
Bull. Math. Sci. (2013) 3:241–285
DOI 10.1007/s13373-013-0038-y

Cauchy-type integrals in several complex variables

Loredana Lanzani · Elias M. Stein

Received: 16 January 2013 / Revised: 13 May 2013 / Accepted: 15 May 2013 /
Published online: 9 June 2013
© The Author(s) 2013. This article is published with open access at SpringerLink.com

Abstract We present the theory of Cauchy–Fantappié integral operators, with
emphasis on the situation when the domain of integration, D, has minimal bound-
ary regularity. Among these operators we focus on those that are more closely related
to the classical Cauchy integral for a planar domain, whose kernel is a holomorphic
function of the parameter z ∈ D. The goal is to prove L p estimates for these operators
and, as a consequence, to obtain L p estimates for the canonical Cauchy–Szegö and
Bergman projection operators (which are not of Cauchy–Fantappié type).

Mathematics Subject Classification (2000) 32A36 · 32A50 · 42B · 31B

1 Introduction

The purpose of this survey is to study Cauchy-type integrals in several complex vari-
ables and to announce new results concerning these operators. While this is a broad
field with a very wide literature, our exposition will be focused more narrowly on
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242 L. Lanzani, E. M. Stein

achieving the following goal: the construction of such operators and the establish-
ment of their L p mapping properties under “minimal” conditions of smoothness of
the boundary of the domain D in question.

The operators we study are of three interrelated kinds: Cauchy–Fantappié integrals
with holomorphic kernels, Cauchy–Szegö projections and Bergman projections. In
the case of one complex variable, what happens is by now well-understood. Here the
minimal smoothness that can be achieved is “near” C1 (e.g., the case of a Lipschitz
domain). However when the complex dimension is greater than 1 the nature of the
Cauchy–Fantappié kernels brings in considerations of pseudo-convexity (in fact strong
pseudo-convexity) and these in turn imply that the limit of smoothness should be “near”
C2.

We establish L p-regularity for one or more of these operators in the following
contexts:

• When D is strongly pseudo-convex and of class C2;
• When D is strongly C-linearly convex and of class C1,1

with p in the range 1 < p < ∞. See Theorems 1–4 for the precise statements.
This survey is organized as follows. In Sect. 2 we briefly review the situation of

one complex variable. Section 3 is devoted to a few generalities about Cauchy-type
integrals when n, the complex dimension of the ambient space, is greater than 1.
The Cauchy–Fantappié forms are taken up in Sect. 4 and the corresponding Cauchy–
Fantappié integral operators are set out in Sect. 5. Herewe adapt the standard treatment
in [34, Chapt. IV], but our aim is to show that these methods apply when the so-called
generating form is merely of class C1 or even Lipschitz, as is needed in what follows.

The Cauchy–Fantappié integrals constructed up to that point may however lack
the basic requirement of producing holomorphic functions, whatever the given data
is. In other words, the kernel of the operator may fail to be holomorphic in the free
variable z ∈ D. To achieve the desired holomorphicity requires that the domain D be
pseudo-convex, and two specific forms of this property, strong pseudo-convexity and
strong C -linear convexity are discussed in Sect. 6.

There are several approaches to obtain the required holomorphicity when the
domain is sufficiently smooth and strongly pseudo-convex. The initial methods are
due to Henkin [17,18] and Ramirez [33]; a later approach is in Kerzman–Stein [21],
which is the one we adopt here. It requires to start with a “locally” holomorphic kernel,
and then to add a correction term obtained by solving a ∂-problem. These matters are
discussed in Sects. 7–9. One should note that in the case of stronglyC-linearly convex
domains, the Cauchy–Leray integral given here requires no correction. So among all
the integrals of Cauchy–Fantappié type associated to such domains, the Cauchy–Leray
integral is the unique and natural operator that most closely resembles the classical
Cauchy integral from one complex variable.

The main L p estimates for the Cauchy–Leray integral and the Szegö and Bergman
projections (for C2 boundaries) are the subject of a series of forthcoming papers; in
Sect. 10 we limit ourselves to highlighting the main points of interest in the proofs.
For the last two operators, the L p results are consequences of estimates that hold for
the corrected Cauchy–Fantappié kernels, denoted Cε and Bε , that involve also their
respective adjoints. Section 11 highlights a further result concerning theCauchy–Leray
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integral, also to appear in a separate paper: the corresponding L p theorem under the
weaker assumption that the boundary is merely of class C1,1.

A survey of this kind must by the nature of the subject be far from complete.
Among matters not covered here are L p results for the Szegö and Bergman projection
and for the Cauchy–Leray integral for other special domains (in particular, with more
regularity). For these, see e.g. [2–4,6–8,12,13,15,23,29,30,32,37]. It is to be noted
that several among these works depend in the main on good estimates or explicit
formulas for the Szegö or Bergman kernels. In our situation these are unavailable, and
instead we have to proceed via the Cauchy–Fantappié framework.

A few words about notation: Euclidean volume measure for Cn ≡ R
2n (n ≥ 1)

will be denoted dV . The notation bD will indicate the boundary of a domain D ⊂ C
n

(n ≥ 1) and, for D sufficiently smooth, dσ will denote arc-length (n = 1) or Euclidean
surface measure (n ≥ 2).

2 The Case n = 1

In the case of one complex dimension the problem of L p estimates has a long and
illustrious history. Let us review it briefly. (Some details can be found in [10,16,24],
which contain further citations to the literature.)

Suppose D is a bounded domain in C whose boundary bD is a rectifiable curve.
Then the Cauchy integral is given by

C( f )(z) =
∫

bD

f (w) C(w, z), for z ∈ D

where C(w, z) is the Cauchy kernel

C(w, z) = 1

2π i

dw

w − z

When D is the unit disc, then a classical theorem of M. Riesz says that the mapping
f �→ C( f )|bD , defined initially for f that are (say) smooth, is extendable to a bounded
operator on L p(bD), for 1 < p < ∞. Very much the same result holds when the
boundary of D is of class C1+ε , with ε > 0, (proved either by approximating to the
result when D is the unit disc, or adapting one of the several methods of proof used in
the classical case). However in the limiting case when ε = 0, these ideas break down
and new methods are needed. The theorems proved by Calderón, Coifman, McIntosh,
Meyers and David (between 1977–1984) showed that the corresponding L p result
held in the following list of increasing generality: the boundary is of class C1; it is
Lipschitz (the first derivatives are merely bounded and not necessarily continuous); it
is an “Ahlfors-regular” curve.

We pass next to the Cauchy–Szegö projection S, the corresponding orthogonal
projection with respect to the Hilbert space structure of L2(bD). In fact when D is
the unit disc, the two operators C and S are identical. Let us now restrict our attention
to the case when D is simply connected and when its boundary is Lipschitz. Here a

123



244 L. Lanzani, E. M. Stein

key tool is the conformal map � : D → D, where D is the unit disc. We consider

the induced correspondence τ given by τ( f )(eiθ ) = (�′(eiθ ))
1
2 f (�(eiθ )), and the

fact that S = τ−1S0τ , where S0 is the Cauchy–Szegö projection for the disc D. Using
ideas of Calderón, Kenig, Pommerenke and others, one can show that |�′|r belongs
to the Muckenhaupt class Ap, with r = 1 − p/2, from which one gets the following.
As a consequence, if we suppose that bD has a Lipschitz bound M , then S is bounded
on L p, whenever

• 1 < p < ∞, if bD is in fact of class C1.
• p′

M < p < pM . Here pM depends on M , but pM > 4, and p′
M is the exponent dual

to pM .

There is an alternative approach to the second result that relates the Cauchy–Szegö
projection S to the Cauchy integral C. It is based on the following identity, used in
[21]

S(I − A) = C, where A = C∗ − C. (2.1)

There are somewhat analogous results for the Bergman projection in the case of
one complex dimension. We shall not discuss this further, but refer the reader to the
papers cited above.

3 Cauchy integral in C
n, n > 1; some generalities

We shall see that a very different situation occurs when trying to extend the results of
Sect. 2 to higher dimensions. Here are some new issues that arise when n > 1

i There is no “universal” holomorphic Cauchy kernel associated to a domain D.
ii Pseudo-convexity of D, must, in one form or another, play a role.
iii Since this condition involves (implicitly) two derivatives, the “best” results are to

be expected “near” C2, (as opposed to near C1 when n = 1).

In viewof the non-uniqueness of theCauchy integral (and its problematic existence),
it might be worthwhile to set down the minimum conditions that would be required
of candidates for the Cauchy integral. We would want such an operator C given in the
form

C( f )(z) =
∫

bD

f (w) C(w, z), z ∈ D,

to satisfy the following conditions:

(a) The kernel C(w, z) should be given by a “natural” or explicit formula (at least up
to first approximation) that involves D.

(b) The mapping f �→ C( f ) should reproduce holomorphic functions. In particular
if f is continuous in D and holomorphic in D then C( f )(z) = f (z), for z ∈ D.
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(c) C( f )(z) should be holomorphic in z ∈ D, for any given f that is continuous on
bD.

Now there is a formalism (the Cauchy–Fantappié formalism of Fantappié (1943),
Leray, and Koppleman (1967)), which provides Cauchy integrals satisfying the
requirements (a) and (b) in a general setting. Condition (c) however, is more problem-
atic, even when the domain is smooth. Constructing such Cauchy integrals has been
carried out only in particular situations, (see below).

4 Cauchy–Fantappié theory in higher dimension

The Cauchy–Fantappié formalism that realizes the kernel C(w, z) revolves around the
notion of generating form: these are a class of differential forms of type (1, 0) in the
variable of integration whose coefficients may depend on two sets of variables (w and
z), and we will accordingly write

η(w, z) =
n∑

j=1

η j (w, z) dw j with (w, z) ∈ U × V

to designate such a form. The precise definition is given below, where the notation

〈η(w, z), ξ 〉 =
n∑

j=1

η j (w, z) ξ j .

is used to indicate the action of η on the vector ξ ∈ C
n .

Definition 1 The form η(w, z) is generating at z relative to V if there is an open set

Uz ⊆ C
n\{z}

such that

bV ⊂ Uz (4.1)

and, furthermore

〈η(w, z), w − z〉 =
n∑

j=1

η j (w, z) (w j − z j ) ≡ 1 for any w ∈ Uz . (4.2)

We say that η is a generating form for V (alternatively, that V supports a generating
form η) if for any z ∈ V we have that η is generating at z relative to V.

Example 1 Set

β(w, z) = |w − z|2
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We define the Bochner–Martinelli generating formto be

η(w, z) = ∂wβ

β
(w, z) =

n∑
j=1

w j − z j

|w − z|2 dw j (4.3)

It is clear that η satisfies conditions (4.1) and (4.2) for any domain V and for any
z ∈ V , with Uz := C

n\{z}.
The Bochner–Martinelli generating form has several remarkable features. First, it

is “universal” in the sense that it is given by a formula (4.3) that does not depend on
the choice of domain V ; secondly, in complex dimension n = 1 it agrees (up to a
scalar multiple) with the classical Cauchy kernel

1

2π i

dw

w − z
, w ∈ Uz := C\{z}

and in particular its coefficient (w−z)−1 is holomorphic as a function of z ∈ V for any
fixed w ∈ bV . On the other hand, it is clear from (4.3) that for n ≥ 2 the coefficients
of this form are nowhere holomorphic: this failure at holomorphicity is an instance of
a crucial, dimension-induced phenomenon which was alluded to in conditions ii.
and (c) in Sect. 3 and will be further discussed in Example 2 below and in Sect. 6.

