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Abstract This paper explains the developments on factorization and decomposi-
tion of linear differential equations in the last two decades. The results are applied for
developing solution procedures for these differential equations. Although the subject
is more than 100 years old, it has been rediscovered as recently as about 20 years
ago. A fundamental ingredient has been the easy availability of symbolic computation
systems to accomplish the extensive calculations usually involved in applications; to
this end the interactive website http://www.alltypes.de has been provided. Although
originally only developed for ordinary equations, it has been extended to large classes
of partial equations as well. In the first part Loewy’s results for ordinary equations
are outlined. Thereafter those results of differential algebra are summarized that are
required for extending Loewy’s theory to partial equations. In the remaining part a
fairly complete discussion of second- and some third-order partial differential equa-
tions in the plane is given; it is shown that Loewy’s result remains essentially true for
these equations. Finally, several open problems and possible extensions are discussed.

Keywords Linear differential equations · Factorization · Loewy decomposition

Mathematics Subject Classification (2000) Primary 54C40 · 14E20;
Secondary 46E25 · 20C20

Communicated by N. Trudinger.

F. Schwarz (B)
Fraunhofer Gesellschaft, Institut SCAI, 53754 Sankt Augustin, Germany
e-mail: fritz.schwarz@scai.fraunhofer.de

123

http://www.alltypes.de


20 F. Schwarz

1 Introduction

Solving differential equations has always been a central topic in pure as well as in
applied mathematics. The efforts for developing systematic solution procedures go
back to the middle of the nineteenth century. Guiding principles were often the meth-
ods that had been developed before for solving algebraic equations. A well-known
example is Lie’s symmetry analysis that was inspired by the success of Galois’ theory.
Its primary area of application are nonlinear differential equations [43,51].

For linear equations another important principle is the decomposition into constit-
uents of lower order as is well known from algebraic equations. Originally it has been
applied to linear ordinary differential equations (ode’s) by Beke [3] and Schlesinger
[48]. Based on their work, Loewy [39] took up the subject and developed a complete
theory of factoring an ordinary equation of any order. It culminates in a theorem that
provides a unique decomposition of any equation into so-called completely reducible
components of highest possible order; it turned out to be a fundamental prerequisite
for solving an equation.

Soon after Loewy’s theory had become known, several effortswere started to extend
it to linear partial differential equations (pde’s) [4,41]. However, for reasons that will
become clear later in this article, they were only of limited success. Actually the
whole field of factorization fell into oblivion for almost a century. One possible reason
is that applications to any concrete problem require huge amounts of analytical com-
putations that hardly can be performed by pencil and paper. As a result, for a long
time the best possible proceeding for solving linear differential equations consisted of
searching through collections of solved examples as e.g. the books by Kamke [28] or
Polyanin [46]. This is rather unsatisfactory and obviously a better approach is desirable
in compliance with the following guidelines.

First of all, it has to be made precise what is meant by a solution to a given dif-
ferential equation. In this article, numerical or graphical solutions are excluded as
well as any kind of series expansions. The goal is to find closed form solutions in a
well defined function field, e.g. an elementary or Liouvillian extension of the coef-
ficient field of the given equation; the latter is usually the field of rational functions
in the independent variables. A solution is called the general solution if it contains
undetermined elements such that any other solution may be obtained from it by spe-
cialization. For ordinary equations of order n this means to find n functions such that
the general solution is a linear combination with n constant coefficients. For partial
equations the answer is more involved; the undetermined elements may be functions
depending on one or more arguments. It is part of the problem to ascertain the number
of undetermined functions and its arguments.

After it has been settled what it means to solve an equation the question remains
how to find the solution, if there is any. In this process any trial-and-error methods are
excluded, i.e. the outcome should be algorithms that guarantee to find any solution
that may exist; if the algorithm terminates without returning a solution it should be
equivalent to a proof that there is none. In other words, the desired algorithms should
be decision procedures for the existence of solutions under consideration.

It turns out that for partial differential equations it is not always possible to find
an algorithm for the various steps of the solution procedure; e.g. at present there does
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Loewy decomposition of linear differential equations 21

not exist a general procedure for determining a Laplace divisor of any order. In such a
situation the question arises whether an algorithm for the problem under consideration
may exist at all. If it could be proved that an algorithm does not exist the problemwould
be undecidable like for example solving a general diophantine equation. The best pos-
sible answer then is to identify classes of decidable problems. Beyond that, it would be
highly desirable to identify the boundary between problems that are algorithmically
solvable and those for which an algorithm cannot exist.

Efforts along these lines started about 20 years ago, fostered by the advent of sym-
bolic computation systems. At the beginning various aspects of factoring linear ode’s
were considered, e.g. algorithmic and complexity issues by Schwarz [49] and Grigo-
riev [18]; quite a few publications on the subject followed, e.g. by Bronstein [5] and
van Hoeij [22].

The next natural step was to consider special systems of linear pde’s with the prop-
erty that its general solution contains only constants like linear ode’s. In a series of
publications Li, Schwarz and Tsarev [36–38] considered such systems of pde’s in the
plane and showed that a theory similar as for the ordinary case may be developed.

General decomposition problems for linear pde’s were first considered byGrigoriev
and Schwarz [19] and continued later on [20,21]; see also Tsarev [57].

The subject of this article are factorizations and the corresponding Loewy decom-
positions for individual equations, either ordinary or partial in two independent vari-
ables. It will become clear that a Loewy decomposition provides the most complete
information on the solutions of the respective equation.

Section 2 outlines Loewy’s theory for ordinary differential equations of any order.
Equations of order two or three are discussed inmore detail; the close relation between
a decomposition and a fundamental system is shown and illustrated by examples.

Section 3 summarizes some concepts from differential algebra. They are required
in later parts dealing with partial differential equations.

Section 4 deals with factorizations and decompositions of partial differential oper-
ators of order two and three in the plane.

Section 5 applies the results of the preceding section for solving differential equa-
tions corresponding to the respective operators.

Section 6. The results of the preceding sections are summarized and its limitations
are pointed out. Various possible extensions are discussed.

Appendix. A short outline of the solutions of ordinary and partial Riccati equa-
tions is given; they are required in various solution procedures described in preceding
sections.

The website http://www.alltypes.de has been provided for applying the theory
described in this article to concrete problems; a short description of it may be found
in [52]. A more detailed discussion of the subject of this article may be found in the
book [53].

2 Ordinary differential equations

It is assumed that the reader is familiar with the classical literature on ordinary differ-
ential equations as covered e.g. in the books by Ince [24] or Kamke [27]; more details
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22 F. Schwarz

on factorization of linear ode’s may be found in Chapter 4 of the book by van der Put
and Singer [58], or in Chapter 2 of the book by Schwarz [51].

Let D ≡ d
dx denote the derivative w.r.t. the variable x . A differential operator of

order n is a polynomial of the form

L ≡ Dn + a1Dn−1 + · · · + an−1D + an (2.1)

where the coefficients ai , i = 1, . . . , n are from some function field, the base field of
L . Usually it is the field of rational functions in the variable x, i.e. ai ∈ Q(x). If y is an

indeterminate with dy
dx �= 0, Ly becomes a differential polynomial, and Ly = 0 is the

differential equation corresponding to L . Sometimes the notation y′ ≡ dy
dx is applied.

The equation Ly = 0 allows the trivial solution y ≡ 0. The general solution con-
tains n constants C1, . . . , Cn . Due to its linearity, these constants appear in the form
y = C1y1 + · · · + Cn yn . The yk are linearly independent over the field of constants;
they form a so-called fundamental system and generate a n-dimensional vector space.

2.1 Factoring linear ode’s

An operator L of order n is called reducible if it may be represented as the product of
two operators L1 and L2, both of order lower than n; then one writes L = L1L2, i.e.
juxtaposition means the operator product; it is defined by the rule Dai = ai D + a′

i . It
is non-commutative, i.e. in general L1L2 �= L2L1. Consequently left and right factors
have to be distinguished. If L = L1L2, the left factor L1 is called the exact quotient
of L by L2, and L2 is said to divide L from the right; it is a right divisor or simply
divisor of L .

By default, the coefficient domain of the factors is assumed to be the base field of
L , possibly extended by some algebraic numbers, i.e. Q̄(x) is allowed; sometimes it
is also called the base field. An operator or an equation is called irreducible if such a
decomposition is not possible without enlarging the base field. If the coefficients of
the factors may be from an extension of the base field it has to be specified explicitly.
Very much like in commutative algebra, any operator L may be represented as product
of first-order factors if coefficients from a universal field are admitted for them.

For any two operators L1 and L2 the least common left multiple Lclm(L1, L2)

is the operator of lowest order such that both L1 and L2 divide it from the right.
The greatest common right divisor Gcrd(L1, L2) is the operator of highest order that
divides both L1 and L2 from the right. Two operators L1 and L2 are called relatively
prime if there is no operator of positive order dividing both on the right. If an operator
may be represented as Lclm of irreducible operators it is called completely reducible.

Due to the non-commutativity of the product of differential operators another new
phenomenon occurs in comparison to algebraic polynomials, i.e. the factorization of
differential operators is not unique as the following example due to Landau [33] shows.

Example 2.1 [33] Consider L ≡ D2 − 2
x D + 2

x2
. Two possible factorizations are

L =
(

D − 1
x

) (
D − 1

x

)
=
(

D − 1
x

)2
and L =

(
D − 1

x(1 + x)

) (
D − 1 + 2x

x(1 + x)

)
.
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More generally, the factorization

(
D − 1

x(1 + ax)

)(
D − 1 + 2ax

x(1 + ax)

)

is valid with a constant parameter a. On the other hand, L may be represented as

L = Lclm

(
D − 1

x
− 1

C1 + x
, D − 1

x
− 1

C2 + x

)

with C1 �= C2.

A systematic scheme for obtaining a unique decomposition of a differential opera-
tor of any order into lower order components has been given by Loewy [39]; see also
Ore [44]. At first the irreducible right factors beginning with lowest order are deter-
mined, e.g. by applying Lemma 2.4 below. The Lclm of these factors is the completely
reducible right factor of highest order; by construction it is uniquely determined by
the given operator. If its order equals n, the order of the given differential operator,
the operator is called completely reducible and the procedure terminates. According
to this definition, Landau’s operator in the above example is completely reducible.

If an operator is not completely reducible, the Lclm of its irreducible right factors
is divided out and the same procedure is repeated with the exact quotient. Due to the
lowering of order in each step, this proceeding terminates after a finite number of
iterations and the desired decomposition is obtained. Based on these considerations,
Loewy [39] obtained the following fundamental result.

Theorem 2.2 Let D = d
dx be a derivative and ai ∈ Q(x). A differential operator

L ≡ Dn + a1Dn−1 + · · · + an−1D + an

of order n may be written uniquely as the product of completely reducible factors L(dk)
k

of maximal order dk over Q(x) in the form

L = L(dm )
m L(dm−1)

m−1 . . . L(d1)
1

with d1 + · · · + dm = n. The factors L(dk )
k are unique.

The decomposition determined in the above theorem is called the Loewy decom-
position of L . The completely reducible factors L(dk )

k are called the Loewy factors of
L , the rightmost of them is simply called the Loewy factor.

Loewy’s decomposition may be refined if the completely reducible components are
split into irreducible factors as shown next.

Corollary 2.3 Any factor L(dk)
k , k = 1, . . . , m in Theorem 2.2 may be written as

L(dk )
k = Lclm(l(e1)j1

, l(e2)j2
, . . . , l(ek )

jk
)

123



24 F. Schwarz

with e1 + e2 + · · · + ek = dk; l(ei )
ji

for i = 1, . . . , k, denotes an irreducible operator
of order ei over Q(x).

Loewy’s fundamental result described in Theorem 2.2 and the preceding corollary
provide a detailed description of the function spaces containing the solution of a reduc-
ible linear differential equation.More general field extensions associated to irreducible
equations are studied by differential Galois theory. Good introductions to the latter
are the above quoted book by van der Put and Singer and the lecture by Magid [40].

Next the question comes up how to obtain a factorization for any given equation or
operator; for order two and three the answer is as follows.

Lemma 2.4 Determining the right irreducible factors of an ordinary operator up to
order three with rational function coefficients amounts to finding rational solutions of

Riccati equations; as usual D ≡ d
dx =′.

(i) A second order operator D2 + AD + B, A, B ∈ Q(x) has a right factor D + a
with a ∈ Q(x) if a is a rational solution of

a′ − a2 + Aa − B = 0.

(ii) A third order operator D3+ AD2+ B D +C, A, B, C ∈ Q(x) has a right factor
D + a with a ∈ Q(x) if a is a rational solution of

a′′ − 3aa′ + a3 + A(a′ − a2) + Ba − C = 0.

It has a right factor D2 + bD + c, b, c ∈ Q(x), if b is a rational solution of

b′′ − 3bb′ + b3 + 2A(b′ − b2) + (A′ + A2 + B)b − B ′ − AB + C = 0;
then c = −(b′ − b2 + Ab − B).

Proof Dividing the given second-order operator by D +a and requiring that this divi-
sion be exact yields immediately the given constraint. The same is true if the given
third order operator is divided by D + a. Dividing the given third-order operator by
D + bD + c yields a system comprising two equations that may easily be simplified
to the above conditions. ��

This lemma reduces the problem of determining right factors in the base field for
second- and third-order operators to finding rational solutions of Riccati equations; a
short outline is given in the Appendix.

For operators of fixed order the possible Loewy decompositions, differing by the
number and the order of factors, may be listed explicitly; some of the factors may
contain parameters. Each alternative is called a type of Loewy decomposition. The
complete answers for the most important cases n = 2 and n = 3 are detailed in the
following corollaries to the above theorem.

Corollary 2.5 Let L be a second-order operator. Its possible Loewy decompositions
are denoted byL2

0, . . .L2
3, they may be described as follows; l(i) and l(i)j are irreducible

operators of order i; C is a constant;
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Loewy decomposition of linear differential equations 25

L2
1 : L = l(1)2 l(1)1 ;L2

2 : L = Lclm(l(1)2 , l(1)1 );L2
3 : L = Lclm(l(1)(C)).

An irreducible second-order operator is defined to have decomposition type L2
0. The

decompositions L2
0,L2

2 and L2
3 are completely reducible; for decomposition type L2

1
the unique first-order factors are the Loewy factors.

Proof According to Lemma 2.4, case (i), the possible factors are determined by the
solutions of a Riccati equation; they are completely classified in the Appendix. The
general solution may be rational; there may be two non-equivalent or a single rational
solution; or there may be no rational solution at all; these alternatives correspond to
L2
3,L2

2,L2
1 or L2

0 respectively. ��
By definition, a Loewy factor comprises all irreducible right factors, either corre-

sponding to special rational solutions or those involving a constant. As a consequence,
the decomposition type L2

1 implies that a decomposition of type L2
2 or L2

3 does not
exist, i.e. there is only a single first-order right factor. Similarly, decomposition typeL2

2
excludes type L2

3. A factor containing a parameter corresponds to a factorization that
is not unique; any special value for C generates a special irreducible factor. Because
the originally given operator has order 2, two different special values must be chosen
in order to represent it in the form Lclm(l(1)(C1), l(1)(C2)), C1 �= C2.

For operators of order 3 there are 12 types of Loewy decompositions.

Corollary 2.6 Let L be a third-order operator. Its possible Loewy decompositions
are denoted by L3

0, . . .L3
11, they may be described as follows; l(i)j is an irreducible

operator of order i; L(i)
j is a Loewy factor of order i as defined above; C, C1 and C2

are constants;

L3
1 : L = l(2)l(1); L3

2 : L = l(1)1 l(1)2 l(1)3 ; L3
3 : L = Lclm(l(1)1 , l(1)2 )l(1)3 ;

L3
4 : L = Lclm(l(1)1 (C))l(1)2 ; L3

5 : L = l(1)l(2); L3
6 : L = l(1)1 Lclm(l(1)2 , l(1)3 );

L3
7 : L = l(1)1 Lclm(l(1)2 (C)); L3

8 : L = Lclm(l(1)1 , l(1)2 , l(1)3 );
L3
9 : L = Lclm(l(2), l(1)); L3

10 : L = Lclm(l(1)1 (C), l(1)2 );
L3
11 : L = Lclm(l(1)(C1, C2)).

