Skip to main content
Log in

A Machine Learning System for the Diagnosis of Parkinson’s Disease from Speech Signals and Its Application to Multiple Speech Signal Types

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder that negatively affects millions of people. PD is usually diagnosed by a series of empirical tests and sometimes by invasive methods. Classifying People with Parkinsonism (PWP) from healthy people using speech signals may lead to innovative, noninvasive PD diagnosis. In this study, we developed a machine learning system to classify PWP using their speech signals. In the system, four feature selection algorithms, six classifiers, and two validation methods were employed for accurate classification of PWP. The system calculated the accuracy, sensitivity, specificity, and Matthews correlation coefficient of the results. Additionally, the execution times of the algorithms were computed. All utilized algorithms, classifiers, validation methods, and evaluation metrics are briefly reviewed in the article. The main innovative part of this study is developing a comprehensive machine learning system for classifying PWP and testing it on a PD dataset, which consisted of multiple types of speech signals. Applying feature selection methods greatly increased the accuracy of classification. The most significant and discriminative features of speech signals were obtained and explained with a medical background. The importance of the selected features is also evaluated from the medical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakar B.E., Isenkul M.E., Sakar C.O., Sertbas A., Gurgen F., Delil S., Apaydin H., Kursun O.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inf. 17(4), 828–834 (2013). doi:10.1109/jbhi.2013.2245674

    Article  Google Scholar 

  2. Jankovic J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008). doi:10.1136/jnnp.2007.131045

    Article  Google Scholar 

  3. Singh N., Pillay V., Choonara Y.E.: Advances in the treatment of Parkinson’s disease. Prog. Neurobiol. 81(1), 29–44 (2007). doi:10.1016/j.pneurobio.2006.11.009

    Article  Google Scholar 

  4. Conditions N.C.C.f.C: Parkinson’s Disease. Royal College of Physicians, London (2006)

  5. Harel B., Cannizzaro M., Snyder P.J.: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cogn. 56(1), 24–29 (2004). doi:10.1016/j.bandc.2004.05.002

    Article  Google Scholar 

  6. Tsanas A., Little M.A., McSharry P.E., Spielman J., Ramig L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012). doi:10.1109/tbme.2012.2183367

    Article  Google Scholar 

  7. Little M.A., McSharry P.E., Hunter E.J., Spielman J., Ramig L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1015–1022 (2009). doi:10.1109/tbme.2008.2005954

    Article  Google Scholar 

  8. Tsanas A., Little M.A., McSharry P.E., Ramig L.O.: Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J. R. Soc. Interface 8(59), 842–855 (2011). doi:10.1098/rsif.2010.0456

    Article  Google Scholar 

  9. Tsanas A., Little M.A., McSharry P.E., Ramig L.O.: Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010). doi:10.1109/tbme.2009.2036000

    Article  Google Scholar 

  10. Gok M.: An ensemble of k-nearest neighbours algorithm for detection of Parkinson’s disease. Int. J. Syst. Sci. 46(6), 1108–1112 (2015). doi:10.1080/00207721.2013.809613

    Article  MATH  Google Scholar 

  11. Bayestehtashk A., Asgari M., Shafran I., McNames J.: Fully automated assessment of the severity of Parkinson’s disease from speech. Comput. Speech Lang. 29(1), 172–185 (2015). doi:10.1016/j.csl.2013.12.001

    Article  Google Scholar 

  12. Khan T., Westin J., Dougherty M.: Classification of speech intelligibility in Parkinson’s disease. Biocybern. Biomed. Eng. 34(1), 35–45 (2014). doi:10.1016/j.bbe.2013.10.003

    Article  Google Scholar 

  13. Khan T., Westin J., Dougherty M.: Cepstral separation difference: a novel approach for speech impairment quantification in Parkinson’s disease. Biocybern. Biomed. Eng. 34(1), 25–34 (2014). doi:10.1016/j.bbe.2013.06.001

    Article  Google Scholar 

  14. Boersma, O.; Weenink, D.: Praat: doing phonetics by computer. http://www.fon.hum.uva.nl/praat/. Accessed 06 July 2015

  15. Hsu C.W., Lin C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  16. Tibshirani R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Peng H.C., Long F.H., Ding C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  18. Kira K., Rendell L.A: A Practical Approach to Feature-Selection. Machine Learning. Morgan Kaufmann Pub Inc, San Mateo (1992)

    Google Scholar 

  19. Sun Y.J., Todorovic S., Goodison S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1610–1626 (2010). doi:10.1109/tpami.2009.190

    Article  Google Scholar 

  20. Gilad-Bachrach, R.; Navot, A.; Tishby, N.: Margin Based Feature Selection—Theory and Algorithms. Paper presented at the Proceedings of the twenty-first international conference on Machine learning, Banff, Alberta, Canada

  21. Freund Y., Schapire R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). doi:10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu X.D., Kumar V., Quinlan J.R., Ghosh J., Yang Q., Motoda H., McLachlan G.J., Ng A., Liu B., Yu P.S., Zhou Z.H., Steinbach M., Hand D.J., Steinberg D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008). doi:10.1007/s10115-007-0114-2

    Article  Google Scholar 

  23. Chang, C.C.; Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011). doi:10.1145/1961189.1961199

  24. Jain A.K., Duin R.P.W., Mao J.C.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000). doi:10.1109/34.824819

    Article  Google Scholar 

  25. Ensemble classifier. http://www.mathworks.com/help/stats/classificationensemble-class.html. Accessed 15 April 2015

  26. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, vol. 1857. Lecture Notes in Computer Science, pp. 1–15. Springer, Berlin (2000)

  27. Friedman N., Geiger D., Goldszmidt M.: Bayesian network classifiers. Mach. Learn. 29(2-3), 131–163 (1997). doi:10.1023/a:1007465528199

    Article  MATH  Google Scholar 

  28. Bowen L.K., Hands G.L., Pradhan S., Stepp C.E.: Effects of Parkinson’s disease on fundamental frequency variability in running speech. J. Med. Speech Lang. Pathol. 21(3), 235–244 (2013)

    Google Scholar 

  29. Rusz J., Cmejla R., Ruzickova H., Ruzicka E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am. 129(1), 350–367 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Cantürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantürk, İ., Karabiber, F. A Machine Learning System for the Diagnosis of Parkinson’s Disease from Speech Signals and Its Application to Multiple Speech Signal Types. Arab J Sci Eng 41, 5049–5059 (2016). https://doi.org/10.1007/s13369-016-2206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2206-3

Keywords

Navigation