4.1 Cauchy–Fantappié forms

Suppose now that for each fixed z η(w, z) is a form of type (1, 0) inw with coefficients
of class C1 in each variable. (We are not assuming that η is a generating form). Set

�0(η)(w, z) = 1

(2π i)n
η ∧ (∂wη)n−1(w, z) (4.4)

where (∂wη)n−1 stands for the wedge product: ∂wη ∧ · · · ∧ ∂wη performed (n − 1)-
times. We call �0(η) the Cauchy-Fantappiè form for η. Note that �0(η)(w, z) is of
type (n, n − 1) in the variable w ∈ U while in the variable z ∈ V it is just a function.

Example 2 The Cauchy–Fantappié form for the Bochner–Martinelli generating form
or, for short, Bochner–Martinelli CF form is

�0

(
∂wβ

β

)
(w, z) = (n − 1)!

(2π i |w − z|2)n

n∑
j=1

(w j − z j ) dw j ∧
⎛
⎝∧

ν �= j

dwν ∧ dwν

⎞
⎠ .

Now the Bochner–Martinelli integral is the operator

CBM f (z) =
∫

w∈bD

f (w) CB M (w, z), z ∈ D, f ∈ C(bD)
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where the kernelCB M (w, z) is theBochner–MartinelliCF form restricted to the bound-
ary; more precisely

CB M (w, z) = j∗�0

(
∂wβ

β

)
(w, z), w ∈ bD, z ∈ D

where j∗ denotes the pullback of forms under the inclusion

j : bD ↪→ C
n

It is clear that such operator is “natural” in the sense discussed in condition (a) in
Sect. 3, and we will see in Sect. 5 that this operator also satisfies condition (b), see
Proposition 1 in that section. On the other hand, the kernel CB M (w, z) is nowhere
holomorphic in z: as a result, when n > 1 the Bochner–Martinelli integral does not
satisfy condition (c).

Wewill now review the properties of Cauchy-Fantappiè forms that aremost relevant
to us.

Basic Property 1 For any function g ∈ C1(U ) we have

�0(g(w) η(w, z)) = gn(w)�0(η)(w, z) for any w ∈ U.

Proof The proof is a computation: by the definition (4.4), we have

�0(g η) = g η ∧ (
∂(g η)

)n−1

On the other hand, computing
(
∂(g η)

)n−1
produces two kinds of terms:

(a.) Terms that contain ∂g ∧ η: but these do not contribute to �0(g η) because g η ∧
∂g ∧ η = 0 (which follows from η ∧ η = 0 since η has degree 1);

(b.) The term gn−1 ∂ η, which gives the desired conclusion.

��
Suppose, further, that η(w, z) is generating at z relative to V . Then the following

two properties also hold.

Basic Property 2 We have that

(∂wη)n(w, z) = 0 for any w ∈ Uz . (4.5)

Note that if the coefficients of η(·, z) are in C2(Uz), then as a consequence of the
fact that ∂ ◦ ∂ = 0, we have that (∂wη)n(w, z) = dw�0(η)(w, z) and (4.5) can be
formulated equivalently as

dw�0(η)(w, z) = 0, w ∈ Uz .
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Proof We prove (4.5) in the case: n = 2 and leave the proof for general n as an
exercise for the reader. Thus, writing

η = η1dw1 + η2dw2

we obtain

(∂wη)2 = −2 ∂wη1 ∧ ∂wη2 ∧ dw1 ∧ dw2 (4.6)

Now

η1(w, z)(w1 − z1) + η2(w, z)(w2 − z2) = 1 for any w ∈ Uz

because η is generating at z, and applying ∂w to each side of this identity we obtain

(w1 − z1) ∂wη1(w, z) + (w2 − z2) ∂wη2(w, z) = 0 for any w ∈ Uz (4.7)

Recall that Uz ⊂ C
2\{z}, see Definition 1, and so

Uz ∩ U = U 1
z ∪ U 2

z

where

U 1
z = {w = (w1, w2) ∈ Uz ∩ U, w1 �= z1} (4.8)

U 2
z = {w = (w1, w2) ∈ Uz ∩ U, w2 �= z2} (4.9)

But for any two sets A and B one has A ∪ B = (A\B) ∪̇ (B\A) ∪̇ (A ∩ B) where ∪̇
denotes disjoint union. Now, if w ∈ U 1

z \U 2
z then (4.7) reads

(w1 − z1) ∂wη1(w, z) = 0, w1 �= z1

but this implies

∂wη1(w, z) = 0 for any w ∈ U 1
z \U 2

z .

One similarly obtains

∂wη2(w, z) = 0 for any w ∈ U 2
z \U 1

z ).

We are left to consider the case when w ∈ U 1
z ∩ U 2

z ; note that since

(w1 − z1)(w2 − z2) �= 0 for any w ∈ U 1
z ∩ U 2

z
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showing that (∂wη)2(w, z) = 0 for any w ∈ U 1
z ∩ U 2

z is now equivalent to showing
that

(w1 − z1)(w2 − z2)(∂wη)2(w, z) = 0 for any w ∈ U 1
z ∩ U 2

z

To this end, combining (4.6) with (4.7) we find

(w1 − z1)(w2 − z2)(∂wη)2(w, z)

= 2(w1 − z1)
2 ∂wη1(w, z) ∧ ∂wη1(w, z) ∧ dw1 ∧ dw2

and indeed

∂wη1 ∧ ∂wη1 = 0

because ∂wη1 is a form of degree 1. ��
Let η(w, z) be a form of type (1, 0) in the variable w (not necessarily generating

for V ) and with coefficients in C1(U × V ); set

�1(η)(w, z) = (n − 1)

(2π i)n

(
η ∧ (∂wη)n−2 ∧ ∂ zη

)
(w, z) (4.10)

Note that �1(η)(w, z) is of type (n, n − 2) in the variable w and of type (0, 1) in
the variable z. We call �1(η) the Cauchy-Fantappie’ form of order 1 for η, and the
previous one, �0(η), will now be called Cauchy-Fantappie’ form of order 0.

In the previous properties z was fixed; here it is allowed to vary.

Basic Property 3 We have (again for η generating at z)

(2π i)n ∂ z�0(η)(w, z) = −(∂wη)n−1 ∧ ∂ zη + η ∧ (∂wη)n−2 ∧ ∂ z∂wη, (4.11)

For any w ∈ Uz ∩U, where Uz is as in (4.2). Note that if the coefficients are in fact
of class C2 in each variable, then (4.11) has the equivalent formulation

∂ z�0(η)(w, z) = −dw�1(η)(w, z). (4.12)

Proof As before, we specialize to the case: n = 2 and leave the proof of the general
case as an exercise for the reader. For n = 2 identity (4.11) reads

∂ z
(
η ∧ ∂wη

) = −∂wη ∧ ∂ zη + η ∧ ∂ z∂wη (4.13)

By the Leibniz rule we have

∂ z
(
η ∧ ∂wη

) = ∂ zη ∧ ∂wη + η ∧ ∂ z∂wη

123



250 L. Lanzani, E. M. Stein

and so it is clear that (4.13) will follow if we can show that

∂wη ∧ ∂ zη = 0, for any w ∈ Uz

for any generating form η with coefficients of class C1. Proceeding as in the proof of
basic property 2, we decompose

Uz ∩ U = U 1
z ∪ U 2

z

where U 1
z and U 2

z are as in (4.8) and (4.9), respectively. Again, we have

η1(w, z)(w1 − z1) + η2(w, z)(w2 − z2) = 1 for any w ∈ Uz

because η is generating, and applying ∂w to each side of this identity we find

0 =

⎧⎪⎪⎨
⎪⎪⎩

(
∂wη1

) · (w1 − z1)+
(
∂wη2

) · (w2 − z2), if w ∈ U 1
z ∩ U 2

z(
∂wη1

)·(w1 − z1), if w ∈ U 1
z \U 2

z(
∂wη2

) · (w2 − z2), if w ∈ U 2
z \U 1

z

(4.14)

Similarly, applying ∂ z , we have

0 =

⎧⎪⎪⎨
⎪⎪⎩

(
∂ zη1

) · (w1 − z1) +(
∂ zη2

) · (w2 − z2), if w ∈ U 1
z ∩ U 2

z(
∂ zη1

) · (w1 − z1), if w ∈ U 1
z \U 2

z(
∂ zη2

) · (w2 − z2), if w ∈ U 2
z \U 1

z

(4.15)

Now

∂wη ∧ ∂ zη = (
∂wη1 ∧ ∂ zη2 − ∂wη2 ∧ ∂ zη1

) ∧ dw1 ∧ dw2 (4.16)

Note that if w ∈ U 1
z \U 2

z then w1 �= z1, and so showing that

∂wη ∧ ∂ zη = 0 for w ∈ U 1
z \U 2

z

is equivalent to showing that

(∂wη ∧ ∂ zη) · (w1 − z1) = 0

that is (using (4.16))

(
∂wη1 · (w1 − z1) ∧ ∂ zη2 − ∂wη2 ∧ ∂ zη1 · (w1 − z1)

) ∧ dw1 ∧ dw2 = 0

but this is indeed true by the generating form hypothesis on η as expressed in (4.14)
and (4.15). This shows that the desired conclusion is true when w ∈ U 1

z \U 2
z ; the
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case: w ∈ U 2
z \U 1

z is dealt with in a similar fashion. Finally, if w ∈ U 1
z ∩ U 2

z , then
(w1 − z1)(w2 − z2) �= 0 and

(∂wη ∧ ∂ zη) · (w1 − z1)(w2 − z2)

=
((

∂wη1
) · (w1 − z1) ∧ (

∂ zη2
) · (w2 − z2) +

−(
∂wη2

) · (w2 − z2) ∧ (
∂ zη1

) · (w1 − z1)

)
∧ dw1 ∧ dw2

but the two terms in the righthand side of this identity cancel out on account of (4.14)
and (4.15). ��

5 Reproducing formulas: some general facts

In this section we highlight the theory of reproducing formulas for holomorphic func-
tions by means of integral operators that arise from the Cauchy–Fantappié formalism.
One of our goals here is to show that the usual reproducing properties of such operators
extend to the situation where the data and the generating form have lower regularity.
We begin with a rather specific example: the reproducing formula for the Bochner–
Martinelli integral, see Proposition 1. The proof of this result is a consequence of a
recasting of the classical mean value property for harmonic functions in terms of an
identity (5.1) that links the Bochner-artinelli CF form on a sphere with the sphere’s
Euclidean surface measure.

Because the Bochner–Martinelli integral of a continuous function is, in general, not
holomorphic in z, in fact we need a more general version of Proposition 1 that applies
to integral operators whose kernel is allowed to be any Cauchy–Fantappié form: this
is done in Proposition 2.

