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Abstract A module M over an associative ring with unity is a QT AG-module if
every finitely generated submodule of any homomorphic image of M is a direct sum of
uniserial modules. There are many fascinating concepts related to these modules. Here
we introduce the notion of n-layered QT AG-modules and discuss some interesting
properties of these modules. We show that a QT AG-module M is n-layered if and
only if M/N is an n-layered module, whenever N is a finitely generated submodule
of M and n ≥ 1 is an integer.
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1 Introduction and preliminaries

The study of QTAG-modules was initiated by Singh [8]. Mehdi et al. [4] worked a
lot on these modules. They studied different notions and structures of QTAG-modules
and developed the theory of thesemodules by introducing several notions, investigated
some interesting properties and characterized them. Yet there is much to explore.

Throughout this paper, all rings are associative with unity andmodules M are unital
QT AG-modules. An element x ∈ M is uniform, if x R is a non-zero uniform (hence
uniserial) module and for any R-module M with a unique composition series, d(M)

denotes its composition length. For a uniform element x ∈ M, e(x) = d(x R) and
HM (x) = sup{d(

y R
x R ) | y ∈ M, x ∈ y R and y uniform} are the exponent and height

of x in M, respectively. Hk(M) denotes the submodule of M generated by the elements
of height at least k and Hk(M) is the submodule of M generated by the elements of
exponents at most k. A submodule N of M is h-pure in M if N ∩ Hk(M) = Hk(N ),

for every integer k ≥ 0. A submodule N of a QTAG-module M is height finite, if
the heights of the elements of N take only finitely many values. M is h-divisible if
M = M1 = ⋂∞

k=0 Hk(M) and it is h-reduced if it does not contain any h-divisible
submodule. In other words it is free from the elements of infinite height.

A submodule N ⊂ M is nice [3, Definition 2.3] in M, if Hσ (M/N ) = (Hσ (M) +
N )/N for all ordinals σ, i.e. every coset of M modulo N may be represented by an
element of the same height.

A family of nice submodules N of submodules of M is called a nice system in
M if

(i) 0 ∈ N ;
(ii) If {Ni }i∈I is any subset of N , then �I Ni ∈ N ;
(iii) Given any N ∈ N and any countable subset X of M, there exists K ∈ N

containing N ∪ X , such that K/N is countably generated [4].

A h-reduced QT AG-module M is called totally projective if it has a nice system.
For a QT AG-module M, there is a chain of submodules M0 ⊃ M1 ⊃ M2 · · · ⊃

Mτ = 0, for some ordinal τ . Mσ+1 = (Mσ )1, where Mσ is the σ th-Ulm submodule
of M. A fully invariant submodule L ⊂ M is a large submodule of M, if L + B =
M for every basic submodule B of M . Several results which hold for T AG-modules
also hold good for QT AG-modules [8]. Notations and terminology are follows from
[1,2].

2 n-Layered QT AG-modules and its properties

Recall that a QT AG-module M is (ω + 1)-projective if there exists submodule N ⊂
H1(M) such that M/N is a direct sum of uniserial modules and a QT AG module M
is (ω + k)-projective if there exists a submodule N ⊂ Hk(M) such that M/N is a
direct sum of uniserial modules [4].

Let σ be a limit ordinal such that σ = ω + β. A QT AG-module M is called σ -
projective, if there exists a submodule N ⊂ Hβ(M) such that M/N is a direct sum of
uniserial modules. A QTAG-module M is totally projective, if and only if M/Hσ (M)

is σ -projective for every ordinal σ .
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A QT AG-module is an ω-elongation of a totally projective QT AG-module by
a (ω + k)-projective QT AG-module if and only if Hω(M) is totally projective and
M/Hω(M) is (ω + k)-projective.

