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Abstract
Rabies is a fatal zoonotic disease caused by a virus through bites or saliva of an infected
animal. Dogs are the main reservoir of rabies and responsible for most cases in humans
worldwide. In this article, a delay differential equations model for assessing the effects of
controls and time delay as incubation period on the transmission dynamics of rabies in
human and dog populations is formulated and analyzed. Analysis from the model show
that there is a locally and globally asymptotic stable disease-free equilibrium whenever a
certain epidemiological threshold, the control reproduction number Rv , is less than unity.
Furthermore, themodel has a unique endemic equilibriumwhenRv exceedunitywhich is also
locally and globally asymptotically stable for all delays. Time delay is found to have influence
on the endemicity of rabies. Vaccination of humans and dogs coupled with annual crop of
puppies are imposed to curtail the spread of rabies in the populations. Sensitivity analysis on
the number of infected humans and dogs revealed that increasing dog vaccination rate and
decreasing annual birth of puppies are more effective in human populations. However in dog
populations, the vaccination and birth control of puppies, have equal effective measures for
rabies control. Numerical experiments are conducted to illustrate the theoretical results and
control strategies.

Keywords Rabies · Controls · Stability · Equilibria · Delay differential equations
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1 Introduction

Rabies is an acute and fatal zoonotic virus disease mainly affecting all species of mammals
and other carnivores with dogs being the carrier for most human cases worldwide [6,28,32].
The rabies virus is mainly contained in the saliva of animals but may also be found in tears,
urine, semen and other body fluids [2,8]. The virus infects central nervous system and causes
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cerebral dysfunction in the brain, and once clinical symptoms developed, its mortality rate
is certain [15,34]. Moreover, Rabies has the highest case fatality rate of any conventional
infectious disease, approaching the 100% mark [7].

Dogs are the primary sources of rabies in humans, and the main transmission route is
through bites or scratch, especially by infected dogs [5,18,34]. Rabies can also be transmit-
ted through direct contact with wound or mucosal surface (e.g. mouth, nose, eye) that is
contaminated with the saliva from a rabid dog [6]. Humans and other mammals can develop
rabies from aerosol transmission or through transplantation of tissues and organs [2,30].
At the early stage of infection, initial symptoms of rabies resemble flu-like which include
fever with pain and unusual or unexplained tingling, hypersalivation, sore throat, cough,
nausea and vomiting, pricking, or burning sensation (paraesthesia) at the site of animal bite
[28,32]. Thereafter, as the virus spreads to the central nervous system, progressive and fatal
inflammation of the brain and spinal cord developed resulting in hyperactivity and paralysis
[28].

The incubation period (the time between exposure to rabies virus and the development
of symptoms) for most rabies cases in humans and dogs are generally between 20 days to
3 months but may vary from 1 week to 1 year, depending upon factors such as the location
of virus entry and viral load [26,31,32]. In extreme cases, the incubation period can be up to
7 years [26,28].

Rabies is still a very serious disease that exists with varying degrees of severity in practi-
cally all countries of theworld except Antarctica and theArctic. Islands such asNewZealand,
Australia,Mauritius and theSeychelles, are helped by their natural isolations [8,30]. In 2004, a
young patient survived rabies inWisconsin, but the reasons for this favorable outcome remain
elusive [2]. Rabies is responsible for the death of 50,000 to 60,000 people annually and was
responsible for 1.74 million disability adjusted life years (DALYs) losses each year [6,17].
More than 99% of these death occur in the developing countries where the disease is endemic
in domestic dog population [6,33].

The World Health Organization (WHO) calls rabies a “100% vaccine-preventable dis-
ease” [6,8]. Caroll et al. identified three most common control strategies for rabies namely
epidemiological surveillance, dog mass vaccination and population control [5]. Other pre-
ventive measures for rabies include immediate thorough wound washing with soap and water
after contact with a suspected rabid animal [32]. There are vaccines that are derived from a
variety of tissue culture or chicken embryo origins used for treating rabies and can be admin-
istered before or after exposure [1]. Control of the disease is hampered by cultural, social
and economic realities in which expenditure on treatment and control exceed $500 million
per annum [4,15]. With widespread global movement of people and animals, it is inevitable
that rabies will continue to be introduced into countries hitherto free of the disease.

Mathematicalmodelling in bioscience and indeedother field of studyhaveprovided insight
towards better understanding of the mechanisms involved and can provide useful optimal
strategies for control measures. Based on this facts, in recent years, mathematical rabies
models have been developed towards achieving these goals, see for example [1,5–7,10,34].
For instance, in [5], an SE IV (susceptible,exposed,infectious,vaccinated) continuous time
compartmental model in dog populations was created to investigate the effects of rabies
control using three control methods (vaccination, fertility control + vaccination and culling).
Kwaku in [1], considered another rabiesmodel in dog populations with vaccination as control
strategy.The impact of the vaccinewas shownby the increase in the number of recovereddogs.
In order to explore the dynamics, effective control and preventionmeasures of rabies inChina,
Zhang et al. [34] used an SE I R (susceptible,exposed,infectious,recovered) deterministic
model to describe the spread of rabies among dogs and from infectious dogs to humans. The
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model simulations agreed with the human rabies data reported by the Chinese Ministry of
Health and predicted that the number of human rabies is decreasing but may reach another
peak around 2030. Their study also demonstrated that reducing dog birth rate and increasing
dog immunization coverage rate are themost effectivemethods for controlling rabies inChina.
In 2015, based on the model of Zhang et al. [34], Chen et al. in [7], proposed a multi-patch
model to describe the transmission dynamics of rabies between dogs and humans in different
provinces. Their study investigated how the movement of dogs affects the geographically
inter-provincial spread of rabies in Mainland China. They found that immigration of dogs
canmake the disease endemic even if it dies out in each isolated patch (province). Chapwanya
et al. in [6], formulated yet another SE I rabies model in human and dog populations with
additional vaccinated compartment in humans. They proposed the discrete counterpart using
the nonstandard finite difference scheme.