While the operators defined so far are given by surface integrals over the boundary
of the ambient domain, following an idea of Ligocka [26] another family of integral
operators can be defined (essentially by ifferentiating the kernels of the operators in
the statement of Proposition 2) which are realized as ‘solid” integrals over the ambient
domain, and we show in Proposition 3 that such operators, too, have the reproducing
property.

Lemma 1 Let z ∈C
n be given and consider a ball centered at such z, Br (z)={w∈C

n,

|w − z| < r}.
Then, at the center z and for any w ∈ bBr (z) we have that the Bochner–Martinelli

CF form for the ball Br (z) has the following representation

CB M (w, z) = dσ(w)

σ(bBr (z))
(5.1)

where dσ(w) is the element of Euclidean surface measure for bBr (z), and

σ(bBr (z)) = 2πnr2n−1

(n − 1)!
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252 L. Lanzani, E. M. Stein

denotes surface measure of the sphere bBr (z).

Proof We claim that the desired conclusion is a consequence of the following identity

�0(∂wβ)(w, z) = (n − 1)!
2πn

∗ ∂wβ(w, z) (5.2)

where, as usual, we have set β(w, z) = |w − z|2, and ∗ denotes the Hodge-star
operator mapping forms of type (p, q) to forms of type (n − q, n − p). Let us first
prove (5.1) assuming the truth of (5.2). To this end, we first note that from (5.2) and
basic property 1 we have

�0

(
∂wβ

β

)
(w, z) = (n − 1)!

2πnβn
∗ ∂wβ(w, z), w ∈ C

n .

But ∂wβ(w, z) = ∂ρ(w), w ∈ C
n with ρ(w) := β(w, z) − r2, a defining function

for Br (z). Now recall that CB M (w, z) = j∗�0(∂wβ/β) where j is the inclusion:
bBr (z) ↪→ C

n , seeExample 2, so that j∗βn = r2n . Combining these factswe conclude
that, for ρ as above

CB M (w, z) = (n − 1)!
2πnr2n

j∗(∗∂ρ)(w), w ∈ bBr (z)

and since ‖dρ(w)‖ = 2r whenever w ∈ bBr (z), we obtain

CB M (w, z) = (n − 1)!
2πnr2n−1

2 j∗(∗∂ρ)

‖dρ‖ (w), w ∈ bBr (z);

but

dσ(w) = 2 j∗(∗∂ρ)

‖dρ‖ (w), w ∈ bBr (z) (5.3)

see [34, corollary III.3.5], and this gives (5.1).
We are left to prove (5.2): to this end, we assume n = 2 and leave the case of

arbitrary complex dimension as an exercise to for the reader. Since

∗dw j = 1

2 i2
dw j ∧ dw j ′ ∧ dw j ′ , where j ′ = {1, 2}\{ j}

and

∂wβ = (w1 − z1)dw1 + (w2 − z2)dw2

then

∗∂wβ = 1

2i2
(w1 − z1)dw1 ∧ dw2 ∧ dw2 + (w2 − z2)dw2 ∧ dw1 ∧ dw1
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On the other hand

∂w∂wβ = dw1 ∧ dw1 + dw2 ∧ dw2

and so

�0(∂wβ) = 1

(2π i)2
∂wβ ∧ ∂w∂wβ

= 1

(2π i)2

(
(w1 − z1)dw1 ∧ dw2 ∧ dw2 + (w2 − z2)dw2 ∧ dw1 ∧ dw1

)

= 1

2π2 ∗ ∂wβ.

This shows (5.2) and concludes the proof of the lemma.
(We remark in passing that identity (5.1), while valid for the Bochner–Martinelli

generating form, is not true for general η.) ��
Definition 2 Given an integer 1 ≤ k ≤ ∞ and a bounded domain D ⊂ C

n , we say
that D is of class Ck (alternatively, D is Ck-smooth)if there is an open neighborhood
U of the boundary of D, and a real-valued function ρ ∈ Ck(U ) such that

U ∩ D = {w ∈ U | ρ(w) < 0}

and

∇ρ(w) �= 0 for any w ∈ U.

Any such function is called a defining function for D.

From this definition it follows that

bD = {w ∈ U | ρ(w) = 0} and U\D = {w ∈ U | ρ(w) > 0}.

Proposition 1 For any bounded domain V ⊂ C
n with boundary of class C1 and for

any f ∈ ϑ(V ) ∩ C(V ), we have

f (z) = CB M f (z), z ∈ V .

Proof Given z ∈ V , let r > 0 be such that

Br (z) ⊂ V.

Note that the mean value property for harmonic functions:

f (z) = 1

σ(bBr (z))

∫

bBr (z)

f (w) dσ(w), f ∈ Harm(Br (z)) ∩ C(Br (z))
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and identity (5.1) give

f (z) =
∫

w∈bBr (z)

f (w) CB M (w, z) (5.4)

To prove the conclusion, we apply Stokes’ theorem on the set

Vr (z) := V \Br (z)

and we obtain

∫

w∈Vr (z)

dw

(
f (w)�0

(
∂wβ

β
(w, z)

))
=

∫

w∈bVr (z)

f (w) CB M (w, z)

But by basic property 2, and since f is holomorphic, we have

dw

(
f (w)�0

(
∂wβ

β
(w, z)

))
= f (w) ∂w�0

(
∂wβ

β
(w, z)

)
= 0

and so the previous identity becomes

∫

w∈bV

f (w) CB M (w, z) =
∫

w∈bBr (z)

f (w) CB M (w, z)

but the lefthand side is CB M f (z), while (5.4) says that the righthand side equals f (z).
��

Proposition 2 Let D ⊂ C
n be a bounded domain of class C1 and let z ∈ D be given.

Suppose that η(·, z) is a generating form at z relative to D. Suppose, furthermore, that
the coefficients of η(·, z) are in C1(Uz), where Uz is as in Definition 1. Then, we have

f (z) =
∫

w∈bD

f (w) j∗�0(η)(w, z) for any f ∈ ϑ(D) ∩ C(D). (5.5)

Proof Consider a smooth open neighborhood of bD, which we denote Uz(bD), such
that

Uz(bD) ⊂ Uz (5.6)

whereUz is as in (4.1) and (4.2).Nowfix twoneighborhoodsU ′ andU ′′ of the boundary
of D such that

U ′′ � U ′ ⊂ Uz(bD)
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and let χ0(w, z) be a smooth cutoff function such that

χ0(w, z) =
{
1 if w ∈ U ′′
0 if w ∈ C

n\U ′ (5.7)

Define

η◦(w, z) = χ0(w, z)η(w, z) + (1 − χ0(w, z))
∂wβ

β
(w, z)

and

D◦ = D ∩ Uz(bD).

Then η◦ is generating at z relative to D◦ (and the open set Uz of Definition 1 is the
same for η and for η◦); furthermore, it follows from (5.6) that

D◦ ⊂ Uz .

Now let {η◦
�}�∈N be a sequence of (1, 0)-forms with coefficients in C2(D◦) with the

property that

‖η◦
� − η◦(·, z)‖C1(D◦) → 0 as � → ∞.

Suppose first that f ∈ ϑ
(
U (D)

)
. Then by type considerations (and since f is

holomorphic in a neighborhood of D) for any w ∈ D◦ and for any � we have

dw

(
f (w)�0(η

◦
�)(w, z)

) = ∂w

(
f (w)�0(η

◦
�)(w, z)

)
= f (w)∂w�0(η

◦
�)(w, z) = f (w)(∂wη◦

�)
n(w, z)

Thus, applying Stokes’ theorem on D◦ we find
∫

w∈D◦
f (w)(∂wη◦

�)
n(w, z) +

∫

w∈bD

f (w) j∗�0
(
η◦

�

)
(w, z)

=
∫

w∈D ∩ b(Uz(bD))

f (w) j∗�0
(
η◦

�

)
(w, z)

Letting � → ∞ in the identity above we obtain

∫

w∈D◦
f (w)(∂wη◦)n(w, z) +

∫

w∈bD

f (w) j∗�0
(
η◦) (w, z)

=
∫

w∈D ∩ b(Uz(bD))

f (w) j∗�0
(
η◦) (w, z)
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Since η◦ is generating at z, by basic property 2 this expression is reduced to

∫

w∈bD

f (w) j∗�0
(
η◦) (w, z) =

∫

w∈D ∩ b(Uz(bD))

f (w) j∗�0
(
η◦) (w, z) (5.8)

But

η◦(w, z) =
⎧⎨
⎩

η(w, z), for w in an open neighborhood of bD
∂wβ

β
(w, z), for w in an open neighborhood of b(Uz(bD))

as a result, (5.8) reads

∫

w∈bD

f (w) j∗�0(η) (w, z) =
∫

w∈D ∩ b(Uz(bD))

f (w) CB M (w, z)

On the other hand, D ∩b(Uz(bD)) = bV for a (smooth) open set V ⊂ D, and using
Proposition 1 we conclude that (5.5) holds in the case when f ∈ ϑ

(
U (D)

)
. To prove

the conclusion in the general case: f ∈ ϑ(D) ∩ C(D), we write D = {ρ(w) < 0},
so that ρ(z) < 0 (since z ∈ D) and furthermore

z ∈ Dk :=
{
w

∣∣∣∣ ρ(w) < −1

k

}
for any k ≥ k(z). (5.9)

But Dk ⊂ D and so f ∈ ϑ
(
U (Dk)

)
; moreover

bDk ⊂ Uz for k = k(z) sufficiently large.

Thus, (5.5) grants

∫

w∈bDk

f (w) j∗k �0(η) (w, z) = f (z) for any k ≥ k(z)

where j∗k denotes the pullback under the inclusion jk : bDk ↪→ C
n .

The conclusion now follows by letting k → ∞. ��
We remark that in the case when η is the Bochner–Martinelli generating form

η := ∂wβ/β, Proposition 2 is simply a restatement of Proposition 1. However, since
the coefficients of the Bochner–Martinelli CF form are nowhere holomorphic in the
variable z, Proposition 1 is of limited use in the investigation of the Cauchy–Szegö
and Bergman projections, and Proposition 2 will afford the use of more specialized
choices of η.

The following reproducing formula is inspired by an idea of Ligocka [26].
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Proposition 3 With same hypotheses as in Proposition 2, we have

f (z) = 1

(2π i)n

∫

w∈D

f (w) (∂wη̃ )n(w, z), f ∈ ϑ(D) ∩ L1(D)

for any (1, 0)-form η̃(·, z) with coefficients in C1(D) such that

j∗�0(̃η)(·, z) = j∗�0(η)(·, z) (5.10)

where j∗ denotes the pullback under the inclusion j : bD ↪→ C
n.

Note that if one further assumes that the coefficients of η̃(·, z) are inC2(D)∩C1(D)

then, as a consequence of the fact that ∂ ◦ ∂ = 0, we have

1

(2π i)n
(∂wη̃ )n = ∂w�0(̃η).

Proof Fix z ∈ D arbitrarily and let {̃η�}�∈N ⊂ C2
1,0(D) be such that

‖η̃� − η̃(·, z)‖C1(D) → 0 as � → ∞. (5.11)

Suppose first that f ∈ ϑ
(
U (D)

)
. Applying Stokes’ theorem to the (n, n − 1)-form

with coefficients in C1(D)

f · �0(̃η�)

we find
∫

w∈D

f (w) ∂�0(̃η�)(w) =
∫

w∈bD

f (w) j∗�0(̃η�)(w) for any �.