A QT AG-module M is a strong ω-elongation of a totally projective module by a
(ω+n)-projective module if Hω(M) is totally projective and there exists N ⊆ Hn(M)

such that M
N+Hω(M)

is a direct sum of uniserial modules [5].
Referring to our criterion from [7], M is a �-module or layered module if

Soc(M) = ⋃
k<ω Mk,where Mk ⊆ Mk+1 ⊆ Soc(M) and for every k, Mk ∩Hk(M) =

Soc(Hω(M)).

In [5], it was shown that any (ω + 1)-projective σ -module is a direct sum of
countable modules of length atmost (ω + 1). Moreover, we extended this assertion to
the so called strong ω-elongations. It was established that any strong ω-elongation of
a totally projective module by a (ω + 1)-projective module is a �-module precisely
when it is totally projective.

That is why it naturally comes under what additional conditions on the module
structure this type of results hold for every n ∈ N. To achieve this goal we state
the following new concept, which is a generalization of the corresponding one for
�-module.

Definition 1 A QT AG-module M is said to be n-layered module if for some n <ω,

Hn(M) = ⋃
k<ω Mk, Mk ⊆ Mk+1 ⊆ Hn(M) and for all k ≥ 1, Mk ∩ Hk(M) =

Hn(Hω(M)).

Remark 1 Equivalently, we may say that M is a n-layered module if and only if
Hn(M) = ⋃

Nk, Nk ⊆ Nk+1 ⊆ Hn(M) and for every k ≥ 1, Nk∩Hk(M) ⊆ Hω(M).

Also, Nk ⊆ Nk + Hn(Hω(M)) implies that Hn(M) = ⋃
(Nk + Hn(Hω(M))) and

(Nk + Hn(Hω(M))) ∩ Hk(M) = Hn(Hω(M)) + (Nk ∩ Hk(M)) = Hn(Hω(M)).
Therefore Mk = Nk + Hn(Hω(M)) and Nk ∩ Hk(M) ⊆ Hω(M), equivalently
Nk ∩ Hk(M) = Hn(Hω(M)).

Remark 2 Every layeredmodule is 1-layeredmodule and vice-versa. Since Hn(M) ⊆
Hm(M), for n ≤ m, every m-layered module is a n-layered module.

Now we investigate some properties of n-layered modules.

Lemma 1 For n ≥ 1, h-pure submodules of n-layered modules are n-layered mod-
ules. Moreover, the submodules of n-layered modules with the same first Ulm sub-
modules are n-layered.

Proof Let M be a n-layered QT AG-module such that Hn(M) = ⋃
j<ω M j , M j ⊆

M j+1 ⊆ Hn(M) and M j ∩ Hj (M) ⊆ Hω(M). Now for any h-pure submodule N of
M , Hn(N ) = ⋃

j<ω N j , where N j = M j ∩ N and

N j ∩ Hj (N ) ⊆ N ∩ Hω(M) = Hω(N )

and the result follows.
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If K is an arbitrary submodule of M such that Hω(K ) = Hω(M), then Hn(K ) =⋃
j<ω K j , where K j = M j ∩ K and

K j ∩ Hj (K ) ⊆ K ∩ Hω(M) = Hω(K )

and we are done.

Lemma 2 Let N be submodule of a h-reduced module M and n ≥ 1. Then M is
n-layered if and only if N is n-layered, where N is a Hω+n−1(M)-high submodule
of M.

Proof For any ordinal α, Hα(M)-high submodules of M are h-pure in M . Now if N
is a Hω+n−1(M)-high submodule of M , it is h-pure in M and by Lemma 1, if M is
n-layered, then N is also n-layered.

We have “Let M be a h-reduced QTAG-module and let N be a Hα+k-high submod-
ule of M with α a limit ordinal and k ≥1. Then Hn(M)= Hn(N ) ⊕ Hn(K ) for n >k
and any complementary summand K of a maximal summand of Hα(M) bounded by
k” [4].