Introduction of time delay in mathematical modelling has shown significant impacts on
dynamics of the system and disease burden. Research has shown the existence of time delay
between infection to infectiousness [16]. Time delay can cause equilibria of models to change
from stable to unstable or conditionally stable, thereby generating periodic solutions with
delay as a bifurcating parameter [9,14,35,36]. Furthermore,modelswith time delay are shown
to decrease disease burden andmore suitable formodelling severe acute respiratory syndrome
(SARS) of 2003 than models without delay [25]. From the foregoing, an important reality
(time delay), ought to be considered in model formulations looking at the wide range of the
incubation period and the complexity involved before symptoms appeared. Motivated by the
studies [6,25,34], in this article, we formulate and analyze a rabiesmodel with infections from
dogs to dogs, and dogs to humans by incorporating time delay as incubation period to form a
system of delay differential equations. Furthermore, in order to reduce themenace of rabies in
the populations of human and dog, we propose three control strategies; vaccination of humans
and dogs, coupled with annual birth control of new born puppies. The main objectives are to
study the effects of control strategies and time delay in both the model dynamical properties
and the endemicity of rabies virus in the populations. The rest of the article is organized as
follows. In Sect. 2, we present the model formulation with basic properties results, followed
by existence and stability of equilibria in Sect. 3. Numerical simulations are presented in
Sect. 4 and conclusion in Sect. 5.

2 Model formulation

The model consists of two populations: humans and dogs leaving in the same environment.
At any time t , the human population is sub-divided into three sub-populations of susceptible
humans (Sh(t)), infected humans (Ih(t)) and vaccinated humans (Vh(t)). Hence, the total
population of humans denoted by Nh(t), is given by

Nh(t) = Sh(t) + Ih(t) + Vh(t)

Similarly, at any time t , the dog population is sub-divided into three sub-populations of
susceptible dogs (Sd(t)), infected dogs (Id(t)), and vaccinated dogs (Vd(t)) so that the total
population of dogs is

Nd(t) = Sd(t) + Id(t) + Vd(t).

The susceptible human population is increased by the per capita growth rate (μhKh),
where μh is birth/death rate (which is assumed to occur in all human compartments), while
Kh is humans annual birth population. It is decreased by administering vaccination (at a
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Fig. 1 Schematic diagram of the rabies delay model equations (2.1)–(2.5)

rate v, natural death and infection due to sufficient contact between susceptible humans and
infected dogs at rate (βhd Sh Id(t−τ)e−μd τ ). Here, τ > 0, is the time lag (delay) that accounts
for the time between infection and infected stage while e−μdτ is the probability that rabid
dogs survived the natural death over the period [0, τ ], and βhd is transmission rate of rabies
from dogs to humans.

The infected human class is increased by sufficient contact between susceptible humans
and infected dogs (at a rate βhd Sh Id(t − τ)e−μdτ ), and decreased by natural and rabies
induced-death at ratesμh and αh , respectively. The vaccinated human population is increased
by vaccine dose administered to susceptibles (at rate v) and is decreased due to natural death
(at rate μh).

Similarly, susceptible dog population is increased by per capita growth (at a rate μd Kd ),
where μd is birth/death rate (which is assumed to occur in other dog compartment), while
Kd is dogs annual birth rate of newborn puppies. It is decreased by natural death (at rate μd ),
vaccination (at rate kSd ) and by infection when there is sufficient contact between susceptible
dogs and infected dogs (at rate βdd Sd Id(t −τ)e−μd τ ). The infected dogs population increase
by infection after sufficient contact between susceptible dogs and infected dogs (at a rate
βdd Sd Id(t − τ)e−μdτ ), and is decreased by the rate at which the infected dogs die naturally
(at rate μd ), and due to the rabies virus (at rate αd ).

In the formulation of this model, we make the following assumptions:

1. there is no transmission of rabies virus between susceptible and infected humans;
2. there is no transmission between rabid humans and susceptible dogs;
3. there are vaccinations in human and dog populations with long time immunity so that

vaccinated populations doesn’t revert to susceptibles.

