal theorems for bandlimited as well as non-bandlimited functions 491

(b) If f ∈ L1(R), g ∈ L p(R), p = 1, 2, then the convolution

( f ∗ g)(t) := 1√
2π

∫
R

f (u)g(t − u) du (2.3)

belongs to L p(R), and for the Fourier transform one has the convolution theorem

( f ∗ g)̂ (v) = f̂ (v) ĝ(v) (2.4)

for all v ∈ R in case p = 1 and a.e. in case p = 2.
(c) If f, g ∈ L p(R), p = 1, 2, then there holds the exchange formula

∫
R

f (v)ĝ(v) dv =
∫
R

f̂ (v)g(v) dv. (2.5)

(d) If f ∈ L2(R), then f̂ also belongs to L2(R) and ‖ f ‖L2(R) = ‖ f̂ ‖L2(R). Further-
more, there holds the inversion formula

f (t) =
∫
R

f̂ (v)eivt dv = ̂̂f (−t) a. e., (2.6)

where the integral is again understood as the limit in L2(R)-norm. If f ∈ F p with
p = 1 or p = 2, then the integral in (2.6) exists as an ordinary Lebesgue integral
and both equalities hold for all t ∈ R.

Lemma 1 There hold the formulae

1√
2π w

rect
( ·
w

)̂
(v) = sinc(wv) (v ∈ R), (2.7)

sinc(w·)̂ (v) = 1√
2π w

rect
( v

w

)
(v ∈ R) (2.8)

with the rectangle function

rect(t) :=

⎧⎪⎨
⎪⎩
1, |t | < π,
1
2 , |t | = π,

0, |t | > π.

Furthermore, one has
∫
R

sinc(u − s) sinc(u − t) du = sinc(s − t) (s, t ∈ R), (2.9)

and, in particular,

∫
R

sinc(u − j) sinc(u − k) du =
{
1, j = k,

0, j �= k.
( j, k ∈ Z). (2.10)
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Proof Equation (2.7) follows by a simple integration, and (2.8) follows from (2.7)
by the Fourier inversion formula. (For an elementary proof of (2.8) without using the
inversion formula see [10, p. 13 f].) As to (2.9) one has by Proposition 1 (a), (c), and
by (2.7) and (2.8)

∫
R

sinc(u − s) sinc(u − t) du =
∫
R

[
1√
2π

rect(·)ei ·s
]∧

(u) sinc(u − t) du

=
∫
R

[
1√
2π

rect(v)eivs
]
sinc(· − t)∧(v) du

=
∫
R

[
1√
2π

rect(v)eivs
][

1√
2π

rect(v)e−ivt
]

dv

= 1

2π

∫
R

rect(v)e−iv(t−s) dv = 1√
2π

rect∧(t − s)

= sinc(t − s) = sinc(s − t).

Finally, (2.10) follows from (2.9) noting that sinc( j − k) = δ j,k . ��
We shall also need the following result for the approximate identities gρ of Gauß-
Weierstraß and χρ of Fejér; see [20, Sec. 3.1.3, 3.1.2, 3.2].

Proposition 2 (a) For f ∈ C(R), we have

lim
ρ→0+

1√
2π

∫
R

f (u)gρ(t − u) du = f (t) (2.11)

uniformly for t ∈ R, where

gρ(u) := 1√
2ρ

exp
(−u2

4ρ

)
(u ∈ R; ρ > 0) (2.12)

is the Gaussian kernel, its Fourier transform being

ĝρ(v) = e−ρv2 (v ∈ R; ρ > 0). (2.13)

The same result is valid for f ∈ L p(R), 1 ≤ p < ∞; the convergence in (2.11)
holding now in L p(R)-norm as well as a. e. on R.

(b) The assertions of part (a) remain valid, if the Gaussian kernel is replaced by
Fejér’s kernel

χρ(u) := ρ
√
2π sinc2(ρu) (u ∈ R, ρ > 0), (2.14)

having Fourier transform

χ̂ρ(v) =
(
1 − |v|

2πρ

)
+

(v ∈ R, ρ > 0), (2.15)

where h+(u) := h(u) if h(u) ≥ 0, and h+(u) = 0 if h(u) < 0.
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For f := sinc(· − u), we obtain from ASF the following sinc summation formula:

sinc(t − u) =
∑
k∈Z

sinc(t − k) sinc(u − k). (2.16)

However, we need not invoke ASF for deriving (2.16). It is known that (2.16) is a
simple consequence of the famous, classical cotangent expansion. For the latter, easy
elementary proofs are known; see e. g. [43], [15, p. 448]

It follows from (2.16) that

∑
k∈Z

sinc2(t − k) = 1 (t ∈ R). (2.17)

The following lemma will be useful; for a proof see [40, p. 207].

Lemma 2 Let f ∈ L p(R), 1 < p < ∞, and ( fk)k∈N be a sequence in L p(R). If there
exists a constant M such that ‖ fk‖L p(R) ≤ M for all k ∈ N, and if limk→∞ fk(u) =
f (u) a.e. in R, then for every g ∈ Lq(R), 1/p + 1/q = 1,

lim
k→∞

∫
R

fk(u)g(u) du =
∫
R

f (u)g(u) du.

2.3 The sampling series Sw f

Concerning the convergence of the series

(Sw f )(t) :=
∑
k∈Z

f
( k

w

)
sinc(wt − k) (t ∈ R), (2.18)

occurring in (1.6), (1.7), we have

Lemma 3 Let f ∈ S1
w for some w > 0. The series (Sw f )(t) converges absolutely and

uniformly on R. Furthermore, Sw f converges in L p(R), 1 < p < ∞. In particular,
Sw f ∈ L p(R), and

lim
n→∞

∫
R

(Sw,n f )(u)g(u) du =
∫
R

(Sw f )(u)g(u) du (2.19)

for all g ∈ Lq(R), 1/p + 1/q = 1, where

(Sw,n f )(t) :=
∑
|k|≤n

f
( k

w

)
sinc(wt − k) (2.20)

denote the partial sums of Sw f .
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Proof For simplicity take w = 1. For 0 < n1 < n2 there holds

∥∥S1,n1 f − S1,n1 f
∥∥

L p(R)
≤

∑
n1<|k|≤n2

| f (k)| ‖ sinc(· − k)‖L p(R)

= ‖ sinc ‖L p(R)

∑
n1<|k|≤n2

| f (k)|, (2.21)

where the latter term tends to zero for n1, n2 → ∞ since f ∈ S1
1 . The same estimate

holds for the space C(R), giving the absolute and uniform convergence of (S1,n f )(t)
to (S1 f )(t). Further, the completeness of L p(R) and estimate (2.21) guarantee that
S1,n f tends to some function g ∈ L p(R) which must be equal to the uniform limit
S1 f .

Finally, by Hölder’s inequality

∣∣∣
∫
R

(Sw,n f )(u)g(u) du −
∫
R

(Sw f )(u)g(u) du
∣∣∣ ≤ ‖Sw,n f − Sw f ‖L p(R)‖g‖Lq (R),

which yields (2.19). ��

2.4 Remarks on Poisson’s summation formula

As to the PSF, let h(x) := √
2πw

∑
k∈Z | f (x + 2kπw)|; then

∫ πw

−πw

h(x) dx = √
2πw

∑
k∈Z

∫ πw

−πw

| f (x + 2kπw)| dx

= √
2πw

∑
k∈Z

∫ (2k+1)πw

(2k−1)πw

| f (x)| dx = √
2πw

∫
R

| f (x)| dx < ∞,

(2.22)

showing that h is integrable over the interval [−πw, πw], and hence over any compact
interval in view of the 2πw-periodicity of h.

Now one has for arbitrary a, b ∈ R that

∫ b

a

∣∣∣√2πw

n∑
k=m

f (x + 2kπw)

∣∣∣dx ≤
∫ b

a
h(x) dx < ∞ (m, n ∈ Z), (2.23)

and so it follows that the left-hand side of (1.10) converges a. e. on R, and the conver-
gence is dominated by the locally integrable function h.

When we wish to deduce PSF from any of the other formulae, it suffices to prove it
for a dense subspace of X ⊂ L1(R) with ĝ ∈ S1

w for all g ∈ X . Indeed, let f ∈ L1(R)

with f̂ ∈ S1
w, and let ( fn)n∈N be a sequence in X with limn→∞ ‖ fn − f ‖L1(R) = 0.

Denoting f ∗(x) := √
2πw

∑
k∈Z f (x + 2kπw), f ∗

n (x) := √
2πw

∑
k∈Z fn(x +

2kπw), then (cf. (2.23), (2.22)),

123



Pivotal theorems for bandlimited as well as non-bandlimited functions 495

∫ πw

−πw

| f ∗
n (u) − f ∗(u)|du ≤ ‖ fn − f ‖L1(R) (n ∈ N). (2.24)

This yields that
lim

n→∞ f̂ ∗
n (k) = f̂ ∗(k) (k ∈ Z), (2.25)

where f̂ ∗
n (k) and f̂ ∗(k) denote the trigonometric Fourier coefficients of the 2πw-

periodic function f ∗
n and f ∗, respectively.