Now for the converse, we have Hn(M) = Hn(N ) ⊕ Hn(K ), where K is a
Hn−1(Hω(M))-high submodule of Hω(M). Since Hn(N )=⋃

j<ω N j , N j ⊆ N j+1⊆
Hn(N ) and N j ∩ Hj (N ) ⊆ Hω(N ), by defining M j = N j ⊕ Hn(K ), we have
Hn(M) = ⋃

j<ω M j . Since N is h-pure in M and K ⊆ Hω(M), M j ∩ Hj (M) =
Hn(K ) + (N j ∩ Hj (M)) = Hn(K ) + (N j ∩ Hj (N )) ⊆ Hω(M).

Proposition 1 For n ≥ 1, all �-modules with h-divisible first Ulm submodule are
n-layered modules.

Proof Let M be a �-module such that Hω(M) is h-divisible. Since h-divisible sub-
modules are direct summands, we have M = Hω(M) ⊕ N , where N is contained
in a high submodule of M , hence N is a direct sum of uniserial submodules. Again

M
Hω(M)

� N and we are done.

Proposition 2 Direct sums of n-layered modules are n-layered modules.

Proof Let M be a direct sum of n-layered modules such that M = ⊕
j∈J N j . Here

N j ’s are n-layered modules. Therefore Hn(N j ) = ⋃
i<ω Ni j , Ni j ⊆ N(i+1) j ⊆ N j

and Ni j ∩ Hi (N j ) ⊆ Hω(N j ) for i < ω, j ∈ J .
Furthermore, Hn(M)=⊕

j∈J Hn(N j )=⊕
j∈J (

⋃
i<ω Ni j )=⋃

i<ω(
⊕

j∈J Ni j )=⋃
i<ω Mi , where Mi = ⊕

j∈J Ni j and

Mi ∩ Hi (M) =
⎛

⎝
⊕

j∈I

Ni j

⎞

⎠ ∩
⎛

⎝
⊕

j∈I

Hi (N j )

⎞

⎠

=
⊕

j∈I

(Ni j ∩ Hi (N j ))

⊆
⊕

j∈I

Hω(N j )
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= Hω

⎛

⎝
⊕

j∈I

N j

⎞

⎠

= Hω(M)

and the result follows.

Proposition 3 For k ≥ 1, M is a n-layered module if and only if Hk(M) is n-layered.

Proof If M is a n-layered module, then Hn(M) = ⋃
j<ω N j , N j ⊆ N j+1 ⊆ Hn(M)

and N j ∩ Hj (M) ⊆ Hω(M), for every j < ω. Therefore Hn(Hk(M)) = ⋃
i<ω Tj ,

where Tj = N j ∩ Hk(M) and

Tj ∩ Hk+ j (M) = Tj ∩ Hj (Hk(M))

⊆ N j ∩ Hj (M)

⊆ Hω(M)

= Hω(Hk(M)).

Thus Hk(M) is also n-layered.
For the converse, suppose Hk(M) is n-layered. If k=1, then H1(M) is n-layered

and we have Hn(H1(M))=⋃
j<ω Tj , Tj ⊆Tj+1⊆ Hn(H1(M)) and Tj ∩ Hj+1(M)⊆

Hω(M). Let S ={x | x ∈ Hn(M), x /∈ Hn(H1(M)}. Then Hn(M) = S ∪ Hn(H1(M)).
Define K j ⊆ M such that K j ∩ H1(M) = φ and Hn(M\H1(M)) = ⋃

j<ω K j such
that 〈K j 〉 ∩ H1(M) ⊆ Tj . This implies that Hn(M) = ⋃

(Tj + 〈K j 〉), and

(Tj + 〈K j 〉) ∩ Hj+1(M) ⊆ (Tj + 〈K j 〉) ∩ H1(M)

= Tj + (〈K j 〉 ∩ H1(M))

= Tj .

Therefore (Tj +〈K j 〉)∩ Hj+1(M) ⊆ Tj ∩ Hj+1(M) ⊆ Hω(M) and the result follows.

Proposition 4 A QT AG-module M is n-layered module if and only if its large sub-
module L is n-layered.

Proof For a large submodule L of M , Hω(L) = Hω(M) [6]. Therefore by Lemma 1,
L is n-layered whenever M is n-layered.