The human and dog populations dynamics in a uniform environment, that may be regarded
as a single humans habitat site and single dogs breeding site, is represented by the following
system of delay differential equations as illustrated in Fig. (1). The model variables and
parameters are described in Table (1).

dSh
dt

= μhKh − (μh + v)Sh − βhd Sh Id(t − τ)e−μd τ , (2.1)

d Ih
dt

= βhd Sh Id(t − τ)e−μdτ − (μh + αh)Ih, (2.2)
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Table 1 Description of variables and parameters of model (2.1)–(2.6)

Variables and Parameters Description

Sh Susceptible human populations

Ih Infectious human populations

Vh Vaccinated human populations during pre-latency and latency period

Sd Susceptible dog populations

Id Infectious dog populations

Vd Vaccinated dog populations during pre-latency and latency period

Kh Human annual birth

Kd Dogs annual crop of newborn puppies

μh Natural death rate of humans

μd Natural death rate of dogs

αh Death rate of humans due to rabies virus

αd Death rate of dogs due to rabies virus

v Humans rate of vaccination

βhd Human-to-dog transmission rate

βdd Dog-to-dog transmission rate

τ Time lag between latency and infected stage

k Dogs rate of vaccination

dVh
dt

= vSh − μhVh, (2.3)

dSd
dt

= μd Kd − (μd + k)Sd − βdd Sd Id(t − τ)e−μd τ , (2.4)

d Id
dt

= βdd Sd Id(t − τ)e−μd τ − (μd + αd)Id , (2.5)

dVd
dt

= kSd − μdVd , (2.6)

with initial data,

(Sh(t), Ih(t), Vh(t), Sd(t), Id(t), Vd(t)) =(�1(t), �2(t), �3(t), �4(t), �5(t), �6(t))

for t ∈ [−τ, 0], (2.7)

where (�1(t), �2(t), �3(t), �4(t), �5(t), �6(t)), ∈ C+ : C+([−τ, 0],R6+) is the space of
continuous functions on the interval [−τ, 0] equipped with maximum norm.

Description of variables and parameters of model (2.1)–(2.6)

2.1 Basic properties of themodel

The basic dynamical features of the model (2.1)–(2.6) will now be explored. For the model to
be epidemiologically meaningful, it is important to prove that all variables are non-negative
for all time, a unique and bounded solution exist. The model (2.1)–(2.6) is basically divided
into two regions; �d = {

Sd , Id , Vd
} ∈ R

3+ and �h = {
Sh, Ih, Vh

} ∈ R
3+ , thus � =

�h × �d ∈ R
6+.

Let Y (t) : [−τ,∞) → R
6+ be the humans and dogs valued function such that
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Y (t) = (Sh(t), Ih(t), Vh(t), Sd(t), Id(t), Vd(t)). The model system (2.1)–(2.6) can be
written as

dY (t)

dt
= f (t, Yt ), t ≥ 0. (2.8)

Yt (θ) = Y (t + θ), for θ ∈ [−τ, 0], (2.9)

where f : [−τ, 0] × R
6+ → R

6+ is a Lipschitz continuous function from [−τ, 0] × R
6+ into

R
6+. From the assumed properties of the model, we can establish the following.

Theorem 1 The solution (Sh(t), Ih(t), Vh(t), Sd(t), Id(t), Vd(t)) of the model (2.1)–(2.6)
exists and is unique for all time.

Proof Since f is continuous and Lipschitzian, it follows from Theorem (2.2) in [13] that
the delay differential equation system (2.1)–(2.6) has a unique solution given the initial data
(2.7). ��
Theorem 2 The solution (Sh(t), Ih(t), Vh(t), Sd(t), Id(t), Vd(t)) ofmodel (2.1)–(2.6) is pos-
itive for all time t > 0 and bounded in �, given the initial data in (2.7) .

Proof Suppose all the initial data in (2.7) are positive. Consider Eq. (2.1), with μhKh > 0,
we have

dSh
dt

≥ [−(μh + v) − βhd Id(t − τ)e−μdτ
]
Sh, so that

Sh(t) ≥ Sh(0) exp

(
−

∫ t

0
[(μh + v) + βhd Id(u − τ)e−μd τ ]du

)

> 0.

Hence Sh(t) is positive. Similarly, from (2.4), having μd Kd > 0,

dSd
dt

≥ −[(μd + k) + βdd Id(t − τ)e−μdτ ]Sd(t), so

Sd(t) ≥ Sd(0) exp

(
−

∫ t

0
[(μd + k) + βdd Id(u − τ)e−μd τ ]du

)

> 0.

Therefore, Sd(t) is also positive.
Now, with the positivity of Sh(t) and Sd(t) above, we can deduce from Eqs. (2.3) and

(2.6) that

dVh
dt

≥ −μhVh(t) and

dVd
dt

≥ −μdVd(t), respectively.

Therefore,

Vh(t) ≥ Vh(0) exp(μht) > 0 and

Vd(t) ≥ Vd(0) exp(μd t) > 0.

Therefore, Vh(t) > 0 and Vd(t) > 0.
For the other variables (Ih(t) and Id(t)), we use the method of contradiction using the

approach in [11] as follows. Noting that Ih(θ) and Id(θ) are positive for any θ ∈ [−τ, 0].
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Suppose that by contradiction, the variables are negative, then there exists a time t̂ > 0
such that Ih(t̂) = 0, Id(t̂) = 0, and Sh(t) > 0, Ih(t) > 0, Vh(t) > 0, Sd(t) > 0, Id(t) >

0, Vd(t) > 0 for all t ∈ [0, t̂) and d Ih(t̂)
dt ≤ 0, d Id (t̂)

dt ≤ 0. It follows from (2.2),

d Ih(t̂)

dt
= βhd Sh(t̂)Id(t̂ − τ)e−μd τ > 0,

which contradicts our earlier assumption. Therefore, Ih(t) is positive ∀ t > 0.
Similarly, from (2.5) we have,

d Id(t̂)

dt
= βdd Sd(t̂)Id(t̂ − τ)e−μdτ > 0,

which also contradicts our earlier assumption. Hence, Id(t) is positive ∀ t > 0. This proves
the first part of Theorem 2.