On the other hand, PSF applied to the fn states that

f ∗
n (x) =

∑
k∈Z

f̂n

( k

w

)
eikx/w a. e.,

meaning, in view of the uniform convergence of the series on the right, that f̂n(k/w),
k ∈ Z, are the Fourier coefficients of the 2πw-periodic function on the left. This
implies that

f̂ ∗(k) = lim
n→∞ f̂ ∗

n (k) = lim
n→∞ f̂n

( k

w

)
= f̂

( k

w

)
((k ∈ Z), (2.26)

the last equality being valid in view of | f̂n(v)− f̂ (v)| ≤ ‖ fn − f ‖L1(R) for all v ∈ R.
Hence the Fourier coefficients of f ∗ are given by f̂ ∗(k) = f̂ (k/w), k ∈ Z, i. e.

f ∗(x) =
∑
k∈Z

f̂
( k

w

)
eikx/w a. e.

The equality a. e. here holds in view of f̂ ∈ S1
w, giving the uniform convergence of

the Fourier series of f ∗. This is PSF for all f ∈ L1(R) with f̂ ∈ S1
w.

3 Equivalence of the decomposition formula and four summation formulae

In this section we shall deduce the basic new ARKF theorem for L2(R)-function by
means of the ASF. Even more so, the ASF itself is a consequence of ARKF. Thus
the two are equivalent. On top, three other basic equivalences of this paper are also
established in this section.

When we want to deduce one of the formulae GPDF, ASF or ARKF, it suffices to
carry it out for w = 1. Indeed, the general formula is obtained from that special case
by replacing f by f (·/w), t by wt and noting that

[
(R1 f )

( ·
w

)]
(wt) = (Rw f )(t).
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3.1 GPDF and ASF

But first to the equivalence of GPDF with ASF. The proof of the implication
GPDF⇒ASF is essentially that of Thm 1.3 in [18]. We present it here again for
convenience.

Proof of GPDF ⇒ ASF for f ∈ F2 ∩ S1
w. In regard to the proof which follows, it

is appropriate to rewrite (1.1) as

∫
R

f (u)g(u) du = 1

w

∑
k∈Z

f
( k

w

) 1√
2π

∫
|v|≤πw

ĝ(v) eikv/w dv

+
∫
R

(Rw f )(u)g(u) du. (3.1)

Indeed, one has in view of the Fourier inversion formula (2.6) for g

1

w

∑
k∈Z

f

(
k

w

)
g

(
k

w

)
− 1

w

∑
k∈Z

f

(
k

w

)
1√
2π

∫
|v|≥πw

ĝ(v)eikv/w dv

= 1

w

∑
k∈Z

f

(
k

w

)
1√
2π

{∫ ∞

−∞
ĝ(v)eikv/w dv −

∫
|v|≥πw

ĝ(v)eikv/w dv

}
.

A substitution of this identity into (1.1) yields (3.1).
Now we restrict the matter to w = 1 and apply the GPDF in the form (3.1) to

f ∈ F2 ∩ S1
1 and g = (2π)−1/2gρ(t − ·) ∈ F2 of (2.12). Noting that ̂gρ(t − ·)(v) =

e−ρv2e−i tv by (2.1) and (2.13), we obtain

1√
2π

∫
R

f (u)gρ(t − u) du =
∑
k∈Z

f (k)
1

2π

∫
|v|≤π

e−ρv2eiv(k−t) dv

+ 1√
2π

∫
R

(R1 f )(u)gρ(t − u) du.

In this equation, we let ρ → 0+. Since f and R1 f belong to C(R), and since the
infinite series is uniformly convergent in view of f ∈ S1

1 , Proposition 2 yields

f (t) =
∑
k∈Z

f (k)
1

2π

∫
|v|≤π

eiv(k−t) dv + (R1 f )(t) (t ∈ R).

This is ASF, because the integral equals 2π sinc(t − k). The absolute and uniform
convergence of the series (S1 f )(t) follows from Lemma 3. ��

The proof of the converse direction ASF⇒GPDF is similar to the corresponding
one in [18] for non-uniform sampling.
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Proof of ASF ⇒ GPDF for f ∈ F2 ∩ S1
w, g ∈ F2. Let w = 1, multiply ASF by g

and integrate over R. Then

∫
R

f (u)g(u) du =
∫
R

(S1 f )(u)g(u) du +
∫
R

(R1 f )(u)g(u) du. (3.2)

Since f ∈ L2(R) by assumption, we also have S1 f ∈ L2(R) in view of Lemma 3,
and hence R1 f = f − Sw f ∈ L2(R). Thus all integrals in (3.2) exists. For the first
term on the right-hand side of (3.2) one obtains

∫
R

(S1 f )(u)g(u) du =
∑
k∈Z

f (k)

∫
R

g(u) sinc(u − k) du, (3.3)

the interchange of integration and summation being justified, since
(

f (k)
) ∈ l1(Z)

and the integrals on the right-hand side are bounded by ‖g‖L2(R) · ‖ sinc ‖L2(R). Now,
using the convolution theorem (2.4), formula (2.8), and the Fourier inversion formula
(2.6), we can rewrite the latter integral as

∫
R

g(u) sinc(u − k) du = √
2π(g ∗ sinc)(k) = 1√

2π

∫
R

ĝ(v) rect(v)eikv dv

= 1√
2π

{∫
R

−
∫

|v|≥π

}
ĝ(v)eikv dv = g(k) − 1√

2π

∫
|v|≥π

ĝ(v)eikv dv

Inserting this into (3.3), and then the resulting equation into (3.2) yields the assertion
(1.1) for w = 1. ��

Thus we have established the equivalence ASF⇔GPDF.

3.2 ASF and ARKF

Now to the basic equivalence ASF⇔ARKF mentioned above.
Proof of ASF ⇒ ARKF for f ∈ F2∩ S1

w, g ∈ F2. The fact that Rw f = f − Sw f ∈
L2(R) follows again from Lemma 3. Now, let w = 1 and let f be as in ARKF. We
consider ASF (1.6), replace t by u, multiply both sides by sinc(t − u) and integrate
with respect to u. This gives

∫
R

f (u) sinc(t − u) du =
∫
R

∑
k∈Z

f (k) sinc(u − k) sinc(t − u) du

+
∫
R

(R1 f )(u) sinc(t − u) du. (3.4)

By Lemma 3 we can interchange integration and summation on the right-hand side
and we obtain by (2.9)
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∫
R

∑
k∈Z

f (k) sinc(u − k) sinc(t − u) du

=
∑
k∈Z

f (k)

∫
R

sinc(u − k) sinc(t − u) du =
∑
k∈Z

f (k) sinc(t − k).

Applying ASF once more, the latter series can be replaced by f (t) − (R1 f )(t), and
hence ∫

R

∑
k∈Z

f (k) sinc(u − k) sinc(t − u) du = f (t) − (R1 f )(t).

Inserting this into (3.4) yields the ARKF in the form (1.9). ��
Proof of ARKF ⇒ ASF for f ∈ F2 ∩ S1

1 . It suffices to show that∫
R

[ f (u) − (R1 f )(u)] sinc(t − u) du =
∑
k∈Z

f (k) sinc(t − k), (3.5)

since the integral equals f (t) − (R1 f )(t). For this purpose, we shall use the sinc
summation formula (2.16) on the left-hand side and interchange integration and sum-
mation. For justifying the interchange, wewant to employ Lemma 2.We have to verify
that the hypotheses of that result are satisfied in the present situation.

Clearly, f − R1 f and sinc(· − t) belong to L2(R). Next, setting

sincN (t − u) :=
∑

|k|≤N

sinc(u − k) sinc(t − k),

we have limN→∞ sincN (t − u) = sinc(t − u). Furthermore, by employing (2.9) and
(2.17), we find that

‖ sincN (t − ·)‖2L2(R)

=
∑

|k|≤N

∑
|l|≤N

{∫
R

sinc(u − k) sinc(u − l) du

}
sinc(t − k) sinc(t − l)

=
∑

|k|≤N

∑
|l|≤N

δk,l · sinc(t − k) sinc(t − l)

=
∑

|k|≤N

sinc2(t − k) ≤
∑
k∈Z

sinc2(t − k) = 1,

where Kronecker’s delta has been used. Now Lemma 2 allows us to conclude that
∫
R

[ f (u) − R1 f (u)] sinc(t − u) du

= lim
N→∞

∫
R

[ f (u) − R1 f (u)] sincN (t − u) du

= lim
N→∞

∑
|k|≤N

{∫
R

[ f (u) − R1 f (u)] sinc(u − k) du

}
sinc(t − k).
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By ARKF for t = k, the expression in braces is equal to f (k) − R1 f (k). Since
R1 f vanishes at the integers, we see that (3.5) holds. The statement regarding the
convergence of the series is verified as in the proof of GPDF⇒ASF. ��

The equivalence assertion ASF ⇔ ARKF, just established, is another new result of
this paper.