An irreducible third-order operator is defined to have decomposition type L3
0. The

decompositions L3
0, and L3

8 through L3
11 are completely reducible; the decomposition

types L3
1,L3

3 and L3
4 have the structure L = L(2)

2 L(1)
1 ; the decomposition types L3

5,L3
6

and L3
7 have the structure L = L(1)

2 L(2)
1 .

Proof According to Lemma 2.4, case (i i), the possible factors are determined by the
solutions of a second-order Riccati equation. They are completely classified in the
Appendix. The general solution may be rational involving two constants; there may
be a rational solution involving a single constant and in addition a special rational
solution; there may be only a rational solution involving a single constant; or there
may be three, two or a single special rational solution, or nor rational solution at all.
These alternativesmay easily be correlatedwith the various decomposition types given
above. ��
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26 F. Schwarz

2.2 Solving linear homogeneous ode’s

There remains to be discussed how the solution procedure for a linear ode with a
nontrivial Loewy decomposition is simplified. The general procedure that applies to
reducible equations of any order is described first.

Proposition 2.7 Let a linear differential operator P of order n factor into P = Q R
with R of order m and Q of order n − m. Further let y1, . . . , ym be a fundamental
system for R(y) = 0, and ȳ1, . . . , ȳn−m a fundamental system for Q(y) = 0. Then
a fundamental system for P(y) = 0 is given by the union of y1, . . . , ym and special
solutions of R(y) = ȳi for i = 1, . . . , n − m.

Proof From Ryi = 0 it follows that Pyi = Q Ryi = 0, i.e. yi belongs to a fundamen-
tal system of Py = 0 if this is true for Ry = 0; this proves the first part. Furthermore,
from Ryi = ȳi and Qȳi = 0 it follows that Pyi = Q Ryi = 0; this proves the second
part. ��

This proceeding will be applied for solving reducible second- and third-order equa-
tions. The following two corollaries are obtained by straightforward application of the
above Proposition 2.7. In some cases a solution of an inhomogeneous second-order
linear ode is required.

Corollary 2.8 Let L be a second-order differential operator, D ≡ d
dx , y a differen-

tial indeterminate, and ai ∈ Q(x). Define εi (x) ≡ exp (− ∫ ai dx) for i = 1, 2 and

ε(x, C) ≡ exp (− ∫ a(C)dx), C is a parameter; the barred quantities C̄ and ¯̄C are

arbitrary numbers, C̄ �= ¯̄C. For the three nontrivial decompositions of Corollary 2.5
the following elements y1 and y2 of a fundamental system are obtained.

L2
1 : Ly = (D+a2)(D+a1)y =0; y1=ε1(x), y2=ε1(x)

∫
ε2(x)

ε1(x)
dx .

L2
2 : Ly = Lclm(D + a2, D + a1)y = 0; yi = εi (x); a1 is not equivalent to a2.

L2
3 : Ly = Lclm(D + a(C))y = 0; y1 = ε(x, C̄), y2 = ε(x, ¯̄C).

Here two rational functions p, q ∈ Q(x) are called equivalent if there exists another

rational function r ∈ Q(x) such that p − q = r ′
r holds.

For differential equations of order three there are four decomposition types into
first-order factors with no constants involved. Fundamental systems for them may be
obtained as follows.

Corollary 2.9 Let L be a third-order differential operator, D ≡ d
dx , y a differential

indeterminate, and ai ∈ Q(x). Define εi (x) ≡ exp (− ∫ ai dx) for i = 1, 2, 3. For
the four nontrivial decompositions of Corollary 2.6 involving only first-order factors
without parameters the following elements yi , i = 1, 2, 3, of a fundamental system
are obtained.
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L3
2 : Ly = (D + a3)(D+a2)(D+a1)y = 0; y1=ε1(x), y2 = ε1(x)

∫
ε2(x)

ε1(x)
dx,

y3 = ε1(x)

(∫
ε3(x)

ε2(x)
dx
∫

ε2(x)

ε1(x)
dx −

∫
ε3(x)

ε2(x)

∫
ε2(x)

ε1(x)
dx dx

)
.

L3
3 : Ly = Lclm(D + a3, D + a2)(D + a1)y = 0;

y1 = ε1(x), y2 = ε1(x)

∫
ε2(x)

ε1(x)
dx, y3 = ε1(x)

∫
ε3(x)

ε1(x)
dx .

L3
6 : Ly = (D + a3)Lclm(D + a2, D + a1)y = 0; a1 �= a2, yi = εi (x)

for i = 1, 2;
y3 = ε1(x)

∫
ε3(x)

ε1(x)

dx

a2 − a1
− ε2(x)

∫
ε3(x)

ε2(x)

dx

a2 − a1
.

L3
8 : Ly = Lclm(D + a3, D + a2, D + a1)y = 0, yi = εi (x), i = 1, 2, 3.

The proof of these corollaries is a straightforward application of Proposition 2.7.
The following examples show how they may be applied for solving linear ode’s.

Example 2.10 Equation 2.201 from Kamke’s collection has the L2
2 decomposition

y′′+
(
2+ 1

x

)
y′− 4

x2
y

= Lclm

⎛
⎜⎝D + 2

x
− 2x − 2

x2 − 2x + 3

2

, D + 2 + 2

x
− 1

x + 3

2

⎞
⎟⎠ y = 0.

The coefficients a1 = 2 + 2
x − 1

x + 3

2

and a2 = 2
x − 2x − 2

x2 − 2x + 3

2

are rational

solutions of a′ − a2 +
(
2 + 1

x

)
+ 4

x2
= 0 corresponding to case (i) of Lemma 2.4;

they yield the fundamental system

y1 = 2

3
− 4

3x
+ 1

x2
, y2 = 2

x
+ 3

x2
e−2x .

Example 2.11 Equation 3.73 from Kamke’s collection has the L3
2 decomposition

L3
2 : y′′′−

(
2

x + 1
+ 2

x

)
y′′+

(
6

x
+ 4

x2
− 6

x + 1

)
y′+

(
8

x
− 8

x2
− 4

x3
− 8

x + 1

)
y

=
(

D − 2

x + 1
− 1

x

)(
D − 1

x

)(
D − 2

x

)
y = 0.

It has the coefficients a1 = −2
x , a2 = −1

x and a3 = 1
x − 2

x + 1 ; they yield ε1 =
x2, ε2 = x and ε3 = 1

x (x + 1)2. If they are substituted in the above expressions the
fundamental system
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28 F. Schwarz

y1 = x2, y2 = x2 log x and y3 = x + x3 + x2 log (x)2

is obtained.

Example 2.12 The L3
6 decomposition

L3
6 : y′′′ − y′′ −

(
1

x − 2
− 1

x

)
y′ +

(
1

x − 2
− 1

x

)
y

=
(

D + 1

x − 2
+ 1

x

)
Lclm

(
D − 1, D − 2

x

)
y = 0

of equation 3.37 of Kamke’s collection yields the coefficients a1 = −2
x , a2 = −1 and

a3 = 1
x + 1

x − 2 . If they are substituted in the above expressions, the fundamental
system

y1 = x2, y2 = ex , and y3 = x(x2 − 2)

4(x − 2)
+ x2

4
log

x − 2

x
+ ex

∫
e−x dx

(x − 2)2

is obtained.

In addition to the decompositions of the above Corollary 2.9 there are four decom-
positions into first-order factors involving one or two parameters. They are considered
next.

Corollary 2.13 Let L be a third-order differential operator, D ≡ d
dx , y a differential

indeterminate, and ai ∈ Q(x). Define εi (x) ≡ exp (− ∫ ai dx) for i = 1, 2, 3, ε(x, C)

≡ exp (− ∫ a(C) dx) and ε(x, C1, C2) = exp (− ∫ a(C1, C2) dx); C, C1 and C2 are
parameters; the barred quantities C̄, C̄i etc are numbers; for each case they are pair-
wise different from each other. For the four decompositions of Corollary 2.6 involving
first-order factors and parameters the following elements yi , i = 1, 2, 3, of a funda-
mental system are obtained.

L3
4 : Ly = Lclm (D + a(C)) (D + a1)y = 0;

y1 = ε1(x), y2 = ε1(x)

∫
x, ε(x, C̄)

ε1(x)
dx, y3 = ε1(x)

∫
ε(x, ¯̄C)

ε1(x)
dx;

L3
7 : Ly = (D + a3)Lclm (D + a(C)) y = 0; y1 = ε(x, C̄), y2 = ε(x, ¯̄C),

y3 = ε(C̄, x)

∫
ε3(x)

ε(C̄, x)

dx

a( ¯̄C) − a(C̄)
− ε( ¯̄C, x)

∫
ε3(x)

ε( ¯̄C, x)

dx

a( ¯̄C) − a(C̄)

L3
10 : Ly = Lclm(D + a(C), D + a1)y = 0;

y1 = ε1(x), y2 = ε(x, C̄), y3 = ε(x, ¯̄C).

L3
11 : Ly = Lclm(D + a(C1, C2))y = 0,

y1 = ε(x, C̄1, C̄2), y2 = ε(x, ¯̄C1,
¯̄C2), y2 = ε(x,

¯̄̄
C1,

¯̄̄
C2).
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Again the proof follows immediately from Proposition 2.7 and is omitted. The
following examples show some applications.

Example 2.14 The equation with the type L3
4 decomposition

y′′′ − 4x2 − 1

x3
y′′ + 6x2 − 10

x4
y′ + 30

x5
y

= Lclm

(
D − 2

x
− 1

x + C

)(
D + 1

x3

)
y = 0

leads to ε1(x) = exp

(
1
2x2

)
and ε(C, x) = (C + x)x2. This yields the fundamental

system

y1 = exp

(
1

2x2

)
, y2 = exp

(
1

2x2

)∫
exp

(
− 1

2x2

)
x3 dx,

y3 = exp

(
1

2x2

)∫
exp

(
− 1

2x2

)
x2 dx .

Example 2.15 An equation with type L3
10 decomposition is

y′′′ − x3 − 3x + 3

x(x2 + x − 1)
− x + 3

x2 + x − 1
y′ + x + 3

x(x2 + x − 1)
y

= Lclm

(
D + 1

x
− 2x

x2 + C
, D − 1

)
y = 0

with fundamental system y1 = ex , y2 = x and y3 = 1
x ; y2 and y3 satisfy y2−x2y3 = 0

whereas y1 is linearly independent of y2 and y3 over the base field.

The results of this section show that factorization provides an algorithmic scheme
for solving linear ode’s. Whenever an equation of order two or three factorizes accord-
ing to one of the types defined above the elements of a fundamental system may be
given explicitly, i.e. factorization is equivalent to solving it. If an equation is irreducible
it may occur that its Galois group is nontrivial. In these cases algebraic solution may
exist; otherwise there may exist special function solutions, see [6] or [51], page 39.

The website http://www.alltypes.de provides an interactive userinterface for apply-
ing the above results to concrete problems.

3 Rings of partial differential operators

In the ring of ordinary differential operators all ideals are principal. Hence, the relation
between an individual operator and the ideal that is generated by it is straightforward.
The situation is different in rings of partial differential operators where in general
ideals may have any number of generators, and only a Janet basis provides a unique
representation. Therefore a more algebraic language is appropriate for dealing with
partial differential operators and the ideals or modules they generate. Some basic
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concepts of this subject are introduced in this section; general references are the books
by Kolchin [31], Kaplansky [29] or van der Put and Singer [58], or the article by
Buium and Cassidy [8].

3.1 Basic differential algebra

A field F is called a differential field if it is equipped with a derivation operator. An
operator δ on a field F is called a derivation operator if δ(a + b) = δ(a) + δ(b) and
δ(ab) = δ(a)b + aδ(b) for all elements a, b ∈ F . A field with a single derivation
operator is called an ordinary differential field; if there is a finite set � containing
several commuting derivation operators the field is called a partial differential field.

In this article rings of differential operators with derivatives ∂x = ∂
∂x and ∂y = ∂

∂y
with coefficients from some differential field are considered. Its elements have the
form

∑
i, j ri, j (x, y)∂ i

x∂
j
y ; almost all coefficients ri, j are zero. The coefficient field

is called the base field. If constructive and algorithmic methods are the main issue
it is Q(x, y). However, in some places this is too restrictive and a suitable extension
F of it may be allowed. The respective ring of differential operators is denoted by
D = Q(x, y)[∂x , ∂y] orD = F[∂x , ∂y]; if not mentioned explicitly, the exact meaning
will be clear from the context.

The ring D is non-commutative, ∂x a = a∂x + ∂a
∂x and similarly for the other

variables; a is from the base field.
For an operator L = ∑

i+ j≤n ri, j (x, y)∂ i
x∂

j
y of order n the symbol of L is the

homogeneous algebraic polynomial symb(L) ≡ ∑
i+ j=n ri, j (x, y)Xi Y j , X and Y

algebraic indeterminates.
Let I be a left ideal which is generated by elements li ∈ D, i = 1, . . . , p. Then

one writes I = 〈l1, . . . , l p〉. Because right ideals are not considered in this article,
sometimes I is simply called an ideal. In this article the term ideal means always
differential ideal.

A m-dimensional left vector module Dm over D has elements (l1, . . . , lm), li ∈ D
for all i . The sum of two elements of Dm is defined by componentwise addition;
multiplication with a ring element l by l(l1, . . . , lm) = (ll1, . . . , llm).

The relation between left ideals in D or submodules of Dm on the one hand, and
systems of linear pde’s on the other is established as follows. Let (z1, . . . , zm)T be an
m-dimensional column vector of differential indeterminates such that ∂x zi �= 0 and
∂yzi �= 0. Then the product

(l1, . . . , lm)(z1, . . . , zm)T = l1z1 + l2z2 + · · · + lm zm (3.1)

defines a linear differential polynomial in the zi that may be considered as the left hand
side of a partial differential equation; z1, . . . , zm are called the dependent variables
or functions, depending on the independent variables x and y.

A N × m matrix {ci, j }, i = 1, . . . , N , j = 1, . . . , m, ci, j ∈ D, defines a system of
N linear homogeneous pde’s

ci,1z1 + · · · + ci,m zm = 0, i = 1, . . . , N . (3.2)
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The i − th equation of (3.2) corresponds to the vector

(ci,1, ci,2, . . . , ci,m) ∈ Dm for i = 1, . . . , N . (3.3)

This correspondence between the elements of Dm, the differential polynomials (3.1),
and its corresponding pde (3.2) allows to turn from one representation to the other
whenever it is appropriate.

For m = 1 this relation becomes more direct. The elements li ∈ D are simply
applied to a single differential indeterminate z. In this way the ideal I = 〈l1, l2, . . .〉
corresponds to the system of pde’s l1z = 0, l2z = 0, . . . for the single function z.
Sometimes the abbreviated notation I z = 0 is applied for the latter.

3.2 Janet bases of ideals and modules

The generators of an ideal are highly non-unique; its members may be transformed in
infinitely many ways by taking linear combinations of them or its derivatives without
changing the ideal. This ambiguity makes it difficult to decide membership in an ideal
or to recognize whether two sets of generators represent the same ideal. Furthermore,
it is not clear what the solutions of the corresponding system of pde’s are. The same
remarks apply to the vector-modules introduced above.

This was the starting point for Maurice Janet [25] early in the 20th century to intro-
duce a normal form for systems of linear pde’s that has been baptized Janet basis in
[50]. They are the differential analog to Gröbner bases of commutative algebra, orig-
inally introduced by Bruno Buchberger [7], see also the interesting article by Gjunter
[47]; therefore they are also called differential Gröbner basis. Good introductions to
the subject may be found in the articles by Oaku [42], Castro-Jiménez and Moreno-
Frías [10], Plesken and Robertz [45] or Chapter 2 of Schwarz [51].