To show boundedness of solution, from the model equations in (2.1)–(2.6), adding the
human subpopulations, we have

dNh(t)

dt
= μhKh − μh Nh(t) − αh Ih,

≤μhKh − μh Nh(t).
(2.10)

Using standard comparison theorem [29], one can show that

Nh(t) ≤ Nh(0)e
−μh t − Kh[e−μh t − 1]. (2.11)

In particular,
Nh(t) ≤ Kh i f Nh(0) ≤ Kh . (2.12)

Therefore, the feasible solution for the human population in the model (2.1)–(2.6) is in the
region,

�h = {(Sh(t), Ih(t), Vh(t)) ∈ R
3+, Nh(t) ≤ Kh}. (2.13)

Similarly, from the model Eqs. (2.1)–(2.6), the total subpopulations of dog at any time t is
given as

dNd(t)

dt
= μd Kd + μd Nd(t) − αd Id ,

≤ μd Kd + μd Nd(t).
(2.14)

The solution of (2.13) can be obtained using standard comparison theorem [29] as

Nd(t) ≤ Nd(0)e
−μd t − Kd [e−μd t − 1]. (2.15)

Hence,
Nd(t) ≤ Kd i f Nd(0) ≤ Kd . (2.16)

Therefore, the feasible solution of dog population in the model is in the region

�d = {(Sd(t), Id(t), Vd(t) ∈ R
3+, Nd(t) ≤ Kd}. (2.17)

Thus, � = �h × �d = {(Sh + Ih + Vh) ≤ Kh; (Sd + Id + Vd) ≤ Kd}. Therefore, the
model (2.1)–(2.6) is mathematically well-posed and epidemiologically meaningful. ��

123



1074 S. Abdulmajid, A. S. Hassan

3 Existence and stability of equilibria

The existence and asymptotic stability properties of themodel will be explored in this section.
At equilibrium, Id(t) = Id(t − τ) = I ∗

d , Sh(t) = S∗
h , Ih(t) = I ∗

h , Vh(t) = V ∗
h , Vd(t) = V ∗

d .
At equilibrium, we set the right hand sides of Eqs. (2.1)–(2.6) to zero. Thus,

μhKh − (μh + v)S∗
h − βhd S

∗
h I

∗
d e

−μdτ = 0, (3.1)

βhd S
∗
h I

∗
d e

−μdτ − (μh + αh)I
∗
h = 0, (3.2)

vS∗
h − μhV

∗
h = 0, (3.3)

μd Kd − (μd + k)S∗
d − βdd S

∗
d I

∗
d e

−μdτ = 0, (3.4)

βdd S
∗
d I

∗
d e

−μdτ − (μd + αd)I
∗
d = 0, (3.5)

kS∗
d − μdV

∗
d = 0. (3.6)

From (3.5),

[βdd S
∗
d e

−μdτ − (μd + αd)]I ∗
d = 0, (3.7)

which gives I ∗
d = 0 or βdd S∗

d e
−μdτ − (μd + αd) = 0.

The case where I ∗
d = 0, gives the disease-free equilibrium by using appropriate substitu-

tions in other equations, to get

E0 ≡ (S0h , I 0h , V 0
h , S0d , I 0d , V 0

d ) =
(

μhKh

μh + v
, 0,

vKh

μh + v
,

μd Kd

μd + k
, 0,

kKd

μd + k

)
.

(3.8)
The basic control reproduction number denoted byRv is defined as the expected number of

secondary cases produced by introducing one infected in a completely susceptible population
in the presence of intervention. According to the approaches in [37,38], the next infection

operator matrix is defined to be M0 =

⎡

⎢⎢
⎣

0
βhd S0h e

−μd τ

(μh+αh)

0
βdd S0d e

−μd τ

(μd+αd )

⎤

⎥⎥
⎦.

Thus, the spectral radius ofM0 gives the basic control reproduction number for the model
as

Rv = βdde−μdτμd Kd

(μd + αd)(μd + k)
. (3.9)

Remark 3 It is worth noting here that, all the parameters ofRv are defined explicitly in terms
of dog’s parameters including the time delay τ . Thus for any meaningful control strategy,
more attention should be directed towards these parameters as suggested in [6].

However, if I ∗
d �= 0, then from (3.7), S∗

d = μd+αd
βdd e−μd τ .

Substituting S∗
d in equation (3.6), we get V ∗

d = kS∗
d

μd
= k(μd+αd )

μdβdd e−μd τ . Similarly, substituting

S∗
d in (3.4) and simplifying, I ∗

d = μd+k
βdd e−μd τ [Rv − 1], which holds only ifRv > 1. Continuing

with these back substitutions, we get unique endemic equilibrium define as

E1 ≡ (S∗∗
h , I ∗∗

h , V ∗∗
h , S∗∗

d , I ∗∗
d , V ∗∗

d ),

123



Analysis of time delayed... 1075

where

S∗∗
h = μhKh

βhde−μdτ I ∗∗
d + (μh + v)

,

I ∗∗
h = βhde−μdτ S∗∗

h I ∗∗
d

(μh + αh)
,

V ∗∗
h = vS∗∗

h

μh
,

S∗∗
d = μd + αd

βdde−μdτ
,

I ∗∗
d = μd + k

βdde−μdτ
(Rv − 1) ,

V ∗∗
d = k(μd + αd)

μdβdde−μdτ
,

(3.10)

when Rv > 1.