3.3 PSF and PDPS

The following concerns the final grouping of this section.
Proof of PSF ⇒ PDPS It suffices again to consider the casew = 1. First we assume

that g ∈ F2 only and define

g1(u) := 1√
2π

∫ σ

−σ

ĝ(v)eiuv dv and φ(u) := (
f g1

)̂
(−u),

which implies that φ̂ = f g1. Then φ̂ ∈ L1(R) since it is a product of two functions
from L2(R), and φ̂ ∈ S1

1 since f ∈ S1
1 and g1 is bounded. Furthermore, φ ∈ C(R)

since φ(− ·) is the Fourier transform of a function from L1(R). Now one has by
Proposition 1 (a), (c) that

φ(−ξ) = (
f g1

)
f̂ (ξ) = 1√

2π

∫
R

f (v) g1(v)e−ivξ dv

= 1√
2π

∫
R

[
f (·)e−iξ ·]̂̂f (−v) g1(v) dv

= 1√
2π

∫
R

f̂ (ξ − v) ĝ1(v) dv. (3.6)

Hence φ(− ·) is the convolution of f̂ ∈ L1(R) and ĝ1 ∈ L1(R), and so it follows
by Proposition 1b) that φ ∈ L1(R). Altogether we have shown that φ satisfies the
hypotheses of PSF for w = 1, and so

√
2π

∑
k∈Z

φ(x + 2kπ) =
∑
k∈Z

φ̂(k)eikx =
∑
k∈Z

f (k)g1(k)eikx a. e. (3.7)

Employing (3.6) and noting that ĝ1(v) = ĝ1(−v) = ĝ(−v) rect(vπ/σ), we find that

φ(ξ) = (
f g1

)
f̂ (−ξ) = 1√

2π

∫ σ

−σ

f̂ (v − ξ) ĝ(v) dv.

Substituting this into the left-hand side of (3.7) yields

∑
k∈Z

∫ σ

−σ

f̂ (v − x − 2kπ) ĝ(v) dv =
∑
k∈Z

f (k)g1(k)eikx a. e. (3.8)
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Using the Fourier inversion formula to obtain

g1(u) = g(u) − 1√
2π

∫
|v|≥σ

ĝ(v)eiuv dv

for eliminating g1 on the right-hand side of (3.8), we arrive at

∑
k∈Z

∫ σ

−σ

f̂ (v − x − 2kπ) ĝ(v) dv

=
∑
k∈Z

f (k) g(k)eikx −
∑
k∈Z

f (k)
1√
2π

∫
|v|≥σ

ĝ(v)eik(v+x) dv a. e. (3.9)

The desired formula is obtained by replacing k by −k on the left-hand side.
When g ∈ F1, then ĝ ∈ C(R). Since also f ∈ S1

1 and ĝ ∈ L1(R), we observe that
the two series on the right-hand side of (3.9) depend continuously on x .

As to the left-hand side, choose n ∈ N such that nπ ≥ σ , then,

∣∣∣∑
k∈Z

∫ σ

−σ

f̂ (v − 2kπ) ĝ(v)dv

∣∣∣ ≤ ‖ĝ‖L∞(R)

∑
k∈Z

∫ nπ

−nπ

∣∣ f̂ (v − 2kπ)
∣∣dv

= ‖ĝ‖L∞(R)

∫ nπ

−nπ

∑
k∈Z

∣∣ f̂ (v − 2kπ)
∣∣dv. (3.10)

Here and in the next displayed formula the interchange of summation and integration
is justified by Beppo Levi’s theorem.

Since the integrand in the last line of (3.10) is a 2π -periodic function, the integral
equals n-times the integral from −π to π , and hence

∣∣∣∑
k∈Z

∫ σ

−σ

f̂ (v − 2kπ) ĝ(v)dv

∣∣∣ ≤ n‖ĝ‖L∞(R)

∫ π

−π

∑
k∈Z

∣∣ f̂ (v − 2kπ)
∣∣dv

= n‖ĝ‖L∞(R)

∑
k∈Z

∫ (−2k+1)π

(−2k−1)π

∣∣ f̂ (v)
∣∣dv = n‖ĝ‖L∞(R)

∫ ∞

−∞
∣∣ f̂ (v)

∣∣dv.

This inequality, with f̂ (·) replaced by f̂ (· − x) − f̂ (· − y), yields

∣∣∣∑
k∈Z

∫ σ

−σ

f̂ (v − x − 2kπ) ĝ(v)dv −
∑
k∈Z

∫ σ

−σ

f̂ (v − y − 2kπ) ĝ(v)dv

∣∣∣

≤ n‖ĝ‖L∞(R)

∫ ∞

−∞
∣∣ f̂ (v − x) − f̂ (v − y)

∣∣dv,

and since the right side of this inequality tends to zero for y → x by the continuity in
the mean of f̂ ∈ L1(R), we have shown that the left-hand side of (3.9) is a continuous
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function of x ∈ R. Thus, both sides being continuous, (3.9) must hold for all x ∈ R.
��

Proof of PDPS ⇒ PSF for f ∈ L1(R) with f̂ ∈ S1
1 . First assume f ∈ F1(R) with

f̂ ∈ S1
1 . We apply PDPS with σ = π , f replaced by f̂ ∈ F1 ∩ S1

1 ⊂ F2 ∩ S1
1 , and

g(t) replaced by ĝρ(t)e−i xt ∈ F1 of (2.12), (2.13). Noting that gρ , ĝρ are real and
even, (2.6), and

[
ĝρ(t)e−i xt

]̂(v) = [
gρ(t − x)

]̂̂(v) = gρ(−v − x) = gρ(v + x),[
ĝρ(t)e−i xt

]
(̂v) = [

ĝρ(v)eixt ] (̂v) = [
gρ(t + x)

]̂̂(v) = gρ(x − v),

we obtain for each x ∈ R,

∑
k∈Z

f̂ (k)ĝρ(k)eixk =
∑
k∈Z

∫ π

−π

̂̂f (v + 2kπ)gρ(v + x) dv

+
∑
k∈Z

f̂ (k)
1√
2π

∫
|v|≥π

gρ(x − v)eikv dv. (3.11)

Now let ρ → 0+. Since limρ→0+ ĝρ(k) = 1 by (2.13), it follows that

lim
ρ→0+

∑
k∈Z

f̂ (k)ĝρ(k)eixk =
∑
k∈Z

f̂ (k)eixk (x ∈ R),

where the interchange of summation and integration is allowed since the series is
uniformly convergent with respect to ρ > 0 because of { f̂ (k)} ∈ 
1(Z) and 0 <

ĝρ(k) ≤ 1 for all k ∈ Z and ρ > 0.
As to the right-hand side of (3.11), the first term can be rewritten as (cf. (2.6)),

∑
k∈Z

∫ π

−π

̂̂f (v + 2kπ)gρ(v + x) dv =
∑
k∈Z

∫ π

−π

f (v − 2kπ)gρ(x − v) dv

=
∫
R

{∑
k∈Z

f (v + 2kπ)

}
rect(v)gρ(x − v) dv,

where the interchange of summation and integration is justified in view of the domi-
nated convergence of the series. An application of Proposition 2 shows that the latter
integral tends to

√
2π

∑
k∈Z f (v + 2kπ) a. e. on (−π, π) for ρ → 0+.

The integral in the second term on the right-hand side of (3.11) can be rewritten as

1√
2π

∫
R

gρ(x − v)eikv
{
1 − rect(v)

}
dv,

which tends to zero for ρ → 0+ a. e. on (−π, π) by Proposition 2. Hence we obtain

lim
ρ→0+

∑
k∈Z

f̂ (k)
1√
2π

∫
|v|≥π

gρ(v − x)eikv dv = 0
(
a.e. on (−π, π)

)
,
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noting again that { f̂ (k)} ∈ 
1(Z).
Altogether it follows from (3.11) for ρ → 0+,

∑
k∈Z

f̂ (k)eixk = √
2π

∑
k∈Z

f (v + 2kπ)
(
a.e. on (−π, π)

)
. (3.12)

Since both sides of (3.12) define a 2π -periodic function, equation (3.12) holds even
a. e. on R, which is PSF for the space { f ∈ F1; f̂ ∈ S1

1} ⊂ L1(R).
In order to extend PSF to the whole of L1(R)with f̂ ∈ S1

1 , we have only to note the
remarks on PSF in Sec. 2.4, since { f ∈ F1; f̂ ∈ S1

1} is dense in L1(R). For example,
the convolution fρ := f ∗ gρ of f ∈ L1(R) with gρ of (2.12) belongs to F1, f̂ρ ∈ S1

1
for all ρ > 0, and limρ→∞ fρ = f in L1(R)-norm (Proposition 2). ��

The equivalence PSF ⇔ GPDF was established in [18] with the PSF-version

√
2π

∑
k∈Z

f̂ (x + 2kπw) =
∑
k∈Z

f

(
k

w

)
eikx/w (x ∈ R).

whereby the roles of f and f̂ have been exchanged, under the additional assumption
f̂ ∈ BV (R).
The present proof is modeled on that of [18], but the lack of the BV-assumption in

our case causes some additional arguments.

3.4 PSF and ASF

As to the equivalence of PSF and ASF, it was already established in [23,24], however
with different versions of PSF.