Conversely, suppose L is n-layered such that L = ∑
k<ω Hk(Hmk (M)), where

m1 ≤ m2 ≤ · · · ≤ mk is a monotonically increasing sequence of positive integers.
Now Hn(L) = Soc(Hm1(M) + · · · + Hn(Hmn (M)) therefore

Hn(Hmn (M)) ⊆ Hn(L) ⊆ Hn(Hm1(M)).

Also Hn(L) = ⋃
j<ω L j , L j ⊆ L j+1 ⊆ Hn(L) and L j ∩ Hj (L) ⊆ Hω(L) and

Hn(Hmn (M)) = ⋃
j<ω N j , where N j = L j ∩ Hn(Hmn (M)) = L j ∩ (Hmn (M)).

Again N j ∩ Ht j (M) ⊆ N j ∩ Hj (L) ⊆ Hω(L) = Hω(M), for some t j ≥ max( j, mn)

with Hn(Ht j (M)) ⊆ Hn(Hj (L)), as Hj (L) is also a large submodule of M . Now
Hmn (M) is n-layered module and by Proposition 3, M is also n-layered module.
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Proposition 5 Let N be a submodule of M such that M/N is bounded. Then M is
n-layered module if and only if N is n-layered module.

Proof Since M/N is bounded, then there exists an integer k such that Hk(M/N ) = 0
or Hk(M) ⊆ N . Therefore Hω(Hk(M)) = Hω(M) = Hω(N ) and by Lemma 1, if M
is n-layered then N is also n-layered.

Conversely, if N is a n-layered module then by Lemma 1, Hk(M) ⊆ N is also
n-layered. Therefore by Proposition 3, M is also n-layered.

Proposition 6 Let N be a height-finite, submodule of M. If M/N is n-layered, then
M is n-layered.

Proof Since M/N is n-layered, Hn(M/N ) = ⋃
j<ω(K j/N ) = (

⋃
K j )/N , where

K j ⊆ K j+1 ⊆ M and
(

K j
N

)
∩ Hj

( M
N

) ⊆ Hω

( M
N

)
. Now N is height-finite, therefore

nice in M and K j ∩ Hj (M) ⊆ Hω(M) + N . There exists a positive integer t j ≥ j
such that N ∩ Ht j (M) ⊆ Hω(M). Also

K j ∩ Ht j (M) ⊆ (Hω(M) + N ) ∩ Ht j (M)

= Hω(M) + (N ∩ Ht j (M))

= Hω(M).

Now
(

Hn(M)+N
N

)
⊆ Hn(M/N ) and Hn(M) ⊆ ⋃

j<ω K j . Thus Hn(M) = ⋃
j<ω Tj ,

where Tj = K j ∩ Hn(M) = Hn(K j ) and the result follows.

Remark 3 Let N be a height-finite submodule of M . If M/N is a �-module, then M
is also a �-module.

Proposition 7 Let N be a submodule of M.

(i) if N ∩ Hn(M) = Hn(N ) and N is finitely generated or N ⊆ Hω(M) and M is
n-layered, then M/N is also n-layered;

(ii) if N ⊆ Hk(M), for some k ≥ 1 and either N is finitely generated or N ⊆ Hω(M)

and M is (n + k)-layered, then M/N is also n-layered.

Proof (i) If M is n-layered, then Hn(M)=⋃
j<ω M j , M j ⊆ M j+1 and M j ∩Hj (M)⊆

Hω(M). Now, Hn
(M

N

) =
(

Hn(M)+N
N

)
= ⋃

j<ω

(
M j +N

N

)
. Therefore,

(
M j +N

N

)
∩

Hj
( M

N

) = [N+((M j +N )∩Hj (M))]
N .

When N ⊆ Hj (M), for every positive integer j , then

(M j + N ) ∩ Hj (M) ⊆ N + (M j ∩ Hj (M)) ⊆ N + Hω(N ).

Since
(

N+Hω(M)
N

)
⊆ Hω

( M
N

)
, the result follows.