In order to generate a Janet basis, a ranking of derivatives must be defined. It is a
total ordering such that for any derivatives δ, δ1 and δ2, and any derivation operator θ

obeys δ � θδ, and δ1 � δ2 → δδ1 � δδ2. In this article lexicographic term orderings
lex and graded lexicographic term orderings grlex are applied. For partial derivatives
of a single function their definition is analogous to the monomial orderings in com-
mutative algebra. If x  y is defined, derivatives up to order three in lex order are
arranged like

∂xxx  ∂xxy  ∂xx  ∂xyy  ∂xy  ∂x  ∂yyy  ∂yy  ∂y  1, (3.4)

and in grlex ordering

∂xxx  ∂xxy  ∂xyy  ∂yyy  ∂xx  ∂xy  ∂yy  ∂x  ∂y  1. (3.5)

For modules these orderings have to be generalized appropriately, e.g. the orderings
T O P or P OT of Adams and Loustaunau [1] may be applied.

The following convention will always be obeyed. In an individual operator or dif-
ferential polynomial the terms are arranged decreasingly from left to right, i.e. the first
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term contains the highest derivative. A collection of such objects like the generators
of an ideal or a module is arranged such that the leading terms do not increase. In
particular, if the leading terms are pairwise different they will decrease from left to
right, and from top to bottom. If the term order is not explicitly given it is assumed to
be grlex with x  y.

The most distinctive feature of a Janet basis is the fact that it contains all algebraic
consequences for the derivatives in the ideal generated by its members explicitly. This
is achieved by two basic operations, reductions and adding integrability conditions;
the latter correspond to the S-pairs in commutative algebra.

An operator l1 may be reduced w.r.t. another operator l2 if the leading derivative
of l2 or a derivative thereof occurs in l1. If this is true, its occurrence in l1 may be
removed by replacing it by the negative reductum of l2 or its appropriate derivative.
This process may be repeated until no further reduction is possible. This process will
always terminate because in each step the derivatives in l1 are lowered. The following
example shows a single-step reduction of two operators.

Example 3.1 Let two operators l1 and l2 be given.

l1 ≡ ∂xy − x2

y2
∂x − x − y

y2
, l2 ≡ ∂x + 1

y
∂y + x .

The derivatives ∂xy and ∂x may be removed from l1 with the result

Reduce(l1, l2) = −1

y
∂yy + 1

y2
∂y − x∂y + x2

y2

(
1

y
∂y + x

)
− x − y

y2

= −1

y

(
∂yy + 1

y2
(xy3 − x2 − y)∂y − 1

y
(x3 − x + y)

)
.

There are no further reductions possible.

If a system of operators or differential polynomials is given, various reductions may
be possible between pairs of its members. If all of them have been performed such
that no further reduction is possible, the system is called autoreduced.

For an autoreduced system the integrability conditions have to be investigated. They
arise if the same leading derivative occurs in two different members of the system or
its derivatives. Upon subtraction, possibly after multiplication with suitable factors
from the base field, the difference does not contain it any more. If it does not vanish
after reduction w.r.t. the remaining members of the system, it is called an integrabil-
ity condition that has to be added to the system. The following example shows this
process.

Example 3.2 Consider the ideal

I =
〈
l1 ≡ ∂xx − 1

x
∂x − y

x(x + y)
∂y, l2 ≡ ∂xy + 1

x + y
∂y, l3 ≡ ∂yy + 1

x + y
∂y

〉
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in grlex term order with x  y. Its generators are autoreduced. If the integrability
condition

l1,y = l2,x − l2,y = y + 2x

x(x + y)
∂xy + y

x(x + y)
∂yy

is reduced w.r.t. to I, the new generator ∂y is obtained. Adding it to the genera-
tors and performing all possible reductions, the given ideal is represented as I =
〈∂xx − 1

x ∂x , ∂y〉. Its generators are autoreduced and the single integrability condition
is satisfied.

It may be shown that for any given system of operators or differential polyno-
mials and a fixed ranking autoreduction and adding integrability conditions always
terminates with a unique result. Due to its fundamental importance a special term is
introduced for it.

Definition 3.3 (Janet basis) For a given ranking an autoreduced system of differential
operators is called a Janet basis if all integrability conditions reduce to zero.

If a system of operators or differential polynomials forms a Janet basis, it is a unique
representation for the ideal or module it generates. The proof and many details may
be found in the references given above.

Due to its importance the following notation will be applied from now on. If the
generators of an ideal or module are assured to be a Janet basis they are enclosed by
a pair of

〈〈
. . .
〉〉
. In general, if the Janet basis property is not known, the usual notation

〈. . .〉 will be applied. Therefore in the preceding example the result may be written as
I = 〈〈

∂xx − 1
x ∂x , ∂y

〉〉
. By definition, a single element l is a Janet basis, i.e. 〈l〉 = 〈〈l〉〉

is always valid. A system of operators or pde’s with the property that all integrability
conditions are satisfied is called coherent.

3.3 General properties of ideals and modules

Just like in commutative algebra, the generators of an ideal in a ring of differential
operators obey certain relations which are known as syzygies. Let a set of generators
be f = { f1, . . . , f p} where fi ∈ D for all i . Syzygies of f are relations of the form

dk,1 f1 + · · · + dk,p f p = 0

where dk,i ∈ D, i = 1, . . . p, k = 1, 2, . . .. The (dk,1, . . . , dk,p) may be considered
as elements of the module D p. The totality of syzygies generates a submodule.

Example 3.4 Consider the ideal 〈 f1 ≡ ∂x + a, f2 ≡ ∂y + b〉 with the constraint
ay = bx . The coherence condition for ∂x − a − f1 = 0 and ∂y + b − f2 = 0 yields
a∂y + ay − f1,y − b∂x − bx + f2,x = 0. Reduction w.r.t. to the given generators and
some simplification yields the single syzygy (∂y + b) f1 − (∂x + a) f2 = 0.
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Example 3.5 Consider the ideal

〈〈
f1 ≡ ∂xx + 4

x
∂x + 2

x2
, f2 ≡ ∂xy + 1

x
∂y, f3 ≡ ∂yy + 1

y
∂y − x

y2
∂x − 2

y2

〉〉
.

The integrability condition for ∂xx + 4
x ∂x + 2

x2
− f1 = 0 and ∂xy + 1

x ∂y − f2 = 0

yields upon reduction and simplification f1,y + f2,x − 3
x f2 = 0. Similarly from the

last two elements f1− y2
x f2,y − y

x f2+ y2
x f3,x + y2

x2
f3 = 0 is obtained. Autoreduction

of these two equations yields the following two syzygies as the final answer

(
∂yy + 3

y
∂y − x

y2
∂x − 2

y2

)
f2 −

(
∂xy + 1

x
∂y + 2

y
∂x + 2

xy

)
f3 = 0,

f1 −
(

y2

x
∂y + y

x

)
f2 +

(
y2

x
∂x + y2

x2

)
f3 = 0.

Consider I ⊆ D, and denote by In the intersection of I with the F-linear space
of all derivatives of order not higher than n. Then according to Kolchin [31], see also
Buium and Cassidy [8], and Pankratiev et al. [32], the Hilbert–Kolchin polynomial of
I is defined by

HI (n) ≡
(

n + k

k

)
− dim In; (3.6)

k is the number of variables. The first term equals the number of all derivatives of order
not higher than n. Consequently, for sufficiently large n the value of HI (n) counts the
number of derivatives of order not higher than n which is not in the ideal generated
by the leading derivatives of the generators of I . The degree deg(HI ) of HI is called
the differential type of I ([31], page 130; [8], page 602). Its leading coefficient lc(HI )

is called the typical differential dimension of I, ibid. If I, J ⊆ D are two ideals, Sit
[55], Theorem 4.1, has shown the important equality

lc(HI+J ) + lc(HI∩J ) = lc(HI ) + lc(HJ ) (3.7)

for its typical differential dimensions.
According to Kolchin [30], deg(HI ) and lc(HI )) are differential birational invari-

ants; their importance justifies the introduction of a special term for these quantities.

Definition 3.6 The pair (deg(HI ), lc(HI )) for an ideal I is called the differential
dimension of I, denoted by dI .

For the solutions of the differential equations attached to any ideal or module of
differential operators, these quantities have an important meaning [8,30].
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Theorem 3.7 [30] The differential type denotes the largest number of arguments
occurring in any undetermined function of the general solution. The typical differen-
tial dimension means the number of functions depending on this maximal number of
arguments.

Apparently the differential dimension describes somehow the “size” of the solution
space. In this terminology the differential dimension (0, m) corresponds to a system of
pde’s with a finite-dimensional solution space over the field of constants of dimension
m. This discussion shows that the differential dimension is the proper generalization
of the dimension of a solution space to general systems of linear pde’s. In the language
of differential forms this problem has been considered in full generality by Cartan [9],
Chapter IV; see also [54].

Example 3.8 For the ideal I = 〈〈∂xx − 1
x ∂x , ∂y〉〉 only the two derivatives 1 and ∂x are

not contained in the ideal generated by the leading derivatives. It follows that HI = 2
and dI = (0, 2).

Example 3.9 Let the principal ideal I = 〈∂x +a∂y +b〉 be given. There are 1
2 (n2+n)

derivatives of order not higher than n containing at least a single derivative ∂x . There-
fore HI = n + 1 and dI = (1, 1).

Example 3.10 Consider the ideal I = 〈〈∂xxx , ∂xxy〉〉. The number of derivatives which

are multiples of either leading term is 1
2 (n − 2)(n + 1). Therefore HI = 2n + 2 and

dI = (1, 2).

Given any ideal I it may occur that it is properly contained in some larger ideal J
with coefficients in the base field of I ; then J is called a divisor of I . If the divisor J
has the same differential type as I the latter is called reducible; if such a divisor does
not exist it is called irreducible. If a divisor ideal of the same differential type does
not exist even if a universal differential field is allowed for its coefficients, I is called
absolutely irreducible. According to this definition an ideal may be irreducible, yet it
may have divisors of lower differential type as the following example shows.

Example 3.11 Consider the operator L defined by L ≡ ∂xx + 2
x ∂x + y

x2
∂y − 1

x2
of

differential dimension (1, 2), i.e. its differential type is 1. The principal ideal 〈L〉 has
the two divisors l1 = 〈〈

∂x + 1
x , ∂y − 1

y
〉〉
and l2 = 〈〈

∂x , ∂y − 1
y
〉〉
, both of differential

type 0; l1z = 0 has the solution z = y
x , l2z = 0 has the solution z = y. Both are

also solutions of Lz = 0. It can be shown that L is irreducible according to the above
definition, and even absolutely irreducible.

The greatest common right divisor (Gcrd) or sum of two ideals I and J is the
smallest ideal with the property that both I and J are contained in it. If they have the
representation

I ≡ 〈 f1, . . . , f p〉 and J ≡ 〈g1, . . . , gq〉,

fi , g j ∈ D for all i and j, the sum is generated by the union of the generators of I and
J (Cox et al. [11,12], page 191). The solution space of the equations corresponding
to Gcrd(I, J ) is the intersection of the solution spaces of its arguments.
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The least common left multiple (Lclm) or left intersection of two ideals I and J is the
largest ideal with the property that it is contained both in I and J . The solution space of
Lclm(I, J )z = 0 is the smallest space containing the solution spaces of its arguments.1

Example 3.12 Consider the ideals I = 〈〈∂yyy + 3
y ∂yy, ∂x + y

x ∂y
〉〉
and

J =
〈〈
∂xx + 1

x
∂x − 1

x2
, ∂xy + 1

x
∂y + 1

y
∂x + 1

xy
, ∂yy + 1

y
∂y − 1

y2

〉〉
.

According to the above definitions the Gcrd and the Lclm are

Gcrd(I, J ) =
〈〈
∂yy + 1

y
∂y − 1

y2
, ∂x + y

x
∂y

〉〉
,

Lclm(I, J ) =
〈〈
∂yyy + 3

y
∂yy, ∂xx − y2

x2
∂yy + 1

x
∂x − y

x2
∂y, ∂xy + y

x
∂yy + 1

y
∂x + 2

x
∂y

〉〉
;

lc(HI ) = lc(HJ ) = 3, lc(HI+J ) = 2 and lc(HI∩J ) = 4 in accordance with Sit’s
relation (3.7). In terms of solution spaces this result may be understood as follows.

For I z = 0 a basis of the solution space is
{
1, x

y ,
y
x

}
, and for J z = 0 a basis is{

1
xy , x

y ,
y
x

}
. A basis for their two-dimensional intersection space is

{
x
y ,

y
x

}
, it is the

solution space of Gcrd(I, J )z = 0.

Example 3.13 Consider the two ideals

I =
〈〈
∂x + 1

x
, ∂y + 1

y

〉〉
and J =

〈〈
∂x + 1

x + y
, ∂y + 1

x + y

〉〉
.

Their one-dimensional solution spaces are generated by
{
1

xy

}
and

{
1

x + y

}
respec-

tively. It follows that Gcrd(I, J ) = 〈1〉 and

Lclm(I, J ) =
〈〈
∂yy + 2x + 4y

xy + y2
∂y + 2

xy + y2
, ∂x − y2

x2
∂y + x − y

x2

〉〉
.

A basis for the solution space of Lclm(I, J )z = 0 is
{
1

xy , 1
x + y

}
.

For ordinary differential operators the exact quotient has been defined above.
Because all ideals of ordinary differential operators are principal, it is obtained by
the usual division scheme. This is different in rings of partial differential operators
and a proper generalization of the exact quotient is required. Let I ≡ 〈 f1, . . . , f p〉 ∈ D
and J ≡ 〈g1, . . . , gq〉 ∈ D be such that I ⊆ J, i.e. J is a divisor of I . Their exact
quotient is generated by

{(ei,1, . . . , ei,q) ∈ Dq |ei,1g1 + · · · + ei,q gq = fi , i = 1, . . . , p}.

1 Some authors define it as the lowest element w.r.t. the term order in the ideal defined above.
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The exact quotient module Exquo(I, J ) is generated by

{h = (h1, . . . , hq) ∈ Dq |h1g1 + · · · + hq gq ∈ I }.
It generalizes the syzygy module of J ; the latter is obtained for the special choice
I = 0. If the elements of the exact quotient module are arranged as rows of a matrix
with q columns, and the generators of J as elements of a q-dimensional vector, they
satisfy

I = Exquo(I, J )J. (3.8)

This defines the juxtaposition of Exquo(I, J ) and J in terms of matrix multiplication;
it generalizes the product representation L = L1L2 of an operator L . In general, the
result at the right hand side of (3.8) has to be transformed into a Janet basis in order
to obtain the original generators f1, . . . , f p.

Example 3.14 [37,38] Consider the following ideal in grlex; x  y term order I =〈〈
∂yy − xy − 1

y ∂y − x
y , ∂x − y

x ∂y

〉〉
and its divisor J = 〈〈∂x − y, ∂y − x〉〉. Division

yields
〈〈 (
0, ∂y + 1

y

)
,
(
1,− y

x

) 〉〉
. There is the single syzygy (∂y − x,−∂x + y) of

J (compare Example 3.4). From these three generators the Janet basis for the exact
quotient module is obtained in the form

Exquo(I, J ) =
〈〈
(0, ∂x ),

(
0, ∂y + 1

y

)
,
(
1,− y

x

) 〉〉
.

Example 3.15 Consider the ideal I =
〈〈
∂xx + 1

x ∂x , ∂xy, ∂yy + 1
y ∂y

〉〉
in grlex, x  y

term order. There is a single maximal divisor J = 〈〈∂x , ∂y〉〉. It yields the exact quo-
tient module Exquo(I, J ) =

〈〈 (
∂x + 1

x , 0
)

, (∂y, 0), (0, ∂x ),
(
0, ∂y + 1

y

) 〉〉
. It may be

represented as the intersection of two maximal modules of order 1, i.e.