Proof of PSF ⇒ ASF for f ∈ F1 ∩ S1
1 . We again apply PSF (1.10) to the function

f̂ ∈ F1, noting that
( ̂̂f (k)

) = (
f (−k)

) ∈ 
1(Z), giving

√
2π

∑
k∈Z

f̂ (v + 2kπ) =
∑
k∈Z

f (k)e−ikv a. e.,

Hence, recalling (2.7),

1√
2π

∫ π

−π

∑
k∈Z

f̂ (v + 2kπ) dv = 1

2π

∫ π

−π

∑
k∈Z

f (k)e−ikveivt dv

= 1

2π

∑
k∈Z

f (k)

∫ π

−π

e−ikveivt dv = 1

2π

∑
k∈Z

f (k)

∫ ∞

−∞
rect(v)e−ikveivt dv

=
∑
k∈Z

f (k) sinc(t − k) = (S1 f )(t) (t ∈ R),

the interchange of summation and integration being justified in view of the absolute
and uniform convergence of the series involved.
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On the other hand, we have

∫ π

−π

∑
k∈Z

f̂ (v + 2kπ)eivt dv =
∑
k∈Z

∫ (2k+1)π

(2k−1)π
f̂ (v)eit (v−2kπ) dv (t ∈ R),

yielding

(S1 f )(t) = 1√
2π

∑
k∈Z

e−i2kπ t
∫ (2k+1)π

(2k−1)π
f̂ (v)eivt dv (t ∈ R). (3.13)

But by the Fourier inversion integral (2.6),

f (t) = 1√
2π

∫
R

f̂ (v)eivt dv = 1√
2π

∑
k∈Z

∫ (2k+1)π

(2k−1)π
f̂ (v)eivt dv (t ∈ R). (3.14)

Subtracting (3.13) from (3.14) yields f (t) − (S1 f )(t) = (R1 f )(t), thus the approxi-
mate sampling theorem. ��

Proof of ASF ⇒ PSFNoting (3.14) it follows immediately fromASFwith remainder
(1.2) that for f ∈ F2 and w = 1

∑
k∈Z

f (k) sinc(t − k) = 1√
2π

∑
k∈Z

e−i2kπ t
∫ (2k+1)π

(2k−1)π
f̂ (v)eivt dv (t ∈ R). (3.15)

Using (2.5) and (2.7) one can rewrite the terms on the right-hand side as a convolution
product, namely

e−i2kπ t

√
2π

∫ (2k+1)π

(2k−1)π
f̂ (v)eitv dv = e−i2kπ t

√
2π

∫
R

f̂ (v) rect(v − 2kπ)eitv dv

=
∫
R

f (u)e−i2kπu sinc(t − u) du = √
2π

[
( f (·)e−i2kπ ·) ∗ sinc(·)](t) (t ∈ R).

For the following, we first assume f ∈ B̂1
σ for some σ > 0. Then the terms on the

right of (3.15) vanish for |k| > σ0 := (σ/π + 1)/2, and (3.15) can be rewritten as

∑
k∈Z

f (k) sinc(t − k) = √
2π

∑
|k|≤σ0

[
( f (·)e−i2kπ ·) ∗ sinc(·)](t) (t ∈ R).

Now, taking the L2-Fourier transform of this equation, noting that the series on the
left converges with respect to L2(R)-norm (Lemma 3), Proposition 1 and (2.8), we
obtain

1√
2π

∑
k∈Z

f (k) rect(v)eikv =
∑

|k|≤σ0

f̂ (v + 2kπ) rect(v) a. e. (3.16)
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Since f ∈ B̂1
σ , f̂ can be regarded as the L1-Fourier transform, which is continuous.

Then (3.16) holds even for every v in a neighbourhood of the origin, since all functions
involved are continuous there. So one may take v = 0 to obtain

1√
2π

∑
k∈Z

f (k) =
∑

|k|≤σ0

f̂ (2kπ).

Replacing now f (·) by 2π f (x + 2π ·), and noting Proposition 1 (a) gives PSF.
It remains to remove the restriction f ∈ B̂1

σ for some σ > 0. According to Sect. 2.4
it suffices to show that

⋃
σ>0 B̂1

σ is dense in L1(R). To see this, onemay take f ∗χρ ,ρ >

0, with f ∈ L1(R) and χρ of (2.14). This convolution belongs to B̂1
2πρ , noting (2.15)

and Proposition 1 (b), and limρ→∞ f ∗χρ = f in L1(R)-norm (Proposition 2 (b). ��

4 PSF and the functional equation for ζ(s)

First some remarks concerning the ζ -function. Since the series (1.15) is locally uni-
formly convergent in the half-plane σ > 1, ζ(s) is analytic there. To extend it to a
function which is analytic in the whole complex planeC except s = 1, one can employ
the representation

ζ(s) = s
∫ ∞

1
u−s−1

(
μ(u) + 1

2

)
du + 1

s − 1
+ 1

2
(4.1)

with the measure μ(u) := �u� − u, where �u� denotes the largest integer less than or
equal to u; see Titchmarsh [82, (2.1.4)].

Noting that | ∫ u
1 (μ(t)+ 1

2 ) dt | is bounded by 1
8 onR, one can easily show by partial

integration that the integral is locally uniformly convergent in the half-plane σ > −1.
Hence (4.1) defines an extension of (1.15) to a function which is analytic for σ > −1
except for the point s = 1, where there is a simple pole with residue 1. This function
can be continued further to a function which is analytic in the whole complex plane
except for s = 1.

From (4.1) one can also deduce by partial integration the estimate

|ζ(s)| ≤ |s| + 1

|s − 1| + 1

2
(s = σ + iτ ∈ C\{1}, σ > −1). (4.2)

In the strip 0 < σ < 1 the representation (4.1) can be rewritten as (see Tichmarsh
(2.1.5))

ζ(s) = s
∫ ∞

0
u−s−1μ(u)du (s = σ + iτ, 0 < τ < 1), (4.3)

noting that

∫ 1

0
u−s−1μ(u)du =

∫ 1

0
u−sdu = 1

s − 1
.
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Now we turn to the equivalence PSF⇔FERZ.
Proof of PSF ⇒ FERZ If f belongs to the Schwartz space S of rapidly decreasing

functions, the PSF (1.10), in its simplest form for w = 1, x = 0, reads

√
2π

∑
k∈Z

f (2kπ) =
∑
k∈Z

f̂ (k).

In fact, under the given assumption f ∈ S, Eq. (1.10) holds for all x ∈ R, since both
series are uniformly convergent, at least on compact subsets of R, and hence define
continuous functions.

If f is even, so will be f̂ , and PSF turns into

√
2π

{ ∞∑
k=1

f (2πk) −
∫ ∞

0
f (2πu) du

}
=

∫ ∞

0
f̂ (v) dv −

∞∑
k=1

f̂ (k),

noting that 1
2 f̂ (0) = (1/

√
2π)

∫∞
0 f (x) dx = √

2π
∫∞
0 f (2πu) du and, by the

Fourier inversion formula (2.6), 1
2

√
2π f (0) = ∫∞

0 f̂ (v) dv.
This equation can be conveniently be written as

√
2π

∫ ∞

0
f (2πu) dμ(u) =

∫ ∞

0
f̂ (v) dμ(v), (4.4)

Further, as f ∈ S implies f ′, f̂ ′ ∈ L1(R) and limu→∞ f (u) = limv→∞ f̂ (v) = 0,
the two integrals can be converted into ordinary Lebesgue integrals by partial integra-
tion, namely,

√
2π

∫ ∞

0
f (2πu) dμ(u) = √

2π f (2πu)μ(u)

∣∣∣∞
0

− (2π)3/2
∫ ∞

0
μ(u) f ′(2πu) du

= −(2π)3/2
∫ ∞

0
μ(u) f ′(2πu) du,

and similarly,

∫ ∞

0
f̂ (v) dμ(v) = −

∫ ∞

0
μ(v) f̂ ′(v) dv.

Hence we obtain the following “integrated form” of PSF,

(2π)3/2
∫ ∞

0
μ(u) f ′(2πu) du =

∫ ∞

0
μ(v) f̂ ′(v) dv. (4.5)

For the Gauß–Weierstraß kernel gρ of (2.12), (2.13) with ρ = π t2, t > 0, this
identity reads,

− 2π t−3
∫ ∞

0
u μ(u)e−π t−2u2 du = −2π t2

∫ ∞

0
vμ(v)e−π t2v2 dv. (4.6)
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Now we multiply both sides of (4.6) by −t−σ , σ > 0, integrate with respect to t
from 0 to∞, and interchange the order of integration, which is allowed by the Fubini–
Tonelli theorem [40, (21.13)]. This yields for the left-hand side by a simple change of
variables

2π
∫ ∞

0
u μ(u)

∫ ∞

0
t−3−σ e−π t−2u2 dtdu = 1

2
π−σ/2�

(σ

2

)
σ

∫ ∞

0
u−σ−1μ(u) du,

and for the right-hand side

2π
∫ ∞

0
vμ(v)

∫ ∞

0
t2−σ e−π t2v2 dtdv

= 1

2
π− 1−σ

2 �

(
1 − σ

2

)
(σ − 1)

∫ ∞

0
vσ−2μ(v) dv.