When N is finitely generated, then there exists an integer t j ≥ j such that (M j +
N ) ∩ Ht j (M) ⊆ Hω(M). Therefore

(
M j +N

N

)
∩ Ht j

( M
N

) ⊆
(

N+Hω(M)
N

)
= Hω

( M
N

)

and we are done.
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If N ⊆ Hω(M) and we have Hn
( M

N

) = ⋃
j<ω

(
M j
N

)
, M j ⊆ M j+1 ⊆ M , where

(M j/N ) ∩ Hj (M/N ) ⊆ Hω(M/N ) = Hω(M)/N . Therefore M j ∩ Hj (M) ⊆
Hω(M). Since

(
Hn(M)+N

N

)
⊆ Hn

( M
N

)
, Hn(M) = ⋃

j<ω Hn(M j ) and the result

follows.
(ii) Since Hn

( M
N

) ⊆
(

Hn+k (M)+N
N

)
, we are through.

Proposition 8 If for some ordinal α, M/Hα(M) is n-layered, then M is n-layered.

Proof We have Hn(M/Hα(M)) = ⋃
j<ω(M j/Hα(M)), M j ⊆ M j+1 ⊆ M , M j ∩

Hj (M) ⊆ Hω(M) for every j < ω. Now

(
Hn(M) + Hα(M)

Hα(M)

)

⊆ Hn
(

M

Hα(M)

)

therefore Hn(M) ⊆ ⋃
j<ω M j . If we put Tj = Hn(M j ), then Hn(M) = ⋃

j<ω Tj .
But Tj ∩ Hj (M) ⊆ M j ∩ Hj (M) ⊆ Hω(M) and we are done.

Now we are in the state to prove our main result which motivated this article.

Theorem 1 The QT AG-module M is a n-layered module which is a strong
ω-elongation of a totally projective module by a (ω + n)-projective module if and
only if M is a totally projective module.

Proof Since M is a strong ω-elongation, Hω(M) is totally projective and there exists
a submodule N ⊆ Hn(M) such that M

N+Hω(M)
is a direct sum of uniserial modules

and M
N+Hω(M)

� M/Hω(M)
(N+Hω(M))/Hω(M)

. Now by the definition of n-layered modules,
Hn(M) = ⋃

j<ω M j , M j ⊆ M j+1 ⊆ Hn(M) and M j ∩ Hj (M) = Hn(Hω(M)), for

every j . Since N ⊆ Hn(M), N =⋃
j<ω N j where N j = N ∩ M j and

(
N+Hω(M)

Hω(M)

)
=

⋃
j<ω

(
(N j +Hω(M))

Hω(M)

)
.

Now,

(
(N j + Hω(M))

Hω(M)

)

∩ Hj

(
M

Hω(M)

)

= (N j + Hω(M))

Hω(M)
∩

(
Hj (M)

Hω(M)

)

,

= [(N j + Hω(M)) ∩ Hj (M)]
Hω(M)

,

= (Hω(M) + (N j ∩ Hj (M)))

Hω(M)
,

= 0.

Therefore M/Hω(M) is a direct sum of uniserial modules and M is totally projective.

We have shown that if N is a finite submodule of M such that N ∩Hn(M) = Hn(N ),
then M is an n-layered module if and only if M/N is an n-layered module. Moreover,
in [7] we showed that M is �-module if and only if M/N is a �-module.

We generalize this assertion to n-layered modules for an arbitrary natural number
n. For doing this, we need following technical lemmas:
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Lemma 3 Let N be a finitely generated submodule of M. Then for an integer n ≥ 1,

Hn(M/N ) = Hn(M) + K

N

where K is a finitely generated submodule of M with Hn(K ) ⊆ N ⊆ K .