On the other hand, since the coefficients of η̃� are in C2(D), we have

∂�0(̃η�) = 1

(2π i)n
(∂ η̃� )n for any �

and so the previous identity can be written as

1

(2π i)n

∫

w∈D

f (w)(∂ η̃� )n(w) =
∫

w∈bD

f (w) j∗�0(̃η�)(w) for any �.

Letting � → ∞ in the identity above and using (5.11) we obtain

1

(2π i)n

∫

w∈D

f (w)(∂ η̃ )n(w, z) =
∫

w∈bD

f (w) j∗�0( η̃ )(w, z).
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Combining the latter with the hypothesis (5.10) we obtain

1

(2π i)n

∫

w∈D

f (w)(∂wη̃ )n(w, z) =
∫

w∈bD

f (w) j∗�0(η)(w, z) = f (z)

where the last identity is due to Proposition 2.
If f ∈ ϑ(D) ∩ L1(D) then f ∈ ϑ

(
U (Dk)

)
, where Dk is as in (5.9); moreover,

bDk ⊂ Uz for any k ≥ k(z), so by the previous case we have

f (z) =
∫

w∈Dk

f (w) (∂wη̃ )n(w, z) for any k ≥ k(z).

The conclusion now follows by observing that

∫

w∈Dk

f (w)(∂wη̃ )n(w, z) →
∫

w∈D

f (w)(∂wη̃ )n(w, z)

as k → ∞, by the Lebesgue dominated convergence theorem. ��
Note that the extension η̃(w, z) := χ0(w, z)η(w, z), with χ0 as in (5.7), satisfies a

stronger condition than (5.10), namely the identity

η̃(·, z) = η(·, z) for any w ∈ U ′
z(bD). (5.12)

On the other hand, it will become clear in the sequel that this simple-minded extension
is not an adequate tool for the investigation of theBergmanprojection, andmore ad-hoc
constructions are presented in Sects. 7 and 9.

6 The role of pseudo-convexity

In order to obtain operators that satisfy the crucial condition (c) in Sect. 3 one would
need generating forms whose coefficients are holomorphic. However, in contrast with
the situation for the planar case (where the Cauchy kernel plays the role of a universal
generating form with holomorphic coefficient) in higher dimension there is a large
class of domains V ⊂ C

n that cannot support generating forms with holomorphic
coefficients.1 This dichotomy is related to the notion of domain of holomorphy, that
is, the property that for any boundary point w ∈ bV there is a holomorphic function
fw ∈ ϑ(D) that cannot be continued holomorphically in a neighborhood of w. (Such
notion is in turn equivalent to the notion of pseudo-convexity.) It is clear that every
planar domain V ⊂ C is a domain of holomorphy, because in this case one may take
fw(z) := (w − z)−1 where w ∈ bV has been fixed. On the other hand the following

V = {z ∈ C
2 | 1/2 < |z| < 1}

1 Much less a “universal” such form.
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is a simple example of a smooth domain inC2 that is not a domain of holomorphy; other
classical examples are discussed e.g., in [34, theorem II.1.1.]. A necessary condition
for the existence of a generating formηwhose coefficients are holomorphic in the sense
described above is then that V be a domain of holomorphy. To prove the necessity of
such condition, it suffices to observe that as a consequence of (4.2) and (4.1) one has

n∑
j=1

η j (w, z)(w j − z j ) = 1 for any w ∈ bV, z ∈ V . (6.1)

It is now clear that for each fixed w ∈ bV , at least one of the η j (w, z)’s blows up as
z → w (and it is well known that this is strong enough to ensure that V be a domain
of holomorphy).

In its current stage of development, the Cauchy–Fantappié framework ismost effec-
tive in the analysis of two particular categories of pseudo-convex domains: these are
the strongly pseudo-convex domains and the related category of strongly C-linearly
convex domains.

Definition 3 We say that a domain D ⊂ C
n is strongly pseudo-convex if D is of class

C2 and if any defining function ρ for D satisfies the following inequality

Lw(ρ)(ξ) :=
n∑

j,k=1

∂2ρ(w)

∂ζ j∂ζ k
ξ jξ k > 0 for any w ∈ bD, ξ ∈ TC

w (bD) (6.2)

where TC
w denotes the complex tangent space to bD at w, namely

TC
w (bD) = {ξ ∈ C

n | 〈∂ρ(w), ξ 〉 = 0},

see [34, proposition II.2.14].

If D is of classCk with k ≥ 1, and if ρ1 and ρ2 are two distinct defining functions for
D, it can be shown that there is a positive function h of class Ck−1 in a neighborhood
U of the boundary of D, such that

ρ1(w) = h(w)ρ2(w), w ∈ U,

and

∇ρ1(w) = h(w)∇ρ2(w) for any w ∈ U ∩ bD, (6.3)

see [34, lemma II.2.5]. As a consequence of (6.3), if condition (6.2) is satisfied by one
defining function then it will be satisfied by every defining function. The hermitian
form Lw(ρ) defined by (6.2) is called the Levi form, or complex Hessian, of ρ at w.
We remark that in fact there is a “special” defining function ρ for D that is strictly
plurisubharmonic on a neighborhood U of D, that is

Lw(ρ)(ξ) > 0 for any w ∈ U and any ξ ∈ C
n\{0}, (6.4)
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see [34, proposition II.2.14], and we will assume throughout the sequel that ρ satisfies
this stronger condition.

We should point out that there is another notion of strong pseudo-convexity that
includes the domains of Definition 3 as a subclass (this notion does not require the gra-
dient of ρ to be non-vanishing on bD); within this more general context, the domains
of Definition 3 are sometimes referred to as “strongly Levi-pseudo-convex”, see
[34, §II.2.6 and II.2.8].

Definition 4 We say that D ⊂ C
n is strongly C-linearly convex if D is of class C1

and if any defining function for D satisfies this inequality:

|〈∂ρ(w),w − z〉| ≥ C |w − z|2 for any w ∈ bD, z ∈ D. (6.5)

We we call those domains that satisfy the following, weaker condition

|〈∂ρ(w),w − z〉| > 0 for any w ∈ bD and any z ∈ D\{w} (6.6)

strictly C-linearly convex. This condition is related to certain separation properties
of the domain from its complement by (real or complex) hyperplanes, see [1], [20,
IV.4.6]: that this must be so is a consequence of the assertion that, for w and z as in
(6.5), the quantity |〈∂ρ(w),w − z〉| is comparable to the Euclidean distance of z to
the complex tangent space TC

w (bD); we leave the verification of this assertion as an
exercise for the reader.

It is not difficult to check that

D := {z ∈ C
n | Im zn > (|z1|2 + · · · + |zn−1|2)2 }

is strictly, but not strongly, C-linearly convex.

Lemma 2 If D is strictly C-linearly convex then for any z ∈ D there is an open
set Uz ⊂ C

n\{z} such that bD ⊂ Uz and inequality (6.6) holds for any w in Uz.
Furthermore, if D is strongly C-linearly convex then the improved inequality (6.5)
will hold for any w ∈ Uz.

Proof Suppose that D is strictly C-linearly convex and fix z ∈ D. By the continuity
of the function h(ζ ) := |〈∂ρ(ζ ), ζ − z〉|, if (6.6) holds at w ∈ bD then there is an
open neighborhood Uz(w) such that h(ζ ) > 0 for any ζ ∈ Uz(w) and so we have that
h(ζ ) > 0 whenever

ζ ∈ Uz :=
⋃

w∈bD

Uz(w).

It is clear that bD ⊂ Uz ; furthermore, since h(z) = 0 then Uz(w) ⊂ C
n\{z} for any

w ∈ bD and so Uz ⊂ C
n\{z}.

If D is strongly C-linearly convex then the conclusion will follow by considering
the function h(ζ ) := |〈∂ρ(ζ ), ζ − z〉| − C |ζ − z|2. ��
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Remark 1 We recall that in the classical definition of strong (resp. strict) convexity,
the quantity |〈∂ρ(w),w − z〉| in the left-hand side of (6.5) (resp. (6.6)) is replaced by
Re〈∂ρ(w),w− z〉: it follows that any strongly (resp. strictly) convex domain is indeed
strongly (resp. strictly) C-linearly convex, but the converse is in general not true. It is
clear that strongly (resp. strictly) convex domains satisfy a version of Lemma 2.

Lemma 3 Any strongly C-linearly convex domain of class C2 is strongly pseudo-
convex.

The key point in the proof of this lemma is the observation that, as a consequence of
(6.5), the real tangential Hessian of any defining function for a domain as in Lemma 3
is positive definite when restricted to the complex tangent space TC

w (bD) (viewed as
a vector space over the real numbers). The converse of Lemma 3 is not true: we leave
as an exercise for the reader to verify that the following (smooth) domain

D := {z = (z1, z2) ∈ C
2 | Imz2 > 2(Re z1)

2 − (Im z1)
2}

is strongly pseudo-convex but not strongly C-linearly convex.
In closing this section we remark that while the designations “strongly” and

“strictly” indicate distinct families of C-linearly convex domains (and of convex
domains), for pseudo-convex domains there is no such distinction, and in fact in
the literature the terms “strictly pseudo-convex” and “strongly pseudo-convex” are
often interchanged: this is because the positivity condition (6.4) implies the seem-
ingly stronger inequality

Lw(ρ, ξ) ≥ c0|ξ |2 for any w ∈ U ′ and for any ξ ∈ C
n . (6.7)

Indeed, if (6.4) holds then the function γ (w) := min{Lw(ρ, ξ) | |ξ | = 1} is positive,
and by bilinearity it follows that Lw(ρ, ξ) ≥ γ (w)|ξ |2 for any ξ ∈ C

n ; since ρ is of
class C2 (and D is bounded) we may further take the minimum of γ (w) over, say,
w ∈ U ′ ⊂ U and thus obtain (6.7), see [34, II.(2.26)].

7 Locally holomorphic kernels

Afirst step in the study of the Bergman and Cauchy–Szegö projections is the construc-
tion of integral operators with kernels given by Cauchy–Fantappié forms that are (at
least) locally holomorphic in z, that is for z in a neighborhood of each (fixed)w: it is at
this juncture that the notion of strong pseudo-convexity takes center stage. In this sec-
tionwe showhow to construct such operators in the casewhen D is a bounded, strongly
pseudo-convex domain, and we then proceed to prove the reproducing property.

To this end, we fix a strictly plurisubharmonic defining function for D; that is, we
fix

ρ : Cn → R, ρ ∈ C2(Cn)
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such that D = {ρ < 0}; ∇ρ(w) �= 0 for any w ∈ bD and

Lw(ρ,w − z) ≥ 2c0 |w − z|2, w, z ∈ C
n

where Lw denotes theLevi form forρ, see (6.2) and (6.7).Consider theLevi polynomial
of ρ at w:

�(w, z) := 〈∂ρ(w),w − z〉 − 1

2

n∑
j,k=1

∂2ρ(w)

∂ζ j∂ζk
(w j − z j )(wk − zk)

Lemma 4 Suppose D = {ρ(w) < 0} is bounded and strongly pseudo-convex. Then,
there is ε̃0 = ε̃0(c0) > 0 such that

2Re�(w, z) ≥ ρ(w) − ρ(z) + c0|w − z|2

whenever w ∈ Dc0 = {w | ρ(w) < c0}, and z ∈ B ε̃0(w).