Using the representation (4.3) for the ζ -function, the functional equation follows
for s = σ with 0 < σ < 1, and analytic continuation yields the general result. ��

Proof of FERZ ⇒ PSF It is well-known that an infinite series can be transformed
into an integral involving ζ(s) (as well as vice versa!) usingMellin transformmethods;
see e. g. [19]. Formally one proceeds as follows: To sum

g(x) :=
∞∑

k=1

f (kx) (x ∈ R+),

one first applies the Mellin transform

M( f )(s) ≡ f̂M (s) :=
∫ ∞

0
f (u)us−1 du (s = σ + iτ ∈ C)

on both sides to yield

ĝM (s) =
∞∑

k=1

1

ks
f̂M (s) = f̂M (s)ζ(s), (4.7)

since the Mellin transform of f (kx), where k > 0, is k−s f̂M (s). The Mellin inversion
formula

f (x) = 1

2π i

∫ c+i∞

c−i∞
f̂M (s)x−s ds (c > 0)

would then lead to

g(x) =
∞∑

k=1

f (kx) = 1

2π i

∫ c+i∞

c−i∞
f̂M (s)ζ(s)x−s ds (c > 1). (4.8)
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In our situation, to work with the sum (4.8) we need to move the integration contour
from c + i t to 1 − c + i t , −∞ < t < +∞. The equation for x = 2π then becomes

∞∑
k=1

f (2kπ) = 1

2π i

∫ 1−c+i∞

1−c−i∞
f̂M (s)ζ(s)(2π)−s ds + S,

where S accounts for the sum of the residues of the integrand due to the contour shift.
The change of variable s 	→ 1 − s in the integral causes the appearance of a term
ζ(1 − s) in the integrand. The functional equation is used at this point, to make the
term ζ(s) reappear. But, as Eq. (4.8) shows, the inverse Mellin transform of a product
involving ζ(s) represents a series

∑
h(k), for some function h. This function will turn

out to be the Fourier transform of f , so that

∞∑
k=1

f (2kπ) =
∞∑

k=1

f ∧(k) + S.

A computation will show that the residues are R0 = − 1
2 f (0) and R1 = 1

2π

∫∞
0

f (x) dx , and PSF will then follow.
To carry out the above sketch of the proof and to justify these steps, consider a

locally integrable function f (x). Let it be O(x−a) as x → 0 and O(x−b) as x → ∞
for some a < b. The Mellin transform f̂M (s) then exists for any complex s = σ + iτ
in the fundamental strip a < σ < b. This follows from

∣∣∣∣
∫ ∞

0
f (u)us−1du

∣∣∣∣ ≤
∫ 1

0
| f (u)|uσ−1du +

∫ ∞

1
| f (u)|uσ−1du

≤ A
∫ 1

0
u−a+σ−1du + B

∫ ∞

1
u−b+σ−1du,

since the first integral exists if σ > a and the second if σ < b. If, in addition, f (y)

is of bounded variation in a neighbourhood of y = x , the Mellin inversion formula
holds, in the form

f (x+) + f (x−)

2
= 1

2π i

∫ σ+i∞

σ−i∞
f̂M (s)x−s ds,

for a < σ < b. To justify it one may appeal to the relation between the Mellin and
the Fourier transform, which is revealed by the change of variables x = e−y , since,
as we have seen, f (x)xσ−1 ∈ L1(0,∞) under the stated hypothesis.

Now, if the intersection of the fundamental strip a < σ < b with the half-plane
σ > 1 is nonempty, and if s belongs to that intersection, then (4.7) holds because there
exists under the stated conditions

∞∑
k=1

∣∣∣∣ 1ks

∣∣∣∣
∫ ∞

0
|us−1 f (u)|du.
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If g is a continuous function of bounded variation in a neighbourhood of x , the
application of the Mellin inversion formula to (4.7) then leads to the identity (4.8),
that is,

g(x) =
∞∑

k=1

f (kx) = 1

2π i

∫ σ+i∞

σ−i∞
f̂M (s)ζ(s)x−s ds.

To continue with the proof, let f be an even function in the Schwartz space S.
Then, the Mellin transform of f exists for all s = σ + i t with σ > 0. Below we
will have to integrate f̂M (s) in a region contained in the left semiplane, so we need
to investigate its analytic extension there. The necessary information can be obtained
through an integration by parts of the Mellin integral,

f̂M (s) = −1

s

∫ ∞

0
f ′(x)xs dx = −1

s
f̂ ′

M (s + 1).

The procedure can be repeated to give

f̂M (s) = (−1)r

s(s + 1) · · · (s + r − 1)
̂[ f (r)]M (s + r) (r ∈ N). (4.9)

This provides the desired analytic extension and shows that f̂M (s) may have simple
poles at the non-positive integers. The residue at s = 0 is given by

lim
s→0

s

(
−1

s
f̂ ′

M (s + 1)

)
= − f̂ ′

M (1) = −
∫ ∞

0
f ′(x) dx = f (0). (4.10)

Although we will not need any other residues, one could easily check that the residue
at s = −n is 1

n! f (n)(0).
We are now ready to return to the fundamental transformation (4.8) with x = 2π .

We take an arbitrary 1 < c < 2 and change the contour,

1

2π i

∫ c+i∞

c−i∞
f̂M (s)ζ(s)(2π)−s ds = 1

2π i

∫ 1−c+i∞

1−c−i∞
f̂M (s)ζ(s)(2π)−s ds + S,

where S is the sum of the residues of f̂M (s)ζ(s)(2π)−s at the poles in the strip
1 − c < σ < c. There are two such poles: one at s = 1, due to ζ(s), and another at
s = 0, due to f̂M (s). The residue of the integrand at the former is

R1 = 1

2π
f̂M (1) = 1

2π

∫ ∞

0
f (x) dx

and at the latter

R0 = f (0)ζ(0) = −1

2
f (0),
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in view of (4.10). As a result, (4.8) becomes

∞∑
k=1

f (2kπ) = 1

2π i

∫ 1−c+i∞

1−c−i∞
f̂M (s)ζ(s)(2π)−s ds + 1

2π

∫ ∞

0
f (x) dx − 1

2
f (0).

We now replace s 	→ 1 − s in the integral

∞∑
k=1

f (2kπ)

= 1

2π

∫ ∞

0
f (x) dx − 1

2
f (0) + 1

2π i

∫ c+i∞

c−i∞
f̂M (1 − s)ζ(1 − s)(2π)s−1 ds

and use the functional equation in the form (1.16) to deduce

∞∑
k=1

f (2kπ) (4.11)

= 1

2π

∫ ∞

0
f (x) dx − 1

2
f (0) + 1

2π i

∫ c+i∞

c−i∞
f̂M (1 − s)2 cos

(πs

2

)
�(s)ζ(s) ds.

(4.12)

According to the principle expressed by (4.8), the last integral represents the sum of
a series,

1

2π i

∫ c+i∞

c−i∞
f̂M (1 − s)2 cos

(πs

2

)
�(s)ζ(s) ds =

∞∑
k=1

h(k). (4.13)

Thequestion is:what is the relation betweenh and f ?The elementaryMellin transform
formula

∫ ∞

0
cos(ax)xs−1 dx = a−s cos

(πs

2

)
�(s) (0 < �s < 1) (4.14)

shows that

∫ ∞

0
f̂ (v)vs−1 dv = 2

∫ ∞

0

(
1√
2π

∫ ∞

0
f (t) cos(vt) dt

)
vs−1 dv

= 2√
2π

∫ ∞

0
f (t)

(∫ ∞

0
cos(vt)vs−1 dv

)
dt

= 2√
2π

cos
(πs

2

)
�(s)

∫ ∞

0
f (t)t−sdt

= 2√
2π

cos
(πs

2

)
�(s) f̂M (1 − s). (4.15)
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In order to justify the interchange of the integration order, first note that

I :=
∫ ∞

0
f (t)

(∫ ∞

0
cos(vt)vs−1 dv

)
dt

=
∫ ∞

0
f (t) lim

R→∞

(∫ R

0
cos(vt)vs−1 dv

)
dt

= lim
R→∞

∫ ∞

0
f (t)

(∫ R

0
cos(vt)vs−1 dv

)
dt. (4.16)

Here the interchange of the limit with the outer integral is justified by Lebesgue’s
dominated convergence theorem, since

∣∣∣ f (t)
∫ R

0
cos(vt)vs−1 dv

∣∣∣ =
∣∣∣t−s f (t)

∫ Rt

0
cos(u)us−1 du

∣∣∣
≤ c(s)t−σ | f (t)| ∈ L1(0,∞),

where the constant c(s) is an upper bound for the continuous and bounded function
x 	→ ∣∣ ∫ x

0 cos(u)us−1 du
∣∣ on [0,∞).

Furthermore, the order of integration in the last line of (4.16) can be interchanged
by Fubini’s theorem, and one obtains

I = lim
R→∞

∫ R

0

(∫ ∞

0
f (t) cos(vt)dt

)
vs−1 dv,

which proves the desired interchange of integrals in (4.15).
Hence we have shown that

∫ ∞

0
f̂ (v)vs−1 dv = 2√

2π
cos

(πs

2

)
�(s) f̂M (1 − s). (4.17)

Since we have used the elementary formula (4.14) to deduce this equation, it holds at
first for 0 < �s < 1. On the other hand, both sides of (4.17) define analytic functions
for �z > 0, and hence (4.17) is even valid for �z > 0.

Now, equation (4.17) reveals that the factor that multiplies ζ(s) in the integrand of
(4.13) is the Mellin transform of the Fourier transform f̂ of f . Thus (4.13) becomes

1

2π i

∫ c+i∞

c−i∞
f̂M (1 − s)2 cos

(πs

2

)
�(s)ζ(s) ds = 1√

2π

∞∑
k=1

f̂ (k).