3.1 Stability of equilibria

To establish the local asymptotic stability of the equilibria, we linearize model (2.1)–(2.6)
about an arbitrary equilibrium, to have

dY (t)

dt
= J0Y (t) + J1Y (t − τ) (3.11)

where, Y (t) = (Sh(t), Ih(t), Vh(t), Sd(t), Id(t) Vd(t))T , and J0 = (ai j ) is the Jacobian
matrix with respect to Y (t), while J1 = (bi j ) is the Jacobian with respect to Y (t − τ) for
i, j = 1, 2, 3, 4, 5, 6, evaluated at any arbitrary equilibrium point so that

J0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(μh + v + βhd I
∗
d e

−μdτ ) 0 0 0 0 0
βhd I

∗
d e

−μdτ −(μh + αh) 0 0 0 0
v 0 −μh 0 0 0
0 0 0 −(μd + βdd I

∗
d e

−μdτ ) 0 0
0 0 0 βdd I

∗
d e

−μdτ −(μd + αd ) 0
0 0 0 k 0 −μd

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

J1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 −βhd S∗
h e

−τ(λ+μd ) 0
0 0 0 0 βhd S∗

h e
−τ(λ+μd ) 0

0 0 0 0 0 0
0 0 0 0 −βdd S∗

d e
−τ(λ+μd ) 0

0 0 0 0 βdd S∗
d e

−τ(λ+μd ) 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Next, we seek a solution for the system (3.11) of the form

Y (t) = Ceλt , (3.12)

where C is a constant matrix and λ an eigenvalue. Substituting (3.12) into Eq. (3.11), rear-
ranging and simplifying, for non-trivial solution of (3.11), gives the transcendental equation

G(λ) = |λI − J0 − J1| = 0, (3.13)
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where I is a 6 × 6 identity matrix.

3.1.1 Stability of disease-free equilibrium

Theorem 4 IfRv < 1, the disease-free equilibrium E0 is absolutely stable for all delay τ ≥ 0
and unstable if Rv > 1.

Proof Substituting the disease-free equilibrium E0 in Eq. (3.13), we have the transcendental
equation

G(λ) = (λ + μd)(λ + μh + v)(λ + μh + αh)(λ + μh)(λ + μd)g1(λ), (3.14)

where
g1(λ) = λ + μd + αd − βdd S

0
de

−τ(λ+μd ) = 0. (3.15)

It can be seen that (3.14) has five negative roots (λ = −μd , λ = −(μh + v), λ = −(μh +
αh), λ = −μh, λ = −μd ). Therefore the stability of E0 can now be determined by the
distribution of roots for g1(λ) = 0. Now,

g1(0) = (μd + αd)

[

1 − βdd S0de
−τμd

μd + αd

]

,

= (μd + αd)[1 − Rv].
If Rv > 1, then g1(0) < 0, and g1(+∞) = +∞, hence g1(λ) has at least one positive root,
therefore E0 is unstable. This proved the last part of Theorem 4.

When τ = 0, from (3.14),

λ =
[

βdd S0d
μd + αd

− 1

]

,

< 0, if Rv < 1.

Hence, the root of (3.15) has negative real part.
When τ > 0, according to Corollary 2.4 [24], for a stability switch (a root with positive

(negative) real part to cross the imaginary axis) to necessarily occurs, there must be a root
λ = ±iy1 for some y1 ∈ R

+. We assume that λ = iy1, is a root of Eq. (3.15). Substituting
λ = iy1 in (3.15), we get

g1(iy1) =iy1 + (μd + αd) − βdd S
0
de

−τμd (cos y1τ − i sin y1τ) = 0.

Separating real and imaginary parts, squaring and adding we have

y21 = (βdd S
0
de

−τμd )2 − (μd + αd)
2.

Hence

y1 =
√

(βdd S0de
−τμd + μd + αd)[βdd S0de

−τμd − (μd + αd)],
=

√
(βdd S0de

−τμd + μd + αd)(μd + αd)[Rv − 1].
If Rv < 1, there is no such y1 ∈ R

+, which shows that (3.15) has no purely imaginary
root. This implies that all roots of g1(λ) must have negative real parts (no stability switch).
Therefore, the disease-free equilibrium E0, is absolutely stable when Rv < 1 for all delay
τ ≥ 0. ��
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In order to ensure total eradication of rabies infection in the populations irrespective of
the initial population started with, we now prove the global stability of E0.

Theorem 5 The disease-free equilibrium, E0 is globally asymptotically stable for all delay
τ ≥ 0, if Rv < 1.

Proof Here,we use themethod of Lyapunov function in conjunctionwithLasalle’s Invariance
Principle as follows. Let U (t) = (Sh(t), Ih(t), Vd(t), Sd(t), I d(t), Vd(t)) ∈ R

6+ for t > 0.
Let L(U ) = μd Id(t) be the Lyapunov function. It can be seen clearly that L(U ) > 0, for all
Id(t) > 0 and L(U ) = 0 only if Id(t) = 0. To show that L̇ < 0, we differentiate along the
solution of model (2.1)–(2.6) as follows

L̇(U ) = μd İd(t),

= μd [βdd Sd(t)Id(t − τ)e−μdτ − (μd + αd)Id(t)],
≤ μd [βdd Sd(t)e

−μdτ − (μd + αd)]Id(t − τ),

hereId(t)is a decreasing function, so I (t) ≤ I (t − τ),

≤ μd [βdd Kde
−μdτ − (μd + αd)]Id(t − τ),

≤ μd(μd + αd)

[
βdd Kde−μdτ

μd + αd
− 1

]
Id(t − τ),

= μd(μd + αd)[Rv − 1]Id(t − τ).