Here c0 is as in (7.1). We leave the proof of this lemma, along with the corollary
below, as an exercise for the reader. Now let χ1(w, z) be a smooth cutoff function such
that

χ1(w, z) =
{
1, if |w − z| < ε̃0/2
0, if |w − z| > ε̃0

(7.1)

where ε̃0 is as in Lemma 4 and set

g(w, z) = χ1(w, z)�(w, z) + (1 − χ1(w, z))|w − z|2, w, z ∈ C
n . (7.2)

Lemma 5 Suppose D = {ρ(w) < 0} is strongly pseudo-convex and of class C2.
Then, there is δ̃0 = δ̃0(̃ε0, c0) > 0 such that

2Re g(w, z) ≥

⎧⎪⎨
⎪⎩

ρ(w) − ρ(z) + c0|w − z|2, if |w − z| ≤ ε̃0/2

ρ(w) + 2̃δ0, if ε̃0/2 ≤ |w − z| < ε̃0

ε̃ 2
0 , if |w − z| > ε̃0

whenever

w ∈ Dc0 = {w | ρ(w) < c0} (7.3)

and

z ∈ D2̃δ0 = {w | ρ(w) < 2̃δ0}.

Proof It suffices to choose 0 < δ̃0 < c0ε̃ 2
0 /16: the desired inequalities then follow

from Lemma 4. ��
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Corollary 1 Let D = {ρ(w) < 0} be a bounded, strongly pseudo-convex domain.
Let

� j (w, z) := ∂ρ

∂ζ j
(w) − 1

2

n∑
k=1

∂2ρ(w)

∂ζ j∂ζk
(wk − zk), j = 1, . . . , n,

Define

η j (w, z) := 1

g(w, z)

(
χ1(w, z)� j (w, z) + (1 − χ1(w, z))(w j − z j )

)

where χ1 and g are as in (7.1) and (7.2), and set

η(w, z) :=
n∑

j=1

η j (w, z) dw j for (w, z) ∈ Dc0 × D

with Dc0 as in (7.3). Then we have that η(w, z) is a generating form for D, and one
may take for Uz in Definition 1 the set

Uz :=
{
w | max{ρ(z),−δ̃0} < ρ(w) < min{|ρ(z)|, c0}

}
. (7.4)

Note, however, that the coefficients of η in this construction are only continuous in
the variable w and so the Cauchy–Fantappié form �0(η) cannot be defined for such η

because doing so would require differentiating the coefficients of η with respect to w,
see (4.4). For this reason, proceeding as in [34], we refine the previous construction
as follows. For ε̃0 as in Lemma 4 and for any 0 < ε < ε̃0, we let τ ε

j,k ∈ C∞(Cn) be
such that

max
w∈D

∣∣∣∣∂
2ρ(w)

∂ζ j∂ζk
− τ ε

j,k(w)

∣∣∣∣ < ε, j, k = 1, . . . , n

We now define the following quantities:

�ε
j (w, z) := ∂ρ

∂ζ j
(w) − 1

2

n∑
k=1

τ ε
j,k(w)(wk − zk), j = 1, . . . , n; (7.5)

�ε(w, z) :=
n∑

j=1

�ε
j (w, z) (w j − z j );

and, for χ1 as in (7.1):

gε(w, z) := χ1(w, z)�ε(w, z) + (1 − χ1(w, z))|w − z|2; (7.6)
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ηε
j (w, z) := 1

gε(w, z)

(
χ1(w, z)�ε

j (w, z) + (1 − χ1(w, z))(w j − z j )

)

and finally

ηε(w, z) :=
n∑

j=1

ηε
j (w, z) dw j .

Lemma 6 Let D = {ρ(w) < 0} be a bounded strongly pseudo-convex domain. Then,
there is ε0 = ε0(c0) > 0 such that for any 0 < ε < ε0 and for any z ∈ D, we have
that ηε(w, z) defined as above is generating at z relative to D with an open set Uz (see
Definition 1) that does not depend on ε. Furthermore, we have that for each (fixed)
z ∈ D the coefficients of ηε(·, z) are in C1(Uz).

Proof We first observe that �ε can be expressed in terms of the Levi polynomial �,
as follows

�ε(w, z) := �(w, z) + 1

2

n∑
j,k=1

(
∂2ρ(w)

∂ζ j∂ζk
− τ ε

j,k(w)

)
(w j − z j )(wk − zk)

and so by Lemma 4 we have

2Re�ε(w, z) ≥ ρ(w) − ρ(z) + c0|w − z|2

for any

0 < ε < ε0 := min{̃ε0, 2c0/n2}

whenever w ∈ Dc0 = {ρ(w) < c0} and z ∈ Bε0(w). Proceeding as in the proof of
Lemma 5 we then find that

2Re gε(w, z) ≥
⎧⎨
⎩

ρ(w) − ρ(z) + c0|w − z|2, if |w − z| ≤ ε0/2
ρ(w) + μ0, if ε0/2 ≤ |w − z| < ε̃0
ε̃ 2
0 , if |w − z| ≥ ε̃0

for any 0 < ε < ε0 whenever

w ∈ Dc0 = {w | ρ(w) < c0}

and

z ∈ Dμ0 = {w | ρ(w) < μ0}

as soon as we choose

0 < μ0 < c0ε
2
0 /8. (7.7)
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We then define the open set Uz ⊂ C
n\{z} as in (7.4) but now with δ0 in place of δ̃0

(note that Uz does not depend on ε). Then, proceeding as in the proof of corollary 1
we find that

inf
w∈Uz

Re gε(w, z) > 0 for any 0 < ε < ε0.

From this it follows that η ε is a generating form for D; it is clear from (7.5) that the
coefficients of η ε are in C1(Uz). ��

Lemma 6 shows that ηε satisfies the hypotheses of Proposition 2; as a consequence
we obtain the following results:

Proposition 4 Let D be a bounded strongly pseudo-convex domain. Then, for any
0 < ε < ε0 we have

f (z) =
∫

w∈bD

f (w) j∗�0
(
ηε

)
(w, z) for any f ∈ ϑ(D) ∩ C(D), z ∈ D

where ε0 and ηε are as in Lemma 6.

Proposition 5 Let D = {ρ(w) < 0} be a bounded strongly pseudo-convex domain.
Let

η̃ ε(w, z) := gε(w, z)

gε(w, z) − ρ(w)
η ε(w, z), w ∈ D, z ∈ D.

where ηε is as in Lemma 6. Then, for any 0 < ε < ε0 we have

f (z) = 1

(2π i)n

∫

w∈D

f (w)(∂wη̃ ε)n(w, z) for any f ∈ ϑ(D) ∩ L1(D), z ∈ D.

Proof We claim that η̃ ε satisfies the hypotheses of Proposition 3 for any 0 < ε < ε0.
Indeed, proceeding as in the proof of Lemma 6 we find that

Re

(
gε(w, z) − ρ(w)

)
> 0 for any w ∈ D, for any z ∈ D

and for any 0 < ε < ε0; from this it follows that

η̃ ε(·, z) ∈ C1
1,0(D) for any 0 < ε < ε0.

Moreover, as a consequence of basic property 1 we have

�0(̃η
ε)(·, z) =

(
gε(·, z)

gε(·, z) − ρ(·)
)n

�0(η
ε)(·, z) for any 0 < ε < ε0,
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but this grants

j∗�0(̃η
ε)(·, z) = j∗�0(η

ε)(·, z) for any 0 < ε < ε0.

The conclusion now follows from Proposition 3. ��

8 Correction terms

Propositions 4 and 5 have a fundamental limitation: it is that these propositions employ
kernels, namely j∗�0(η

ε)(w, z) and (∂wη̃ ε)n(w, z), that are only locally holomorphic
as functions of z, that is, they are holomorphic only for z ∈ Bε0/2(w). In this section
we address this issue by constructing for each of these kernels a “correction” term
obtained by solving an ad-hoc ∂-problem in the z-variable.

Throughout this section we shift our focus from the w-variable to z, that is: we fix
w ∈ D, we regard z as a variable and we define the “parabolic” region

Pw := {z | ρ(z) + ρ(w) < c0|w − z|2}.

The region Pw has the following properties:

w ∈ D ⇒ D ⊂ Pw ;
w ∈ bD ⇒ z := w ∈ bPw.

As a consequence of these properties we have that

Pw ∩ Bε0/2(w) �= ∅

Lemma 7 Let D = {z | ρ(z) < 0} be a bounded strongly pseudo-convex domain.
Then, there is μ0 = μ0(c0) > 0 such that

Dμ0 = {z | ρ(z) < μ0} ⊂ Pw ∪ Bε0/2(w) (8.1)

for any (fixed) w ∈ D. Furthermore, there is a bounded strongly pseudo-convex � of
class C∞ such that

Dμ0/2 = {z | ρ(z) < μ0/2} ⊂ � ⊂ Dμ0 = {z | ρ(z) < μ0}

where μ0 > 0 is as in (8.1).

Proof of Lemma 7 For the first conclusion, we claim that it suffices to choose μ0 =
μ0(c0) as in (7.7). Indeed, given z ∈ Dμ0 , if |w− z| ≥ ε0/2 then ρ(z) ≤ c0|w− z|2/2
and since ρ(w) ≤ 0 (as w ∈ D) it follows that z ∈ Pw. On the other hand, if
|w − z| < ε0/2 then of course z ∈ Bε0/2(w).
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Fig. 1 The region Pw in the
case when w ∈ bD

To prove the second conclusion note that, since ρ (the defining function of D)
is of class C2 and is strictly plurishubharmonic in a neighborhood of D, there is
ρ̃ ∈ C∞(U (D)) such that

‖ρ̃ − ρ‖C2(U (D)) ≤ μ0/8

and

Lz(ρ̃, ξ) > 0 for any z ∈ U ′(D) and for any ξ ∈ C
n,

see (6.2) and (6.4). Define

� :=
{

z

∣∣∣∣ ρ̃(z) − 3μ0

4
< 0

}

Then� is smooth and strongly pseudo-convex; we leave it as an exercise for the reader
to verify that � satisfies the desired inclusions: Dμ0/2 ⊂ � ⊂ Dμ0 . ��

Lemma 7 shows that (the smooth and strongly pseudo-convex domain) � has the
following properties, see Fig. 1:

D ⊂ �, and � ⊂ Pw ∪ Bε0/2(w), for every w ∈ D.