Replacing it in (4.11) finally yields

∞∑
k=1

f (2kπ) = 1

2π

∫ ∞

0
f (x) dx − 1

2
f (0) + 1√

2π

∞∑
k=1

f̂ (k).
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Noting that 1
2π

∫∞
0 f (x) dx = 1

2
1√
2π

f̂ (0), the PSF (1.10) for even functions in the

Schwarz space S and x = 0 follows.
To extend this to arbitrary functions f ∈ S, one decomposes f in the form f (t) =

1
2 [ f (t)+ f (−t)]+ 1

2 [ f (t)− f (−t)], i. e., in an even and an odd part. Since both sums
in (1.10) vanish for odd functions and x = 0, PSF for f ∈ S and x = 0 follows. To
obtain PSF for arbitrary x ∈ R, one replaces f (·) by 2π f (x + 2π ·) as in the proof of
ASF⇒ PSF. Finally, one uses the fact that S is dense in L1(R) to deduce the general
PSF for f ∈ L1(R); cf. Sect. 2.4. ��

Let us remark that a proof of PSF yields FERZ is to be found in Mordell [57], and
the converse in Ferrar [30]. In his treatise Titchmarsh [82] presented seven different
methods of proof of the functional equation; see also Kahane and Mandelbrojt [50],
Bellman [8], Ivić [49], Patterson [66, Chapter 2], Karatsuba and Voronin [51], Rooney
[75], Flajolet et al. [31], Brüdern [13, pp. 58–66], Newman [63]. Latter proofs are
Knopp and Robins [55], Schuster [78], Murty [58] and Higgins [45].

Whereas several of the above mentioned books or papers contain a proof of
PSF⇒FERZ, proofs of the converse FERZ⇒PSF, an important part of our pro-
cedure, are rarer. In fact, there are other proofs of FERZ⇔PSF, but ours are fully
detailed and more than just polished versions of others. Especially the delicate inter-
changes of the orders of summation and/or integration needed in the proofs are justified
in great detail.

In his exhaustive report [44] on four papers of Hamburger [33–36] of 1921–1922 in
connection with Riemann’s functional equation, R. Higgins gave a complete review of
Hamburger’s collection of five equivalent results, namely that Riemann’s functional
equation for the zeta function, Jacobi’s transformation formula for the elliptic theta
function, the partial fractions expansion for the cotangent function, Poisson’s summa-
tion formula and a special Fourier series are all equivalent. He also discussed these in
the light of later contributions.

Here the basic earlier work being the “Lehrbuch der Thetafunktionen” by Krazer
[56], papers by Siegel [79], those of Mordell [57] and Ferrar [30], as well as more
results in the light of work by Doetsch [27] and Klusch [52,53]. Klusch proves many
implications, and collects others, between well-known results in signal analysis, num-
ber theory and applied mathematics. In particular, he gives a direct proof of FERZ
implies ASF, an open question at the time. These results do not seem to be at all well
known.

5 A proof of ASF

In the previous section we have shown that the formulae of Sects. 1 or 3 can all be
deduced from each other. Hence it suffices to prove one of them in order to verify all.
We will now prove ASF under the weaker hypothesis that f ∈ F2 and with a weaker
conclusion on the convergence of the series. From that result, the statement (1.6) for
f ∈ F2 ∩ S1

w given in Sect. 1 is easily deduced.
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Theorem 1 For w > 0 and f ∈ F2, we have

f (t) =
∑
k∈Z

f

(
k

w

)
sinc(wt − k) + Rw f (t),

where the series converges pointwise as the symmetric sum.

Proof It suffices to consider the casew = 1. Employing the Fourier inversion theorem
for f ∈ F2, see [20, p. 214, Proposition 5.2.16], we may rewrite the remainder (1.2)
as

R1 f (t) = 1√
2π

[∫
R

f̂ (v)eivt dt −
∑
k∈Z

∫ (2k+1)π

(2k−1)π
f̂ (v)eit (v−2πk) dv

]

= f (t) − 1√
2π

∫
R

f̂ (v)g(t, v) dv, (5.1)

where g(t, ·) is the function obtained by restricting eit · to the interval [−π, π) and
extending it to R by 2π periodic continuation. By a simple calculation we obtain the
Fourier expansion

g(t, v) =
∑
k∈Z

sinc(t − k)eikv. (5.2)

Since g(t, ·) is of bounded variation, the Fourier series converges and (5.2) holds at
each point of continuity. Moreover, the partial sums

gN (t, v) :=
∑

|k|≤N

sinc(t − k)eikv

are uniformly bounded, that is

|gN (t, v)| ≤ C (v ∈ R, N ∈ N)

for some constant C ; see [85, p. 90, Thm. 3.7]. Since f̂ ∈ L1(R), we see that
f̂ (·)gN (t, ·) has an absolutely integrable majorant for all N ∈ N. Therefore,
Lebesgue’s dominated convergence theorem allows us to conclude that

1√
2π

∫
R

f̂ (v)g(t, v) dv = lim
N→∞

1√
2π

∫
R

f̂ (v)gN (t, v) ÷

= lim
N→∞

∑
|k|≤N

{
1√
2π

∫
R

f̂ (v)eikv dv

}
sinc(t − k)

= lim
N→∞

∑
|k|≤N

f (k) sinc(t − k),
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where again the Fourier inversion theorem (2.6) has been used in the last step. Now
the proof is completed by substituting the last expression in (5.1). ��

Let us mention that in the meantime some of the authors have shown that ASF is
equivalent to the classical sampling theorem (1.7); see [14]. The above proof of ASF
is, on the other hand, a Fourier analytic proof, fully independent of CSF and all the
theorems of this paper.

6 Epilogue: some possible generalizations

The natural question arises as to whether the results above can be extended to higher
dimensions or other settings. There are (at least) two ways : via functional analysis,
based on r.k. theory, and via abstract harmonic analysis, using locally compact abelian
(LCA) groups.

In the first of these generalizations, sampling itself is placed in the more general
context of reproducing kernel Hilbert spaces of functions defined on an abstract set.
In the second, the real line R, which can be thought of as time domain, is replaced by
an abstract LCA topological group G, as usual assumed to be Hausdorff. Functions
are now defined on a LCA group, itself a fruitful generalization of the real line.

6.1 Reproducing kernel theory

The purpose of this section is to give some very brief and necessarily quite simplified
background to Hilbert spaces with reproducing kernel. The material in this section,
proofs etc., can be found in [42,77]. There are several studies in the literature of
sampling to be found in the general area of reproducing kernel spaces, and we can
ask whether results of the present paper might be given more general forms in that
theory. For example, Nashed and his associates have given sampling theorems in
certain Hilbert, Banach, Sobolev and translation invariant spaces, and addressed such
probems as the construction of reproducing kernel Hilbert and Banach spaces with
a given sampling set (see, e. g., [59]). Much of this work is quite technical and uses,
e. g., iterativemethods. Saitoh’s theory of linear transformations ofHilbert space offers
another possibility for this kind of extension (see, e. g., [77]).

6.1.1 Hilbert spaces with reproducing kernel

Let K be a separable Hilbert space with inner product denoted by 〈·, ·〉K and norm
denoted by ‖ · ‖K .

Definition 1 Let K consist of complex valued functions defined on E , an abstract set.
Then K is said to have reproducing kernel if there exists a function k : E × E 	→ C,
such that k(·, t) ∈ K for every t ∈ E , and the reproducing equation

f (t) = 〈 f, k(·, t)〉K
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holds for every f ∈ K. Such a space is called a reproducing kernel Hilbert space
(RKHS) and k(s, t) is its reproducing kernel.

6.1.2 A summary of the relevant Saitoh theory

We now quote that part of Saitoh’s fundamental theory of linear transformations of
Hilbert space which provides a suitable setting for the present discussion ([77, Ch.
2]), but first some background is needed.

Let H be a separable Hilbert space with inner product denoted by 〈·, ·〉H, and
for each t belonging to an abstract set E , let κt be a mapping of E into H. Then
k(s, t) := 〈κt , κs〉H is defined on E × E and is called the kernel function of the
map κt . This kernel function is a positive matrix [77, Ch. 2, Sect. 2] and as such it
determines one and only one Hilbert space for which it is the reproducing kernel. This
Hilbert space is denoted by Rk ; it turns out to be the set of images of H under the
transformation

(Lϕ)(t) := 〈ϕ, κt 〉H, (ϕ ∈ H) (6.1)

and has reproducing kernel k(s, t) = (Lκt )(s). This situation is governed by:

Theorem 2 (Saitoh)With the notations established above, Rk is a Hilbert space which
has the reproducing kernel k(·, ·), and is uniquely determined by this kernel. We have,
for f ∈ Rk,

‖ f ‖Rk = ‖Lω‖Rk ≤ ‖ω‖H, (6.2)

and there exists a unique member, ω0 say, of the class of all ω’s satisfying (6.2) such
that

f (t) = 〈ω0, κt 〉H, (t ∈ E),

and

‖ f ‖Rk = ‖ω0‖H.

The reproducing equation for Rk is

f (t) = 〈 f, k(·, t)〉. (6.3)

It is often supposed that {κt }, (t ∈ E) is complete in H, a rather mild restriction.
This means that the only possible ω in (6.2) is ω0, because from (6.1) the null space of
L is {θ}. Then L : H 	→ Rk is an isometry and therefore bounded. It is clearly linear,
one-to-one and ‘onto’. Hence by the bounded inverse theorem,L−1 is bounded. These
properties show that L is an isometric isomorphism of H onto Rk .