Exquo(I, J ) = Lclm

(〈〈
(1, 0), (0, ∂x )

(
0, ∂y + 1

y

)〉〉
,

〈〈(
x

y
, 1

)
,

(
∂x + 1

x
, 0

)
, (∂y, 0)

〉〉)
.

By analogy with the well known Landau symbol of asymptotic analysis, the fol-
lowing notation will frequently be applied. Whenever in an expression terms of order
lower than some fixed term τ are not relevant, they are collectively denoted by o(τ ).
This will frequently occur in lex term orderings where τ denotes the highest term
involving a particular variable.

Another short hand notation concerns the generators of ideals or modules of dif-
ferential operators. If only the number of generators and its leading derivatives are of
interest, the abbreviated notation 〈. . .〉LT will be used. For example, if an ideal of dif-
ferential operators is generated by two elements with leading derivatives ∂xx and ∂xy,

it is denoted by 〈∂xx , ∂xy〉LT . A principal ideal that is generated by a single generator
with highest derivative ∂xxx is abbreviated by 〈∂xxx 〉LT .
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3.4 Laplace divisors Lxm (L) and Lyn (L)

The origin of these ideals goes back to Laplace who introduced an iterative solution
scheme for equations with leading derivative zxy . Later on it was realized that this
procedure is essentially equivalent to determining a so called involutive system. In
more modern language this comes down to constructing a Janet basis for an ideal that
is generated by the operator corresponding to the originally given equation, and an
ordinary operator of fixed order involving exclusively derivatives w.r.t. x or y. Thus
this important concept may be generalized to large classes of operators with a mixed
leading derivative. Due to its origin the following definition is suggested.

Definition 3.16 Let L be a partial differential operator in the plane; define

lm ≡ ∂xm + am−1∂xm−1 + · · · + a1∂x + a0 (3.9)

and

kn ≡ ∂yn + bn−1∂yn−1 + · · · + b1∂y + b0 (3.10)

be ordinary differential operators w.r.t. x or y; ai , bi ∈ Q(x, y) for all i; m and n are
natural numbers not less than 2. Assume the coefficients ai , i = 0, . . . , m −1 are such
that L and lm form a Janet basis. If m is the smallest integer with this property then
Lxm (L) ≡ 〈〈L , lm〉〉 is called a Laplace divisor of L . Similarly, if b j , j = 0, . . . , n − 1
are such that L and kn form a Janet basis and n is minimal, then Lyn (L) ≡ 〈〈L , kn〉〉
is called a Laplace divisor of L . Both Laplace divisors have differential dimension
(1, 1).

The possible existence of a Laplace divisor for special operators of order two or
three is investigated next.

Proposition 3.17 Let the second-order partial differential operator

L ≡ ∂xy + A1∂x + A2∂y + A3 (3.11)

be given with Ai ∈ Q(x, y) for all i; m and n are natural numbers not less than 2.

(i) If A1, A2 and A3 satisfy a single differential polynomial, there exists a Laplace
divisor Lxm (L) = 〈〈L , lm〉〉.

(ii) If A1, A2 and A3 satisfy a single differential polynomial there exists a Laplace
divisor Lyn (L) = 〈〈L , kn〉〉.

(iii) If there are two Laplace divisors Lxm (L) and Lyn (L), the operator L is com-
pletely reducible; L may be represented as 〈L〉 = Lclm

(
Lxm (L),Lyn (L)

)
.

The proof involves rather lengthy calculations; essentially the integrability con-
ditions between (3.11) and (3.9) or (3.10) respectively have to be determined and
reduced w.r.t. themselves. At the end, the two differential constraints mentioned in the
above proposition for case (i) and case (i i) are obtained; if they are satisfied a Laplace
divisor of the respective order does exist and may be determined algorithmically.
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Example 3.18 The operator L ≡ ∂xy + xy∂x − 2y has been considered by
Imschenetzky [23]. For m = 3 in (3.9 the coefficients are a0 = a1 = a2 = 0;
hence there is the divisor Lx3(L) = 〈〈∂xxx , ∂xy + xy∂x − 2y〉〉.

In general, no upper bound for the degrees m and n in the above proposition for
a possible Laplace divisor is known. In special cases however such a bound may be
obtained, e.g. it may be shown that a divisor Lyk (L) does not exist for any value of k
in the preceding example.

3.5 The ideals Jxxx and Jxxy

Among the ideals involving only derivatives of order not higher than three there occur
two ideals as generic intersection of first-order operators that are of particular impor-
tance; they are denoted by

Jxxx ≡ 〈∂xxx , ∂xxy〉LT and Jxxy ≡ 〈∂xxy, ∂xyy〉LT .

The subscripts of J denote the highest derivative occurring in the respective ideal.
Both are generated by two third-order operators forming a Janet basis; their differen-
tial dimension is (1, 2). For later use some of their properties are investigated next.

Lemma 3.19 The ideal

Jxxx ≡ 〈L1 ≡ ∂xxx + p1∂xyy + p2∂yyy + p3∂xx + p4∂xy + p5∂yy + p6∂x

+p7∂y + p8, L2 ≡ ∂xxy + q1∂xyy + q2∂yyy + q3∂xx + q4∂xy + q5∂yy

+q6∂x + q7∂y + q8〉

is coherent if the coefficients of its generators obey the conditions

p1 − q2 + q2
1 = 0, p2 + q2q1 = 0,

q2,y − q1,x − q1,yq1 + p4 − p3q1 − q5 + 2q4q1 + q3q2 − 2q3q2
1 = 0,

q2,x + q1,yq2 − p5 + p3q2 − q5q1 − q4q2 + 2q3q2q1 = 0,

p3,y − q3,x + q3,yq1 − q6 + q4q3 − q2
3q1 = 0,

p4,y − q4,x + q4,yq1 + p6 + p4q3 − p3q4 − q7 + q6q1 + q2
4 − q4q3q1 = 0,

p5,y − q5,x + q5,yq1 + p7 + p5q3 − p3q5 + q7q1 + q5q4 − q5q3q1 = 0,

p6,y − q6,x + q6,yq1 + p6q3 − p3q6 − q8 + q6q4 − q6q3q1 = 0,

p7,y − q7,x + q7,yq1 + p8 + p7q3 − p3q7 + q8q1 + q7q4 − q7q3q1 = 0,

p8,y − q8,x + q8,yq1 + p8q3 − p3q8 + q8q4 − q8q3q1 = 0.

A grlex term order with pi  q j for all i and j, qi  q j and pi  p j for i < j is
applied. There is a single syzygy between the generators.

L1,y + q3L1 − L2,x + q1L2,y − (p3 + q1q3 − q4)L2 = 0. (3.12)
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These ten conditions are obtainedbygenerating the integrability conditions between
the operators L1 and L2 and reducing them w.r.t. L1 and L2. The syzygy is obtained
by the procedure described at the beginning of Sect. 3.3. An example is given next.

Example 3.20 The ideal

〈〈
L1 ≡ ∂xxx − ∂xyy + 2x∂xy − 3(3x2 + 1)∂x + 4(2x2 + 1)∂y − 8x3 − 24x,

L2 ≡ ∂xxy + ∂xyy + x∂xx − (x2 + 1)∂x − 4(2x2 + 1)∂y − 8x3
〉〉

is generated by a Janet basis because its coefficients satisfy the constraints of the
preceeding lemma. The single syzygy L1,y + x L1 = L2,x + x L2 is particularly sim-
ple in this case.

Lemma 3.21 The ideal

Jxxy ≡ 〈K1 ≡ ∂xxy + p1∂yyy + p2∂xx + p3∂xy + p4∂yy + p5∂x + p6∂y + p7,

K2 ≡ ∂xyy + q1∂yyy + q2∂xx + q3∂xy + q4∂yy + q5∂x + q6∂y + q7〉

is coherent if the coefficients of its generators obey the conditions

q2 = 0, p1 + q2
1 = 0,

p7,y − q7,x + q7,yq1 − p2 p7 − p3q7 − p7q1q2 + p7q3 − q1q3q7 + q4q7 = 0,

p6,y − q6,x + q6,yq1 − p2 p6 − p3q6 − p6q1q2
+p6q3 + p7 − q1q3q6 + q1q7 + q4q6 = 0,

p5,y − q5,x + q5,yq1 − p2 p5 − p3q5 − p5q1q2
+p5q3 − q1q3q5 + q4q5 − q7 = 0,

p4,y − q4,x + q4,yq1 − p2 p4 − p3q4 − p4q1q2

+p4q3 + p6 − q1q3q4 + q1q6 + q2
4 = 0,

p3,y − q3,x + q3,yq1 − p2 p3 − p3q1q2 + p5 − q1q2
3 + q1q5 + q3q4 − q6 = 0,

p2,y − q2,x + q2,yq1 − p22 − p2q1q2
+p2q3 − p3q2 − q1q2q3 + q2q4 − q5 = 0,

p1,y − q1,x + q1,yq1 − p1 p2 − p1q1q2

+p1q3 − p3q1 + p4 − q2
1q3 + 2q1q4 = 0.

A grlex term order with pi  q j for all i and j, qi  q j and pi  p j for i < j is
applied. There is a single syzygy between the generators.

K1,y − (p2 + q1q2 − q3)K1 − K2,x + q1K2,y − (p3 + q1q3 − q4)K2 = 0.

(3.13)

Similar remarks apply as above following Lemma 3.19.
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3.6 Lattice structure of ideals in Q(x, y)[Dx,Dy]

In any ring, commutative or not, its ideals form a lattice if the join operation is defined
as the sum of ideals, and the meet operation as its intersection. In order to understand
the structure of this lattice, these two operations have to be studied in detail. The basics
of lattice theory required for this purpose may be found in the books by Grätzer [17]
or Davey and Priestley [13].

The first result deals with a special case that guarantees the existence of a principal
intersection ideal of first order operators.

Proposition 3.22 Let L be a partial differential operator in x and y with leading term
∂xn , and let li ≡ ∂x +ai∂y +bi , i = 1, . . . , n, ai �= a j for i �= j, be n right divisors of
L. Then the intersection ideal generated by the li is principal and is generated by L.

Proof Let Ii = 〈li 〉 for 1 ≤ i ≤ n and I = I1 ∩ . . . ∩ In be the intersection ideal.
For any P ∈ I, symb(P) is divided by

∏
1≤i≤n(∂x + ai∂y), considered as algebraic

polynomial in ∂x and ∂y; therefore ordx (P) ≥ n. On the other hand, according to Sit’s
relation (3.7) on page 34, for the typical differential dimension dim(I ) ≤ n is valid.
Hence if I = 〈L〉 is principal then ordx (L) = dim(I ) = n. Conversely let P ∈ I
and divide P by L with remainder, i.e. P = QL + R. Then ordx (R) < n, therefore
R = 0. Thus I = 〈L〉. ��

The intersection ideals generated by two first-order operators in the plane are
described in detail now.

Theorem 3.23 Let the ideals Ii = 〈∂x + ai∂y + bi 〉 for i = 1, 2 with I1 �= I2 be
given. Both ideals have differential dimension (1, 1). There are three different cases
for their intersection I1 ∩ I2, all are of differential dimension (1, 2).

(i) If a1 �= a2 and
(

b1 − b2
a1 − a2

)
x

=
(

a1b2 − a2b1
a1 − a2

)
y

then

I1 ∩ I2 = 〈∂xx 〉LT and I1 + I2 =
〈
∂x + a1b2 − a2b1

a1 − a2
, ∂y + b1 − b2

a1 − a2

〉
.

(ii) If a1 �= a2 and
(

b1 − b2
a1 − a2

)
x

�=
(

a1b2 − a2b1
a1 − a2

)
y

then

I1 ∩ I2 = Jxxx and I1 + I2 = 〈1〉.
(iii) If a1 = a2 = a and b1 �= b2 then

I1 ∩ I2 = 〈∂xx 〉LT and I1 + I2 = 〈1〉.
Case (ii) is the generic case for the intersection of two ideals I1 and I2.

Proof The proof follows closely Grigoriev and Schwarz [19]. In accordance with
Cox, Little and O’Shea [11,12], Theorem 11 on page 186, an auxiliary parameter u
is introduced and the operators u(∂x + a1∂y + b1) and (1 − u)(∂x + a2∂y + b2) are
considered. In order to compute generators for the intersection ideal, a Janet basis
with u as the highest variable has to be generated. To this end, computationally it is
more convenient to find the Janet basis with respect to the differential indeterminate
z and a new indeterminate w = uz with w  z in a lexicographic term ordering. The
intersection ideal is obtained from the expressions not involving w; the sum ideal is
obtained by substituting z = 0. This yields the differential polynomials
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wx + a1wy + b1w and wx + a2wy + b2w − zx − a2zy − b2z. (3.14)

If a1 �= a2 autoreduction leads to

wx + a1b2 − a2b1
a1 − a2

w − a1
a1 − a2

(zx + a2zy + b2z) and

wy + b1 − b2
a1 − a2

w + 1

a1 − a2
(zx + a2zy + b2z). (3.15)

DefiningU ≡ zx +a2zy +b2z, the integrability condition between these two elements
has the form

[(
a1b2 − a2b1

a1 − a2

)

y
−
(

b1 − b2
a1 − a2

)

x

]
w − 1

a1 − a2
Ux − a1

a1 − a2
Uy

−
[(

1

a1 − a2

)

x
+
(

a1
a1 − a2

)

y
+ b1

a1 − a2

]
U = 0.

If the coefficient ofw vanishes, the remaining expression has the leading term zxx and
is the lowest element of a Janet basis; it corresponds to an intersection ideal Jxxx . The
sum ideal is obtained from (3.15). This is case (i).

If the coefficient of w does not vanish, this expression may be applied to eliminate
w in (3.15). It yields two expressions with leading derivatives uxxx and uxxy respec-
tively; they correspond to an intersection ideal Jxxx . The sum ideal is trivial. This is
case (i i).

Finally, if a1 = a2 = a, autoreduction of (3.14) yields two expressions of the type
w + o(zx ) and o(zxx ) respectively; they correspond to an intersection ideal 〈∂xx 〉LT

and a trivial sum ideal. This is case (i i i).
Case (i i) is the generic case because it does not involve any constraints for the

coefficients of the generators of I1 and I2. ��
The two subsequent examples are applications of this theorem. In general it is diffi-

cult to find first-order operators generating an intersection ideal ofmoderate coefficient
size; in particular this applies to the generic case.

Example 3.24 Consider the two ideals

I1 = 〈∂x + 1〉 and I2 = 〈∂x + (y + 1)∂y〉,

both of differential dimension (1, 1). The condition for case (i) of the above theorem
is satisfied. Consequently

Lclm(I1, I2) = 〈〈∂xx + (y + 1)∂xy + ∂x + (y + 1)∂y〉〉,
Gcrd(I1, I2) =

〈〈
∂x + 1, ∂y − 1

y + 1

〉〉
;

their differential dimension is (1, 2) and (0, 1) respectively.
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Example 3.25 The two ideals I1 = 〈∂x + 1〉 and I2 = 〈∂x + x∂y〉, both of differen-
tial dimension (1, 1), do not satisfy the condition of case (i) of the above theorem;
furthermore a1 �= a2. Therefore by case (i i) the intersection ideal is

Lclm(I1, I2) =
〈〈
∂xxx −x2∂xyy + 3∂xx +(2x + 3)∂xy − x2∂yy +2∂x + (2x + 3)∂y,

∂xxy + x∂xyy − 1

x
∂xy + x∂yy − 1

x
∂x −

(
1 + 1

x

)
∂y

〉〉

of differential dimension (1, 2); Gcrd(I1, I2) = 〈1〉.
The above Theorem 3.23 does not cover the case that the two operators generating

I1 and I2 have different leading derivatives; it is considered next.

Theorem 3.26 Let the ideals I1 = 〈∂x + a1∂y + b1〉 and I2 = 〈∂y + b2〉 be given,
I1 �= I2. There are two different cases for their intersection I1 ∩ I2.

(i) If (b1 − a1b2)y = b2,x then
I1 ∩ I2 = 〈∂xy〉LT and I1 + I2 = 〈∂x + b1 − a1b2, ∂y + b2〉.