Wenow set up two ∂-problems on�. For the first ∂-problem, we begin by observing
that if w is in bD and z is in Pw then Re gε(w, z) > 0 (that this must be so can be
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seen from the inequalities for Re gε(w, z) that were obtained in the proof of Lemma
6), and so the coefficients of η ε(w, ·) are in C∞(Pw) whenever w ∈ bD. Now fix
w ∈ bD arbitrarily and denote by H(w, z) = Hε(w, z) the following double form,
which is of type (0, 1) in z, and of type (n, n − 1) in w

H(w, z) =
{−∂ z�0(η

ε)(w, z), if z ∈ Pw

0, if z ∈ Bε0/2(w)
(8.2)

Now for each fixed w ∈ bD, the coefficients of �0(w, z) are holomorphic in z for
z ∈ Bε0/2(w) and so H(w, z) is defined consistently in Pw ∪Bε0/2(w). It is also clear
that H(w, z) is C∞ for z ∈ Pw ∪ Bε0/2(w), and as such it depends continuously on
w ∈ bD. Moreover we have that ∂ z H(w, z) = 0, for z ∈ Pw ∪ Bε0/2(w), w ∈ bD.

For the second ∂-problem, we begin by observing that if w is in D and z is in
Pw then Re (gε(w, z) − ρ(w)) > 0 (that this must be so can again be seen from
the inequalities for Re gε(w, z) in the proof of Lemma 6), and so the coefficients of
η̃ ε(w, ·) are in C∞(Pw) whenever w ∈ D. Fixing w ∈ D arbitrarily, we denote by
F(w, z) = Fε(w, z) the following double form, which is of type (0, 1) in z, and of
type (n, n) in w

F(w, z) =
{−∂ z(∂wη̃ ε)n(w, z), if z ∈ Pw

0, if z ∈ Bε0/2(w)

Now for each fixed w ∈ D, the coefficients of η̃ ε(w, z) are holomorphic in z for
z ∈ Bε0/2(w) and so F(w, z) is defined consistently in Pw ∪Bε0/2(w). It is also clear
that F(w, z) is C∞ for z ∈ Pw ∪ Bε0/2(w), and as such it depends continuously on
w ∈ D. Moreover we have that ∂ z F(w, z) = 0, for z ∈ Pw ∪ Bε0/2(w), w ∈ D.

Now let S = Sz be the solution operator, giving the normal solution of the problem
∂u = α in �, via the ∂-Neumann problem, so that u = S(α) satisfies the above
whenever α is a (0, 1)-form with ∂α = 0. We set

C2
ε (w, z) = Sz(H(w, ·)), w ∈ bD (8.3)

and

B2
ε (w, z) = Sz(F(w, ·)), w ∈ D.

Then by the regularity properties of S, for which see e.g., [9, chapters 4 and 5], or
[14], we have that C2

ε (w, z) is in C∞(�), as a function of z, and is continuous for
w ∈ bD. Moreover ∂ z

(
C2

ε (w, z)
) = −∂ z�0(η

ε)(w, z) = 0, for z ∈ D (recall that
D ⊂ Pw) so

∂ z

(
�0(η

ε) + C2
ε )

)
(w, z) = 0 for z ∈ D and w ∈ bD.
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We similarly have that B2
ε (w, z) is in C∞(�), as a function of z, and is continuous

for w ∈ D and, furthermore

∂ z

(
(∂wη̃ ε)n + B2

ε )
)
(w, z) = 0 for z ∈ D and w ∈ D.

9 Reproducing formulas: globally holomorphic kernels

At last, in this section we complete the construction of a number of integral operators
that satisfy all three of the fundamental conditions (a)–(c) that were presented in
Sect. 3. The crucial step in all these constructions is to produce integral kernels that
are globally holomorphic in D as functions of z. For strongly pseudo-convex domains,
this goal is achieved by adding to each of the (locally holomorphic) Cauchy–Fantappié
forms that were produced in Sect. 7 the ad-hoc “correction” term that was constructed
in Sect. 8; the resulting two families of operators are denoted {Cε}ε (acting on C(bD))
and {Bε}ε (acting on L1(D)). In the case of strongly C-linearly convex domains of
class C2, there is no need for “correction”: a natural, globally holomorphic Cauchy–
Fantappié form is readily available that gives rise to an operator acting onC(bD) (even
on L1(bD)), called the Cauchy–Leray Integral CL and, in the more restrictive setting
of strongly convex domains, also to an operator BL that acts on L1(D). (As we shall
see in Sect. 10, in the special case when the domain is the unit ball, the Cauchy–Leray
integral CL agrees with the Cauchy–Szegö projection S, while the operator BL agrees
with the Bergman projection B.) All the operators that are produced in this section
satisfy, by their very construction, conditions (a) and (c) in Sect. 3, and we show in
Propositions 6 through 9 that they also satisfy condition (b) (the reproducing property
for holomorphic functions).

9.1 Strongly pseudo-convex domains

For ηε is as in Proposition 4 we now write

C1
ε (w, z) = �0(η

ε)(w, z)

and let

Cε(w, z) = j∗
(

C1
ε (w, z) + C2

ε (w, z)
)

and we define the operator

Cε f (z) =
∫

w∈bD

f (w) Cε(w, z), z ∈ D, f ∈ C(bD). (9.1)

Proposition 6 Let D be a bounded strongly pseudo-convex domain. Then, for any
0 < ε < ε0 we have
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f (z) = Cε f (z), for any f ∈ ϑ(D) ∩ C(D), z ∈ D.

Proof By Proposition 4, for any f ∈ ϑ(D) ∩ C(D) we have

∫

w∈bD

f (w) Cε(w, z) = f (z) +
∫

w∈bD

f (w) j∗C2
ε (w, z) for any z ∈ D,

and so it suffices to show that
∫

w∈bD

f (w) j∗C2
ε (w, z) = 0 for any z ∈ D.

By Fubini’s theorem and the definition of C2
ε , see (8.3), we have

∫

w∈bD

f (w) j∗C2
ε (w, z) = Sz

⎛
⎝

∫

w∈bD

f (w) j∗ H(w, ·)
⎞
⎠

where H(w, ·) is as in (8.2). Since the solution operatorSz is realized as a combinations
of integrals over � and b�, the desired conclusion will be a consequence of the
following claim:

∫

w∈bD

f (w) j∗H(w, ζ ) = 0 for any ζ ∈ �,

and since � ⊂ Pw for any w ∈ bD, proving the latter amounts to showing that

∫

w∈Mζ

f (w) j∗∂ζ �0(η
ε)(w, ζ ) = 0 for any ζ ∈ �, (9.2)

where we have set

Mζ = {w ∈ bD | |w − ζ | ≥ ε0/2}, (9.3)

see (8.2) and Fig. 2 below. To this end, we fix ζ ∈ � arbitrarily; we claim that there
is a sequence of forms (ηε

�(·, ζ ))� with the following properties:

a. ηε
�(·, ζ ) is generating at ζ relative to D;

b. ηε
�(·, ζ ) has coefficients in C2(Uζ ) with Uζ as in Definition 1;

c. as � → ∞, we have that

j∗�0(η
ε
�)(·, ζ ) → j∗�0(η

ε)(·, ζ ) uniformly on bD;

d. the coefficients of ηε
�(w, ζ ) are holomorphic in ζ ∈ Bε0/2(w) for any w ∈ bD.
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Fig. 2 The manifold Mζ in the
proof of Proposition 6

Note that (9.2) will follow from item c. above if we can prove that

∫

w∈Mζ

f (w) j∗∂ζ �0(η
ε
�)(w, ζ ) = 0 for any �. (9.4)

We postpone the construction of ηε
�(·, ζ ) to later below, and instead proceed to proving

(9.4) assuming the existence of the {ηε
�(·, ζ )}�. On account of items a. and b. above

along with basic property 3 as stated in (4.12), proving (9.4) is equivalent to showing
that

∫

w∈Mζ

f (w) j∗∂w�1(η
ε
�)(w, ζ ) = 0 for any �.

To this end, we first consider the case when f ∈ ϑ(D) ∩ C1(D), as in this case we
have that

f (w) j∗∂w�1(η
ε
�)(w, ζ ) = j∗∂w

(
f �1(η

ε
�)

)
(w, ζ ) = j∗dw

(
f �1(η

ε
�)

)
(w, ζ )

(where in the last identity we have used the fact that ∂w�1 = dw�1 because �1(η
ε
�)

is of type (n, n − 2) in w). But the latter equals

dw j∗
(

f �1(η
ε
�)

)
(w, ζ )

where dw denotes the exterior derivative operator for Mζ viewed as a real mani-
fold of dimension 2n − 1. Applying Stokes’ theorem on Mζ to the form α(w) :=
j∗

(
f �1(η

ε
�)

)
(w, ζ ) ∈ C1

n,n−2(Mζ ) we obtain
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∫

w∈Mζ

f (w) j∗∂w�1(η
ε
�)(w, ζ ) =

∫

w∈bMζ

f (w) j∗�1(η
ε
�)(w, ζ )

but

j∗�1(η
ε
�)(w, ζ ) = 0 for any w ∈ bMζ = bD ∩ {|w − ζ | = ε0/2}

because the coefficients of ηε
�(w, ζ ) are holomorphic in ζ ∈ Bε/2(w) for any bD, see

(4.10) and item d. above. This concludes the proof of Proposition 6 in the case when
f ∈ ϑ(D) ∩ C1(D).
To prove the proposition in the case when f ∈ ϑ(D) ∩ C0(D), we fix z ∈ D and

choose δ = δ(z) > 0 such that

z ∈ D−δ = {ρ < −δ} for any δ ≤ δ(z).

Then we have that

f ∈ ϑ(D−δ) ∩ C1(D−δ) for any δ ≤ δ(z)

and so by the previous argument we have

∫

w∈bD−δ

f (w) j∗−δC2
ε (w, z) = 0 for any δ ≤ δ(z), (9.5)

where j∗−δ denotes the pullback under the inclusion: bD−δ ↪→ C
n . For δ sufficiently

small there is a natural one-to-one and onto projection along the inner normal direction:

�δ : bD → bD−δ,

and because D is of class C2 one can show that this projection tends in the C1-norm
to the identity 1bD , that is we have that

‖1bD − �δ‖C1(bD) → 0 as δ → 0.

Using this projection one may then express the integral on bD−δ in identity (9.5) as
an integral on bD for an integrand that now also depends on �δ and its Jacobian, and
it follows from the above considerations that

∫

w∈bD−δ

f (w) j∗−δC2
ε (w, z) →

∫

w∈bD

f (w) j∗C2
ε (w, z) as δ → 0.
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We are left to construct, for each fixed ζ ∈ �, the sequence {η ε
� (·, ζ )}� that was

invoked earlier on. To this end, set

U := D ∪
⋃
z∈D

Uz

where Uz is the open neighborhood of bD that was determined in Lemma 6. Consider
a sequence of real-valued functions {ρ�}� ⊂ C3(Cn) such that

‖ρ� − ρ‖C1(U ) → 0 as � → ∞,

and, for ζ ∈ � fixed arbitrarily, set

�ε
j, �(w, ζ ) := ∂ρ�

∂ζ j
(w) − 1

2

n∑
k=1

τ ε
j,k(w)(wk − ζk), j = 1, . . . , n;

�ε
�(w, ζ ) :=

n∑
j=1

�ε
j, �(w, ζ ) (w j − ζ j );

and, for χ1 as in (7.1):

gε
�(w, ζ ) := χ1(w, ζ )�ε

�(w, ζ ) + (1 − χ1(w, ζ ))|w − ζ |2;
ηε

j, �(w, ζ ) := 1

gε
�(w, ζ )

(
χ1(w, ζ )�ε

j, �(w, ζ ) + (1 − χ1(w, ζ ))(w j − ζ j )

)

and, finally

ηε
�(w, ζ ) :=

n∑
j=1

ηε
j, �(w, ζ ) dw j ,

We leave it as an exercise for the reader to verify that {η ε
� (·, ζ )}� has the desired

properties. ��
Next, for η̃ ε is as in Proposition 5, we write

B1
ε (w, z) = 1

(2π i)n
(∂wη̃ ε)n

and

Bε(w, z) :=
(

B1
ε + B2

ε

)
(w, z), w ∈ D, z ∈ �,

and we define the operator
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Bε f (z) =
∫

w∈D

f (w) Bε(w, z), z ∈ D, f ∈ L1(D). (9.6)

Proposition 7 Let D be a bounded strongly pseudo-convex domain. Then, for any
0 < ε < ε0 we have

f (z) = Bε f (z), for any f ∈ ϑ(D) ∩ L1(D), z ∈ D.