6.1.3 Possibilities for extension

The r.k. theory outlined above is in some ways more general and in some ways less
general than the LCAgroup setting. It is tied toHilbert spacemethods and no extension
beyond these methods is known to the authors.
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However, in order to find some process of extension beyond Hilbert space there
might be a way forward if a regime such as the following could be established. To
describe such a regime we will adopt the following notations.

Suppose that X is a linear space, and let Xex denote a linear space that extends X;
that is,X is a subspace ofXex. Again, suppose that P denotes a proposition associated
with X; it might be, for example, the assertion that a certain formula holds for all
members ofX. LetP ex denote an extension ofP , that is, a proposition associated with
Xex so chosen that it reduces to P for members of X.

With these notations, the following extension procedure can be suggested for the
r.k. theory. LetHex denote a linear space which extendsH in such away as to extend the
domain ofL, thus,L on this larger domain induces an extension Rex

k of Rk . LetP denote
a proposition associated with Rk , and P ex a proposition associated with Rex

k , asserting
that P holds for Rex

k but only in an approximate form when associated with Rex
k \Rk .

A scheme of this kind might afford some way of generalizing results found in the
main body of the paper, such as the passage from the classical to the approximate
sampling theorem (1.7)/(1.6), or the reproducing equation (1.8) to the approximate
reproducing equation (1.9). But the construction of such a scheme is an open problem,
no doubt a rather difficult one.

6.1.4 A dictionary

The question arises as to whether the ASF of (1.6) and ARKF of (1.9), introduced in
this paper, aswell asGPDFof (1.1) can be built into themore recent reproducing kernel
Banach space theory (see e. g. [1,32,37,47,60,61]), since the Hilbert space approach
may not suffice. Its non-constructed but practical applications would be precisely
the present six theorems under discussion. Perhaps an extension of the Banach space
theory may also be necessary. It is seemingly a wide open field (Table 1).

6.2 Abstract harmonic analysis

In abstract harmonic analysis, the real line in classical Fourier analysis is replaced by
an LCA group. A very brief description is now given, following Rudin’s notation and
terminology in [76]. Further details can also be found in [4,25,38,39,73] and briefer

Table 1 A classical-reproducing kernel theory dictionary

Classical r.k. theory

R E , an abstract set

L2(−π, π) H, a separable Hilbert space

(2π)−1/2 e−i t · χ[−π,π ](·) κt ∈ H, (t ∈ E)

reproducing kernel: sinc(s − t) k(s, t) = 〈κt , κs 〉H
F−1, inverse Fourier transform L
B̂ p

σ Rk

reproducing equation f (t) = 〈 f, sinc(· − t)〉 f (t) = 〈 f, k(·, t)〉Rk
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accounts are in [6,7,28]. The website [65] of the Numerical Harmonic Analysis Group
(NuHAG) at the University of Vienna is a comprehensive and up-to-date source of
information about all aspects of sampling theory.

6.2.1 Locally compact abelian groups

The property of being an LCAgroup is often preserved under processes that are subject
to natural technical restrictions. Thus closed subgroups of an LCAgroup are also LCA,
as are quotient groups of closed subgroups and so on. LCA groups enjoy a translation
invariant measure mG , called Haar measure, which is unique up to a multiplicative
constant (for the real line, theHaarmeasure is the familiar Lebesguemeasure). Aswith
Lebesgue measure, Haar measure gives rise to an integral

∫
G f (x)dmG(x) = ∫

G f ;
the notation f ∈ L p(G) is used if

∫
G | f |p < ∞, p ≥ 1. As usual the statement that

a property holds for (Haar) almost all points in a subset of G means that it holds for
all points in the set except for a set of (Haar) measure 0.

6.2.2 The abstract Fourier transform

The exponential function t 	→ eiut is replaced by a continuous homomorphism or
character γ : G → S

1, which takes values on the unit circle. Under pointwise mul-
tiplication, these homomorphisms form an abelian group G∧ := � which is locally
compact with the compact-open topology. Greek letters such as γ and λ will be used
for elements in�, which is called the dual group ofG and corresponds to the frequency
domain. The dual of� is isomorphic toG. This duality allows the value γ (x), x ∈ G, of
a character γ to bewritten as an ordered pair (x, γ ), where (x, γ ) (x ′, γ ) = (x +x ′, γ )

and similarly for γ .
The Fourier transform f̂ : � → C of the function f ∈ L1(G), defined by

f̂ (γ ) =
∫

G
f (x)(x,−γ )dmG(x), (6.4)

is continuous and vanishes at ∞. For each ψ in L1(�), the inverse Fourier transform-
function ψ∨ : G → C is defined by

ψ∨(x) =
∫

�

ψ(γ )(x, γ )dm�(γ ). (6.5)

The Haar measure m� on � can be normalized so that the inversion formula

f (x) =
∫

�

f̂ (γ )(x, γ )dm�(γ ) (6.6)

holds almost always for suitable f = ψ∨ (see [76, Sect. 1.5] or [39, Thm. 31.17]).
These ideas are the basis of a beautiful and broad abstract analogue of classical

Fourier analysis that retains the principal results of classical theory. Thus the abstract
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Table 2 Some LCA groups, their duals, measures and characters

Group G measure mG dual � measure m� character (x, γ )

R Lebesgue R Lebesgue eivξ

R
r Lebesgue R

r Lebesgue eiv·ξ

Z
s Point measure T

s induced Lebesgue eik·ξ

Z
s
n Point measure Z

s
n point measure eik·ν

Table 3 A classical-abstract dictionary for sampling theory

Classical Abstract

Time domain R LCA group G

Frequency domain R dual LCA groupG∧ = �

Lebesgue measure | · | Haar measure mG

eixu character (x, γ )

f̂ (u) := ∫
R

f (x)e−i xudx f̂ (γ ) := ∫
G f (x)(x, −γ )dmG (x)

2wZ discrete subgroup of R � discrete subgroup (lattice) of �

R/(2wZ) ∼= S
1 �/� compact abelian group

(−πw, πw] transversal of R/(2πwZ) � transversal of �/�

Z/w = (2wπZ)⊥ sampling set H = �⊥ = {h ∈ G : (h, λ) = 1, λ ∈ �}
|(−πw, πw]| = 2πw m�(�) < ∞∑

k∈Z g(k/2w)
∫

H g(h)dm H (h) = m H ({0})∑h∈H g(h)

B̂ p
πw band-limited signals B̂ p(G)

F p includes non band-limited signals F p(G)


p(Z/w) 
p(H)

Fourier–Plancherel transform can be defined on L2(G) and analogues of the clas-
sical Fourier–Plancherel theorem (

∫
G | f |2 = ∫

�
| f ∧|2) [39, Sect. 31], [76] and the

Parseval theorem hold (here and where appropriatê is the Fourier–Plancherel trans-
form). The abstract Poisson summation formula also holds under certain integrability
conditions [76].

The general and unifying framework offered by abstract Fourier analysis includes
n-dimensional Euclidean space as an important special case. Some other concrete
examples of LCA groups, their duals, measures and characters are provided in Table 2;
Zn is the finite additive group of residues mod n andT

r = R
r/Z

r is the r -dimensional
torus which we will take to be [−1/2, 1/2]r , the r -fold product of the unit interval
with endpoints identified. In particular, T

1 ∼= S
1, the unit circle. This normalization

differs slightly from that adopted in Table 3.

6.3 Abstract sampling theory

Sampling theory fits naturally into the abstract Fourier analysis setting, as the table
above indicates, with different LCA groups giving rise to a variety of seemingly
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disparate sampling results [4]. Of course, there are some limitations to be expected
in such a general theory. To explain it more fully, some additional definitions and
notation are needed.

Let � be a lattice in �, i. e., a countable discrete subgroup of � with compact
quotient �/�. Note that it is appropriate to work with the dual group � here, as it
corresponds to the frequency domain. The lattice � corresponds to the sampling set
in time domain.

The annihilator

�⊥ := H = {h ∈ G : (h, λ) = 1 for all λ ∈ �}

of � is a closed subgroup which we will write H and which satisfies H⊥ = �⊥⊥ =
� [76, Lemma 2.1.3]. The annihilator H of � is isomorphic to the dual of �/�, i. e.,
H ∼= (�/�)∧ (algebraically and topologically) [76, Thm. 2.1.2] and is identified with
the dual (�/�)∧. The annihilator H plays the role of the sampling set in the case of
the LCA group G. When G = � = R with lattice � = 2πwZ, H reduces to the
sampling set Z/w in (1.7).

TheHaarmeasurem� on�will be normalized so that theWeil coset decomposition
formula ∫

�

ϕ(γ ) dm�(γ ) =
∫

�/�

∫
�

ϕ(γ + λ) dm�(λ) dm�/�([γ ]) (6.7)

holds for suitable ϕ : � → C (see [39, Sect. 28.54 (iii)] or [73, Sect. 2.7.3]). The Haar
measurem�/� of�/� is normalized so that the corresponding inversion formula (6.6)
holds (with G replaced by �/� and � by H ). The Haar measures of H and G/H
are also normalized so that the Weil formula (6.7) holds for G and H and so that the
corresponding inversion formula (6.6) holds (with G replaced by G/H and � by �).