(ii) If the preceding case does not apply then
I1 ∩ I2 = Jxxy and I1 + I2 = 〈1〉.

The proof is similar as for Theorem 3.23 and is therefore omitted.

4 Decomposing partial differential operators in the plane

This section deals with a genuine extension of Loewy’s theory. The ideals under
consideration have differential type greater than zero. This means the corresponding
differential equations have a general solution involving not only constants but unde-
termined functions of varying numbers of arguments. Loewy’s results are applied to
individual linear pde’s of second and third order in the plane with coordinates x and
y, and the principal ideals generated by the corresponding operators. Second-order
equations have been considered extensively in the literature of the nineteenth century
[14,16,23,34,35]. Like in the classical theory, equations with leading derivatives ∂xx

or ∂xy are distinguished.

4.1 Operators with leading derivative ∂xx

At first the generic second-order operator with leading derivative ∂xx is considered.
It is not assumed that any coefficient of a lower derivative vanishes. As usual factor-
izations in the base field Q(x, y), possibly extended by some algebraic numbers, are
considered.

Proposition 4.1 Let the second-order partial differential operator

L ≡ ∂xx + A1∂xy + A2∂yy + A3∂x + A4∂y + A5 (4.1)
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be given with Ai ∈ Q(x, y) for all i . Its first order factors ∂x + a∂y + b with a, b ∈
Q(x, y) are determined by the roots a1 and a2 of a2 − A1a + A2 = 0. The following
alternatives may occur.

(i) If a1 �= a2 are two different rational solutions, and b1 and b2 are determined
by (4.5), a factor li = ∂x + ai∂y + bi exists if the pair ai , bi satisfies (4.6). If
there are two factors l1 and l2, the operator (4.1) is completely reducible with
the representation L = Lclm(l1, l2).

(ii) If a1 = a2 = a is a double root and

A1,x + 1

2
A1A1,y + A1A3 = 2A4, (4.2)

the factorization depends on the rational solutions of the partial Riccati equation

bx + 1

2
A1by − b2 + A3b = A5. (4.3)

(a) A right factor l(�) ≡ ∂x + 1
2 A1∂y + R(x, y,�(ϕ)) exists if (4.3) has a

rational general solution R(x, y,�(ϕ));ϕ(x, y) is a rational first integral of
dy
dx = 1

2 A1(x, y);� is an undetermined function. L is completely reducible with

the representation L = Lclm(l(�1), l(�2)) for any two choices �1 and �2 such
that �1 �= �2.

(b) A right factor l ≡ ∂x + 1
2 A1∂y + r(x, y) exists if (4.3) has the single rational

solution r(x, y).
(c) Two right factors li ≡ ∂x + 1

2 A1∂y + ri (x, y) exist if (4.3) has the rational solu-

tions r1(x, y) and r2(x, y). The operator (4.1) is completely reducible, it may be
represented as L = Lclm(l2, l1).

Proof Dividing the operator (4.1) by ∂x + a∂y + b, the condition that this division be
exact leads to the following set of equations between the coefficients.

a2 − A1a + A2 = 0, (4.4)

ax + (A1 − a)ay + A3a + (A1 − 2a)b = A4, (4.5)

bx + (A1 − a)by − b2 + A3b = A5. (4.6)

The first equation determines the coefficient a.
Case (i) Assume that (4.4) has two simple rational roots a1 and a2. Then a1 �= a2

and ai �= 1
2 A1 for i = 1, 2; the second equation (4.5) determines rational values of

b1 and b2. The third equation (4.6) is a constraint. Those pairs ai , bi which satisfy it
lead to a factor. There may be none, a single one l1, or two factors l1 and l2. In the
latter case, by Proposition 3.22 L is given by L = Lclm(l2, l1).

Case (ii) If a1 = a2 = 1
2 A1 is a twofold root A2 is given by A2 = 1

4 A2
1. The coef-

ficient of b in Eq. (4.5) vanishes, it becomes the constraint (4.2). If it is not satisfied,
factors cannot exist in any field extension. If it is satisfied, b is determined by (4.3)
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which is obtained from (4.6) by simplification. Depending on the type of its rational
solutions (see Appendix), the three subcases (a), (b) or (c) occur. If there are two
factors, by case (i i i) of Theorem 3.23 their intersection equals L . ��

In order to apply this result for solving any given differential equation involving
the operator (4.1) the question arises whether its first-order factors may be deter-
mined algorithmically. The subsequent corollary provides the answer for factors with
coefficients either in the base field or a universal field extension.

Corollary 4.2 In general, first-order right factors of (4.1) in the base field cannot be
determined algorithmically. The following cases are distinguished.

(i) Separable symbol polynomial. Any factor may be determined.
(ii) Double root of symbol polynomial. In general it is not possible to determine the

right factors in the base field.

The existence of factors in a universal field, i.e. absolute irreducibility, may always
be decided.

Proof In the separable case , solving Eq. (4.4) and testing condition (4.6) requires only
differentiations and arithmetic in the base field or in a quadratic function field; this
can always be performed. In the non-separable case, testing condition (4.2) requires
only arithmetic and differentiations in the base field. If it is not satisfied, factors cannot
exist in any field extension. If it is satisfied, factors are determined by the solutions
of the partial Riccati equation (4.3). However, in general no algorithm is known at
present for determining the rational solutions of (4.3) as shown in the appendix. ��

In particular this result means that factors of an equation that is irreducible but
not absolutely irreducible in general may not be determined, although its existence is
assured.

Applying Proposition 4.1, Loewy’s Theorem 2.2 may be generalized to operators
of the form (4.1) as follows.

Theorem 4.3 Let the differential operator L be defined by

L ≡ ∂xx + A1∂xy + A2∂yy + A3∂x + A4∂y + A5 (4.7)

such that Ai ∈ Q(x, y) for all i . Let li ≡ ∂x + ai∂y + bi for i = 1 and i = 2,
and l(�) ≡ ∂x + a∂y + b(�) be first-order operators with ai , bi , a ∈ Q(x, y);� is
an undetermined function of a single argument. Then L has a Loewy decomposition
according to one of the following types.

L1
xx : L = l2l1; L2

xx : L = Lclm(l2, l1); L3
xx : L = Lclm(l(�)). (4.8)

If L does not have any first-order factor in the base field, its decomposition type is
defined to be L0

xx . Decompositions L0
xx ,L2

xx and L3
xx are completely reducible. For

decomposition L1
xx the first-order right factor is a Loewy divisor.

Proof It is based on Proposition 4.1. In the separable case (i) there are either two
first order factors with a principal intersection corresponding to decomposition type
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L2
xx ; or a single first-order factor corresponding to type L1

xx ; or no factor at all corre-
sponding to type L0

xx . In case (i i), depending on the rational solutions of the Riccati
equation (4.6), a similar distinction as in case (i) occurs. In addition there may be a
factor containing an undetermined function yielding decomposition type L3

xx . ��
The subsequent examples are applications of the above theorem. Later in this article

it will be shown how the solutions of the corresponding pde’s are obtained from these
decompositions.

Example 4.4 [15] Forsyth [15], vol. VI, page 16, considered the differential equation
Lz = 0 where

L ≡ ∂xx − ∂yy + 4

x + y
∂x .

The rational solutions of a2 − 1 = 0 are a1 = 1, a2 = −1, i.e. case (i) of Proposi-
tion 4.1 applies. From (4.5) it follows that b1,2 = 2

x + y . Only a2 = −1, b2 = 2
x + y

satisfy (4.6). There is a single right factor leading to the type L1
xx decomposition

L =
(

∂x + ∂y + 2

x + y

)(
∂x − ∂y + 2

x + y

)
;

continued in Example 5.2.

The next example shows that complete reducibility may occur for non-separable
operators.

Example 4.5 [41] Let the operator

L ≡ ∂xx + 2y

x
∂xy + y2

x2
∂yy + 1

x
∂x + y

x2
∂y − 1

x2

be given. Because 1
4 A2

1− A2 = 0, case (i i) of Proposition 4.1 applies. It yields a = y
x

and leads to the equation bx + y
x by − b2 + 1

x b + 1
x2

= 0 for b with general solution

b = 1
x
1 + x2�(ϕ)

1 − x2�(ϕ)
where ϕ = y

x ;� is an undetermined function of its argument.

Thus the given second-order operator has an infinite number of first-order right factors

of the form l(�) ≡ ∂x + y
x ∂y + 1

x
1 + x2�(ϕ)

1 − x2�(ϕ)
which are parametrized by �; the

decomposition type is L3
xx ; completed in Example 5.3.

4.2 Operators with leading derivative ∂xy

If an operator does not contain a derivative ∂xx but ∂yy does occur, permuting the vari-
ables x and y leads to an operator of the form (4.1) such that the above theorem may
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be applied. If there is neither a derivative ∂xx or ∂yy, possible factors must obviously
be of the form ∂x + a or ∂y + b; the same is true for the arguments of a representation
as intersection due to Theorem 3.26. Consequently the possible factorizations may be
described as follows.

Proposition 4.6 Let the second-order operator

L ≡ ∂xy + A1∂x + A2∂y + A3 (4.9)

be given with Ai ∈ Q(x, y) for all i . The following factorizations may occur.

(i) If A3 − A1A2 = A2,y then L = (∂y + A1)(∂x + A2).
(ii) If A3 − A1A2 = A1,x then L = (∂x + A2)(∂y + A1).

(iii) If A3 − A1A2 = A1,x and A1,x = A2,y there are two right factors; then
L = Lclm(∂x + A2, ∂y + A1).

(iv) There may exist a Laplace divisor Lyn (L) for n ≥ 2.
(v) There may exist a Laplace divisor Lxm (L) for m ≥ 2.

(vi) There may exist both Laplace divisors Lxm (L) and Lyn (L). In this case L is
completely reducible; L is the left intersection of two Laplace divisors.

Proof Dividing the operator (4.9) by ∂x + a∂y + b, the condition that this division be
exact leads to the following set of equations between the coefficients

a = 0, A2 − A1a − ay − b = 0, A3 − A1b − by = 0

with the solution a = 0, b = A2 and the constraint A3 − A1A2 = A2,y . Dividing out
the right factor ∂x + A2 yields the left factor ∂y + A1. This is case (i). Dividing (4.9)
by ∂y + c, the condition that this division be exact leads to c = A1 and the constraint
A3 − A1A2 = A1,x . This is case (i i). Finally, if the conditions for cases (i) and (i i)
are satisfied simultaneously, a simple calculation shows that L is the left intersection
of its right factors. This is case (i i i).

The possible existence of the Laplace divisors in cases to is a consequence of
Proposition 3.17. ��

Case (iv), n = 1 and case (v), m = 1 are covered by case (i), (i i) and (i i i). The
corresponding ideals are maximal and principal because they are generated by ∂y +a1
and ∂x + b1 respectively. The term factorization applies in these cases in the proper
sense because the obvious analogy to ordinary differential operators where all ideals
are principal.

The following corollary describes to what extent the factorizations described above
may be determined algorithmically.

Corollary 4.7 The coefficients of any first-order factor or Laplace divisor of fixed
order are in the base field; they may be determined algorithmically. However, a bound
for the order of a Laplace divisor is not known.

Proof For the first-order factors in cases (i), (i i) and (i i i) this is obvious. For any
Laplace divisor of fixed order this follows from Proposition 3.17. ��
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It should be emphasized that according to this corollary finding a Laplace divisor
in general is not algorithmic. To this end, an upper bound for the order of a possible
divisor would be required; at present such a bound is not known. However, in special
cases it may be possible to prove the non-existence of any Laplace divisor.

Applying the preceding results, Loewydecompositions of (4.9) involvingfirst-order
principal factors may be described as follows.

Theorem 4.8 Let the differential operator L be defined by

L ≡ ∂xy + A1∂x + A2∂y + A3 (4.10)

with Ai ∈ Q(x, y) for all i; l ≡ ∂x + A2 and k ≡ ∂y + A1 are first-order operators.
L has Loewy decompositions involving first-order principal divisors according to one
of the following types.

L1
xy : L = kl;L2

xy : L = lk;L3
xy : L = Lclm(k, l).

The decomposition of type L3
xy is completely reducible; the first-order factors in

decompositions L1
xy and L2

xy are Loewy divisors.

Proof It is based on Proposition 4.6. If the conditions for case (i) or (i i) or are sat-
isfied, the decomposition type is L1

xy or L2
xy respectively; if both are satisfied the

decomposition type L3
xy is obtained. ��

Example 4.9 The operator

L ≡ ∂xy + (x + y)∂x +
(

y + 1

x

)
∂y + xy + y2 + 2 + y

x

obeys the conditions of case (i i i) of Proposition 4.6. Therefore the type L3
xy decom-

position L = Lclm(∂x + y + 1
x , ∂y + x + y) is obtained. Continued in Example 5.5.

Loewy decompositions of (4.9) involving non-principal divisors, possibly in addi-
tion to principal ones, are considered next.

Theorem 4.10 Let the differential operator L be defined by

L ≡ ∂xy + A1∂x + A2∂y + A3 (4.11)

with Ai ∈ Q(x, y) for all i. Lxm (L) and Lyn (L) as well as lm and kn are defined in
Definition 3.17; furthermore l ≡ ∂x + a, k ≡ ∂y + b, a, b ∈ Q(x, y). L has Loewy
decompositions involving Laplace divisors according to one of the following types; m
and n obey m, n ≥ 2.
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L4
xy : L = Lclm(Lxm (L),Lyn (L));

L5
xy : L = Exquo (L ,Lxm (L))Lxm (L) =

(
1 0
0 ∂y + A1

)(
L
lm

)
;

L6
xy : L = Exquo

(
L ,Lyn (L)

)
Lyn (L) =

(
1 0
0 ∂x + A2

)(
L
kn

)
;

L7
xy : L = Lclm (k,Lxm (L)) ; L8

xy : L = Lclm
(
l,Lyn (L)

)
.

If L does not have a first order right factor and it may be shown that a Laplace divi-
sor does not exist its decomposition type is defined to be L0

xy . The decompositions

L0
xy,L4

xy,L7
xy and L8

xy are completely reducible. The Laplace divisors and the exact

quotients in decompositions L5
xy and L6

xy are Loewy divisors.

Proof Decomposition typesL4
xy,L7

xy andL8
xy are completely reducible with the obvi-

ous representation given above. For decomposition type L5
xy, dividing L by Lxm (L)

yields the exact quotient (1, 0). The single syzygy of Lxm (L) yields upon reduction
w.r.t. (1, 0) the generators (1, 0) and (0, ∂y + A1). The calculation for decomposition
type L6

xy is similar. ��
The following example taken from Forsyth shows how complete reducibility has

its straightforward generalization although if there are Laplace divisors involved.

Example 4.11 The operator

L ≡ ∂xy + 2

x − y
∂x − 2

x − y
∂y − 4

(x − y)2

has been considered in [15], vol. VI, page 80, Ex. 5 (iii). By Proposition 4.6, a first-
order factor does not exist. However, by Proposition 3.17 there exist Laplace divisors

Lx2(L) ≡
〈〈
∂xx − 2

x − y
∂x + 2

(x − y)2
, L

〉〉

and

Ly2(L) ≡
〈〈
L , ∂yy + 2

x − y
∂y + 2

(x − y)2

〉〉
,

each of differential dimension (1, 1). The ideal generated by L has the representation
〈L〉 = Lclm(Lx2(L),Ly2(L)), i.e. it is completely reducible; its decomposition type
is L4

xy . Continued in Example 5.3.

The next example due to Imschenetzky is not completely reducible because it has
been shown before to allow a single Laplace divisor.
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Example 4.12 Imschenetzky’s operator L = ∂xy + xy∂x − 2y has been considered
already in Example 3.18. Using these results the decomposition

L =
(
1 0
0 ∂y + xy

)(
∂xy + xy∂x − 2y

∂xxx

)

of type L5
xy is obtained. Continued in Example 5.8.