Proof By Proposition 5, for any f ∈ ϑ(D) ∩ L1(D) we have

∫

w∈D

f (w)Bε(w, z) = f (z) +
∫

w∈D

f (w)B2
ε (w, z) for any z ∈ D,

and so it suffices to show that

∫

w∈D

f (w)B2
ε (w, z) = 0 for any z ∈ D.

For the proof of this assertion we refer to [25, Proposition 3.2]. ��

9.2 Strictly C-linearly convex domains: the Cauchy–Leray integral

Let D be a bounded, strictly C-linearly convex domain. We claim that if ρ is (any)
defining function for such a domain, and if U is an open neighborhood of bD such
that ∇ρ(w) �= 0 for any w ∈ U , then

η(w, z) := ∂ρ(w)

〈∂ρ(w),w − z〉 (9.7)

is a generating form for D; indeed, by Lemma 2 for any z ∈ D there is an open
set Uz ⊂ C

n\{z} such that 〈∂ρ(w),w − z〉 �= 0 for any w ∈ Uz and bD ⊂ Uz ;
thus the coefficients of η(·, z) are in C(Uz) and (4.1) holds. It is clear from (9.7) that
〈η(w, z), w − z〉 = 1 for any w ∈ Uz , so (4.2) holds for any z ∈ D, as well. It follows
that Proposition 2 applies to any strictlyC-linearly convex domain D with η chosen as
above under the further assumption that D be of class C2 (which is required to ensure
that the coefficients of η(·, z) are in C1(Uz)). The form

CL(w, z) = j∗�0

(
∂ρ(w)

〈∂ρ(w),w − z〉
)

= j∗
(

∂ρ(w) ∧ (∂∂ρ)n−1(w)

(2π i〈∂ρ(w),w − z〉)n

)
(9.8)

is called the Cauchy–Leray kernel for D. It is clear that the coefficients of the Cauchy–
Leray kernel are globally holomorphic with respect to z ∈ D: indeed the denominator
j∗〈∂ρ(w),w− z〉n is polynomial in the variable z, and by the strictC-linear convexity
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of D we have that j∗〈∂ρ(w),w − z〉n �= 0 for any z ∈ D and for any w ∈ bD, see
(6.6). The resulting integral operator:

CL f (z) =
∫

w∈bD

f (w) CL(w, z) z ∈ D, (9.9)

is called the Cauchy–Leray Integral. Under the further assumption that D be strictly
convex (as opposed to strictly C-linearly convex), for each fixed z ∈ D one may
extend η(·, z) holomorphically to the interior of D as follows

η̃(·, z) :=
( 〈∂ρ(·), · − z〉
〈∂ρ(·), · − z〉 − ρ(·)

)
η(·, z) = ∂ρ(·)

〈∂ρ(·), · − z〉 − ρ(·) (9.10)

The following lemma shows that if D is sufficiently smooth (again of class C2) then
η̃ satisfies the hypotheses of Proposition 3, and so in particular the operator

BL f (z) =
∫

w∈D

f (w) BL(w, z)

with

BL(w, z) = 1

(2π i)n
(∂wη̃ )n(w, z) (9.11)

and η̃ given by (9.10), reproduces holomorphic functions.2

Lemma 8 If D = {ρ < 0} ⊂ C
n is strictly convex and of class C2, then for each

fixed z ∈ D we have that η̃(·, z) given by (9.10) has coefficients in C1(D) and satisfies
the hypotheses of Proposition 3.

Proof In order to prove the first assertion it suffices to show that

Re (〈∂ρ(w),w − z〉) − ρ(w) > 0 for any w ∈ D, z ∈ D. (9.12)

Indeed, one first observes that if D is strictly convex and sufficiently smooth then

Re〈∂ρ(w),w − z〉 > 0 for any w ∈ D\{z}
(see [20] for the proof of this fact) so that Re〈∂ρ(w),w − z〉 is non-negative in D and
it vanishes only at w = z. On the other other hand the term −ρ(w) is non-negative
for any w ∈ D, and if w = z ∈ D then −ρ(w) = −ρ(z) > 0. This proves (9.12) and
it follows that the coefficients of η̃(·, z) are in C1(D). By basic property 1 we have

�0(̃η)(·, z) =
( 〈∂ρ(·), · − z〉
〈∂ρ(·), · − z〉 − ρ(·)

)n

�0(η)(·, z);

2 Note that η̃ does not satisfy the stronger condition (5.12) that was discussed earlier.
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it is now immediate to verify that j∗�0(̃η)(·, z) = j∗�0(η)(·, z), so that η̃ satisfies
(5.10), as desired. ��

We summarize these results in the following two propositions:

Proposition 8 Suppose that D is a bounded, strictly C-linearly convex domain of
class C2. Then, with same notations as above we have

f (z) = CL f (z), z ∈ D, f ∈ ϑ(D) ∩ C(D).

Proposition 9 Suppose that D is a bounded, strictly convex domain of class C2. Then,
with same notations as above we have that

f (z) = BL f (z), z ∈ D, f ∈ ϑ(D) ∩ L1(D).

10 Lp estimates

In this section we discuss L p-regularity of the Cauchy–Leray integral and of the
Cauchy–SzegöandBergmanprojections for the domains under consideration.Detailed
proofs of the results concerning the Bergman projection, Theorem 3 and corollary 3
below, can be found in [25]. The statements concerning the Cauchy–Leray integral
and the Cauchy–Szegö projection (Theorems 1 and 2 below,and Theorem 4 in the next
section) are the subject of a series of forthcoming papers; here we will limit ourselves
to presenting an outline of the main points of interest in their proofs.

We begin by recalling the defining properties of the Bergman and Cauchy–Szegö
projections and of their corresponding function spaces.

10.1 The Bergman projection

Let D ⊂ C
n be a bounded connected open set.

Definition 5 For any 1 ≤ q < ∞ the Bergman space ϑ Lq(D) is

ϑ Lq(D) = ϑ(D) ∩ Lq(D, dV ).

The following inequality

sup
z∈K

|F(z)| ≤ C(K)‖F‖L p(D,dV )

which is valid for any compact subset K ⊂ D and for any holomorphic function
F ∈ ϑ(D), shows that the Bergman space is a closed subspace of Lq(D, dV ). This
inequality also shows that the point evaluation:

evz( f ) := f (z), z ∈ D
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is a bounded linear functional on the Bergman space (take K := {z}). In the special
case q = 2, classical arguments from the theory of Hilbert spaces grant the existence
of an orthogonal projection, called the Bergman projection for D

B : L2(D) → ϑ L2(D)

that enjoys the following properties

B f (z) = f (z), f ∈ ϑ L2(D), z ∈ D

B∗ = B

‖B f ‖L2(D,dV ) ≤ ‖ f ‖L2(D, dV ), f ∈ L2(D, dV )

B f (z) =
∫

w∈D

f (w)B(w, z) dV (w), z ∈ D, f ∈ L2(D, dV )

where dV denotes Lebesgue measure for Cn . The function B(w, z) is holomorphic
with respect to z ∈ D; it is called the Bergman kernel function. The Bergman kernel
function depends on the domain and is known explicitly only for very special domains,
such as the unit ball, see e.g. [35]:

B(w, z) = n!
πn(1 − [z, w])n+1 , (w, z) ∈ B1(0) × B1(0) (10.1)

here [z, w] := ∑n
j=1 z j · w j is the hermitian product for Cn .

10.2 The Cauchy–Szegö projection

Let D ⊂ C
n be a bounded connected open set with sufficiently smooth boundary.

For such a domain, various notions of Hardy spaces of holomorphic functions can be
obtained by considering (suitably interpreted) boundary values of functions that are
holomorphic in D and whose restriction to the boundary of D has some integrability,
see [36]. While a number of such definitions can be given, here we adopt the following

Definition 6 For any 1 ≤ q < ∞ the Hardy Space Hq(bD, dσ) is the closure
in Lq(bD, dσ) of the restriction to the boundary of the functions holomorphic in a
neighborhood of D. In the special case when q = 2 the orthogonal projection

S : L2(bD, dσ) → H2(bD, dσ)

is called the The Cauchy–Szegö Projection for D.

The Cauchy–Szegö projection has the following basic properties:
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S∗ = S

‖S f ‖L2(bD, dσ) ≤ ‖ f ‖L2(bD, dσ), f ∈ L2(bD, dσ)

S f (z) =
∫

w∈bD

S(w, z) f (w)dσ(w), z ∈ bD.

The function S(w, z), initially defined for z ∈ bD, extends holomorphically to z ∈ D;
it is called the Cauchy–Szegö kernel function. Like the Bergman kernel function, the
Cauchy–Szegö kernel function depends on the domain D; for the unit ball we have
[35]

S(w, z) = (n − 1)!
2πn(1 − [z, w])n

, (w, z) ∈ bB1(0) × bB1(0). (10.2)

10.3 L p-estimates

We may now state our main results.

Theorem 1 Suppose D is a bounded domain of class C2 which is strongly C-linearly
convex. Then the Cauchy–Leray integral (9.9), initially defined for f ∈ C1(bD),
extends to a bounded operator on L p(bD, dσ), 1 < p < ∞.

It is only the weaker notion of strict C-linear convexity that is needed to define
the Cauchy–Leray integral, but to prove the L p results one needs to assume strong
C-linear convexity.

Theorem 2 Under the assumption that the bounded domain D has a C2 boundary
and is strongly pseudo-convex, one can assert that S extends to a bounded mapping
on L p(bD, dσ), when 1 < p < ∞.

Theorem 3 Under the same assumptions on D it follows that the operator B extends
to a bounded operator on L p(D, dV ) for 1 < p < ∞.

The following additional results also hold.

Corollary 2 The result of Theorem 2 extends to the case when the projection S is
replaced by the corresponding orthogonal projection Sω, with respect to the Hilbert
space L2(bD, ωdσ) where ω is any continuous strictly positive function on bD.

A similar variant of Theorem 3 holds for Bω, the orthogonal projection on the
sub-space of L2(D, ω dV ). Here ω is any strictly positive continuous function on D.

Corollary 3 One also has the L p boundedness of the operator |B|, whose kernel is
|B(z, w)|dV (w), where B(z, w) is the Bergman kernel function.
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10.4 Outline of the proofs

We begin by making the following remarks to clarify the background of these results.