The quotient group�/� has a complete set of coset representatives, also referred to
as a transversal, the terminology we will use. Transversals are not unique and there is
always ameasurable one [29]whichwewill choose. Note that while the quotient group
is compact, the transversal is only of finite measure; indeed unbounded transversals
are possible (see [5, Sect. 4]). By definition, a transversal � consists of just one point
from each distinct coset [γ ] = � + γ , i. e., � ∩ (� + γ ) consists of a single point in
�. Thus translates of � by non-zero elements in � are disjoint from �. Using (6.7), it
is straightforward to verify that the Haar measure of the transversal� of �/� satisfies
m�(�) = m�({0})m�/�(�/�) = m�({0})/m H ({0}) < ∞.

When the group G is discrete and countable, the integral over G reduces to a sum.
This is particularly exploited for the subgroup � of � which is discrete and assumed
countable, so that the integral

∫
�

ϕ(λ)dm�(λ) = m�({0})
∑
λ∈�

ϕ(λ),

where m�({0}) is the (discrete) measure of {0}.
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6.3.1 Exact sampling in abstract harmonic analysis

Kluvánek [54] was the first to place sampling theory in the LCA group setting by
establishing the abstract analogue of the classical sampling theorem (i. e., the exact
sampling formula (1.7)). He considered LCA groups G, each with dual � having a
lattice � (so that � is a discrete, countable subgroup of � and �/� is compact). A
measurable transversal �, with necessarily finite Haar measure m�(�), is taken to
represent the spectrum of f . Then Kluvánek took as an analogue of the class B̂2

πw

(defined in Sect. 2.1 and called PWw elsewhere) of band-limited functions, the class

B̂2
�(G) := { f ∈ L2(G) ∩ C(G) : supp f̂ ⊆ �}. (6.8)

Kluvánek showed that functions f in B̂2(G) have the representation f = SH f ,
where SH f is the abstract analogue of the classical sampling series Sw f (2.18) and
is given by

(SH f )(x) := 1

m�(�)

∑
h∈H

f (h)χ�(x − k),

where convergence is in the L2 sense and uniform. He further showed that ‖ f ‖2G =∫
G | f |2 = ∑

h∈H | f (h)|2, the abstract sampling analogue for Plancherel’s theorem,
equivalent to that for Parseval’s theorem:

∫
G f g = ∑

h∈H f (h)g(h) and obviating
the need for the 
2(H) summability condition.

The discrete Fourier transform, involving essentially Z and S
1, also fits naturally

into this framework. The abstract analogue would involve a discrete abelian group and
a compact group respectively. A similar pattern holds for multi-dimensional signals
in higher dimensions.

6.3.2 Approximate sampling in abstract harmonic analysis

More recently, abstract analogues of the approximate or generalized sampling formula
(ASF) have been established. Faridani [28] proved a very general approximation the-
orem under an integrability condition. In [7,26], an abstract approximate sampling
theorem has been established under the square summability condition f ∈ 
2(H)

(in Sect. 2.1, f ∈ S2
w = 
2(Z/w)). The generalization of the classical sets F p and

S p
w, p = 1, 2 (defined in Sect. 2.1), which are appropriate for extending approximate

sampling theory to LCA groups, are

F p(G) := { f ∈ L p(G) ∩ C(G) : f̂ ∈ L1(�)}

and

S p
H (G) := { f : G → C : f ∈ 
p(H)} = 
p(H).

The abstract analogue of the ASF (1.6), is now given.
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Theorem 3 Suppose that the dual � of the locally compact abelian group G has a
discrete subgroup � with �/� compact and that � is a measurable transversal of
�/�. Then each f ∈ F2(G) ∩ 
2(H) has a representation

f = SH f + RH f,

where H = �⊥ and |(RH f )(x)| ≤ 2
∫
�\� | f̂ |.

An asymptotic formula needs more information [7, Thms. 5, 6].
A norm result for f corresponding to Kluvánek’s theorem is not known, although

putting f = g in the generalized or approximate Parseval formula (1.1) suggests that
modulo some summability conditions

∫
G

| f |2 =
∑
h∈H

| f (h)|2 − E1 + E2, (6.9)

where

E1 = 1

m�(�)

∑
h∈H

f (h)

∫
�\�

( f )∧(γ ) (h, γ )dγ, E2 =
∫

G
(RH f ) f .

This would imply an abstract Parseval type result and merits investigation. However,
the proof in [18] of the formula (1.1) uses some subtle Fourier analysis similar to
that employed by Brown [11,12] and Boas [9] so that extra hypotheses would be very
likely be needed.

Turning to the question of extending the equivalence results in Sect. 3, it could
be conjectured possible that under suitable hypotheses, the abstract analogue of ASF
(1.6) is equivalent to those of ARKF (1.9) and GPDF (1.1). However, the proof in [45]
that the functional equation of the zeta function ζ is equivalent to the classical exact
sampling theorem is far from direct, requiring long chains of implications and many
results from complex analysis. Thus proving an LCA group result would appear to
be very difficult, undoubtedly involving extra hypotheses. Moreover, even defining
a suitable zeta function for LCA groups seems problematic as the natural numbers
N form a multiplicative semigroup generated by primes. Nevertheless, the classical
situation suggests some interesting lines of inquiry and is a useful guide to the further
understanding of abstract Fourier analysis.

6.4 Sampling in Hilbert spaces, on Riemannian manifolds and graphs

Let L be a self-adjoint operator in a Hilbert space H and Pλ, λ ∈ R, its spectral
resolution of identity.With every vector f in H the family of projectors Pλ associates a
measure on R which is given by the formula 〈Pλ f, f 〉, where 〈·, ·〉 is the inner product
in H . Using this framework I. Pesenson introduced Paley–Wiener-type subspaces
PWω(L), ω > 0, by saying that f belongs to PWω(L) if and only if the measure
〈Pλ f, f 〉 has support in [−ω,ω]. It turned out that these subspaces enjoy all the basic
properties of the classical Paley–Wiener spaces and in particular they are suitable for
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development of a rich sampling and approximation theories. On the level of abstract
Hilbert spaces it was done by Pesenson in [67,70]. Moreover, he specified this abstract
setup in a number of very important situations such as: Riemannian compact and non-
compactmanifolds of boundedgeometry [69], stratifiedLie groups [68], combinatorial
and quantum graphs [71,72].

7 A short biography of Wolfgang Splettstößer

Wolfgang Splettstößer, born in Düsseldorf on June 19, 1950, received his Abitur from
the Leibniz Gymnasium in Düsseldorf in 1968, began studying mathematics at the
RWTH Aachen in 1970, and received the Dipl. Math. degree with the bestowal of
the “Springorum Denkmünze” in 1975. That year the electrical engineer Otto Lange
(Aachen/TU Hamburg-Harburg) suggested one ought to examine in detail the broad
area of the Shannon sampling theorem. Having attended the “1. Aachener Kollo-
quium”, devoted to “Special problems of signal theory”, conducted by the late Hans
Dieter Lüke that March, the senior author (PLB) realized that the topic was indeed an
important one and Wolfgang Splettstößer would be just the right person for this field.
Within a short time he performed pioneering research in sampling theory which led
to his Dr. rer. nat. degree (with distinction) in 1977.

That same year the DFG-Schwerpunkt Program (priority programme) “Digitale
Signalverarbeitung” was established; it consisted of a group of some 45 communica-
tion engineers, geophysicists, seismologists and medical doctors which met ca. twice
a year at various universities in order to discuss the research work achieved by their
students. For the senior author, as a member of that group, the ideal student at his
Lehrstuhl A für Mathematik was naturally Splettstößer. One of the many key prob-
lems dealt with by this unique priority programme was prediction theory, brought
up particularly by the late H.W. Schüßler (Erlangen), Alfred Fettweis (Bochum) and
H.D. Lüke. Wolfgang Splettstößer decided to tackle prediction theory and already in
December of 1981 he presented his Habilitation thesis to the RWTH Faculty. In view
of his fundamental research work in signal analysis as a whole he was nominated
Professor (apl.) at the Lehrstuhl A für Mathematik in 1987. His work was basic for a
number of the ca. 140 papers, doctoral and diploma theses written by members of the
chair in the area up until 1994. As to the status of sampling theory in the year 1975
the reader may consult [21, pp. 29–30].

His interest in applied mathematics, in particular in signal processing theory, led
Wolfgang Splettstößer to carry on his career in industry, namely in the field of micro-
electronic development, his first position in 1986 being a development engineer at
Siemens Semiconductors, which became Infineon Technologies in 1999. He was pro-
moted to Vice President of the Design-Center Düsseldorf in 1998, and finally took the
role of the Senior Director of Human Resources at the Munich site in 2005. His deep
concern for a dialogue-oriented management style motivated his continuous effort in
the branch of “idea management”, of which he became the global director of Infineon
Technologies in 2007.

Furthermore, Wolfgang Splettstößer was director and member of the management
board of the VDE (Association for Electrical, Electronic & Information Technologies)
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Rhein Ruhr, from 2003 onwards. Some of his core interests, namely contacts between
industry and universities, and a strong support of young researchers and engineers,
for example as a selection-committee member for the “technics prize” awarded by the
VDE Rhein-Ruhr, kept him connected with university during his whole career.

He passed away on March 18, 2013, and is survived by his spouse, Dr. Brigitte
Splettstößer (née Koch), four daughters and a son.
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