Therefore
L̇(U ) ≤ μd(μd + αd)[Rv − 1]Id(t − τ),

< 0, whenRv < 1with equality only atE0.
Therefore, L(U ) is a Lyapunov function. According to Theorem 2.3.1 in [27] as applied
in [11], if Rv < 1, there exists the only disease free equilibrium E0 which is globally
asymptotically stable (GAS) in � for all delay τ ≥ 0. Hence, proved. ��

3.1.2 Stability of the endemic equilibrium

Theorem 6 The endemic equilibrium E1 is locally asymptotically stable if Rv > 1 for all
delay τ ≥ 0.

Proof Soppose Rv > 1, then substituting the endemic equilibrium E1 in the arbitrary tran-
scendental Eq. (3.13), we have

G2(λ) =(λ + μh + v + βhd I
∗∗
d eμdτ )(λ + μh + αh)(λ + μh)(λ + μd + k + βdd I

∗∗
d eμdτ )

(λ + μd)g2(λ) = 0,
(3.16)

where g2(λ) = λ + μd + αd − βdd S∗∗
d e−τ(λ+μd ) = 0. From (3.16), G2(λ) has five negative

roots given as (λ1 = −(μh + v + βhd I ∗∗
d eμdτ ), λ2 = −(μh + αh), λ3 = −μh, λ4 =

−(μd + k + βdd I ∗∗
d eμdτ ) and λ5 = −μd ). Therefore the stability of E1 can be determined

by the distribution of roots in g2(λ) = 0.
When τ = 0, we have

g2(0) ≥ 0 and lim
λ→∞ g2(λ) = +∞.

Hence there is no positive root of g2(λ) = 0 when τ = 0. Therefore E1 is stable.
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When τ > 0, we assume there is a root λ = iy2 for any y2 ∈ R
+. Substituting λ = iy2 in

g2(λ) = 0, we have

g2(iy) =iy2 + (μd + αd) − βdd S
∗∗
d e−τμd (cos y2τ − i sin y2τ) = 0.

Separating real and imaginary parts, squaring and adding the two parts, we get

y22 = (μd + αd)
2

[
(βdd S∗∗

d e−τμd )2

(μd + αd)2
− 1

]

.

Therefore if Rv > 1, there is no y2 ∈ R
+ such that λ = iy2 can be a root for g2(λ) = 0.

From the general theory of transcendental equations, (see [3,19]), we conclude that when
Rv > 1, then endemic equilibrium E1 is locally asymptotically stable for all delay τ ≥ 0.

��
Next we look at the global attractiveness for E1.

Theorem 7 The endemic equilibrium E1 is globally asymptotically stable, if Rv > 1 for all
delay τ ≥ 0.

Proof Let Rv > 1. Since Vh and Vd does not appear in the equations for dSh
dt ,

d Ih
dt ,

dSd
dt and

d Id
dt , then model (2.1)–(2.6) can sufficiently be analyzed by dropping the equations of dVh

dt

and dVd
dt with the same initial conditions. Hence we consider

dSh
dt

= μhKh − (μh + v)Sh − βhd Sh Id(t − τ)e−μd τ , (3.17)

d Ih
dt

= βhd Sh Id(t − τ)e−μdτ − (μh + αh)Ih, (3.18)

dSd
dt

= μhKd − (μd + k)Sd − βdd Sd Id(t − τ)e−μd τ , (3.19)

d Id
dt

= βdd Sd Id(t − τ)e−μd τ − (μd + αd)Id . (3.20)

The Lyapunov function we will consider for the global stability of the endemic equilibrium
point E1 is of the same form as those used in [12,14,22,23]. Thuswe let the Lyaponuv function
defined as

V (t) = (Sh − S∗∗
h ln(Sh)) + A(Ih − I ∗∗

h ln(Ih)) + (Sd − S∗∗
d ln(Sd)) + B(Id − I ∗∗

d ln(Id)),
(3.21)

where A and B are constants to be determined. Differentiating (3.21) with the respect to time
along the solution of (3.17)–(3.20), we have

˙V (t) =
(
Ṡh − S∗∗

h

Sh
Ṡh

)
+ A

(
İh − I ∗∗

h

Ih
İh

)
+

(
Ṡd − S∗∗

d

Sd
Ṡd

)
+ B

(
İd − I ∗∗

d

Id
İd

)
,

(3.22)

=
(
1 − S∗∗

h

Sh

)
Ṡh + A

(
1 − I ∗∗

h

Ih

)
İh +

(
1 − S∗∗

d

Sd

)
Ṡd + B

(
1 − I ∗∗

d

Id

)
İd . (3.23)

At the endemic equilibrium it can be seen from (3.17)–(3.20) that

μhKh = (μh + v)S∗∗
h + βhd S

∗∗ I ∗∗
d e−μdτ (3.24)

(μh + αh) = βhd S∗∗
h I ∗∗

d e−μdτ

I ∗∗
h

(3.25)
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μhKd = (μd + k)S∗∗
d + βdd S

∗∗
d I ∗∗

d e−μdτ (3.26)

(μd + αd) = βdd S∗∗
d I ∗∗

d e−μdτ

I ∗∗
d

(3.27)