4.3 Operators with leading derivative ∂xxx

Similar to second order operators considered in the preceding section, third order oper-
ators are characterized in the first place by their leading derivative. If invariance under
permutations is taken into account, three cases with leading derivative ∂xxx , ∂xxy or
∂xyy are distinguished. The corresponding ideals are of differential dimension (1, 3).

In this article only the first case is considered. It is particularly interesting for
historical reasons because an operator of this kind was the first third order partial dif-
ferential operator for which factorizations were considered in Blumberg’s thesis [4];
it is discussed in detail in Example 4.19.

Proposition 4.13 Let the third order partial differential operator

L ≡ ∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9 (4.12)

be given with Ai ∈ Q(x, y) for all i . Any first order right factor ∂x + a∂y + b with
a, b ∈ Q(x, y) is essentially determined by the roots a1, a2 and a3 of the equation
a3 − A1a2 + A2a − A3 = 0. The following alternatives may occur.

(i) If ai �= a j for i �= j are three pairwise different rational roots and the cor-
responding bi are determined by (4.20), each pair ai , bi satisfying (4.21) and
(4.22) yields a factor li = ∂x +ai∂y +bi . If there are three factors, the operator
is completely reducible with the representation L = Lclm(l1, l2, l3); if there
are two factors, their intersection may or may not be principal according to
Theorem 3.23; there may be a single factor or no factor at all.

(ii) If a1 = a2 is a twofold rational root and a3 �= a1 a simple one, the follow-
ing factors may exist. For a = a3 ∈ Q(x, y), the value of b = b3 is deter-
mined by (4.20); if the pair (a3, b3) satisfies (4.21) and (4.22), there is a factor
∂x + a3∂y + b3.
For the double root a = a1 = a2, a necessary condition for a factor to exist is

(A1 − 3a)ax + (3a2 − 3A1a + 2A2)ay − A4a2 + A5a = A6. (4.13)

The type of solutions for b = b1 = b2 of the system comprising (4.21) and
(4.22) determines the possible factors. The following alternatives may occur; r
and ri are undetermined functions of the respective arguments.
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∂x + a1∂y + r(x, y, c1, c2), c1 and c2 constants;
∂x + a1∂y + r(x, y, c), c constant;
∂x + a1∂y + ri (x, y), i = 1 or i = 1, 2;

(iii) If a1 = a2 = a3 = 1
3 A1 is a threefold rational solution, the condition

A2
1A4 − 3A1A5 + 9A6 = 0 (4.14)

must be valid in order for a factor to exist. The following subcases may occur.

(a) If the coefficient of b in

(
A1,x + 1

3
A1A1,y + 2

3
A1A4 − A5

)
b = 1

3
A1,xx + 2

9
A1A1,xy + 1

27
A2
1A1,yy

−2

9
A1,x A1,y + 1

3
A4A1,x − 2

27
A1A2

1,y − 1

9
A1A4A1,y + 1

3
A5A1,y

+1

3
A1A7 − A8 = 0 (4.15)

does not vanish, b may be determined uniquely from this equation. A factor does
exist if the constraint

bxx + 2

3
A1bxy + 1

9
A2
1byy − 3bbx + A4bx − A1bby

−
(
2

3
A1,x + 2

9
A1A1,y + 1

3
A1A4 − A5

)
by + b3 − A4b2 + A7b − A9 = 0.

(4.16)

is satisfied.
(b) If the coefficient of b in (4.15) vanishes and the conditions

A1,x + 1

3
A1A1,y + 2

3
A1A4 − A5 = 0,

A1,xx + 2

3
A1A1,xy + 1

9
A2
1A1,yy − 2

3
A1,x A1,y + A4A1,x − 2

9
A1A2

1,y

−1

3
A1A4A1,y + A5A1,y + A1A7 − 3A8 = 0 (4.17)

are valid, then b has to be determined from

bxx + 2

3
A1bxy + 1

9
A2
1byy − 3bbx + A4bx − A1bby

+1

3

(
A1,x + 1

3
A1A1,y + A1A4

)
by + b3 − A4b2 + A7b − A9 = 0.

(4.18)
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Proof Dividing the operator (4.12) by ∂x +a∂y +b, the requirement that this division
be exact leads to the following set of equations between the coefficients.

a3 − A1a2 + A2a − A3 = 0, (4.19)

(A1 − 3a)ax + (3a2 − 3A1a + 2A2)ay − A4a2 + A5a

+(3a2 − 2A1a + A2)b = A6, (4.20)

(A1 − 3a)bx + (3a2 − 3A1a + 2A2)by − (A1 − 3a)b2

+(A5 − 2A4a − 2A1ay + 3aay − 3ax )b

+axx + (A1 − a)axy + (a2 − A1a + A2)ayy

−2ax ay + A4ax − (A1 − a)a2
y − (A4a − A5)ay + A7a − A8 = 0, (4.21)

bxx + (A1 − a)bxy + (a2 − A1a + A2)byy

−(2ax + (A1 − a)ay + A4a − A5)by

+(A4 − 3b)bx + (3a − 2A1)bby + b3 − A4b2 + A7b − A9 = 0. (4.22)

The algebraic equation (4.19) determines a. The following discussion is organized by
the type of its roots.

Case (i). Assume at first that (4.19) has three simple roots a1, a2 and a3. None of
them may be rational, there may be a single rational solution, or all three roots may
be rational. For none of these roots the coefficient of b in (4.20) does vanish; this
follows because it is the derivative of the left hand side of (4.19) that does not vanish
for simple roots. Therefore for each ai , equation (4.20) determines the corresponding
value bi . For those pairs ai , bi which satisfy the constraints (4.21) and (4.22), a factor
li ≡ ∂x + ai∂y + bi exists. If there are three right factors, by Proposition 3.22 L is
completely reducible, it may be represented as L = Lclm(l1, l2, l3).

Case (ii). Assume now (4.19) has a twofold rational root a1 = a2 and a simple one
a3 �= a1. This is assured if its coefficients satisfy

A2
1A2

2 − 4A3
2 + 18A1A2A3 − 27A2

3 − 4A3
1A3 = 0 (4.23)

and A2
1 − 3A2 �= 0. It follows that

a1 = a2 = 1

2

A1A2 − 9A3

A2
1 − 3A2

, a3 = A3
1 − 4A1A2 + 9A3

A2
1 − 3A2

.

For the root a3, the coefficient b3 follows from (4.20). The existence of a factor corre-
sponding to a3 and b3 depends on whether these values satisfy the constraints (4.21)
and (4.22).

The double root a1 = a2 is one of the roots of 3a2 − 2A1a + A2 = 0. Thus the
coefficient of b in (4.20) vanishes for this value of a; the remaining part of (4.20)
becomes the constraint (4.13). If it is not obeyed, a factor originating from a1 does
not exist. If it is obeyed, the corresponding value for b has to be determined from the
system comprising (4.21) and (4.22) with a = a1. Because A1 �= 3a1, reducing (4.22)
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w.r.t. (4.21) yields a system of the type

bx + o(by) = 0, byy + o(by) = 0 (4.24)

if lex term order with x  y is applied. If this autoreduced system forms a Janet basis,
the Riccati equation (4.21) has to be solved applying Lemma 6.5. If its rational solu-
tion contains an undetermined function, it has to be adjusted such that it satisfies the
second equation (4.24). Any rational solution without undetermined elements is only
retained if it satisfies this equation. In any case, the final result may be a rational func-
tion r(x, y, c1, c2) involving two constants; it may be a rational function r(x, y, c)
involving a single constant; or there may be one or two rational solutions ri (x, y)

containing no constant; or there may be no rational solution at all.
If the autoreduced system is not a Janet basis, its integrability conditions have to

be included and autoreduction has to be applied again; possibly this procedure has to
be repeated several times. It cannot be described for generic coefficients A1, . . . , A9
because the resulting expressions become too large. The final result may be a system of
the type bx +o(b) = 0, by+o(b) = 0 the general solution ofwhich contains a constant;
it may be an algebraic equation for b with one or two solutions; or it may turn out to
be inconsistent. The respective solutions are subsumed among those described above.

Case (iii). Finally assume there is a threefold solution a1 = a2 = a3 = 1
3 A1 of

(4.19). This is assured if A2 = 1
3 A2

1 and A3 = 1
27 A3

1. The coefficient of b in (4.20)
vanishes again; the remaining part becomes the constraint (4.14). Equation (4.21) sim-
plifies to (4.15); if the coefficient of b does not vanish, b may be determined from it.
In order for a factor to exist, in addition (4.16) must be satisfied which originates from
(4.22). This is subcase (a). In the exceptional case that the coefficient of b in (4.15)
vanishes, it reduces to constraints (4.17); b has to be determined from (4.18) which is
obtained from (4.22) by simplification. This is subcase (b). ��

In order to apply the above proposition for solving concrete problems the ques-
tion arises to what extent the various factors may be determined algorithmically. The
answer may be summarized as follows.

Corollary 4.14 Any factor corresponding to a simple root of the symbol polynomial
of the operator (4.13) may be determined algorithmically. In general this is not pos-
sible for factors corresponding to a double or triple root. Absolute irreducibility may
always be decided.

Proof If there are three simple roots ai , i = 1, 2, 3, the bi , may be determined from
the algebraic system (4.19) and (4.20); the constraints (4.21) and (4.22) require only
arithmetic and differentiations in the base field. These operations may always be per-
formed. The same arguments apply for the simple root in case (i i). For the double
root in case (i i) the corresponding value of b has to be determined from (4.24); it may
lead to a partial Riccati equation, an ordinary Riccati equation, an algebraic equation
or turn out to be inconsistent. For the first alternative, rational solutions may not be
determined in general whereas this is possible in the remaining cases. If there is a
threefold root of (4.19) it may occur that b has to be determined from equation (4.18);
in general there is no solution algorithm available for solving it. ��
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After the possible factorizations of an operator (4.12) have been determined, a list-
ing of its various decomposition types involving first-order principal factors may be
set up as follows.

Theorem 4.15 Let the differential operator L be given by

L ≡ ∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9 (4.25)

with A1, . . . , A9 ∈ Q(x, y). Moreover let li ≡ ∂x + ai∂y + bi for i = 1, 2, 3 and
l(�) ≡ ∂x + a∂y + b(�) be first order operators with ai , bi , a ∈ Q(x, y);� is an
undetermined function of a single argument. Then L has the following Loewy decom-
position types involving first-order principal divisors.

L1
xxx : L = l3l2l1; L2

xxx : L = Lclm(l3, l2)l1; L3
xxx : L = Lclm(l(�))l1;

L4
xxx : L = l3Lclm(l2, l1); L5

xxx : L = l3Lclm(l(�));
L6

xxx : L = Lclm(l3, l2, l1); L7
xxx : L = Lclm(l(�), l1).

If none of these alternatives applies, and a decomposition of type L8
xxx defined below

does not exist either, the decomposition type is defined to be L0
xxx .

Proof It is based on Proposition 4.13. In the separable case (i) there may be three
first-order factors with a principal intersection, this yields type L6

xxx . If there are two
factors with a principal intersection they lead to a type L4

xxx decomposition. If there
is a single right factor it is divided out and a second-order left factor with leading
derivative ∂xx is obtained. It may be decomposed according to Theorem 4.3; if it is
not irreducible it may yield the type L1

xxx ,L2
xxx or L3

xxx respectively decomposition.
If in case (i i) only a single factor is allowed, the same reasoning as above leads to

a decomposition of type L1
xxx or L2

xxx .
In case (i i i), subcase (a), a single factor may exist leading again to type L1

xxx or
type L2

xxx decompositions as above. ��
It can be shown that each decomposition type of the above theorem actually does

exist. Two of them are illustrated in the following examples. The equations and its
solutions corresponding to these operators are discussed in the next section.

Example 4.16 The operator

L ≡ ∂xxx + y∂xxy −
(
1 − 1

x

)
∂xx −

(
y − y

x

)
∂xy −

(
1

x
+ 1

x2

)
∂x − y

x
∂y + 1

x2

has the symbol equation a2(a−y) = 0; therefore case (i i) of Proposition 4.13 applies.
There is a double root a1 = a2 = 0 and a simple root a3 = y. The latter yields b3 = 0.
Because the pair a3, b3 violates constraints (4.21) and (4.22) it does not yield a factor.

On the other hand, the double root leads to the equation bx −b2−
(
1 − 1

x

)
b+ 1

x = 0

for b. Its single rational solution is b = −1; it yields the factor ∂x − 1. Dividing it out
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the operator ∂xx + y∂xy + 1
x ∂x + y

x ∂y − 1
x2

is obtained. By Proposition 4.1 it has the

right factor ∂x + 1
x . Altogether the decomposition

L = (∂x + y∂y)

(
∂x + 1

x

)
(∂x − 1)

of type L1
xxx follows. Continued in Example 5.10.

Example 4.17 For the operator

L ≡ ∂xxx + (y + 1)∂xxy +
(
1 − 1

x

)
∂xx +

(
1 − 1

x

)
(y + 1)∂xy

−1

x
∂x − 1

x
(y + 1)∂y

Eq. (4.19) reads a2(a − y − 1) = 0 with double root a1 = a2 = 0 and simple root
a3 = y+1, consequently case (i i) applieswitha1 = 0, b1 = 1 anda3 = y+1, b3 = 0.
The corresponding first order factors yield the divisor as the principal intersection

Lclm(∂x + 1, ∂x + (y + 1)∂y) = ∂xx + (y + 1)∂xy + ∂x + (y + 1)∂y . (4.26)

Therefore L has the decomposition

L =
(

∂x − 1

x

)
Lclm(∂x + 1, ∂x + (y + 1)∂y)

of type L4
xxx ; continued in Example 5.11.

In addition to the decompositions described in Theorem 4.15 there exists a decom-
position type involving a non-principal right divisor; it occurs when there are two first-
order right factors with non-principal intersection ideal Jxxx introduced in
Lemma 3.19.

Theorem 4.18 Assume the differential operator

L ≡ ∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9 (4.27)

has two first-order right factors li ≡ ∂x + ai∂y + bi ; A1, . . . , A9, ai , bi ∈ Q(x, y).
Assume further that l1 and l2 have the non-principal left intersection ideal Jxxx . Then
L may be decomposed as

L8
xxx : L = Exquo(〈L〉, Jxxx )Jxxx

=
(
1, A1
0, ∂x + (A1 − q1)∂y + A1,y + q3A1 + p3 + q1q3 − q4

)(
L1
L2

)
.

The coefficients pi and qi are defined in Lemma 3.19.
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Proof According to Theorem 3.23 the ideal Jxxx is generated by two third-order oper-
ators L1 = ∂xxx + o(∂xyy) and L2 = ∂xxy + o(∂xyy). Hence an operator L with two
generic factors l1 and l2 is contained in this ideal and has the form L = L1 + A1L2,

i.e. the exact quotient in this basis is (1, A1). The exact quotient module is the sum of
this quotient and the syzygy of Jxxx given in Lemma 3.19. ��

In the following example the operator introduced in Blumberg’s dissertation [4] is
discussed in detail; originally it has been suggested by Landau to him. This operator
is the generic case for operators that are not completely reducible allowing only two
first-order right factors as may be seen from Theorem 3.23.

Example 4.19 [4] In his dissertation Blumberg [4] considered the third order operator

L ≡ ∂xxx + x∂xxy + 2∂xx + 2(x + 1)∂xy + ∂x + (x + 2)∂y (4.28)

generating a principal ideal of differential dimension (1, 3). He gave its factorizations

L =
{(

∂xx + x∂xy + ∂x + (x + 2)∂y
)
(∂x + 1),

(∂xx + 2∂x + 1)(∂x + x∂y).
(4.29)

This result may be obtained by Proposition 4.13 as follows. Equation (4.19) is
a3 − xa2 = a2(a − x) = 0 with the double root a1 = a2 = 0, and the simple root
a3 = x . The latter yields b3 = 0. For the double root a1 = 0, the system (4.21) and
(4.22) has the form

bx − b2 +
(
2 + 2

x

)
b − 1 − 2

x
= 0,

bxx + xbxy − 3bbx + 2bx − 2xbby + 2(x + 1)by + b3 − 2b2 + b = 0.