(1) The proofs of Theorems 2 and 3 make use of the whole family of operators {Cε}ε ,
0 < ε < ε0: in order to obtain L p estimates for p in the full range (1,∞) one
needs the flexbility to choose ε = ε(p) sufficiently small. (A single choice, as in
[34], of Cε for a fixed ε, will not do.)

(2) There is no simple and direct relation between S and Sω, nor between B and Bω.
Thus the results for general ω are not immediate consequences of the results for
ω ≡ 1.

(3) When bD and ω are smooth (i.e. Ck for sufficiently high k), the above results
have been known for a long time (see e.g., the remarks that were made in Sect. 9
concerning the casewhen D is the unit ball).Moreoverwhen bD andω are smooth
(and bD is strongly pseudo-convex), there are analogous asymptotic formulas for
the kernels in question due to [13], which allow a proof of Theorems 2 and 3 in
these cases. See also [32].

(4) Another approach to Theorem 3 in the case of smooth strongly pseudo-convex
domains is via the ∂-Neumann problem [9] and [14], but we shall not say anything
more about this here.

A further point of interest is to work with the “Levi-Leray” measure dμρ for the
boundary of D, which we define as follows. We take the linear functional

�( f ) = 1

(2π i)n

∫

bD

f (w) j∗
(
∂ρ ∧ (∂∂ρ)n−1

)
(10.3)

and write � f = ∫
bD f dμρ . We then have that dμρ(w) = D(w)dσ(w) whereD(w) =

c|∇ρ(w)| det Lw(ρ) via the calculation in [34] in the case ρ is of class C2, and we
observe that D(w) ≈ 1, via (6.7).

With this we have that the Cauchy–Leray integral becomes

CL( f )(z) =
∫

bD

f (w)dμρ(w)

〈∂ρ(w),w − z〉n
(10.4)

Thus the reason for isolating themeasure dμρ is that the coefficients of the kernel of
each of CL and its adjoint (computed with respect to L2(bD, dμρ)), are C1 functions
in both variables. This would not be the case if we replaced dμρ by the induced
Lebesgue measure dσ (and had taken the adjoint of CL with respect to L2(bD, dσ)).

In studying (10.4) we apply the “T(1)-theorem”technique [11], where the underly-
ing geometry is determined by the quasi-metric

|〈∂ρ(w),w − z〉| 12
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(It is at this juncture that the notion of strong C-linear convexity, as opposed to strict
C-linear convexity, is required.) In this metric, the ball centered at w and reaching to
z has dμρ-measure ≈ |〈∂ρ(w),w − z〉|n .

The study of (10.4) also requires that we verify cancellation properties in terms of
its action on “bump functions.” These matters again differ from the case n = 1, and
in fact there is an unexpected favorable twist: the kernel in (10.4) is an appropriate
derivative, as can be surmised by the observation that on the Heisenberg group one has

(|z|2+i t)−n = c′ d

dt
(|z|2+i t)−n+1, if n > 1. (However for n = 1, the corresponding

identity involves the logarithm!). Indeed by an integration-by-parts argument that is
presented in (11.1) below, we see that when n > 1 and f is of class C1,

CL( f )(z) = c
∫

bD

d f (w) ∧ j∗(∂∂ρ)n−1

〈∂ρ(w),w − z〉n−1 + E(f)(z),

where

E(f)(z) =
∫

bD

E(z, w) f (w) dσ(w)

with

E(z, w) = O(|z − w| |〈∂ρ(w),w − z〉|−n)

so that the operator E is a negligible term.
A final point is that the hypotheses of Theorem 1 are in the nature of best possible.

In fact, [4] gives examples of Reinhardt domains where the L2 result for the Cauchy–
Leray integral fails when a condition nearC2 is replaced byC2−ε , or “strong” pseudo-
convexity is replaced by its “weak” analogue.

One more observation concerning the Cauchy–Leray integral is in order. In the
special casewhen D is the unit ballB1(0), we claim that the operatorsCL andBL agree,
respectively, with the Cauchy–Szegö and Bergman projections for B1(0). Indeed, for
such domain the calculations in Sect. 9.2 apply with Uz = C

n\{z} and

ρ(w) := |w|2 − 1 (10.5)

and by the Cauchy-Schwarz inequality we have Re (〈∂ρ(w),w − z〉) ≥ |w|(|w| −
|z|) for any w, z ∈ C

n . Using (10.5) and (5.3)3 we find that

CL(w, z) = (n − 1)!
2πn

dσ(w)

(1 − [z, w])n
= S(w, z) dσ

which is the Cauchy–Szegö kernel for the ball, see (10.2) Next, we observe that, again
for D = B1(0) and with ρ as in (10.5), we have that

3 Along with the following, easily verified identity: ∗∂ρ(w) = ∂ρ(w) ∧ (∂∂ρ(w))n−1.
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〈∂ρ(w),w − z〉 − ρ(w) = 1 − [z, w] for any w, z ∈ C
n

and from this it follows that (9.11) now reads

BL(w, z) = n! dV (w)

πn(1 − [z, w])n+1 = B(w, z) dV (w)

which is the Bergman kernel of the ball, see (10.1).
There are three main steps in the proof of Theorem 2.

(i) Construction of a family of bounded Cauchy Fantappié-type integrals Cε

(ii) Estimates for Cε − C∗
ε

(iii) Application of a variant of identity (2.1)

Step (i). The construction of Cε was given in sections 7 through 9, see (9.1). One
notes that the kernel C2

ε (w, z) of the correction term that was produced in Sect. 8 is
“harmless” since it is bounded as (w, z) ranges over bD × D. Using a methodology
similar to the proof of Theorem 1 one then shows

‖Cε( f )‖L p ≤ cε,p‖ f ‖L p , 1 < p < ∞.

However it is important to point out, that in general the bound cε,p grows to infinity
as ε → 0, so that the Cε can not be genuine approximations of S. Nevertheless we
shall see below that in a sense the Cε gives us critical information about S.

Step (ii). Here the goal is the following splitting:

Proposition 10 Given 0 < ε < ε0, we can write

Cε − C∗
ε = Aε + Rε

where

‖Aε‖L p→L p ≤ εcp, 1 < p < ∞ (10.6)

and the operator Rε has a bounded kernel, hence Rε maps L1(bD) to L∞(bD).

We note that in fact the bound of the kernel of Rε may grow to infinity as ε → 0.
To prove Proposition 10 we first verify an important “symmetry” condition: for

each ε, there is a δε , so that

|gε(w, z) − g ε(z, w)| ≤ ε c |w − z|2, if |w − z| < δε. (10.7)

Here gε(w, z) is as in (7.6). With this one proceeds as follows. Suppose Hε(z, w)

is the kernel of the operator Cε − C∗
ε . Then we take Aε and Rε to be the operators

with kernels respectively χδ(w − z)Hε(w, z) and (1 − χδ(w − z))Hε(w, z), where
χδ(w − z) is as in (7.6) and δ = δε , chosen acccording to (10.7).
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Step (iii). We conclude the proof of Theorem 2 by using an identity similar to (2.1):

S(I − (C∗
ε − Cε)) = Cε

Hence

S(I − Aε) = Cε + SRε

Now for each p, take ε > 0 so that for the bound cp as in (10.6)

ε cp ≤ 1

2
.

Then I − Aε is invertible and we have

S = (Cε + SRε) (I − Aε)
−1

Since (I − Aε)
−1 is bounded on L p, and also Cε , it sufficies to see that SRε is also

bounded on L p. Assume for the moment that p ≤ 2. Then since Rε maps L1 to L∞, it
also maps L p to L2 (this follows from the inclusions of Lebesgue spaces, which hold
in this setting because D is bounded), while S maps L2 to itself, yielding the fact that
SRε is bounded on L p. The case 2 ≤ p is obtained by dualizing this argument.

The proof of Theorem 3 can be found in [25]: it has an outline similar to the proof
of Theorem 2 with the operators Bε , see (9.6), now in place of the Cε , but the details
are simpler since we are dealing with operators that converge absolutely (as suggested
by corollary 3). Thus one can avoid the delicate T (1)-theorem machinery and make
instead absolutely convergent integral estimates.

11 The Cauchy–Leray integral revisited

For domains with boundary regularity below the C2 category there is no canonical
notion of strong pseudo-convexity - much less a working analog of the Cauchy-type
operators Cε and Bε that were introduced in the previous sections. By contrast, the
Cauchy–Leray integral can be defined for less regular domains, but the definitions and
the proofs are substantially more delicate than the C2 framework of Theorem 1.

Definition 7 Given a bounded domain D ⊂ C
n , we say that D is of class C1,1 if D has

a defining function (in the sense of Definition 2) that is of class C1,1 in a neighborhood
U of bD; that is, ρ is of class C1 and its (real) partial derivatives ∂ρ/∂x j are Lipschitz
functions with respect to the Euclidean distance in Cn ≡ R

2n :

∣∣∣∣ ∂ρ

∂x j
(w) − ∂ρ

∂x j
(ζ )

∣∣∣∣ ≤ C |w − ζ | w, ζ ∈ U, j = 1, . . . , 2n.

Theorem 4 Suppose D is a bounded domain of class C1,1 which is stronglyC-linearly
convex. Then there is a natural definition of the Cauchy–Leray integral (9.9), so that
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the mapping f �→ CL( f ) initially defined for f ∈ C1(bD), extends to a bounded
operator on L p(bD, dσ) for 1 < p < ∞.

Note that in comparison with Theorems 2 and 3, here our hypotheses about the
nature of convexity are stronger, but the regularity of the boundary is weaker.

First, we explain the main difficulty in defining the Cauchy–Leray integral in the
case ofC1,1 domains. It arises from the fact that the definitions (9.8) and (10.3) involve
second derivatives of the defining function ρ. However ρ is only assumed to be of
class C1,1, so that these derivatives are L∞ functions on C

n , and as such not defined
on bD which has 2n-dimensional Lebesgue measure zero. What gets us out of this
quandary is that here in effect not all second derivatives are involved but only those
that are “tangential” to bD. Matters are made precise by the following “restriction”
principle and its variants.

Suppose F ∈ C1,1(Cn) and we want to define ∂∂ F

∣∣∣∣
bD

. We note that if F were of

class C2 we would have
∫

bD

j∗(∂∂ F) ∧ � = −
∫

bD

j∗(∂ F) ∧ d�, (11.1)

where � is any 2n − 3 form of class C1, and here j∗ is the induced mapping to forms
on bD.

Proposition 11 For F ∈ C1,1(Cn), there exists a unique 2-form j∗(∂∂ F) in bD with
L∞(dσ) coefficients so that (11.1) holds.

This is a consequence of an approximation lemma: There is a sequence {Fn} of C∞
functions onCn , that are uniformly bounded in theC1,1(Cn) norm, so that Fk → F and
�Fk → �F uniformly on bD, and moreover �2

T Fn converges (dσ) a.e. on bD. Here
�2

T F is the “tangential” restriction of the Hessian �2F of F . Moreover the indicated
limit, which wemay designate as�2

T F , is independent of the approximating sequence
{Fn}.
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