Substituting, the derivatives from (3.17)–(3.20) and furtherwith the constants from (3.24)–
(3.27), in Eq. (3.23), we have

˙V (t) =
(
1 − S∗∗

h

Sh

) [
(μh + v)S∗∗

h + βhd Sh
∗∗ I ∗∗

d e−μd τ − (μh + v)Sh − βhd Sh Id(t − τ)e−μdτ
]

+A

(
1 − I ∗∗

h

Ih

) [
βhd Sh Id(t − τ)e−μdτ −

(
βhd S∗∗

h I ∗∗
d e−μdτ

I ∗∗
h

)
Ih

]

+
(
1 − S∗∗

d

Sd

) [
(μd + k)S∗∗

d + βdd S
∗∗
d I ∗∗

d e−μd τ − (μd + k)Sd − βdd Sd Id(t − τ)e−μdτ
]

+B

(
1 − I ∗∗

d

Id

) [
βdd Sd Id(t − τ)e−μdτ −

(
βdd S∗∗

d I ∗∗
d e−μd τ

I ∗∗
d

)
Id

]
. (3.28)

Expanding and simplifying (3.28), we get

V̇ (t) = −(μh + v)
(Sh − S∗∗

h )2

Sh
− (μd + k)

(Sd − S∗∗
d )2

Sd

+βhd S
∗∗
h I ∗∗

d e−μdτ

(
1 − S∗∗

h

Sh
− Sh Id

S∗∗
h I ∗∗

d
+ Id

I ∗∗
d

+ A
Sh Id
S∗∗
h I ∗∗

d

−A
Ih
I ∗∗
h

Sh Id
S∗∗
h I ∗∗

d
− A

I ∗∗
h

Ih
+ A

)

+βdd S
∗∗
d I ∗∗

d e−μdτ

(
1 − S∗∗

d

Sd
− Sd Id

S∗∗
d I ∗∗

d
+ Id

I ∗∗
d

+ B
Sd Id
S∗∗
d I ∗∗

d

−B
I ∗∗
d

Id

Sd Id
S∗∗
d I ∗∗

d
− B

Id
I ∗∗
d

+ B

)
. (3.29)

Now choosing A = B = 1, and initially, the number of infected dogs (Id(t)) is less than
or equal to I ∗∗

d , then Id
I ∗∗
d

≤ 1. Hence

V̇ (t) ≤ − (μh + v)
(Sh − S∗∗

h )2

Sh
− (μd + k)

(Sd − S∗∗
d )2

Sd

+ βhd S
∗∗
h I ∗∗

d e−μdτ

(
3 − S∗∗

h

Sh
− I ∗∗

h Sh
Ih S∗∗

h
− I ∗∗

h

Ih

)

+ βdd S
∗∗
d I ∗∗

d e−μdτ

(
2 − S∗∗

d

Sd
− I ∗∗

d Sd
Id S∗∗

d

)
.

(3.30)

From the last two terms in (3.30), using the fact that geometric mean is less than or equal to
arithmetic mean, it implies

V̇ (t) ≤ 0. (3.31)

Therefore, it follows that V̇ (t) ≤ 0 and V̇ (t) = 0 only at the endemic equilibrium point
E1. Hence by LaSalle’s Invariance Principle [21], the only invariant set in{

(Sh, Ih, Vh, Sd , Id , Vd ) ∈ R
6+ : (Sh, Ih, Vh, Sd , Id , Vd ) → E1

}
is the singleton

endemic equilibrium point E1 . Thus any solution to model (2.1)–(2.6) which intersect the
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Table 2 Parameter values used in the numerical simulations of the model (2.1)–(2.6)

Parameters Description Value Unit Reference

Kh Human population carrying capacity 10000 year−1 assumption

Kd Dog population carrying capacity 1000 year−1 assumption

μh Birth or death rate of humans 0.0066 year−1 [34]

μd Birth or death rate of dogs 0.08 year−1 [34]

αh Death rate of human due to rabies virus 1 year−1 [34]

αd Death rate of dogs due to rabies virus 1 year−1 [34]

v Rate of vaccination for Sh 0.02 year−1 Assumption

k Rate of vaccination for Sd 0.02 year−1 Assumption

βhd Contact rate between Sh and Id 0.3 year−1 [6]

βdd Contact rate between Sd and Id 0.5 year−1 [6]

τ Incubation period 1/6 year [34]

interior of R6+ limits to E1. Therefore, E1 is globally asymptotically stable in � whenever
Rv > 1 for all delay τ ≥ 0. ��

4 Numerical simulations

In this section, we present numerical simulations that support the theoretical results obtained
in the previous sections. We use the parameter values in Table 2 that are mostly from pub-
lished literature associated with rabies to illustrate our theoretical results. Moreover, the
numerical experiments will be used to show the sensitivity of certain parameters as it affects
the endemicity and control of the virus.

Figures 2 illustrate the asymptotic stabilities for equilibria (E0 and E1) in human population
using parameter values in Table 2. In Figs. 2a, b, the local and global asymptotic stabilities for
disease free equilibrium E0 are displayed using time series and 3D phase portrait respectively.
Similarly, Fig. 2c, d, show the corresponding local and global asymptotic stabilities for
endemic equilibrium E1 with parameter values from Table 2, except for βhd = 0.5, βdd =
6.58 × 10−3, Kd = 6000 so that Rv = 16.97 > 1.