Proof Let x + N ∈ Hk(M/N ) for some x ∈ M such that there exists y ∈ N with

d
(

x R
y R

)
= n. We may express N ∩ Hn(M) = ∑m

i=1 xi R for some m ∈ Z+ and put

K = N +∑
yi R,where d

(
yi R
xi R

)
= n. If yk ∈ M such that k �= 1, . . . , m and xk ∈ N

such that d
(

yk R
xk R

)
= n, then xk R = xi R for some i ∈ {1, 2, . . . , m}. Therefore

yk R ⊆ yi R + Hn(M) ⊆ K + Hn(M). The converse is trivial and the result follows.

Lemma 4 Let K be a h-finite submodule of M having only finite heights in M. If N
is a finitely generated submodule of M then N + K is also h-finite assuming finite
heights only.

Proof Since the elements of K assumes only finite number of finite heights, K ∩
Hk(M) ⊆ M1, for some k ≥ 1. Now N is finitely generated submodule and we may
express N as

∑m
i=1 xi R.Consider the submodule N ′ of N where N ′ = ∑t

i=1 xi R such
that xi + yi ∈ Hni (M) but xi + yi /∈ Hni+1(M)with ni > k, ∀ i = 1, 2, . . . , t for some
yi ∈ K . Therefore for each y ∈ K we have y + xi = y − yi + yi + xi /∈ Hni +1(M),

otherwise y − yi + yi + xi ∈ Hni (M) implying that y − yi ∈ Hk(M) and y − yi ∈ M1.

Therefore yi + xi ∈ Hni +1(M) which is a contradiction whenever 1 ≤ i ≤ t. If we
put n = max{n1 + 1, . . . , nt + 1}, y + xi /∈ Hn(M). Since y + x j /∈ Hn(M) for
t + 1 ≤ j ≤ n, we are done.

Now we are ready to prove our main result:

Theorem 2 For each natural number n, a QT AG-module M is n-layered if and only
if M/N is n-layered, where N is a finitely generated submodule of M.

Proof Suppose that M is an n-layeredQTAG-module, then Hn(M)=⋃
i<ω Mi , Mi ⊆

Mi+1 ⊆ Hn(M) and, for all i < ω Mi ∩ Hi (M) ⊆ M1. By Lemma 3 we may write
Hn(M/N ) = (Hn(M) + K )/N , for some finitely generated submodule K of M
containing N . Furthermore, Hn(M/N ) = ⋃

i<ω ((Mi + K )/N ) and by Lemma 4,
we calculate that
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(
Mi + K

N

) ⋂
Hti

(
M

N

)

=
(

Mi + K

N

) ⋂(
Hti (M) + N

N

)

= (Mi + K ) ∩ (Hti (M) + N )

N

= (Mi + K ) ∩ Hti (M) + N

N
⊆ M1 + N

N
⊆

(
M

N

)1

for every i and some natural number ti ≥ i, implying that M/N is an n-layered
module.

For reverse implication, suppose that M/N is an n-layered module. Now write

Hn(M/N ) = ⋃
i<ω

(
Ti
N

)
, Ti ⊆ Ti+1 ⊆ M and for all i < ω,

(
Ti

N

)⋂
Hi

(
M

N

)

=
(

M

N

)1

.

Since N is finitely generated it is nice in M. Now we may say Hn(M)+N
N ⊆ Hn

( M
N

)
,

⋃
i<ω

(
Ti
N

)
=

⋃
i<ω Ti

N
and

( M
N

)1 = M1 + N

N
. Therefore Hn(M) = ⋃

i<ω Hn(Ti )

and
(

Ti
N

)
∩

(
Hi (M)+N

N

)
= M1+N

N .

Therefore

(Ti ∩ Hi (M) + N )

N
= M1 + N

N
and

N + (Ti ∩ Hi (M))

N
= M1 + N

N
⇒ Ti ∩ Hi (M) ⊆ M1 + N .

Since N is finitely generated so there exists m ∈ N such that N ∩ Hm(M) ⊆ M1,

therefore

Ti ∩ Hti (M) ⊆ (M1 + N ) ∩ Hm(M)

⊆ M1 + N ∩ Hm(M) = M1,

for every i and ti = m + i, implying that M is also n-layered.
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