It yields the Janet basis b − 1 = 0, i.e. b = 1 and the factor l1 ≡ ∂x + 1. Because a3
and b3 satisfy (4.21) and (4.22), there is a second factor l2 ≡ ∂x + x∂y, i.e. case (iv)

of Theorem 4.13 applies.
The second order left factor in the first line at the right hand side of (4.29) is

absolutely irreducible, whereas the second order factor in the second line is the left
intersection of two first order factors, i.e. (4.29) may be further decomposed into
irreducibles as

L =
{

(∂xx + x∂xy + ∂x + (x + 2)∂y)(l1 = ∂x + 1),

Lclm(∂x + 1, ∂x + 1 − 1
x )(l2 = ∂x + x∂y).

(4.30)

The intersection ideal of l1 and l2 is not principal, by Theorem 3.23 it is

Lclm(l2, l1)

=
〈〈

L1 ≡ ∂xxx − x2∂xyy + 3∂xx + (2x + 3)∂xy − x2∂yy + 2∂x + (2x + 3)∂y,

L2 ≡ ∂xxy + x∂xyy − 1

x
∂xx − 1

x
∂xy + x∂yy − 1

x
∂x −

(
1 + 1

x

)
∂y

〉〉
(4.31)
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with differential dimension (1, 2); therefore the type L8
xxx decomposition of (4.28) is

L =
(
1 x

0 ∂x + 1 + 1
x

)(
L1
L2

)
;

it follows that L = L1+x L2. L1 as well as L2 have the divisors l1 and l2. Completed in
Example 5.13.

5 Solving partial differential equations

The results of the preceding sections are applied now for solving differential equa-
tions of second or third order for an unknown function z(x, y). At first some general
properties of the solutions are discussed.

For linear ode’s, or systems of linear pde’s with a finite dimensional solution space,
the undetermined elements in the general solution are constants. For general pde’s the
undetermined elements are described by Theorem 3.7, due to Kolchin. The equations
considered in this section allow a decomposition into first-order principal divisors, or
certain non-principal divisors. It will be shown that the solution of such equations with
differential dimension (1, n) has the form

z(x, y) = z1(x, y, F1(ϕ1(x, y))) + · · · + zn(x, y, Fn(ϕn)(x, y)); (5.1)

each zi is a sum of terms containing an undetermined function Fi depending on an
argument ϕi (x, y). Collectively the {z1, . . . , zn} are called a differential fundamental
system or simply fundamental system. For the decomposition types considered in this
section fundamental systems with the following properties will occur.

– Each Fi (ϕi (x, y)), or derivatives or integrals thereof, occurs linearly in the corre-
sponding zi .

– The arguments ϕi (x, y) of the undetermined functions are determined by the coef-
ficients of the given equation.

It turns out that the detailed structure of the solutions is essentially determined by
the decomposition type of the equation.

5.1 Equations with leading derivative zxx

Reducible equations with leading derivative ∂xx are considered first. Because there
are only principal divisors the answer is similar to ordinary second-order equations.

Proposition 5.1 Let a reducible second-order equation

Lz ≡ (∂xx + A1∂xy + A2∂yy + A3∂x + A4∂y + A5)z = 0

be given with A1, . . . , A5 ∈ Q(x, y). Define li ≡ ∂x + ai∂y + bi , ai , bi ∈ Q(x, y) for

i = 1, 2;ϕi (x, y) = const is a rational first integral of dy
dx = ai (x, y); ȳ ≡ ϕi (x, y)
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and the inverse y = ψi (x, ȳ); both ϕi and ψi are assumed to exist. Furthermore define

Ei (x, y) ≡ exp

(
−
∫

bi (x, y)
∣∣
y=ψi (x,ȳ)

dx

) ∣∣∣
ȳ=ϕi (x,y)

(5.2)

for i = 1, 2. A differential fundamental system has the following structure for the
various decompositions into first-order components.

L1
xx :

⎧⎪⎨
⎪⎩

z1(x, y) = E1(x, y)F1(ϕ1),

z2(x, y) = E1(x, y)
∫ E2(x,y)

E1(x,y)
F2 (ϕ2(x, y))

∣∣
y=ψ1(x,ȳ)

dx
∣∣∣
ȳ=ϕ1(x,y)

;
L2

xx : zi (x, y) = Ei (x, y)Fi (ϕi (x, y)), i = 1, 2;

L3
xx : zi (x, y) = Ei (x, y)Fi (ϕ(x, y)), i = 1, 2.

The Fi are undetermined functions of a single argument; ϕ, ϕ1 and ϕ2 are rational in
all arguments; ψ1 is assumed to exist. In general ϕ1 �= ϕ2, they are determined by the
coefficients A1, A2 and A3 of the given equation.

Proof It is based on Theorem 4.3 and Lemma 6.3. For a decomposition L = l2l1 of
type L2

xx , Eq. (6.5) applied to the factor l1 yields the above given z1(x, y). The left
factor equation l2w = 0 yields w = E2(x, y)F2(ϕ2). Taking it as inhomogeneity for
the right factor equation, by (6.4) the given expression for z2(x, y) is obtained.

For a decomposition L = Lclm(l2, l1) of type L2
xx , similar arguments as for the

right factor l1 in the preceding decomposition lead to the above solutions z1(x, y) and
z2(x, y). It may occur that ϕ1 = ϕ2; this is always true if the decomposition originates
from case (i i) of Proposition 4.1 instead of case (i).

Finally in a decomposition L = Lclm(l(�)) of type L3
xx , two special independent

functions �1 and �2 in the operator l(�) may be chosen. Both first-order operators
obtained in this way have the same coefficient of ∂y; as a consequence the arguments
of the undetermined functions are the same, i.e. ϕ1 = ϕ2 = ϕ. ��

The following taxonomy may be seen from this result. Whenever an operator is not
completely reducible, undetermined functions occur under an integral sign, in general
with shifted arguments. If an undetermined function occurs in the decomposition of
the operator, the undetermined functions have the same arguments in both members
of a differential fundamental system. The following examples show how the above
proposition may be applied to concrete problems.

Example 5.2 Forsyth’s operator considered in Example 4.4 has a type L1
xx decompo-

sition leading to the equation

Lz ≡ l2l1z =
(

∂x + ∂y + 2

x + y

)(
∂x − ∂y + 2

x + y

)
z = 0.
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It follows that

ϕ1(x, y) = x + y, ψ1(x, y) = ȳ − x, E1(x, y) = exp

(
2y

x + y

)
,

ϕ2(x, y) = x − y, ψ2(x, y) = x − ȳ, E2(x, y) = − 1

x + y
.

Consequently

z1(x, y) = exp

(
2y

x + y

)
F(x + y),

z2(x, y) = 1

x + y
exp

(
2y

x + y

)∫
exp

(
2x − ȳ

ȳ

)
G(2x − ȳ) dx

∣∣∣
ȳ=x+y

.

F and G are undetermined functions.

Example 5.3 Miller’ operator has been considered in Example 4.5. Its type L3
xx

decomposition yields the factor

l(�) = ∂x + y

x
∂y + 1

x

1 + x2�(ϕ)

1 − x2�(ϕ)

where ϕ = y
x and � is an undetermined function. It follows that

ϕ(x, y) = y

x
, ψ(x, ȳ) = x ȳ, E(x, y) = �(ϕ)x − 1

x
.

Choosing � = 0 and � → ∞ the solutions

z1(x, y) = x F1(ϕ) and z2(x, y) = 1

x
F2(ϕ)

are obtained; F1 and F2 are undetermined functions.

5.2 Equations with leading derivative zxy

Solutions of reducible equations with mixed leading derivative ∂xy and principal divi-
sors are considered next.

Proposition 5.4 Let a reducible second-order equation

Lz ≡ (∂xy + A1∂x + A2∂y + A3)z = 0

be given with Ai ∈ Q(x, y), i = 1, 2, 3. Define l ≡ ∂x +b, k ≡ ∂y +c; b, c ∈ Q(x, y),

εl(x, y) ≡ exp

(
−
∫

b(x, y) dx

)
and εk(x, y) ≡ exp

(
−
∫

c(x, y) dy

)
.
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A differential fundamental system has the following structure for decompositions into
principal divisors.

L1
xy : z1(x, y) = F(y)εl(x, y), z2(x, y) = εl

∫
εk(x, y)

εl(x, y)
G(x) dx;

L2
xy : z1(x, y) = F(x)εk(x, y), z2(x, y) = εk

∫
εl(x, y)

εk(x, y)
G(y) dy;

L3
xy : z1(x, y) = F(y)εl(x, y), z2(x, y) = G(x)εk(x, y).

F and G are undetermined functions of a single argument.

Proof It is based on Theorem 4.8 and Lemma 6.1; the notation is the same as in
this theorem. For decomposition type L1

xy, Eq. (6.5) applied to the factor l yields
the above solution z1(x, y). The left factor equation wy + xw = 0 has the solu-
tion w = G(x)εk(x, y). The second solution z2(x, y) then follows from zx + bz =
G(x)εk(x, y). Interchanging k and l yields the result for decomposition typeL2

xy . The
two first-order right factors of decomposition type L3

xy yield the given expressions for
both z1(x, y) and z2(x, y) as it is true for z1(x, y) in the previous case. ��

Example 5.5 The two arguments of the type L3
xy decomposition of Example 4.9 yield

the two solutions

z1(x, y) = exp

(
−xy − 1

2
y2
)

F(x) and z2(x, y) = exp (−xy)
1

x
G(y);

F and G are undetermined functions.

According to Proposition 4.6 there are fivemore decompositionswith non-principal
divisors.

Proposition 5.6 With the same notation as in Proposition 5.4 a differential funda-
mental system for the various decomposition types involving non-principal divisors
may be described as follows.

L4
xy : z1(x, y) =

m−1∑
i=0

fi (x, y)F (i)(y), z2(x, y) =
n−1∑
i=0

gi (x, y)G(i)(x);

L5
xy : z1(x, y) =

m−1∑
i=0

fi (x, y)F (i)(y), z2(x, y) =
m−1∑
i=0

gi (x, y)

∫
hi (x, y)G(x) dx;

L6
xy : z1(x, y) =

m−1∑
i=0

fi (x, y)F (i)(x), z2(x, y) =
m∑

i=0

gi (x, y)

∫
hi (x, y)G(y) dx .
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L7
xy : z1(x, y) = F(x)εk(x, y), z2(x, y) =

m−1∑
i=0

fi (x, y)F (i)(y),

L8
xy : z1(x, y) = F(y)εl(x, y), z2(x, y) =

m−1∑
i=0

gi (x, y)F (i)(x),

F and G are undetermined functions of a single argument; f, g and h are Liouvillian
over the base field; they are determined by the coefficients A1, A2 and A3 of the given
equation.

Proof Let Lxm (L) be a Laplace divisor as defined in Proposition 4.6. The linear ode
lm z = 0 has the general solution z = C1 f1(x, y) + · · · + Cm fm(x, y). The Ci are
constants w.r.t. x; they are undetermined functions of y. This expression for z must
also satisfy the equation Lz = 0. Because the operators L and lm combined are a Janet
basis generating an ideal of differential dimension (1, 1), by Kolchin’s Theorem 3.7
it must be possible to express C1, . . . , Cm in terms of a single function F(y) and its
derivatives F ′, F ′′, . . . , F (m−1). This yields the first sum of the solution for decom-
position type L4

xy . For the second Laplace divisor Lyn (L) the same steps with x and
y interchanged yield the second sum.

If there is a single Laplace divisor Lxm (L) as in decomposition type L5
xy, the solu-

tion z1(x, y) is the same as above. In order to obtain the second solution, according
to Theorem 4.10 define w1 ≡ Lz and w2 = lm z; then the quotient equations are
w1=0, w2,y + A1w2=0. The solution of the latter leads to lm =G(x) exp (−∫ A1dy),

G an undetermined function. This is an inhomogeneous linear ode; a special solu-
tion leads to z2(x, y) as given above; the gi (x, y) and hi (x, y) are determined by the
coefficients of lm . The discussion for decomposition type L6

xy is similar. ��

The preceding propositions subsume all results that are known for a linear pde with
leading derivative ∂xy from the classical literature back in the nineteenth century under
the general principle of determining divisors of various types; there is no heuristics
involved whatsoever, and the selection of possible divisors is complete. These results
will be illustrated now by several examples. The first example taken from Forsyth
shows how complete reducibility has its straightforward generalization if there are no
principal divisors.

Example 5.7 For Forsyth’s equation with type L4
xy decomposition considered in

Example 4.11 the sum ideal is

J =
〈〈
l2 ≡ ∂xx − 2

x − y
∂x + 2

(x − y)2
, L , k2 ≡ ∂yy + 2

x − y
∂y + 2

(x − y)2

〉〉
;

the corresponding system of equations J z = 0 has a three-dimensional solution
space; a basis is {x − y, (x − y)2, xy(x − y)}. The general solution of l2z = 0 is
z = C1(x − y)+ C2x(x − y) where C1 and C2 are undetermined functions of y. Sub-
stitution into Lz = 0 yields the constraint C1,y + yC2,y − C2 = 0 with the solution
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C1 = 2F(y) − yF ′(y) and C2 = F ′(y). Thus

z1(x, y) = 2(x − y)F(y) + (x − y)2F ′(y)

is obtained. The equation k2z = 0 has the solution C1(y − x) + C2y(y − x) where
C1,2 are undetermined functions of x . By a similar procedure as above there follows

z2(x, y) = 2(y − x)G(x) + (y − x)2G ′(x)

Example 5.8 A Laplace divisor has been determined for Imschenetzky’s equation
Lz = (∂xy + xy∂x − 2y)z = 0 in Example 3.18; it yields a L5

xy type decomposi-
tion. The equation ∂xxx z = 0 has the general solution C1 + C2x + C3x2 where the
Ci , i = 1, 2, 3 are constants w.r.t. x . Substituting it into Lz = 0 and equating the
coefficients of x to zero leads to the system C2,y − 2yC1 = 0, C3,y − 1

2 yC2 = 0. The
Ci may be represented as

C1 = 1

y2
F ′′ − 1

y3
F ′, C2 = 2

y
F ′, C3 = F;

F is an undetermined function of y, F ′ ≡ d F
dy . It yields the solution

z1(x, y) = x2F(y) + 2xy2 − 1

y3
F ′(y) + 1

y2
F ′′(y). (5.3)

From the decomposition

Lz =
(
1 0
0 ∂y + xy

)(
w1 ≡ zxy + xyzx − 2yz

w2 ≡ zxxx

)

the equations w1 = 0, w2,y + xyw2 = 0 are obtained with the solution w1 = 0,

w2 = G(x) exp
(
−1
2 xy2

)
. The resulting equation zxxx = G(x) exp

(
−1
2 xy2

)
yields

the second member

z2(x, y) = 1

2

∫
G(x) exp

(
−1

2
xy2
)

x2 dx

−x
∫

G(x) exp

(
−1

2
xy2
)

x dx + 1

2
x2
∫

G(x) exp

(
−1

2
xy2
)

dx

(5.4)

of a fundamental system.

5.3 Equations with leading derivative zxxx

The operators corresponding to the third-order equations considered in this section
generate ideals of differential dimension (1, 3). Therefore, by Kolchin’s Theorem 3.7,
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these equations have a differential fundamental system containing three undetermined
functions of a single argument. The remarks on the structure of the solutions of linear
pde’s on page 57 apply here as well.

As opposed to second-order equations, third-order equations have virtually never
been treated in the literature before. Equations corresponding to decompositions
involving only principal divisors are considered first.