Similarly, in Fig. 3, the asymptotic stabilities for equilibria (E0 and E1) in dog population
are displayed. In Fig. 3a, b, the local and global asymptotic stabilities for disease free equi-
librium E0 are shown with time series and 3D phase portrait respectively while Fig. 2c, d,
show the corresponding local and global asymptotic stabilities for endemic equilibrium E1
in human subpopulations with parameter values as in Fig. 2c, d above. In both Figs. 2, 3a,
b, the value of Rv is 0.67.

In order to explore the influence of control strategies on the numbers of infected humans
and dogs, we varied the parameters of vaccination and annual crop of puppies as shown in
Fig. 4a–d. From Fig. 4a, it can be seen that increasing the rate of human vaccination from
v = 0.01 to v = 1.98, the number of infected humans with rabies, after reaching highest peak
of 80 people, decline to about 30 infected humans. It can further be observed in each case,
the peak and number of infected cases are reducing as the vaccine rate increases. Although
human vaccine reduces the infectivity of the virus, however, as shown from Fig. 4a, the rate
of human vaccine for rabies must be very high for the basic reproduction number, Rv to be
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Fig. 2 Numerical simulations depicting the stability of equilibria in human subpopulations for the model
(2.1)–(2.6) with parameter values in Table 2, except for (c) and (d), with βhd = 0.5, βdd = 6.58 × 10−3,
Kd = 6000 so that Rv = 16.97 > 1. In (a) time series of local stability for DFE, (b) 3D phase portrait
for global asymptotic stability for DFE, (c) local asymptotic stability for EE (d) 3D phase portrait for global
stability for EE

less than one. This suggest combine control strategy, especially from the dog population. In
line with this and as remarked, we consider the sensitivity of vaccination in susceptible dog’s
population. As observed from Figs. 4b, c, as k is increased from 0.02 to 0.2, the number
of infected humans and dogs decreased to zero with value of Rv < 1. The implication of
this control is that, the increase in dog vaccination rate can eradicate the disease in both
human and dog populations. Another effective control strategy for rabies is to reduce the
dog population by culling [20]. However, there are controversies associated with this control
strategy ranging from critics by pet owners, animal activists to social factors [5]. For these
reasons, we employ the method of reducing the birth rate of new born puppies annually by
using immunocontraception as suggested in [5]. Thus, in Fig. 4d, as Kd is reduced from 6500
to 4500, the number of infected dogs reduces to almost zero, hence bringing the value of
Rv to below 1. In this case again, the disease can be eradicated in the population of the two
organisms.

Lastly, we consider the influence of time delay (τ ) as incubation period of rabies in dogs.
As shown from Fig. 5a, b, as τ is increased from 0.33 to 2, there are rapid decrease in both
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Fig. 3 Numerical simulations depicting the stability of equilibria in dog subpopulations for the model (2.1)–
(2.6) with parameter values in Table 2, except for (c) and (d), with βhd = 0.5, βdd = 6.58×10−3, Kd = 6000
so thatRv = 16.97 > 1. In (a) time series of local stability for DFE, (b) phase portrait for global asymptotic
stability for DFE, (c) local asymptotic stability for EE (d) phase portrait for global stability for EE

the number and peaks in graphs of infected humans and dogs respectively. This suggest that
if the incubation period can be elongated by any possible technique, the endemicity of rabies
can be reduced.

5 Conclusion

In this article, we formulate and analyze a rabies model in co-population of humans and
dogs by incorporating three control strategies (vaccination of dogs and humans coupled with
annual birth of puppies) and time delay as incubation period to form a system of delay
differential equations. This serves as an extension to several models proposed in [5,6,34]
with respect to the control strategies and model dynamics. Basic properties of the model as
par the theories of delay differential equations are established and the model is well-posed
mathematically and biologically. The main findings of the study are summarized as follows:

(i) Two equilibria are identified viz: disease free and endemic equilibria. Basic control
reproduction number Rv , is obtained and all parameters are defined in terms of dog
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Fig. 4 Numerical simulations displaying the effects of vaccination in human and dog suscepti-
ble ubspopulations, and annual crop of new puppies using parameter values from Table 2, except
for (a) v = 0.01, 0.15, 0.45, 0.73, 1.98, (b), (c) k = 0.02, 0.05, 0.07, 0.09, 0.2 and (d) Kd =
4500, 5000, 5500, 6000, 6500

population. Disease-free and endemic equilibria are shown to be both locally and glob-
ally asymptotically stable whenever Rv is less than/greater than unity and unstable
otherwise, respectively, for any delay value. Thus in the former case, rabies can be
eradicated if Rv can be reduced and maintained below one.

(ii) Human vaccination for rabies is found to reduce the infectivity in humans, however,
combining this with dog vaccination can eradicate the disease in humans.

(iii) Similarly, administering vaccination on susceptible dogs can eradicate rabies in dog
population in about 10 years.

(iv) Decreasing the crop of new puppies annually using immunocontraception can also
eliminate rabies in dog’s population within 10 years.

(iv) Increasing time delay as incubation period is shown to decrease the infectivity of rabies
in both human and dog populations.
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Fig. 5 Numerical simulations showing the effect of time delay as incubation period in both infected human
and dog populations using parameter values in Table 2, except with τ = 0.33, 0.49, 0.58, 0.98, 1.5, 2 in (a)
Infected humans and (b) infected dogs

(vi) Numerical simulations, using MATLAB DDE23, are used to illustrate the theoretical
results and sensitivity analysis of parameters associated with basic control reproduction
number.
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