Proposition 5.9 Let a third-order equation

Lz ≡ (∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9)z = 0

be given with A1, . . . , A9 ∈ Q(x, y). Define li ≡ ∂x + ai∂y + bi , ai , bi ∈ Q(x, y)

for i = 1, 2, 3;ϕi (x, y) = const is a rational first integral of dy
dx = ai (x, y); ȳ ≡

ϕi (x, y) and the inverse y = ψi (x, ȳ); both ϕi and ψi are assumed to exist; F1, F2
and F3 are undetermined functions of a single argument. Furthermore let

Ei (x, y) ≡ exp

(
−
∫

bi (x, y)|y=ψi (x,ȳ) dx

) ∣∣∣
ȳ=ϕi (x,y)

(5.5)

for i = 1, 2, 3. For decomposition types L1
xxx , . . . ,L7

xxx involving only principal
divisors a differential fundamental system has the following structure.

L1
xxx :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = E1(x, y)F1(ϕ1),

z2 = E1(x, y)

∫ E2(x, y)

E1(x, y)
F2(ϕ2(x, y))

∣∣∣
y=ψ1(x,ȳ

dx
∣∣∣
ȳ=ϕ1(x,y)

,

z3 = E1(x, y)

∫
r(x, y)

E1(x, y)

∣∣∣
y=ψ1(x,ȳ)

dx
∣∣∣
ȳ=ϕ1(x,y)

,

r(x, y) = E2(x, y)

∫ E3(x, y)

E2(x, y)
F3(ϕ3(x, y))

∣∣∣
y=ψ2(x,ȳ)

dx
∣∣∣
ȳ=ϕ2(x,y)

;

L2
xxx :

⎧⎪⎨
⎪⎩

z1 = E1(x, y)F1(ϕ1(x, y)),

zi = E1(x, y)

∫ Ei (x, y)

E1(x, y)
Fi (ϕi (x, y))

∣∣∣
y=ψ1(x,ȳ)

dx
∣∣∣
ȳ=ϕ1(x,y)

, i = 2, 3;
L3

xxx : The same as preceding case except that ϕ2 = ϕ3 = ϕ,ψ2 = ψ3 = ψ;

L4
xxx :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi = Ei (x, y)Fi (ϕi (x, y)), i = 1, 2,

z3 = E1(x, y)

∫
r(x, y)

E1(x, y)

∣∣∣
y=ψ1(x,ȳ)

dx
∣∣∣
ȳ=ϕ1(x,y)

−E2(x, y)

∫
r(x, y)

E2(x, y)

∣∣∣
y=ψ2(x,ȳ)

dx
∣∣∣
ȳ=ϕ2(x,y)

,

r(x, y) = r0

∫ E3(x, y)

a2 − a1

F3(ϕ3)

r0
dy, r0 = exp

(
−
∫

b2 − b1
a2 − a1

dy

)
;
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L5
xxx :

{
The same as preceding case except that r(x, y) = E3(x, y)

b2 − b1
F3(ϕ3)

and ϕ1 = ϕ2, ψ1 = ψ2;
L6

xxx : zi = Ei (x, y)Fi (ϕi (x, y)), i = 1, 2, 3;
L7

xxx : The same as preceding case except that ϕ2 = ϕ3 and ψ2 = ψ3.

Fi , i = 1, 2, 3 are undetermined functions of a single argument; f, g, h, ϕi , ψi , ϕ

and ψ are determined by the coefficients A1, . . . , A9 of the given equation.

Theproof is similar as for Proposition 5.1 and is omitted. In the subsequent examples
the results given in the above proposition are applied for determining the solutions of
the corresponding equations. The reader is encouraged to verify them by substitution.

Example 5.10 The three factors of the type L1
xxx decomposition in Example 4.16

yield ϕ1 = ϕ2 = y, ϕ3 = ye−x , ψ1 = ψ2 = ȳ and ψ3 = ȳex . Furthermore,
E1 = ex , E2 = 1

x and E3 = 1. Substituting these values into the expressions given in
Proposition 5.9 leads to

z1(x, y) = F(y)ex , z2(x, y) = G(y)Ei(−x)ex ,

z3(x, y) = ex
∫

e−x

x

∫
x H(ye−x ) dx dx .

F, G and H are undetermined functions.

Example 5.11 The two first-order right factors of the type L4
xxx decomposition in

Example 4.17 yield

z1 = F(y)e−x , z2 = G((y + 1)e−x ).

The first-order left factor leads to the equation wx − 1
x w = 0 with the solution

w = x H(y); H is an undetermined function. Taking it as inhomogeneity of the sec-
ond-order equation corresponding to the right factors yields

zxx + (y + 1)zxy + zx + (y + 1)zy = x H(y). (5.6)

It can be shown that the desired special solution of (5.6) satisfies z3,x + (y + 1)z3,y =
(x − 1)H(y). The result is

z3(x, y) =
∫

(x − 1)H(y)
∣∣
y=ψ(x,ȳ)

dx
∣∣
ȳ=ϕ(x,y)

; (5.7)

it follows that ϕ(x, y) = log (y + 1) − x and ψ(x, ȳ) = exp (ȳ + x) − 1. F, G and
H are undetermined functions.

According to Theorem 4.18 on page 55 there is one more decomposition of oper-
ators with leading derivative ∂xxx involving a non-principal divisor. The subsequent
proposition shows how it may be applied for solving the corresponding equation.
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Proposition 5.12 Let a third-order equation

Lz ≡ (∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9)z = 0

be given with A1, . . . , A9 ∈ Q(x, y); assume it has two first-order right factors
li ≡ ∂x + a1∂y + bi , i = 1, 2 generating a non-principal divisor Jxxx = 〈L1, L2〉 =
Lclm(l1, l2). A fundamental system may be obtained as follows.

L8
xxx :

⎧
⎪⎨
⎪⎩

zi (x, y) = Ei (x, y)Fi (ϕi (x, y)), i = 1, 2;
z3(x, y) is a special solution of L1z = w1, L2z = w2,

w1 and w2 are given by (5.9) below.

Proof The first twomembers zi follow immediately as solutions of li z = 0. In order to
obtain the third member z3(x, y) of a fundamental system the exact quotient module

Exquo(〈L〉, 〈L1, L2〉) = 〈(1, A1), (∂y + q3,−∂x + q1∂y − p3 − q1q3 + q4)〉
= 〈(1, A1), (0, ∂x + (A1 − q1)∂y + A1,y + q3A1 + p3 + q1q3 − q4)〉

is constructed. The first generator of the module at the right hand side in the first line
follows from the division, i.e. from L = L1 + A1L2; the second generator represents
the single syzygy (3.12) given in Lemma 3.19. In the last line the generators have been
transformed into a a Janet basis. Introducing the new differential indeterminates w1
and w2 the equations

w1 + A1w2 = 0,

w2,x + (A1 − q1)w2,y + (A1,y + q3A1 + p3 + q1q3 − q4)w2 = 0 (5.8)

are obtained. According to Corollary 6.4 on page 69 its solutions are

w1(x, y) = −A1w2(x, y),

w2(x, y) = �(ϕ)

× exp

(
−
∫ (

A1,y + q3A1 + p3 + q1q3 − q4
) ∣∣∣

y=ψ(x,ȳ)
dx

) ∣∣∣
ȳ=ϕ(x,y)

;
(5.9)

here ϕ(x, y) is a first integral of dy
dx = A1 − q1, ȳ = ϕ(x, y) and y = ψ(x, ȳ). Then

z3(x, y) is a special solution of L1z = w1, L2z = w2. ��

It is not meaningful to describe z3(x, y)more explicitly as in the preceding proposi-
tion because several alternatives may occur due to the special structure of the problem
at hand. This will become clear in the next example.
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Example 5.13 Blumberg’s Example 4.19 has a type L8
xxx decomposition. The two

first-order factors yield z1(x, y) = F
(

y − 1
2 x2

)
and z2(x, y) = G(y)e−x . Further-

more A1 = x, p3 = 3, q1 = x and q3 = q4 = −1
x ; the system (5.8) becomes

w1 + xw2 = 0 and w2,x +
(
1 + 1

x

)
w2 = 0. Its solutions are w1 = −H(y)e−x and

w2 = H(y)1x e−x ; H is an undetermined function of y. Thus, z3(x, y) is a special
solution of

L1z = −H(y)e−x , L2z = H(y)
1

x
e−x .

It can be shown that it is

z3(x, y) =
∫

xe−x H

(
ȳ + 1

2
x2
)

dx
∣∣∣
ȳ=y− 1

2 x2
. (5.10)

H is an undetermined function.

6 Summary and conclusions

The importance of decomposing a differential operator for finding solutions of the
corresponding differential equation has become obvious in this article. To a large
extent, decomposing an operator and solving the corresponding differential equation
in closed form are different aspects of the same subject. In this waymore complete and
more systematic procedures for determining closed form solutions of linear differen-
tial equation are achieved than by any other method; in particular, most results known
from the classical literature may be obtained in a systematic way, without heuristics
or ad hoc methods.

The result is a fairly complete theory for a well defined class of equations, i.e.
linear ordinary or partial differential equations with rational function coefficients. The
limitations are also clearly indicated. For irreducible linear ode’s with finite Galois
group additional algebraic solutions may exist. For linear pde’s a Galois theory does
not seem to exists at the moment.

More severe limitations are the non-existence of algorithms for certain subprob-
lems. In particular this is true for finding a bound for the existence of a Laplace divisor
[2,26], and of an algorithm for determining rational first integrals of first-order ode’s.
A possible answer may be a proof that algorithms for these problems do not exist.

Extensions of the work described in this article are almost self-evident. In many
applications linear pde’s in three or even four independent variables occur, see e.g.
the collection by Polyanin [46]. In particular this is true for the symmetry analysis
of nonlinear differential equations because the so-called determining system of the
symmetries is a linear homogeneous system of pde’s. Therefore it would be highly
desirable to extend the results described in this article to systems of pde’s. The same
methods apply to these more general problems, although the complete answer will be
much more involved; therefore special subclasses of interesting problems should be
identified and treated along these lines.
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An extremely interesting generalization of the algebraic methods described in this
articlewould be to generalize them to nonlinear equations, e.g.monic quasilinear equa-
tions. They are easier to handle than the general nonlinear case, and many practical
problems are of this type. Good introductions into this subject including a useful list
of references are the articles by Sit [56] and Tsarev [57].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Historically Riccati equations were the first non-linear ordinary differential equations
that have been systematically studied. A good account of these efforts may be found in
the book by Ince [24]. Originally they were of first order, linear in the first derivative,
and quadratic in the dependent variable. Its importance arises from the fact that they
occur as subproblems in many more advanced applications as shown in this article.
Later on ordinary Riccati equations of higher order have been considered. Partial
Riccati equations are introduced as a straightforward generalization of the ordinary
ones. All derivatives are of first order and occur only linearly, whereas the dependent
variables may occur quadratically.

Ordinary Riccati equations

In the subsequent lemma the following terminology is applied. Two rational functions
p, q ∈ Q(x) are called equivalent if there exists another function r ∈ Q(x) such that

p − q = r ′
r is valid, i.e. if p and q differ only by a logarithmic derivative of a rational

function. This defines an equivalence relation on Q(x). A special rational solution
does not contain a constant parameter.

Lemma 6.1 If a first order Riccati equation z′ + z2 + az + b = 0 with a, b ∈ Q(x)

has rational solutions, one of the following cases applies.

(i) The general solution is rational and has the form

z = r ′

r + C
+ p (6.1)

where p, r ∈ Q̄(x); Q̄ is a suitable algebraic extension of Q, and C is a con-
stant.

(ii) There is only one, or there are two inequivalent special rational solutions.

Analogous results for Riccati equations of second order are given next.

Lemma 6.2 If a second order Riccati equation

z′′ + 3zz′ + z3 + a(z′ + z2) + bz + c = 0
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with a, b, c ∈ Q(x) has rational solutions, one of the following cases applies.

(i) The general solution is rational and has the form

z = C2u′ + v′

C1 + C2u + v
+ p (6.2)

where p, u, v ∈ Q̄(x); Q̄ is a suitable algebraic extension of Q, and C1 and C2
are constants.

(ii) There is a single rational solution containing a constant, it has the form shown
in Eq. (6.1).

(iii) There is a rational solution containing a single constant as in the preceding
case, and in addition a single special rational solution.

(iv) There is only a single one, or there are two or three special rational solutions
that are pairwise inequivalent.

The proofs of Lemma 6.1 and 6.2 may be found in Chapter 2 of the book by
Schwarz [51].

Partial Riccati equations

At first general first-order linear pde’s in x and y are considered; they may be obtained
as specializations of a Riccati pde if the quadratic term in the unknown function is
missing.

Lemma 6.3 Let the first-order linear pde zx + azy + bz = c for z(x, y) be given
where a, b, c ∈ Q(x, y). Define ϕ(x, y) = const to be a rational first integral of
dy
dx = a(x, y); assign ȳ = ϕ(x, y) and the inverse y = ψ(x, ȳ) which is assumed to
exist. Define

E(x, y) ≡ exp

(
−
∫

b(x, y)|y=ψ(x,ȳ) dx

)∣∣∣
ȳ=ϕ(x,y)

. (6.3)

The general solution z = z1 + z0 of the given first-order pde is

z1(x, y) = E(x, y)�(ϕ), z0 = E(x, y)

∫
c(x, y)

E(x, y)

∣∣∣
y=ψ(x,ȳ)

dx
∣∣∣
ȳ=ϕ(x,y)

; (6.4)

Proof Introducing a new variable ȳ = ϕ(x, y) as defined above leads to the first-
order ode z̄x + b̄(x, ȳ)z̄ = c̄(x, ȳ). Upon substitution of ȳ into its general solution,
the solution (6.4) in the original variables is obtained. ��

For b = 0 or c = 0 the expressions (6.4) simplify considerably as shown next.

Corollary 6.4 With the same notations as in the preceding lemma, the homogeneous
equation zx + azy + bz = 0 has the solution

z1(x, y) = E(x, y)�(ϕ). (6.5)
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The equation zx + azy = c has the solution z = z1 + z0 where

z1(x, y) = �(ϕ), z0(x, y) =
∫

c(x, y)|y=ψ(x,ȳ) dx
∣∣∣
ȳ=ϕ(x,y)

(6.6)

with ȳ and � as defined in Lemma 6.3.

It should be noticed that Lemma 6.3 in general does not allow solving a linear pde

algorithmically. To this end, a rational first integral of dy
dx = a(x, y) is required. For

this problem an algorithm does not exist at present. The subject of the next lemma is
the general first-order Riccati pde in x and y.

Lemma 6.5 If the partial Riccati equation

zx + azy + bz2 + cz + d = 0 (6.7)

where a, b, c, d ∈ Q(x, y) has rational solutions, two cases may occur.

(i) The general solution is rational and has the form

z = 1

a

(
rx (x, ȳ)

r(x, ȳ) + �(ȳ)
+ p(x, ȳ)

) ∣∣∣
ȳ=ϕ(x,y)

(6.8)

where ϕ(x, y) is a rational first integral of dy
dx = a(x, y), r and p are rational

functions of its arguments and � is an undetermined function.
(ii) There is a single rational solution, or there are two inequivalent rational solu-

tions which do not contain undetermined elements.

Proof Introducing the new dependent variable w by z = w
b , Eq. (6.7) is transformed

into

wx + awy + w2 +
(

c − bx

b
− a

by

b

)
w + bd = 0. (6.9)

Assume that the first integral ϕ(x, y) ≡ ȳ of dy
dx = a(x, y) is rational and the inverse

y = ϕ̄(x, ȳ) exists. Replacing y by ȳ leads to

w̄x + w̄2 +
(

c̄ − b̄x

b̄
− ā

b̄y

b̄

)
w̄ + b̄d̄ = 0

where w̄(x, ȳ) ≡ w(x, y)|y=ȳ, ā(x, ȳ) ≡ a(x, y)|y=ȳ and similar for the other coef-
ficients. This is an ordinary Riccati equation for w̄ in x with parameter ȳ. If its general
solution is rational it has the form rx

r + �(ȳ)
+ p where r and p are rational func-

tions of x and ȳ. Backsubstitution of the original variables yields (6.8). If the general
solution is not rational, one or two special rational solutions may exist leading to
case (ii). ��
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